

 1

Refactoring Object-Oriented Systems
with Aspect-Oriented Concepts

Ph.D. progress report, 10th December 2004
Departamento de Informática, Universidade do Minho

Ph.D. student:
Miguel Pessoa Monteiro

Ph.D. supervisor:
João Miguel Fernandes

ABSTRACT
This report presents the current status of the first author’s Ph.D.
project. The project’s aims were to research a new source code
style suitable for aspect-oriented programming, to be expressed
through a pattern language of refactorings and code smells. The
approach taken was to perform refactoring experiments on
suitable code bases in order to derive useful insights. The
project’s main contributions are a reappraisal of traditional object-
oriented smells in the light of aspect-orientation, the proposal for
several novel code smells, complemented with a collection of
refactorings for aspect-oriented source code capable of removing
those smells from existing object-oriented systems.

1. INTRODUCTION
In the 1st of April of 2002 this first author of this report started
working on a Ph.D. project under the supervision of the second
author. The first author was granted a leave of 36 months, funded
by PRODEP III (Medida 5 – Acção 5.3 – Eixo 3 – Formação
Avançada de Docentes do Ensino Superior). The leave ends at
31st March 2005. This report presents the project’s current status
as it is nearing its deadline.
The Ph.D. project described here tackles one of the problems
found in the area of software engineering, stemming from
limitations in object-oriented programming (OOP), which is the
current dominant paradigm. In the end of the 1980s and beginning
of the 1990s symptoms of limitations in this paradigm became
increasingly prominent, which motivated various research fields,
including the ones mentioned in the next section.
This report is structured as follows: in section 2 we present a brief
overview of some of the problems stemming from limitations in
OOP. This provides the background and motivation for this Ph.D.
project. In section 3 we present refactoring and aspect-oriented
programming as two trends in current software engineering that
contribute to ameliorate the problems mentioned in the previous
section. In section 4 we present the Ph.D. project’s aims. In
section 5 we describe the approach taken. In section 6 we present
the project’s main contributions and in section 7 we survey related
work. We conclude the report by presenting the thesis claim in
section 8.

2. BACKGROUND TO THE PROBLEM
Object-Oriented Programming [48][70][40][63] is the current
dominant programming paradigm in software engineering, so
much so that several popular software (s/w) development
techniques are often discussed in terms of the concepts of object
technology, even though they are independent. Examples are

components [66][55][71], design patterns [30][18][59],
frameworks [37] and refactoring [12][29][56]. One key aim of all
these techniques is to attain separation of concerns1 [58][24] as a
way to make s/w reusable and its evolution simple. A concern is
basically any issue in a system’s design potentially deserving the
attention of the programmer at a given time during the design and
development. Separation of concerns is the ability to keep each
and every concern in its own unit of modularity, for the sake of its
own consistency and to ease the human programmer’s task of
reasoning with it. Over two decades of experience with OOP led
to the conclusion that, although OOP enabled significant
developments in s/w engineering, it still failed to achieve a full
separation of concerns.
OOP is essentially a decentralised paradigm, with the various bits
of functionality being placed in different objects. It copes less
well with concerns affecting multiple objects at the same time,
which Kiczales et al called crosscutting concerns [42]. This
phenomenon occurs because OOP, like previous programming
paradigms, supports one single decomposition criterion, in its case
the class decomposition unit. Concerns that do not align well with
this decomposition tend to crosscut existing units of modularity
(e.g. classes and methods), resulting in several negative
properties, including code scattering and code tangling [42]:
code related to such concerns tends to be scattered throughout
multiple modules, intertwined with code relating to other
concerns. These properties increase the difficulty in
understanding, adapting and reusing program source code.
Unfortunately, the recent evolution of modern s/w is leading to an
increasing prominence of crosscutting concerns. Examples
include most, if not all, of the services provided by the so-called
“middleware”, including logging, synchronisation and
coordination, security and authentication, persistence and storage
management, transaction support, administration, performance
and resource pooling.
These limitations started to be noticed at the end of the 1980s, and
are the root cause of problems such as the so-called inheritance
anomalies [46], which motivated an enormous quantity of
research efforts and publications during the 1990s, e.g.
[14][47][15][45][62][35].
A problem related to the ones mentioned above is the
preplanning problem [21], [22]: s/w architectures that were

1 Parnas is generally credited for the introduction of the concept of

separation of concerns, when proposing modular programming
[58] as a better way to structure program code. The term
“separation of concerns” was first coined by Dijkstra in [24].

