Universidade do Minho

Escola de Engenharia

JoAO CARLOS CARDOSO DA SILVA

GUISURFER A Generic Framework for Reverse Engineering of Graphical

User Interfaces

Tese de Doutoramento em Infoatica

Ramo de Fundamentos da Compéaiac

Trabalho efectuado sob a orierdagde

Professor Doutor JésCreissac Campos

Professor Doutor o Alexandre Saraiva

Dezembro de 2010

E autorizada a reprodag integral desta tese apenas para efeitos de invedtigac

mediante declar@p escrita do interessado, que a tal se compromete.

Universidade do Minho, / /

Assinatura:

Acknowledgments

Many people contributed to this thesis. | would like to use these lines to ac-
knowledge every person and institution that contributed to its elaboration.

First of all, | would like to thank my supervisors, Professorél@seissac Cam-
pos and Professor do Alexandre Saraiva, both from the Department of Informat-
ics of Universidade do Minhofor giving me the opportunity to do my Ph.D and
for their guidance and encouragement that made this thesis possibld.véifge
lucky to have been their student. Collaborating with them was an enrichirfgspro
sional experience, and an opportunity to work with two persons whasahsgide
I highly appreciate.

| would like to thank also my colleagues frobniversidade do Minhand
Instituto Poli&cnico do @vado e do Avédor the continuous encouragement and
friendship.

I would like to thank the~unda@o para a Céncia e a Tecnologié-CT) for
supporting this thesis under contract SFRH/BD/30729/2006.

| wish to express also my gratitude to my parentsjlidband Gbria, who
always believed and supported me in every moment of my life, to my brottsér, Jo
Luis, for all his support and for being my biggest friend.

Finally, | would like to thank Susana for all her encouragement and cempre

hension.

This work was supported by projects CROSS (PTDC/EIA-CCO/1089938)20

and SSAAPP (PTDC/EIA-CC0O/108613/2008) funded by the Portugueseda-

tion for Science and Technology

FCT Fundacao para a Ciéncia e a Tecnologia
MINISTERIO DA CI]AENCIA, TECNOLOGIA E ENSINO SUPERIOR

=l i@
ARG CAEAD ELACTES,
U L

i 2 ke i

COMPETE

Abstract

Tools are currently available to developers that allow for fast developofen
user interfaces with graphical components. However, the design oditite sys-
tems does not seem to be much improved by the use of such tools. Inteafaces
often difficult to understand and use by end users. In many caseshaser prob-
lems in identifying all the supported tasks of a system, or in understanding how
to achieve their goals. Moreover, the code produced by such tools isuttifid
understand and maintain.

In the context of an effort to develop tools to support the automated amalys
interactive system designs, this research investigates the applicabilityeofeeen-
gineering approaches to graphical user interface (GUI) analysissource code.
Our objective consists in developing tools to automatically extract models centain
ing GUI behaviours, from its source code. The models should specifshwtid-
gets are present in the interface, when can a particular GUI eventspadhich are
the conditions, which system actions are executed, and which GUI stateds ge
ated next. Subsequently, this research aims to reasoning over GUI modedgin
to analyse aspects of the original application’s behaviour, and the implainaigta
quality.

GUISURFER a tool developed in the context of this doctoral thesis, is capable
of automatically deriving and reason about graphical user interfacavimural
models of applications written idava/SwingWxHaskellandGWT. This work is
useful to enable the analysis of existing interactive applications, and &iso an

existing application must be ported or simply updated.

Resumo

Os programadore£in ja ao seu dispor diversas ferramentas que permitem o
rapido desenvolvimento de interfacesafigas com o utilizador (GUI). Todavia,

0 desenho dos sistemas interactiv@® parece tirar partido destas ferramentas.
Em muitos casos, os utilizadoregnt problemas em identificar todas as tarefas
suportadas pelo sistemagat dificuldades em perceber como atingir determinados
objectivos. Por outro lado, adddigo gerado pelas ferramentaglificil de analisar

e manipular.

No contexto do desenvolvimento de ferramentas de sup@malise automati-
zada de sistemas interactivos, foram realizados estudos baseadugesinagia re-
versa para a extragg de modelos comportamentais de interfaces com o utilizador.
O nosso objectivo consiste em desenvolver ferramentas para exti@inadica-
mente modelos descrevendo o comportamento da GUI. Os modelos descrevem
guando um evento pode ocorrer, sob que cdietic quais & as acges execu-
tadas e quak o estado da GUI gerado a seguir. Consequentemermessvel
raciocinar e testar os modelos da GUI de modo a analisar aspectos raedlasiona
com a usabilidade da aplicag e a qualidade da sua impleme@iac

A ferramenta, com nome GWYURFER desenvolvida n@mbito deste trabalho
de doutoramento, permite extrair e testar modelos de comportamentos deésterfac
graficas com o utilizador escritas nas linguagémsa/Swing WxHaskelle GWT.

Este trabalh@ Gtil para analisar aplicégs existentes bem como para dar apoio na

manutengo e migrago de aplicages.

to Susana and Rodrigo

Vi

Contents

1 Introduction 1
1.1 Motivation 1
1.1.1 User Interface Development 2
1.1.2 Anlllustrative Example 4
1.2 ThesisGenesis 10
1.3 Ohbjectives 11
1.4 ResearchQuestions 13
1.5 StructureoftheThesis 14
2 Reverse Engineering Applied to GUI Modelling 17
2.1 TypesofEngineering 18
2.2 ReverseEngineering 19
2.3 GraphicalUseriInterfaces 20
2.4 TypesofGUlrelevantModels 22
25 GUIRepresentations 26
251 Grammars. 26
2.5.2 Finite State Machines. 29
253 OtherModels 30

viii

CONTENTS

2.5.4 Models for Quality Evaluation 33
2.6 GUIReverseEngineering 34
2.6.1 DynamicAnalysis 35
2.6.2 StaticAnalysiso 36
2.7 Conclusions 37
An Approach to GUI Reverse Engineering 39
3.1 AnInteractive Application as Running Example 40
3.2 GUI Reverse Engineering Approach 44
3.3 GUI Source Code Extraction 48
3.4 Retargetable Methodology 49
3.4.1 Program Dependency Graph 49
342 CodeSlicing 52
3.4.3 Strategic Programming 53

3.4.4 Case Study: Regular Expressions Processingh@ti . 56

3.4.5 Retargetable Methodology 58
3.5 Behavioural Models Generation 59
3.6 Conclusions 60
GUISURFER A Reverse Engineering Tool 63
4.1 The Architecture of GUIHURFER. 63
4.1.1 SourceCodeSlicing 65
4.1.2 GUIBehavioural Modelling 65
413 GUIReasoning 65

4.2 The GUBURFERIMplementation 66

CONTENTS iX

4.2.1 ParsingtheSourceCode 67
4.2.2 ExtractingtheGUlLayer. 68
4.2.3 Generating of GUI Behavioural Models 74
4.2.4 Evaluating GUI Behavioural Models 75
4.3 Models for GUI Reverse Engineering 75
43.1 GUIMeta-Model 75
4.3.2 MALInteractorso 82
433 EventFlowGraphs 84
4.3.4 Finite State Machines. 86
435 OthersModels 87
4.4 Alanguage IndependentTool 89
4.4.1 Retargetability 91
4.4.2 WxHaskelexample 93
443 GWTexample. 96
45 Conclusions 98
5 GUI Reasoning from Reverse Engineering 101
5.1 Testing with th&QuickCheckiool 103
5.2 GUI Inspection Through Graph Theory 106
5.2.1 Agendd& Behavioural Graph 106
5.2.2 GraphEventsCount 106
5.2.3 OperationsonGraphs 108
524 GUIMetrics 109