 2

designed with a given set of changes in mind can cope flexibly
with those kinds of changes, but they usually result more difficult
to adapt to other kinds. This is serious, because (1) it may not be
possible to anticipate all changes required during a system’s
lifetime, (2) requirements tend to change over time and
(3) product families require different combinations of concerns in
its various member products. One traditional approach to this
problem is trying to anticipate all future requirements, and provide
for them in the design, but this usually leads to even more
complex and inflexible structures, and sometimes it turns out that
some of the anticipated requirements are not needed [16].

3. STATUS OF CURRENT RESEARCH
There are various research areas aiming to solve the
aforementioned problems, among them refactoring and aspect-
oriented programming (AOP). This Ph.D. project aims to
strengthen the link between the two.

3.1. Refactoring
Refactoring [12][29][56] is one of the key techniques of extreme
programming [16] and attempts to deal with the preplanning
problem. A refactoring is a transformation of the source code with
the purpose of obtaining code that is better organised and easier to
maintain, adapt and extend, while preserving its functionality, or
“externally observable behaviour”. The aim of refactoring is to
improve the design inherent in the source code by changing it in
order to make it correspond to a better design, a procedure that
reverses the traditional order of design first, code next. The
programmers are assisted in their task of detecting ill-formed code
by a catalogue of code smells, each of which specifies a symptom
that is a sign of possibly inadequate code structures.
Refactorings can be performed either manually or automatically.
In [29] we find a catalogue of 72 named refactorings meant to be
performed in a manual but disciplined way. It is generally agreed
that automatic support for refactoring [56] should be the ultimate
goal, as it offers a much stronger guarantee that no bugs are
introduced in the refactoring process. Refactorings are typically
performed through small steps, often with tests performed in
between, to prevent the eventual introduction of defects (cf.
chap.1 of [29]). It is also considered prudent to perform a given
restructuring with a sequence of small refactorings rather than a
few large ones, as large restructurings increase the likelihood of
introducing errors. Larger refactorings are usually decomposed
into several small ones. Sometimes a given refactoring may
require several others to be made first before the code is ripe for it
to be applied.

3.2. Aspect-Oriented Programming
AOP is one of several research areas falling under the umbrella
terms Advanced Separation of Concerns (ASoC) or Aspect-
Oriented Software Development (AOSD) [3][26], which include
other research lines, namely Composition Filters [4][17][13],
Subject-Oriented Programming [34], Multi-dimensional
Separation of Concerns [11][67][57], Adaptive Programming
[8][44] and Feature-Oriented Programming [10].
Kiczales et al. proposed AOP [42] as a new programming
technique capable of solving the problems related to crosscutting.
They used the term aspect to refer to the modular implementation
of a crosscutting concern. AOP’s main aspect-oriented (AO)
language – AspectJ [2][41] provides the same mechanisms as
found in Java classes and a few novel ones. AspectJ’s central

concept are the joinpoints: interesting events in the execution of a
program that aspects can intercept, and in which extra sections of
code called advice can be executed before, after, or instead of the
original event. AspectJ provides a new language construct, the
pointcut designator (PCD), through which programmers can
quantify over programs, i.e. specify the set of joinpoints necessary
to modify, extend or delete the behaviour associated with the
joinpoint. AspectJ’s rich set of PCDs effectively comprises a
domain-specific language for one kind of meta-programming,
quantification [28]. In addition, aspects can declare their own state
as well as declare additional state in existing classes, through
inter-type declarations. When that state is declared private it is
private to the aspect and the only place in the source code in
which those members can be used is the aspect, ensuring its
modularity. Among AO languages, AspectJ has the largest
community of users, due to the greater maturity of its tool support
[31][39][19][1], including several Integrated Development
Environments (IDEs) [1][4][5][6][64]. Such tool support is
indispensable to work with s/w systems of realistic dimensions.