525 Graph-Tool. 112

53

5.2.6 GUI Test Cases Generation

Conclusions

6 HMS Case Study: A Larger Interactive System

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

LoginWindow
Main Window
Patient Management
Doctors Management
Bills Management
Overall Behaviour
GUIReasonning

Conclusions

7 Conclusions and Future Work

7.1

7.2

7.3

7.4

Answers to Research Questions.
Summary of Contributions
Discussion.
FutureWork
7.4.1 GUBURFERExtension.
7.4.2 GUIReengineering

7.4.3 Patterns for GUI transformation

Bibliography

A GUIsURFERGUI Meta-Model Specification

CONTENTS

179

CONTENTS Xi

B Agend& GUISURFERScript Analysis 181
B.1 Meta-model, Interactor and State Machine Extraction 181
C Agendd Windows Behaviour Specification 183
C.1 LoginWindow e 183
C.2 MainFormWindow 184
C.3 FndWindow 185
C.4 ContactEditorWindow 186
D Agendd& Windows States Extraction 189
D.1 LoginWindow 189
D.2 MainFormWindow 190
D.3 FindWindow 190
D.4 ContactEditoWindow, 190
E Agendd Windows Events Sequences Extraction 193
E.1 LoginWindow 193
E.2 MainFormWindow 193
E.3 FindWindow 194
E.4 ContactEditoWindow 195

F AgendaScript Reasoning throughGraph-Tool 197

Xii CONTENTS

List of Figures

11
1.2

13

2.1
2.2
2.3

3.1

3.2

3.3
3.4
3.5
3.6
3.7
3.8

4.1

Aloginwindow 4
Java/Swingsource code for a loginwindow 5
The login window behaviour 9
Systemevolution 19
A grammar for alogin userinterface 28
Finite state machine specification of a login user interface 31
AGUlapplication. 40
Agendé GUI behavioural model automatically produced from its

SOUICE COOE o i 43
The reverse engineering process« ... 45
TheAgendss Loginwindow sourcecode 45
Loginwindow’s program dependency graph 51
Example ofcodeslicing. 53
Regular expression data typeli®M. 57
TOM strategy that normalizes a regular expression 58
GUIsuRFERarchitecture and retargetability 64

Xiii

Xiv

LIST OF FIGURES
4.2 GUIsurFeERappliedto doginwindow 67
4.3 Java/Swing Logirlass oL 71
4.4 Fragmentoftheogins AST 71
4.5 JButtonfragment of thdeogins AST 73
4.6 JBanksystem 82
4.7 Interactor’s attributes abstraction 83
4.8 Interactor’s actions abstraction 83
4.9 JClasssystem 85
4.10 JClasssystem’s partial GUI event-flowgraph 86
4.11 Agendss finite state machine L. 88
4.12 Agendaapplication’s windows states 90
4.13 TwoAgendaapplications 94
4.14 Login WxHaskelpartial source code implementation 95
4.15 Loginbehavioural state machine 95
4.16 GWTFlexTable application 96
4.17 GWTFlexTable’s FSM behavioural model 97
5.1 Agendd behaviourgraph 107
5.2 Agendaapplication'seventsCount 108
5.3 ComparingAgendaapplication’s windows states 109
5.4 Agend& behaviourgraph 112
5.5 Pythoncommand for Pagerank algorithm 116
5.6 Agendd pagerankresults 117
5.7 Pythoncommand for Betweenness algorithm 117

LIST OF FIGURES XV

5.8 Agend& betweennessvalues 118
6.1 HMS Loginwindow 128
6.2 HMS Loginstate machine 129
6.3 HMS Mainwindow 131
6.4 HMS Main window state machine 132
6.5 HMS Main patientform 133
6.6 HMS Main patient state machine 134
6.7 HMS View patient informationform 134
6.8 HSM View patient information state machine 135
6.9 HSM Adddoctorform 137
6.10 HSM Add doctor behavioural state machine 138
6.11 HSM Billingform 139
6.12 HSM Billing form behaviour state machine 139
6.13 HSM The overall behaviour (leftpart) 140
6.14 HSM The overall behaviour (centerpart) 141
6.15 HSM The overall behaviour (rightpart) 141
6.16 HSM The overall behaviour 142
6.17 HSMs pagerankresults 144
6.18 HSMs betweennessvalues 146

7.1 Re-engineering of interactive applications from source code . .7 15

XVi LIST OF FIGURES

Chapter 1

Introduction

In the context of developing tool support to the automated analysis of atitexa
systems implementations, this thesis investigates the applicability of reverse engi-
neering approaches to the derivation of user interfaces behavioudslsnolhe
ultimate goal is that these models might be used to reason about the quality of the
system, both from an usability and an implementation perspective, as welhgs be
used to help systems’ maintenance, evolution and redesign.

This Chapter provides an introduction to this research. Section 1.1 présents
motivation of the thesis. Section 1.2 describes the genesis of the thesis.nSectio
1.3 contains the objectives. Section 1.4 introduces the research quebiitally,

Section 1.5 presents the structure of the thesis.

1.1 Motivation

Developers of interactive systems are faced with a fast changing tedical
landscape, where a growing multitude of technologies (consider, fongrathe
case of web applications) can be used to develop user interfaces foltitudeu

of form factors, using a growing number of input/output techniques. Adtitig,

1

2 CHAPTER 1. INTRODUCTION

they have to take into consideration non-functional requirements sucle as+th
ability and the maintainability of the system. This means considering the quality
of the system both from the user’s (i.e. external) perspective, amd the im-
plementation’s (i.e. internal) perspective. A system that is poorly desifyoed

a usability perspective will most probably fail to be accepted by its endsuger
poorly implemented system will be hard to maintain and evolve, and might fail
to fulfill all intended requirements. Furthermore, when subsystems amisub
tracted, the problem is faced of how to guarantee the quality of the implemented
system during acceptance testing. The generation of user interfacésniraoie
source code has the potential to mitigate these problems. The analysis of these
models enables some degree of reasoning about the usability of the system, r
ducing the need to resort to costly user testing (cf. [DFABO03]), andscgaport
acceptance testing processes. Moreover, the manipulation of the mopletstsu

the evolution, redesign and comparison of systems.

1.1.1 User Interface Development

Many types of user interfaces can be identified in interactive systems. tRix e
[ASDO04] identify a number of interaction styles: command line, menus, natural
language, question/answer and query dialog, form filling and spreatsiwWIMP
(Windows, Icons, Mouse and Painter), point and click, and three diioieals
Other types could be included such as haptic, or sketch based.

From a reverse engineering perspective, the focus of interest i®@adhnol-
ogy used to implement the interface, whatever interaction strategy is used. Th

more pervasive approach is to use toolkits consisting of collections of atiema

1.1. MOTIVATION 3

objects (widgets) to define the user interface contents, and an evet-dgzoach

to define the behaviour of the interface. Widgets have a predefinedibahthat

is readily available without further programming effort [ASD04]. Widgetseon-
figured via attributes. For example, a button can be configured regdtslisige,
position, label, which routine is executed when the button is clicked, and.so on
Particularly relevant here is the fact that objects react to user actioegdmyut-

ing call-back routines which can change the interface and/or accesslying
functionality. From an implementation perspective, user interfaces caisist-
lections of interaction objects glued together by call-back routines whicbaxare
cuted in response to user actions. This means that understanding thefltdwic o

user interface becomes a non-trivial task.

Nowadays, there are tools which enable developers to see the laycathof e
screen without having to execute the application. These are user ieteidael-
opment tools. Such tools enable automatic generation of part of the uséadeter
source code and consequently enable creating user interfaces muchuinoig.
These tools are composed of a screen designer, an object navigaropeaty
sheet, a toolbox of user interface classes, and a text editor. Thestesgner
window enables the developer to see and directly manipulate the layoutiof eac
screen. The object navigator provides a way of navigating througlctsb@ad
their associated source code. The property sheet is basically useatadtess to
all properties names and values of each user interface object. The wdlpeop-
erties can be changed, and developers can immediately see the effetated r
objects without having to compile and execute the code. The toolbox of user in

face classes is a window containing a set of classes which are usedte gser

4 CHAPTER 1. INTRODUCTION

interface objects. Finally, a text editor is used by developers to entertesoade
for the application.

User interface development tools enable the construction of large andecomp
user interfaces. Using these tools, part of the user interface soodecis auto-
matically generated and consequently developers need to write a small ashount
code only. However, the generated source code can be difficult &rstadd and

maintain.

1.1.2 An lllustrative Example

In this Subsection a simple interactive application is presented and disc&sged
ure 1.1 presents a sample Graphical User Interface (GUI) which willskd to

illustrate the objectives of the work.

SEd
Username |7|

C I ie ntD B Password | |

Figure 1.1: A login window

The GUI provides a single window enabling users to login into the system
through an username and password pair. The window is composecdeofiseid-
gets, i.e. two textfield enabling users to introduce their username (textfield with
Usernamelabel) and password (textfield withasswordlabel), and two buttons
enabling to cancel the windovC&ncelbutton) or to confirm input dataOk but-

ton).

1.1. MOTIVATION 5

The source code for programming this particular example is presented in Fig-
ure 1.2. The code is written in tRkavaprogramming language making use of the

Swing class library to develop the graphical user interface [EX].

public class Login extends JFrane {
public Login() {

JButton Cancel = new JButton();
JButton Ok = new JButton();

JLabel jLabell = new JLabel ();
JLabel jLabel 2 = new JLabel ();
JLabel jLabel 3 = new JLabel ();
JTextField login = new JTextFiel d();
JText Field password = new JTextFiel d();
Cancel . set Enabl ed(true);

. set Enabl ed(true);

K. set Text ("Ck");

Cancel . set Text (" Cancel ") ;

j Label 1. set Text (" Password");

j Label 2. set Text (" User nanme") ;

j Label 3. set Text ("Cli ent DB");

Cancel . addActi onLi st ener (new ActionLi stener() {
public void actionPerformed(ActionEvent evt)

{Systemexit(0);}});

Ok. addAct i onLi st ener (new Acti onLi stener () {
public void actionPerforned(ActionEvent evt)
{if (valid(login.getText(), password. getText()))
{new Mai nForm().setVisible(true);
thi s. di spose();
}
el se showMessageDi al og(this,"not valid","Login",O0);

i}

public static void main(String args[])
{new Login().setVisible(true);} }

Figure 1.2:Java/Swingsource code for a login window

This Javaprogram uses several constructors/methods from the Swing library

6 CHAPTER 1. INTRODUCTION

to define GUI objects, namelyLabel JTextField JButton setText getTextand
setEnabled
The constructors used define object types. For example, in the case of th

textfields the constructor usedJ$extField

JTextField login = new JText Fiel d();
JText Field password = new JTextFi el d();

Labels are created with thH_abel constructor, and the text to be displayed
is given as an argument to tisetTextimethod. In this login window three labels
are created, namel@lientDB, UsernameandPassword As stated, this is done by

using theJLabelconstructor, and theetTeximethod to assign text to the labels:

JLabel jLabell = new JLabel ();
JLabel jLabel 2 = new JLabel ();
JLabel jLabel 3 = new JLabel ();
j Label 1. set Text (" Passwor d") ;

j Label 2. set Text (" User nane") ;

j Label 3. set Text ("Cl i ent DB");

Finally, buttons are defined via tli8uttonconstructor, and the text to be as-
signed is the argument of tleetTeximethod. For example, in Figure 1.1 the two

buttons are created through the following code:

JButton Ok = new JButton();
JButton Cancel = new JButton();

ThesetTeximethod is used to assigdk andCancellabels to the previous two

buttons, as follows:

Ok. set Text ("Ck");
Cancel . set Text (" Cancel ") ;

Buttons may be enabled, or not, using fetEnablednethod, i.e. click events

can be active or not. In this source code, the buttons are both enabled:

1.1. MOTIVATION 7

Cancel . set Enabl ed(true);
. set Enabl ed(true);

Finally, the behaviour of the system when buttons are clicked is defineatghro
addActionListenemethods. Using this method enables the GUI programmer to
define a sequence of instructions to execute when a particular button iscchgk

the user. For example, the code executed when the user clicktmatton is:

k. addAct i onLi st ener (new ActionLi stener() {

public void actionPerformed(ActionEvent evt)

{if (valid(login.getText(), password. getText()))
{new Mai nForm().setVisible(true);
this. di spose();

}
el se showvessageDi al og(this,"not valid","Login",0);

1)}
This code extracts textfields contents through dgle€Textmethod. Then an

auxiliary function galid) is executed to test whether this input data is valid or not:

val i d(| ogi n. get Text (), password. get Text ())

If the user introduces a valid username and password, then the systéa® op
a new window (i.e. executing thdainFormwindow constructor) and closes the

Loginwindow (i.e. executing the instructiafis. dispose()):

new Mai nForn() . set Vi si bl e(true);

t hi s. di spose();

Otherwise, if the user introduces a non-valid username and passwena-th
spective action is implemented by calling tekowMessageDialognethod that
sends a message box to the user as a modal window (in this case the aafi®n sen

the messaggot valid):

8 CHAPTER 1. INTRODUCTION

showessageDi al og(this,"not valid","Login",0);

The code executed when the user clicks @ancelbutton is also defined by

making use of thaddActionListenemethod, as follows:

Cancel . addAct i onLi st ener (new Acti onLi stener() {
public void actionPerformed(ActionEvent evt)

{Systemexit(0);}});

This code enables the user to exit the system through the execution of the in-
struction: System. exit (0).

So far, the login interactive application has been presented/developedtby
ing its source code (idava in this case), and GUI functionality has been reused
as provided by the Swing library. As can be seen, from the sourceit@lrot
possible to graphically visualize the behavior of the system.

Nowadays, user interface development tools can be used. Such tabls &m
the quick creation of user interfaces. These tools enable programmesseiol
GUIs without the need to write all the source code related to widgets creatibn a
manipulation. Most of the user interface code is automatically generatedesal th
tools enable programmers to visualize the screen layout without having taleomp
and execute the code. However, with user interface development tootsishe
no support for GUI behaviour analysis. Developers can only seeéghavibur
of the system when executing its code. Consequently, new tools arednfede
the automatic generation of GUI behaviour from source code and sudrsegUI
behavioural reasoning.

Next, a graphical model that (abstractly) specifies the behaviour of tie lo

application is presented. Considering the above source code and itsignaly

1.1. MOTIVATION 9

kind of model defined in Figure 1.3 could be useful to understand andhest

system. With this model, the system’s behaviour can be graphically visualized.