3.3. Aspect-Oriented Refactoring
AOP’s steady progress from “bleeding edge” research field to
mainstream technology [60] brings forward the problem of how to
deal with large number of object-oriented (OO) legacy code bases.
Experience with refactoring of OO software in the last half-
decade suggests that refactoring techniques have the potential to
bring the concepts and mechanisms of aspect-orientation to
existing OO frameworks and applications.
In this Ph.D. project we research refactoring techniques for AO
code. We are not considering mechanisms for automatic support,
but rather aiming to pinpoint and characterise the operations as
performed manually. Pertinent issues include finding the most
useful transformations, their mechanics, which preconditions must
be met prior to each refactoring, and how the structure of the
legacy code may influence choice of the next refactoring to apply.
We chose to present the refactorings in a style similar to the one
used in [29] and [38], including its detailed descriptions of
mechanics and the use of code examples.
We adopted AspectJ, the most mature AOP language available, as
the main tool for this study. The fact that AspectJ is a backwards-
compatible extension of Java, as well as the present availability of
a large and rich base of Java code that can potentially benefit from
the superior composition capabilities of AspectJ, motivated us to
initially focus on transformations of Java to AspectJ, in particular
the extraction of concerns into aspects [50][53].

4. THE SPECIFIC PROBLEM
We believe there are several hurdles in need to be addressed so
that refactoring techniques can be used in AO software in an
effective and widespread way.
The first hurdle is the present lack of a fully developed idea of
what comprises a good AOP style. This is an important issue, for
a clear idea of style is a fundamental prerequisite for the use of
refactoring. Programmers need a clear idea of to where they are
heading in order to choose the next refactoring to apply. For
instance, Fowler et al. [29] present the concept of refactoring
through an example of Java code written in a procedural (i.e. bad)
style, which is subject to a series of restructurings in order to
make it well formed according to OO principles. Those
restructurings could be made because (1) the programmer could

 3

notice the present style was inadequate, (2) he had a clear idea of
what would comprise a more adequate style and (3) he knew how
to transform the source code and eliminate the inadequacies. This
knowledge is represented through a catalogue of 22 code smells
[29], compounded by a catalogue of 72 refactorings through
which those smells can be removed from existing code. This
concept of good style became one of the key components of
Extreme Programming [16], which regards a system’s source
code as primarily a communication mechanism between people
rather than computers.
A second hurdle – both a cause and a consequence of the first – is
the current lack of an AOP equivalent of the catalogue of OO
refactorings presented in [29]. This catalogue proved very useful
in bringing the concept of refactoring to a wider audience and in
providing programmers with guidelines on when to refactor and
how best to refactor. Our work is based on the assumption that
AOP would equally benefit from its specific catalogues of smells
and refactorings, helping programmers identify the situations in
the source code that could be improved with aspects, and guiding
them through the transformation processes.
A third hurdle – caused by the previous two – is the lack of tool
support for AOP constructs in current IDEs. The catalogue
presented in [29] provided a basis on which developers could rely
to build automatic tool support: a similar catalogue for AOP is
likely to bring similar benefits to current tool developers.
However, tool developers won’t be able to provide adequate
support to refactoring operations unless they have a prior notion
of AOP style, and a clear idea of which refactorings are worthy of
their development efforts.

5. THE APPROACH
We've taken the approach of using refactoring experiments based
on case studies, as a vehicle for gaining the necessary insights.
The case studies we used are Java code bases with the appropriate
structural characteristics. We approached those Java code bases as
bad-style or “smelly” AspectJ code, and searched for the kinds of
refactorings that would be effective in removing those smells. Our
first case study was WorkSCo [27], a real application in the area
of workflow and whose study yielded our first results [50]. Our
second case study were the code examples (version 1.1) presented
in [33], comprising the implementations of the 23 Gang-of-Four
(GoF) design patterns [30] in both Java and AspectJ. The 23 GoF
patterns illustrate a variety of design and structural issues and
situations that would be hard to find in a single code base (except
possibly in some large and complex ones). The implementations
of the GoF patterns effectively comprise a microcosm of many
possible systems. They proved to be a richer source of insights
than we probably would get from traditional OO frameworks,
without the need to analyze large code bases or learn domain-
specific concepts.
The AspectJ implementations presented in [33] are currently one
of the nearest things to examples of good AOP design, presenting
a clear notion of the desirable internal structure for aspects. Our
approach was to pinpoint the refactorings that would be needed to
transform the Java implementations into the AspectJ
implementations. We next tested and refined the refactorings thus
obtained using Java implementations of the same patterns by
independent authors [25] and [20], which further enriched the
patterns’ potential as providers of insights.

6. CONTRIBUTIONS
The main results of this Ph.D. project are the following:

 A collection of 28 refactorings for the AspectJ
programming language.

 A review of the traditional OO code smells in light of
AOP.

 The proposal of several novel code smells, including
one that is specific to aspects.

 Several considerations associated with the above
refactorings and code smells, most of which are
presented in [54].

The collection of 28 refactorings is structured in the following
groups:

 10 refactorings for the extraction of crosscutting
concerns from Java code bases to aspects.

 6 refactorings for improving the internals of aspects,
including aspects resulting from extraction processes
performed according to refactorings of the previous
group.

 11 refactorings to deal with the extraction of common
code between multiple aspects and the associated
transfer of aspect-specific constructs between
superaspects and subaspects.

 One refactoring dealing with the separation of concerns
in the signature of constructors that are part of published
interfaces.

6.1. Publications
These contributions are presented/documented in the following
publications:

 [53] states the aims of this Ph.D. project and presents
very early results.

 [50] presents our first case study and documents 5
refactorings that stemmed from that study.

 [51] presents a short analysis of the code examples that
comprised our second case study in the light of ease of
use and reusability.

 [49] is a technical report documenting all 28
refactorings, in a style and format similar to the ones
used in [29] and [38]. We chose to document this part of
our work through a technical report when we concluded
that it would be extremely tricky to document
refactorings in conference proceedings, due to space
constraints and to the fact that small sets of refactorings
are not likely to be considered a substantial enough
contribution to be accepted by the review boards of
prestigious international conferences.

 [54] presents most of the refactorings, reviews the
traditional OO code smells in light of AOP, proposes
several novel aspect-oriented code smells, including one
that is specific to aspects. It presents considerations of
various orders, including the effects of crosscutting in
the design of existing OO systems. It also surveys
related work and proposes several new directions of
research in this field.

 4

 [52] presents a refactoring process of a Java code base
into an AspectJ equivalent, using 17 of the refactorings
documented in [49]. It is complemented with an eclipse
project, available online, presenting dozens of complete
snapshots of the code being refactored.

7. RELATED WORK
Deursen et al [23] give a brief overview of the state of art in the
area of aspect mining and refactoring. Though their main concern
seems to be tools for the automatic detection of aspects, they also
mention several open questions about refactoring to aspects,
including “how can existing code smells be used to identify
candidate refactorings?” and “how can the introduction of aspects
be described in terms of a catalogue of new refactorings?”. In our
work we contribute to answering these two questions.

Iwamoto and Zhao announce in [36] their intention to build a
catalogue of AO refactorings. They present a catalogue of 24
refactorings, but the information provided about them is limited to
their names, with no further information. The refactorings we
document in [49] include a characterisation of the situations
where the refactoring applies, mention of preconditions,
descriptions of the mechanics, and code examples.