Can Insert
Username/Password
Click Ok button Idle Click Ok button
and valid input State and invalid input
Open MainForm Message Box
Close Login “Invalid input”

Click Cancel button

v
|Exit Application|

Figure 1.3: The login window behaviour

The model represents user events as arrows and system actionststetdssa
By using such a graphical model it becomes easier to understand thedwetat
the graphical user interface of the login window. Hence, the system Btarisan
initial state where users can introduce their usernames and passwhedsotiel
then specifies then another state from which users can execute oneeétents.
They can click theDk button after entering a valid input. In this case the system
responds by opening thdainFormwindow and closing théoginwindow. Users
can also click the same button after entering an invalid input. This originates an
invalid inputmessage box. Afterward, the model defines that the system returns to

the previous state allowing users to introduce new username and pasBimailty

10 CHAPTER 1. INTRODUCTION

users can click on th€ancelbutton which causes the application to exit.

In this Section, the source code of a (simple) interactive application (Figure
1.2) has been presented. A behavioural model of that application (FigRréas
been defined. In fact, this is the kind of behavioural model we will autonitica

generate from source code.

1.2 Thesis Genesis

This thesis has its genesis in a R&D project named IVY, a model-based usabil-
ity analysis environmehtwhich aimed at developing a model-based tool for the
analysis of interactive systems designs [SCS06a, SCS06c, SCSOGbfeverse
engineering results obtained during the IVY project are being explorebioth-

ers R&D projects, namely, an Infrastructure for Certification and Rereregng of
Open Source SoftwatéCROSS) and SpreadSheets as a Programming Paradigm
(SSaaPP).

In the context of the IVY project this research aimed to investigate the applica
bility of reverse engineering approaches to the derivation of useractsfmodels
amenable for verification of usability related properties. IVY follows from de-
velopment ofi2smv [CHO1], a compiler enabling the verification of interactive
system’s models using the SMV model checker [McM93]. The objectivetwas
develop, as a front end to SMV, a model based tool for the analysishafimural

issues of interactive systems’ designs. This tool translates the models igblthe

A model-based usability analysis environmenhttp://www.di.uminho.pt/ivy last accessed
November 22, 2010

2http://wiki.di.uminho.pt/twiki/bin/view/Research/CRO,S&{t accessed November 22, 2010.

3http://ssaapp.di.uminho.plast accessed November 22, 2010i.

1.3. OBJECTIVES 11

input language, and fully supports the process of modelling and analygisob
viding editors, for models and properties, and a reply visualizer for thiysis of
the verification results.

Being modular, the IVY tool acts as a test-bed for different styles of mod-
elling/analysis of interactive systems. One approach that needed to lmeeekp
was the use of reverse engineering techniques to enable the genefatiodels
from user interface code. The goal being to support the verificatiexisfing user
interfaces in a semi-automated manner.

Next Chapters describe the techniques, models and tools defined toeachiev

these results and describe also techniques used to reason abouédxtradels.

1.3 Objectives

Human-Computer interaction is an important and evolving area. Theréfase,
very important to reason about GUIs. In several situations (for exatnglaobile
industry) it is the quality of the GUI that influences the adoption of certaitwsoé.

In order for a user interface to have good usability characteristics it budlst
be adequately designed and adequately implemented. Tools are curraiitiplav
to developers that allow for the fast development of user interfaces vatrhgal
components. However, the design of interactive systems does not seermtech
improved by the use of such tools.

Interfaces are often difficult to understand and use by end usemsarig cases
users have problems in identifying all the supported tasks of a system, odén-u
standing how to achieve their goals [LHO5].

Moreover, these tools produspaghetticode which is difficult to understand

12 CHAPTER 1. INTRODUCTION

and maintain. The generated code is composed by call-back procedurasdt
widgets like buttons, scroll bars, menu items, and other widgets in the interface
These procedures are called by the system when the user interacts vayistidm
through widget’s event. Graphical user interfaces may contains hisodfevid-
gets, and therefore many call-back procedures which makes difficulidierstand

and maintain the source code [Mye91].

Atthe same time itis important to ensure that GUI based applications behave as
expected [MemO1]. The correctness of the GUI is essential to the texecution
of the software [BerO1]. Regarding user interfaces, correctnessialy expressed
as usability: the effectiveness, efficiency, and satisfaction with whietsuan use

the system to achieve their goals [SC494, ABI9].

The main objective of this thesis consists in developing tools to automatically
extract models containing the GUI behaviour. Models allow designers te ana
yse systems and could be used to validate system requirements at reasostible
[MTWHO04]. Different types of models can be used for interactive systdike
user and task models. Models must specify which GUI components aenpies
the interface and their relationship, when a particular GUI event may aecclthe
associated conditions, which system actions are executed and whichtab®Jiss
generated next. Another goal of this thesis is to be able to reason abdugsan
these GUI models, in order to analyse aspects of the original applicatzatiity,
and the implementation quality.

This work will be useful to enable the analysis of existing interactive applica

tions and to evolve/update existing applications [Mel96]. In this case, béieg a

to reason at a higher level of abstraction than that of code will help inagtee-

1.4. RESEARCH QUESTIONS 13

ing that the new/updated user interface has the same characteristics @\ioeip
one.

As can be seen, the main objective of this thesis is not to develop a new method-
ology, but indeed to combine a set of methodologies from several assdtafare

engineering in the construction of a tool to solve the described problem.
1.4 Research Questions

Given the objectives above, this research is essentially a study guidkd der-
arching goal which is to investigate whether:

Interactive application’s source code can be used for the automatic geoera
of GUI behavioural models and subsequent GUI behavioural neiagathrough a
retargetable approach.

This goal raises a number of issues that need to be addressed. Fiesty, th
is a need to identify the characteristics of realistic behavioural models ofla GU
Secondly, the research goal is based on a retargetable approa).thdee is a
need to generate GUI behavioural models from several programmingdgeg
and paradigms. Thirdly, there is the implication that methods can be usedda reas
about GUI behavioural models.

Therefore the three primary questions the research needs to address a

e Question One Can we infer realistic behavioural models of a GUI from
its application’s source codeThe source code is the most detailed spec-
ification of a software implementation. Through this research question, a
methodology needs to be defined allowing to infer behavioural models from

source code.

14 CHAPTER 1. INTRODUCTION

e Question Twao Can we define a language independent technique for GUI
modelling and reasoning®Po answer this question, a retargetable technique
needs to be investigated, implemented, and applied to different programming

languages and paradigms.

e Question Three Can we use well-known algorithms and metrics to rea-
son about GUI behavioural models€onsidering this last question, algo-
rithms and metrics are required to reason about GUI behavioural models.

This needs to be investigated and results need to be evaluated.

1.5 Structure of the Thesis

This thesis is structured into three main logical parts. The first one pretents
reverse engineering area relating it to the GUI modelling area. It con$iStsap-
ter 2. Reverse engineering techniques’ state of the art, related wordalittbnal
methodologies used within this research are firstly described. Then, #ygeth
follows with a review of the approaches to model GUIs. A graphical uder-in
face representation is exposed, and the aspects usually specifieaplycgt user
interfaces are described.

The second part presents the approach proposed in this thesis in (Giapte
4,5 and 6. Chapter 3 presents methodologies to retargetable GUI reveyise
neering. This contribution has been described in the following papessiped at

international and national conferences:

e Combining Formal Methods and Functional Strategies Regarding the Re-

verse Engineering of Interactive ApplicationsC.Silva, J.C. Campos, J.

1.5. STRUCTURE OF THE THESIS 15

Saraiva, presented at the XlII International Workshop on Desigeci8-
cation and Verification of Interactive System (DS-VIS 2006), Dublinnldla
2006;

e Models for the Reverse Engineering of Java/Swing Applicatid:@ Silva,
J.C. Campos, J. Saraiva, presented at the 3rd International Werksho
Metamodels, Schemas, Grammars and Ontologies for Reverse Engineering

(ATEM 2006), Genova, Italy, 2006;

e Engenharia Reversa de Sistemas Interactivos Desenvolvidos emwang/S
J.C.Silva, J.C. Campos, J. Saraiva, presented at the “Segunda &mdier
Nacional em Intera@p Pessoa-&guina” Universidade do Minho (Interaag

2006), Braga, Portugal, 2006.