Several authors [65][36][32][69][72] call into attention what we
call the fragile base code problem, caused by the fact that almost
all refactorings can potentially break existing aspects, particularly
pointcuts. We do not directly tackle this problem in our work but
we hope that adoption of an appropriate style for programming
and evolving aspect constructs – particularly pointcuts – can
ameliorate it until a new generation of tools that take into account
the presence of aspects is available.
Hanenberg et al [32] propose a set of enabling conditions to
preserve the observable behaviour. By the author’s admission,
these conditions must be automatically verified by an aspect-
aware tool, as the manual verification is an exhausting task, even
in small systems. Hanenberg et al announce a tool – implemented
as a plug-in for eclipse [9] – providing a subset of the
functionality they deem desirable for a few refactorings. These
authors also document a small set of refactorings for AspectJ,
including a basic refactoring for extracting code snippets from
existing objects to aspects. These refactorings only scratch the
surface of the entire refactoring space, and our collection of
refactorings [49] goes significantly deeper, providing more detail
and tackling other issues, namely the tidying up of the internal
structure of aspects resulting from extraction processes.
In [43] Laddad presents a collection of novel refactorings and
prescribes several guidelines to ensure AO refactorings for
concern extraction are applied in a safe way. This material has a
significant utility value, particularly to developers of J2EE
applications. However, these are not presented in a style and
format similar to the ones used in [29][38] and [49], and we
believe that as a consequence some of the potential insights are
lost.
Tonella and Ceccato [68] base their work on the assumption that
interfaces are often (though not always) related to concerns other
than the one pertaining to the system’s main decomposition. The
authors provide very specific guidelines for when an interface
implementation is a symptom of a latent aspect and present an
aspect mining and concern extraction tool which uses these
criteria, and report on experimental results. These extractions are
also covered by the refactorings we document in [49]. The authors

also point out issues that can arise in a typical extraction of an
interface implementation into an aspect. The refactorings from
[49] prescribe procedures to deal with all these issues.
To our knowledge, no work besides ours deals with the potentially
bad internal structure of aspects resulting from extraction
processes. We also do not have knowledge of any other work
covering the issue of AO code smells, the work by Tonella and
Ceccato [68] being the only exception, though these authors do
not give this name to their work.

8. THESIS CLAIM
AOP requires its own specific programming style, which
catalogues of AOP-specific code smells and refactorings can help
to capture. It is beneficial to present those catalogues in a familiar
style, analogous to the one used in [29] and [38].

9. REFERENCES
[1] AJDT project homepage: http://www.eclipse.org/ajdt/

[2] AspectJ homepage: http://www.eclipse.org/aspectj/.

[3] Aspect-Oriented Software Development homepage:
http://aosd.net/.

[4] AspectJ for emacs: http://aspectj4emacs.sourceforge.net/

[5] AspectJ for JBuilder: http://aspectj4jbuildr.sourceforge.net/

[6] AspectJ for NetBreans: http://aspectj4netbean.sourceforge.net/

[7] Composition Filters homepage:
http://trese.cs.utwente.nl/composition_filters/

[8] Demeter project homepage:
http://www.ccs.neu.edu/research/demeter/.

[9] Eclipse Home Page. http://www.eclipse.org

[10] Product-Line Architecture Research Group homepage:
http://www.cs.utexas.edu/users/schwartz/.

[11] Multi-Dimensional Separation of Concerns project homepage:
http://www.research.ibm.com/hyperspace/.

[12] Refactoring homepage: http://www.refactoring.com/.

[13] Aksit, M., Bergmans, L., Vural, S., "An Object-Oriented
Language-Database Integration Model: The Composition-Filters
Approach", ACM, proceedings of the ECOOP’92, June/July, pp.
372-396.