Chapter 4 presents the GEURFER the developed reverse engineering tool.
It describes the GUHURFERarchitecture, the techniques applied for GUI reverse
engineering and respective generated models. These contributionslessribed

in the following papers presented at international conferences:

e A Generic Library for GUI Reasoning and TestjrC.Silva, J.C. Campos,
J. Saraiva, presented at the 24th Annual ACM Symposium on Applied Com-
puting (SAC 2009), USA, 2009;

e TheGUISURFERtool: towards a language independent approach to reverse
engineering GUI codel.C.Silva, C. Silva, J.C. Campos, J. Saraiva, in pro-
ceedings of the 2nd ACM SIGCHI symposium on Engineering interactive
computing systems (EICS 2010), pages 181-186. ACM, Berlin, Germany,
2010.

16 CHAPTER 1. INTRODUCTION

Then, Chapter 5, describe the research about GUI reasoning thvehgvioural
models of interactive applications. This contribution was described in thenollo

ing papers presented in international and national conferences:

e GUI Behaviour from Source Code AnalysisC.Silva, J.C. Campos, J. Saraiva,
presented at the 4tBonfeéncia Nacional Interacdo Humano-Computador

(Interac@o 2010), Aveiro, Portugal, 2010;

e GUI Inspection from Source Code Analysik C. Silva, J. C. Campos, J.
Saraiva. In proceedings of the 4th International Workshop on Fatiords
and Techniques for Open Source Software Certification (OpenCéf)20

Electronic Communications of the EASST, Pisa, Italy, 2010.

Chapter 6 describes the application of GURFERt0 a realistic third-party
application.

Finally, the last part (Chapter 7) presents conclusions, discussingpiitie-c
butions achieved with this research, and indicating possible directionsitimef

work.

Chapter 2

Reverse Engineering Applied to
GUI Modelling

In the Software Engineering area, the use of reverse engineerimgaaes has
been explored in order to derive models directly from existing systemsr&eeve
engineering is a process that helps understand a computer system. Simdarly,
interface modelling helps designers and software engineers undeastamerac-
tive application from a user interface perspective. This includes idemgifgata
entities and actions that are present in the user interface, as well asnsigii®

between user interface objects.

In this Chapter, reverse engineering and user interface modelling aspects
described [Cam04, DH93]. Section 2.1 describes different typesgiheering.
Section 2.2 provides details about the reverse engineering area. Sz8tidenti-
fies the specific type of user interface we will study. Then, the type os@Gudidels
to be used is discussed in Section 2.4. GUI representations are provifedtion
2.5. Methodologies and tools to reverse engineer interactive systemssanihed

in Section 2.6. Finally, the last Section summarizes the Chapter presenting some

17

18CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

conclusions.

2.1 Types of Engineering

According to Chikofsky [Chi93] the following four terms characterizetsafe

systems evolution (Figure 2.1):

o forward engineering: This process implies moving from high-level abstra
tions to a system’s physical implementation. The process moves first from
the requirements phase to the design phase. Then from this one to the im-
plementation phase. Therefore, forward engineering corresporafsetor

more transitions to a lower abstraction level;

e reverse engineering: Reverse engineering aims to extract information fr
already existing application systems. It can be described as analysiftg a so
ware system in order to obtain representations of the system at a higéler lev
of abstraction. This process is the inverse of forward engineeringonk
sists on a process of analysing a system to discover its components and their

interrelationships.

e restructuring: This process is used to change a representation to eneew 0
at the same abstraction level. The system should maintain the same level of
functionality as well as semantics. Restructuring transforms the system but
functionality remains the same. Code refactoring is an example of restructur-
ing at source code level enabling, for example, to change sourcefroode

an unstructured form to a structured one;

2.2. REVERSE ENGINEERING 19

e reengineering: This is a process of reverse engineering followedriaafd
engineering in order to change the system. The main difference between
reengineering and restructuring is that while restructuring is made at the
same level of abstraction, reengineering involves moving to a higher ebstra
tion level. The reengineering process enables the creation of a sp@mifica

at a higher abstraction level, new functionalities can then be added to this

specification and a new implementation can be developed using forward en-

gineering techniques.

Abstraction Implementation

Forward Engineering

-

4 Reverse Engineering

N R ¥

Restructuring Reengineering Restructuring

Figure 2.1: System evolution

2.2 Reverse Engineering

Reverse engineering is useful in several tasks like documentation, nmeaioten
and re-engineering [ESSO03].

In the software engineering area, the use of reverse engineerirmpapps has
been explored in order to derive models directly from existing interacyiseem

using both static and dynamics analysis [PFM07, CS01, Sys01]. Staticsanialy

20CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

performed on the source code without executing the application. Staticaagh@s

are well suited for extracting information about the internal structure obyise
tem, and about dependencies among structural elements. Classes, matitbds
variables information can be obtained from the analysis of the source Codie
contrary, dynamic analysis extracts information from the application byugixec

it [Mo096]. Within a dynamic approach the system is executed and its ekterna
behaviour is analysed.

Program analysis, plan recognition and redocumentation are applications f
reverse engineering [MJ3®0]. Source code program analysis is an important goal
of reverse engineering. It enables the creation of a model of the adgbyegram
from its source code. The analysis can be performed at severakdiffievels of
abstraction. Plan recognition aims to recognize structural or behavicattatms
in the source code. Pattern-matching heuristics are used on sourceaetect
patterns of higher abstraction levels in the lower level code. Redocumentatio
enables one to change or create documentation for an existing systersduooe
code. The generation of the documentation can be considered as thatgenef

a higher abstraction level representation of the system.

2.3 Graphical User Interfaces

A Graphical User Interface (GUI) is a graphical front-end to an appito that
accepts events as input and produces graphical output. A GUI contaipkical
widgets. Each widget has a set of properties and respective valuels @dnsti-
tutes the state of the GUI. Users interact with the system by performing actions

the GUI. In brief, and from a user’s perspective, graphical uderfaces accept as

2.3. GRAPHICAL USER INTERFACES 21

input a pre-defined set of user-generated events, and prodagleical output.

The most common class of graphical user interfaces are those whose pre
sentation structure consists of a hierarchy of graphical widgets (buttogsus,
textfields, etc) creating a front-end to software systems [Pat00]. An-&esed
programming model is used to link the graphical objects to the rest of the sys-
tem’s implementation. Users interact with the system by performing actions on the
graphical user interface’s widgets. These, in turn, generate eViethis software
level, which are handled by appropriate listener methods. Events caasgesh
to the state of the interactive application that may be reflected by a change in the
presentation layer.

This thesis focuses on techniques to reverse engineer this class dafiteser
faces. Interactive applications with synchronization constraints odieserministic
behaviour are not considered in this thesis [JNeC03, dS02].

Our assumptions are the following:

1. Aninteractive system allows a dialogue between the system and one@r mor

Uusers;

2. Interactive systems only respond after the user provides inputiroe ser-

nal event has happened;

3. User interfaces contains a set of widgets (windows, buttons, texjfetts

A GUI may have multiple windows on screen with interactive objects. Typi-
cally, the user makes use of the mouse as a pointing device to select a command

from the menu, click on a button, select an item, etc.

22CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

There are several types of GUIs such as web-based, form-based;rtual
reality. Web-based user interfaces allow the access remote computergtttine
Internet or an intranet. They accept input and provide output byrgéng web
pages which can be viewed by the user using a web browser applicatom- F
based interface are composed by independent graphical windovadlyFinrtual
reality user interfaces simulate a real environment with three dimensions.

Like other systems, user interfaces can be sequential or concuymecttysnous
or asynchronous, and timed, timeless or real time. GUIs present a connpiex s
ture and a complex event-driven behaviour. Based on the literaturegsth8ection

describes which methodologies are used to model GUIs.
2.4 Types of GUI relevant Models

Model-based development of software systems, and of interactive ¢ ys-
tems in particular, promotes a development life cycle in which models guide the
development process, and are iteratively refined until the sourceoftitie system
is obtained. Models can be used to capture, not only the envisaged dasigiso
its rational, thus documenting the decision process undertook during geveto.
Hence, they provide valuable information for the maintenance and evoltttbe o
systems.

User interface models can describe the domain over which the user isterfac
acts, the tasks that the user interface supports, and others aspeasgodythi-
cal view presented to the user [MG@5]. The use of interface models gives an

abstract description of the user interface, potentially allowing to:

e express the user interfaces at different levels of abstraction, traisireg

2.4. TYPES OF GUI RELEVANT MODELS 23

choice of the most appropriate abstraction level;

e perform incremental refinement of the models, thus increasing the gearan

of quality of the final product;

e re-use user interface specifications between projects, thus degréasoost

of development;

e reason about the properties of the models, thus allowing validation of the

user interface within its design, implementation and maintenance processes.

One possible disadvantage of a model based approach is the cosedhcude-
veloping the models. The complexity of today’s systems, however, means that
controlling their development becomes very difficult without some degresof
straction and automation. In this context, modelling has become an integraf part
development.

However, there is currently no agreement as to which model is more com-
plete for describing user interfaces [Bum96]. In fact, it is commonly atghat
a number of models is required, each addressing specific aspects cfdiga d
[ACRPMO7, FMD97, Doh98, ABD'89]. This is also the view that this thesis will
take.

Two questions must be considered when thinking of modelling an interactive

system:

e which aspects of the system are programmers interested in modelling;

¢ which modelling approach should programmers use.

24CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

These two issues will now be discussed.
In order to build any kind of model of a system, the boundaries of sudbrsys
must be identified. Therefore the following kinds of models may be considdre

interest for user interface modelling:

e Domain modelsre useful to define the domain of discourse of a given in-
teractive system. Domain models are able to describe object relationships in
a specific domain but do not express the semantic functions associated with
the domain’s objects. Hence they define the objects that a user can view,

access and manipulate through the user interface.

e User modelsre afirst type of model. In its simplest form, they can represent
the different characteristics of end users and the roles they are pl&tich
user models can provide a way to model preferences for users amol gfro
users, and are supported in some model-based user interface devaglopme
environments [BY93]. In their more ambitious form, user models attempt
to mimic user cognitive capabilities, in order to enable prediction of how
the interaction between the user and the device will progress [DBDM98,

YGS89);

e Task modelexpress the tasks a user performs in order to achieve goals.
Task models describe the activities users should complete to accomplish their
objectives. The goal of a task model is not to express how the usermriceerf
behaves, but rather how a user will use it. Task models are important in
the application domain’s analysis and comprehension phase because they

capture the main application activities and their relationships. Another of

2.4. TYPES OF GUI RELEVANT MODELS 25

task models applications is as a tool to measure the complexity of how users
will reach their goals. Task models can also be used as a documentation
method in order to support the users in using the system, and developers in
developing it since they are an abstract model of the interaction the system

should support;

e Dialogue modelgiescribe the behaviour of the user interface. Unlike task
models, where the main emphasis is the users, dialogue model focus on the
device, defining which actions are made available to users via the user in-
terface, and how it responds to them. These models capture all possible
dialogues between users and the user interface. Dialog models exmess th
interaction between human and computer. To this end, they stipulate all the
widgets the user can interact with (e.g. buttons, commands, etc.) and the

results of those interactions on the system;

e Presentation modeleepresent the application appearance. They describe
the graphical objects in the user interface. Presentation models represent
materialization of widgets in the various dialog states. They define the visual

appearance of the interface;

e Navigation modelglefines how objects can be navigated through the user
interface from a user view perspective. These models represenalhas
objects flow graph with all possible objects’s navigation. This view allows
to specify which objects are made available to users. Contragyatogue

modelsthe user interface response is not represented,;

e And, finally, Platform modelsiefine the physical devices that are intended

26 CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

to host the application and how they interact with each other.

This thesis will focus in generating dialogue models. On the one hand they are
one of the more useful type of models to design or analyse the behavite of
system. On the other hand, they are one of type of models that is closest to the

implementation, thus reducing the gap to be filled by reverse engineering.

2.5 GUI Representations

Different type of notations are being used to model graphical user acesfbe-

haviour. The next Sections describes some of these notations.
2.5.1 Grammars

A grammar defines precisely a formal language by a set of rules whidbecased
to generate all possible strings in the language [Shn82a]. Grammarseaté¢ous
analyse if an input string is a member of the language. A grammar can bedlefine

by a quad-tupléN, 7', P, S), where:
e N is a non-empty finite set of non-terminals;
e T is afinite set of terminal symbols, disjoint from;
e P is afinite set of production rules;
e S is the start symbol (a non-terminal from).

One of the first formalisms used to model user interfaces has been faamal g
mars [Jac83, HT90, PP98]. They provide a intuitive way to describeitlegilie

control of an interactive system, and were a natural choice when useaice were

2.5. GUI REPRESENTATIONS 27

predominantly command based [Tau90, JBS78]. Several grammarsd@vesed

to model user interface aspects. The VEG (Visual Event Grammar) iseamnpde

of a grammar based approach for modelling GUlIs. The language is stijiyrte
visual editor called Dialog Control Editor [CMPO4}ultiparty Grammarss an-
other example [Shn82b]. Considering the human-computer dialogue, tmsngna
describes both the user and computer sub-languages. Each gramntarmiomal

is associated with a label. Non-terminals describing the user interaction atedab
with H, nonterminals related to the computer are labeled WithTherefore, this
methodology enables specifying, with a single grammar, both user and campute

languages and their relationship.

To illustrate the use of a grammar applied to user interface modelling, an ex-
ample is specified here for a login user interface. The login prompts theaser
enter its name. If the name is not valid, then the system asks the user tore-ente
it, until he enters a valid name. Then, the system requests a passwordthed if
password entered is incorrect, the user gets one more try to enter et coreeand

continue.