[14] Aksit, M., Bosch, J., Van Der Sterren, W., Bergmans, L., “Real-
Time Specification Inheritance Anomalies and Real-Time
Filters”, pp. 386–405 of ECOOP ’94, July 1994.

[15] Baquero C., Oliveira R., Moura F., “Integration of Concurrency
Control in a Language with Subtyping and Subclassing”, pp. 173-
183 of the proceedings of the 1st USENIX Conference on Object-
OrientedTechnology and Systems (COOTS), 1995.

[16] Beck, K., “Extreme Programming Explained – Embrace Change”,
Addison Wesley 2000. ISBN 0-201-61641-6.

[17] Bergmans, L., Aksit, M., "Composing Crosscutting Concerns
using Composition Filters", pp. 51-57 of Communications of the
ACM, October 2001.

[18] Buschmann, F., Meunier, R., Rohnert, H. , Sommerlad, P., Stal,
M., “Pattern-Oriented Software Architecture: A System of
Patterns”, John Wiley & Sons, 1996. ISBN 0471958697.

[19] Clement, A., Colyer, A. Kersten, M., "Aspect-Oriented
Programming with AJDT", workshop on Analysis of Aspect-
Oriented Software (ECOOP‘03), 2003.

[20] Cooper, J., “Java Design Patterns: A Tutorial”, Addison-
Wesley 2000. ISBN: 0201485397. Also availabe at

 5

http://www.patterndepot. com/put/8/DesignJavaPDF.ZIP
or http://www. patterndepot.com/put/8/DesignJava.PDF.

[21] Czarnecki, K., “Generative Programming: Principles and
Techniques of Software Engineering Based on Automated
Cofiguration and Fragment-Based Component Models”, Ph.D.
thesis, Technische Universität Ilmenau, Germany, 1998.

[22] Czarnecki, K., Eisenecker, U. W., “Generative Programming -
Methods, Tools, and Applications”, Addison Wesley, June 2000.
ISBN 0201309777.

[23] Deursen, A., Marin, M., Moonen, L., “Aspect Mining and
Refactoring”, workshop on REFactoring: Achievements,
Challenges, Effects (REFACE03), Waterloo, Canada, November
2003.

[24] Dijsktra, E., “A Discipline of Programming”, Prentice Hall, 1976.

[25] Eckel, B., “Thinking in Patterns”, book in progress, revision 0.9,
20 May 2003. Available at http://64.78.49.204/TIPatterns-0.9.zip

[26] Elrad, T. (moderator) with panelists Aksit, M., Kiczales, G.,
Lieberherr, K., Ossher, H. “Discussing Aspects of AOP”, pp. 33-
38 of Communications of the ACM, October 2001.

[27] Fernandes, S. M., Cachopo J., Silva, A. R., “Supporting Evolution
in Workflow Definition Languages”, proceedings of SOFSEM
2004, Czech Republic, Merin, January 2004.

[28] Filman, R. E., Friedman, D. P., “Aspect-Oriented Programming is
Quantification and Obliviousness”, workshop on Advanced
Separation of Concerns (OOPSLA 2000), October 2000,
Minneapolis.

[29] Fowler, M. (with contributions by K. Beck, W. Opdyke and D.
Roberts), “Refactoring – Improving the Design of Existing Code”,
Addison Wesley 2000. ISBN 0201485672.

[30] Gamma, E., Helm, R., Johnson, R., Vlissides, J., “Design
Patterns, Elements of Reusable Object-Oriented Software”,
Addison Wesley, 1995. ISBN 0201633612.

[31] Griswold, W., Kato, Y., Yuan, J., "Aspect Browser: Tool Support
for Managing Dispersed Aspects", Technical Report CS99-0640,
Department of Computer Science and Engineering, University of
California, San Diego, December 1999.

[32] Hanenberg, S. , Oberschulte, C., Unland, R., “Refactoring of
Aspect-Oriented Software”, Net.ObjectDays 2003, Erfurt,
Germany, September 2003.