A grammar defining this user interface interaction is described [Jac83. Th
grammar in Figure 2.2 was extracted from this paper. The grammar is composed
10rules (e.ggetu, getpw, bappw, getsl, &tt.ower case names denote nonterminal
symbols, which are subsequently defined in terms of terminal symbols. Oaper
names are terminal symbols. Some definition rules are also annotated withrboolea
conditions ¢ond, system responsege6p), or actions éct), all placed in braces. If
a rule contains a condition, that condition must be true for the rule to be matched

When a rule is matched, the system will display the response and perform the

28CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

actions, if any are given.

start: LOG N
resp: "Enter name" -> getu

getu: USER

cond: not EXI STS_USER($USER)

resp: "lIncorrect user name--reenter it" -> getu
getu: USER

cond: EXI STS_USER($USER)

resp: "Enter password" -> getpw
get pw. PASSWORD

cond: $PASSWORD=GETPASSWD USER($USER)

resp: "Enter security level" -> getsl
get pw. PASSWORD

cond: $PASSWORD=GETPASSWD USER($USER)

resp: "Incorrect password--reenter it" -> badpw
badpw. PASSWORD

cond: $PASSWORD=GETPASSWD USER($USER)

resp: "Enter security level" -> getsl
badpw. PASSWORD

cond: $PASSWORD=GETPASSWD_USER($USER)

resp: "Incorrect password--start again" -> start
getsl: SECLEVEL

cond: $SECLEVEL>GETCLEARANCE_USER($USER)

resp: "Security level too high--reenter it" -> getsl
getsl: SECLEVEL

cond: $SECLEVEL$GETCLEARANCE_USER($USER)

act: CREATE_SESSI ON($USER, $PASSWORD, $SECLEVEL) -> end
getsl: ANY

resp: "Your security level is Unclassified"

act: CREATE_SESSI ON($USER, $PASSWORD, Uncl assi fied) -> end

Figure 2.2: A grammar for a login user interface, from [Jac83]

As mentioned above, grammars are more oriented towards textual user inter-
faces than GUIs. Grammar based techniques are difficult to use faildega
number of GUI aspects, for example concurrency. Grammar baseificgiéans
also become difficult to use as user interfaces become more complextitulaar

when describing complex graphical user interfaces, such as windovezthces.

2.5. GUI REPRESENTATIONS 29

This was particularly the case for direct user interfaces manipulation.idn th
context, finite state machines, which were also being explored, quicklyriEeo

popular alternative for expressing the control logic of user interfalzs83].
2.5.2 Finite State Machines

Finite state machines (FSM) are widely used in modelling system behaviour, in
particular, interactive systems behaviour [SS97]. A finite state machinenis co
posed of states, actions and transitions, and can be represented statg di-
agram [Jac83]. There are two kinds of state machines: deterministic finite sta
automaton, i.e. from a state and an input symbol there is only one targetstdte,
nondeterministic finite state automaton, i.e. there are several possible tatgst s
from a state and an input symbol [Was85]. Finite state machines are defreed

tuple(I,E,S, X, Y, T), where:
e] defines the initial state;

e F defines end states;

S is afinite set of possible states;

X is afinite set of inputs;

Y is a finite set of outputs;

T defines all transitions from a state to another through an input and output.

When modelling a GUI through a state machine, each transition is triggered by
a user input. In response to the user input, the system performs an acti@ath

change the state and produces outputs to the user.

30CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

As an example, in [Har80] statecharts are used to describe interactiesres;
VFSM (Variable Finite State Machine) is an extension to finite state machines for
interactive systems modelling. This approach reduces model complexitpemns f
the attention on more relevant aspects of the states [SS97].

To illustrate the use of a finite state machines applied to user interface mod-
elling, an example is specified in Figure 2.3. This example is retrieved from Ja-
cob’s paper [Jac83] and models the behaviour of a login window agildeddn
the previous Section.

The notation follows the usual conventions. Each state is represented by a
circle. The start state is represented bgtart named circle. The end state is
represented by endnamed circle. Transitions between states are defined through
arcs. Each arc provides also the name of the input, in capital letters, esamim
cases, a footnote containing boolean conditions, system respondeactams.

A state transition will occur if the input is received and the condition is satisfied
When the transition occurs, the system displays the response andnpe toe

action.

2.5.3 Other Models

GUI models that are based on other formal mathematical notations can also be
found in the literature (cf. [TH90]). One advantage of mathematical a&ues is

that they enable the thorough verification of the validity of the propertiegisys
under scrutiny. One of their drawbacks is the difficulty in incorporatinpnam
considerations in the analysis process.

A number of different formal approaches have been applied in thefigaec

2.5. GUI REPRESENTATIONS 31

(2)

L LOGIN (1) USER (3)

getu

Lagin
(1} resp: "Enter name"

(2) cond: not EXISTS_USER($USER)
resp: "Incorrect user name--reenter it"

(3) cond: EXISTS_USER(3USER)
resp: "Enter password”

(4) cond: BPASSWORD=GETPASSWD_USER($USER)
resp: "Enter security level”

(5) cond: SPASSWORD#GETPASSWD_USER($USER)
resp: "Incorrect password--reenter it"”

{6) cond: $PASSWORD=GETPASSWD_USER(3USER)
resp: "Enter security level”

(7) cond: 8PASSWORD#GETPASSWD__USER($USER)
resp: "Incorrect password--start again”

{8) cond: $SECLEVEL>GETCLEARANCE _USER(3USER)
resp: "Security level too high--reenter it"

(8) cond: 3SECLEVEL<GETCLEARANCE. USER(SUSER)
act: CREATE_SESSION(3USER,3PASSWORD, $SECLEVEL)

(10) resp: "Your security level is Unclassified”
act: CREATE_SESSION(SUSER,$PASSWORD, Unclassified)

Figure 2.3: Finite state machine specification of a login user interface, frac®8]

32CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

tion of user interfaces. As an example, a window interface has beeiiisgdyy
Clement in [Cle98]. In this work Clement makes use of the VDM-SL language

[Pre98] to abstract graphical user interface aspects.

Another set of notations is used to describe graphical user interfheceiber.
Examples of these notations are Petri nets and temporal logic. A Petri rghis ¢
posed by places and transitions. Each place can contain a set of tOkamsitions
move tokens from source places to target places. A transition can only ibcc
its source places contain all needed tokens, and they can be acceptedan th
get places. Several works about user interfaces modelling with Pésrihase
been published. In [Pal94], Palanque presents an formalism basedrond®s for
modelling event-driven interfaces. In [SREQ] they are used to model ubiquitous

environments.

Looking at models from another perspective there are temporal mode@s]B
These models use temporal operators to describe what should or petrhaghe
system. Another approach is modal action logic (MAL). MAL is a domain specifi
language for describing interactive systems [CHO1]. It uses the notirievac-
tors as a mechanism for structuring the use of standard specificationgieesm
the context of interactive systems specification [DH93, RFM91]. MAL isdu®

specify the behavioural parts of the models.

In recent years, several flavors of extensions to UML have begpoped for
user interface modelling. UMLI is basically an extension to UML and adds sup
port for representations commonly occurring in user interfaces [d&92MODL
allows to model the data flow as well as the behaviour of interaction objects, by

combining a data flow oriented language with UML state charts [MTO06].

2.5. GUI REPRESENTATIONS 33

A growing trend in GUI modelling is the use of markup languages. These are
typically used in the context of model-based development approache=xatwmple
of one such language is UsiXML (USer Interface eXtensible Markupguage).
UsiXML is a XML-compliant markup language that describes a user intefifac
dependently of a particular programming language, computing platform arid w
ing environment [LVM™04]. UsiXML allows for user interfaces to be modelled at
several levels of abstraction, enabling analysts, designers, prograranckend-
users, to use it during the development life cycle. The language is indpirdae
Cameleon framework (Context Aware Modelling for Enabling and Levarpgf-
fective interactiON), which defines development stages for interagbipkications

with multiple contexts [CCT03].

2.5.4 Models for Quality Evaluation

In the Human-Computer Interaction area, quality of the GUI is typically adécks
by the use of empirical methods that involve testing (a prototype of) the system.
These methods work by placing users in front of a system in order to ealpjric
assess its usability. Analytic methods have also been proposed as a meghgof
ing the effort of the analysis. These approaches work by inspectitreafystem
and range from less structured approaches such as Heuristic Eval[Mitit90]
to more structured ones such as Cognitive Walkthroughs [LPWR90]! ¢tases,
these approaches are geared towards the analysis of the design dethetive
system, and in particular aspects related to its usability.