[33] Hannemann, J., Kiczales, G., "Design Pattern Implementation in
Java and AspectJ" proceedings of OOPSLA’02, USA, Seatle,
2002.

[34] Harrison, W., Ossher, H., “Subject-Oriented Programming (A
Critique of Pure Objects),” proceedings of the OOPSLA’93, 1993.

[35] Holmes, D., “Synchronisation Rings – Composable
Synchronisation for Object-Oriented Systems”, Ph.D. thesis,
Macquarie University, Sydney. 20th October 1999.

[36] Iwamoto, M., Zhao, J., “Refactoring Aspect-Oriented Programs”,
4th AOSD Modeling With UML Workshop, UML'2003, San
Francisco, USA, October 2003.

[37] Johnson, R., “Frameworks = (Components + Patterns)”,
Communications of the ACM, 40(10), 39-42, 1997.

[38] Kerievsky, J., “Refactoring to Patterns”, Addison-Wesley, 2004.
ISBN 0321213351.

[39] Kersten, M., "AO Tools: State of the (AspectJ) Art and Open
Problems", workshop on Tools for Aspect-Oriented Software
Development (OOPSLA 2002), November 2002.

[40] Khoshafian, S., Abnous, R., “Object Orientation, second edition”,
John Wiley & Sons, 1995. ISBN 0471078344.

[41] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J.,
Griswold, W. G., “An Overview of AspectJ”, ACM, proceedings
of the ECOOP 2001, Budapest, Hungary, 2001.

[42] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.,
Loingtier, J., Irwin, J., “Aspect-Oriented Programming”, ACM,
proceedings of the ECOOP 1997, Finland. Springer-Verlag
Lecture Notes in Computer Science, vol. 1241, June 1997.

[43] Laddad, R., “Aspect-Oriented Refactoring”, parts 1 and 2, The
Server Side, 2003. http://www.theserverside.com/

[44] Lieberherr, K., Orleans, D., Ovlinger, J. "Aspect-Oriented
Programming with Adaptive Methods", pp. 39-41 of
Communications of the ACM, October 2001.

[45] Lopes, C. V., “D: A Language Framework for Distributed
Computing”, Ph.D. thesis, College of Computer Science,
Northeastern University, Boston, 1997.

[46] Matsuoka, S., Yonezawa, A., “Analysis of Inheritance Anomaly
in Object-Oriented Concurrent Programming Languages” in
“Research Directions in Concurrent Object-Oriented
Programming” (Agha G., Wegner P., et al., Eds.), pp. 107-150,
MIT press, 1993.

[47] McHale,C., “Synchronisation in Concurrent, Object-oriented
Languages: Expressive Power, Genericity and Inheritance”, Ph.D.
thesis, Department of Computer Science, Trinity College, Dublin,
1994.

[48] Meyer, B., “Object-Oriented Software Construction, second
edition”, Prentice Hall, 1997. ISBN 0136291554.

[49] Monteiro, M. P. , Fernandes, J. M., “Catalogue of Refactorings
for AspectJ”, Technical Report UM-DI-GECSD-200401,
Departamento de Informática, Universidade do Minho, August
2004. Available at
http://www.di.uminho.pt/~jmf/PUBLI/papers/2004-TR-01.pdf

[50] Monteiro, M. P. , Fernandes, J. M., “Object-to-Aspect
Refactorings for Feature Extraction”, Industry paper presented at
the AOSD’2004, Lancaster, March 2004. Available at
http://aosd.net/2004/archive/Monteiro.pdf

[51] Monteiro, M. P. , Fernandes, J. M., “Pitfalls of AspectJ
Implementations of Some of the Gang-of-Four Design Patterns”,
proceedings of the DSOA'2004 workshop at JISBD 2004 (IX
Jornadas de Ingeniería de Software y Bases de Datos), Málaga,
Spain, November 2004.

[52] Monteiro, M. P. , Fernandes, J. M., “Refactoring a Java Code
Base to AspectJ – An Ilustrative Example”, practitioner’s report
submitted to the AOSD’2005.

[53] Monteiro, M. P. , Fernandes, J. M., “Some Thoughts On
Refactoring Objects to Aspects”, proceedings of the DSOA'2003
workshop at JISBD 2003 (VIII Jornadas de Ingeniería de
Software y Bases de Datos), Alicante, Spain, November 2003.

[54] Monteiro, M. P. , Fernandes, J. M., “Towards a Catalog of
Aspect-Oriented Refactorings”, accepted for publication in the
proceedings of the AOSD’2005, to take place in Chicago, USA,
14-18 March 2005.

[55] Nierstrasz, O., Tsichritzis, D. (eds), “Object-Oriented Software
Composition”, Prentice Hall, 1995. ISBN 0132206749.

[56] Opdyke, W. F., "Refactoring Object-Oriented Frameworks",
Ph.D. thesis, University of Illinois, 1992.

[57] Ossher, H., Tarr, P., “Using Multdimensional Separation of
Concerns to (Re)Shape Evolving Software”, pp. 43-50 of
Communications of the ACM, October 2001.

[58] Parnas, D. L., “On the criteria to be used in decomposing systems
into modules”, pp. 1053-1059 of Communications of the ACM,
December 1972.

 6

[59] Pree, W., “Design Patterns for Object-Oriented Software
Development”, Addison-Wesley, 1995. ISBN: 0201422948

[60] Sabbah, D., “Aspects – from Promise to Reality”, proceedings of
the AOSD 2004, Lancaster, UK, March 2004.

[61] Savarese, D. F., "Java's Continuing Evolution", November 2002
of Java Pro magazine.

[62] Silva, A. R., “Programação Concorrente com Objectos: Separação
e Composição de Facetas com Padrões de Desenho, Linguagem
de Padrões e Moldura de Objectos”, Ph.D. thesis, Instituto
Superior Técnico, Universidade Técnica de Lisboa, March 1999.

[63] Snyder, A., “The Essence of Objects: Concepts and Terms”, pp.
31-42 of IEEE Software, January 1993.

[64] Spurlin, V., "Aspect-Oriented Programming with Sun ONE
Studio: A Demonstration", November 2002
http://forte.sun.com/ffj/articles/aspectJ.html.

[65] Störzer, M., Koppen, C., “PCDiff: Attacking the Fragile Pointcut
Problem”, Interactive Workshop on Aspects in Software
(EIWAS) 2004, Berlin, Germany, September 2004.

[66] Szyperski, C., "Component Software, Beyond Object-Oriented
Programming", Addison-Wesley, 1999.

[67] Tarr, P., Ossher, H., Harrison, W., Sutton Jr., S.M., “N Degrees of
Separation: Multi-Dimensional Separation of Concerns”,
proceedings of the ICSE'99, May, 1999.

[68] Tonella, P., Ceccato, M., "Migrating Interface Implementation to
Aspects", pp. 220-229 of the proceedings of 20th IEEE
International Conference on Software Maintenance (ICSM'04),
Chicago, USA, September 2004.

[69] Tourwé, T., Brichau, J., Gybels, K., “On the Existence of the
AOSD-Evolution Paradox”, AOSD 2003 Workshop on Software-
engineering Properties of Languages for Aspect Technologies,
Boston, USA, 2003.

[70] Wegner, P., “Dimensions of Object-Based Language Design”, pp.
168–182 of the proceedings of OOPSLA ’87, October 1987.

[71] Whitehead, K., “Component-based Development – Principles and
Planning for Business Systems”, Addison Wesley Component
Software Series (C. Szyperski, Series Editor) 2002. ISBN 0-
20167-528-5.

[72] Wloka, J., “Refactoring in the Presence of Aspects”, ECOOP2003
PhD workshop, July 2003.