In Software Engineering concerns are more oriented towards testingdlig/q

of the produced code (absence of bugs) and its correctness issta\system’s

34CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

specification. Testing of user interface implementations has also attractedatten
Testing typically progresses by having the program execute pre-deésecases,
comparing the results of the execution with the results of some test oraclee In th
case of interactive systems, models of the user interface are needed belp the
generation of the test cases, and for the test oracle. In this areagtl¢ neverse
engineering approaches has been explored in order to derive sutghsndirectly
from the existing interactive systems.

A typical approach is to run the interactive system and automatically record
its states and events. Memon et al. [MBNO3] describe a tool which automatically
analyses a user interface in order to extract information about its widgeis,
erties and values. Chen et al. [CS01] propose a specification-batetqee to
test user interfaces. Users graphically manipulate test specificatiorseeped by
finite state machines which are obtained from running the system. Systa studied
and analysed the run-time behaviourJalvasoftware trough a reverse engineer-
ing process [Sys01]. Running the target software under a debatiges for the
generation of state diagrams. Then, the state diagrams can be used to ek&mine

overall behaviour of a component such as a class, an object, or a method.

2.6 GUI Reverse Engineering

From the programmers perspective, as user interfaces grow in sizerpdexity,
they become a tangle of object and listener methods, usually all havingsdoces
a common global state [Mye91]. Considering that the user interface layteo
active systems is typically the one most prone to suffer changes, duertginha

requirements and request for additional features, maintenance caméectime

2.6. GUI REVERSE ENGINEERING 35

consuming and error prone task. Integrated development environmBis)
while helpful in enabling the graphical definition of the interface, are limitednwh
it comes to the correctness of the behaviour of the interface. In this caserse
engineering process is helpful. This Section describes methodologie®alad
to reverse engineer interactive systems both through dynamic analyssiadicd

analysis.

2.6.1 Dynamic Analysis

A typical approach using dynamic analysis is to run the interactive systdrawan
tomatically record its state and events. Several works are described in thtiliée

As already mentioned in Section 2.5.4, Chen et al. [CS01] propose a tost to te
user interfaces. The solution provides a visual environment for maipgifeest
specifications of GUI-based applicationsdava This visual environment uses
dynamic analysis techniques to obtain information about the GUI under test in
order to generate concrete test cases. Users can then graphicallylatnipese
test specifications. The prototype runs with conditions and limitations, i.e. GUI
components must be visible, initialized and defined as public variableSatlze
version should be 1.1 or higher and all GUI objects must be serializable.

Systa studies the run-time behaviourJafvasoftware trough a reverse engi-
neering process [Sys01]. Systa’s paper discusses an experim@ritahment that
has been built to reverse engindavasoftware. The static information is extracted
from the byte code and it is then analysed (see Section 2.6.2 for a distassio
static analysis). The dynamic event trace information is generated automadically

a result of running the target system against predefined executinargze under

36 CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

a debugger. Running the target software under a debugger allowsefgenera-
tion of state diagrams. These state diagrams can be used to examine the overall
behaviour of a component such as a an object, or a single method, distedn

from the rest of the system.

Paiva et al. [PFMO7] proposes a tool to reverse engineer stru@nchbe-
havioural formal models of a GUI application, again by means of a dynantie tec
nique. The application under test is automatically explored through its GUI4o dis
cover as much as possible of the GUI behaviour and to generate apordésg
GUI model. The tool provides a front-end for automatic and manual expora
Manual exploration mode is used to overcome situations when the automatic ex-
ploration process cannot progress because of dependenciesctmatdt discover
or because of functionalities that might be unaccessible (e.g. becaysarthe
protected by a password). The model, automatically generated by thegarer
gineering process, has to be validated and completed manually so that ie can b
used as a test oracle in a model-based testing setting. From this revised abedel,
stract test cases are generated and executed over the GUI to checkfiienity
between the model and the implementation with the help of the Spec Explorer tool

[VCG*08].

2.6.2 Static Analysis

As an alternative to the dynamic analysis, some researches apply stailyasisn
The reverse engineering process is based on analysis of the applEatonte
code, instead of its execution. One such approach is the work by donglet al.

[dDR96] in reverse engineering UIL code (User Interface Languaglanguage to

2.7. CONCLUSIONS 37

describe user interfaces for the X11 Windowing System, see [HF34{hid case,
models are created at the level of the events that can happen in the caortspone
of the user interface (e.g., pressing a button). The work consists eirajérg
and analysing models of behaviour from the UIL specification of the sysidma.
specification is produced by a designer using generator tools. Theiebjecto
design and implement a model builder in order to analyse and verify theederiv
model. This model is used also to generate test cases in order to test thatapplic
against its specification.

Moore [M0096] describes another technique to partially automate regarse
gineering character based user interfaces of legacy applicationse3iieof this
process is a model for user interface understanding and migration. drkestaows
that a language-independent set of rules can be used to detecttineecampo-
nents. The first implemented step is to identify the User Interface Subss}. (Ul
Essentially, the UIS includes all routines and data structures that amealfey
the user interface. The next step enables the identification of data stsithat
are related to input/output. Finally, rules are used to identify statically user in-
terface components from legacy code. Following these rules and presedhe

approach helps in detecting the functionality of the existing user interface.

2.7 Conclusions

This Chapter introduced Reverse Engineering, a technique which igl irsstv-
eral software engineering tasks like documentation, maintenance argineemn
ing. Two kinds of reverse engineering processes were descrilbetic and dy-

namic analysis. Several approaches exist, each aiming at particulamsyatel

38CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

objectives. One common trend, however, is that the approaches aetargetable,
i.e. in all cases it is not possible to apply the approach to a different lgeghan
that it was developed for. Considering the plethora of technologicalisofucur-
rently available to the development of GUIs, retargetability is an helpful/importan
feature. As a solution, this research proposes that static analysis caetdo
develop a retargetable tool for GUI analysis from source code.

Several models may be considered for user interface modelliagk models
describe the tasks that an end user can perfoiialogue modelsepresent all
possible dialogues between users and the user interfaomain modelsiefine
the objects that a user can view, access and manipulate through the usacénte
Presentation modelepresent the application appeararfeatform modelslefine
the physical system used to host the application. The goal of the ajpndlhbe
the generation aflialogue models

As described in this Chapter, grammars were very common to specify command-
based user interfaces. However they are so not well adapted to nowdeiroency
of the modern windowed systems. A grammar-based specification doesmot r
resent state explicitly. Without an explicit representation of state, it is hard to
represent the state viewed by the user. State machines are anothertedaden
models. State-based specifications are better adapted to model GUIstapplica

With the above in mind, this thesis is about the development of tools to auto-
matically extract models from the user interface layer of interactive compsyisig
tems source code. To make the project manageable the thesis will focusrdn ev
based programming toolkits for graphical user interfaces developdera/Swing

being a typical example).

Chapter 3

An Approach to GUI Reverse
Engineering

This thesis presents work on interactive systems analysis througheevegmeer-
ing of GUI (see [SCS06a, SCS06¢c, SCS06b, SCS09, SCS, SCK1BA0B]). The
goal is to produce a fully functional reverse engineering prototype tooé tdol
must be able to derive user interface models of interactive applicatioesefbhne,

the research revolves around the three following identified areas:
1. GUI reverse engineering;
2. GUI modelling;
3. Model-based GUI reasoning.

This Chapter describes an approach to GUI reverse engineeringppheach
makes use of static analysis as in [M0096]. When compared to their workithe
rent reverse engineering approach aims to be retargetable to difieognamming

languages and not to be limited to a particular implementation technology.

39

40 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

File Edit Find Client Help

icsiva@ipca.pt Find
jcsilval@hotmail.com

- Username
ClientDB | __ —

Forma: ® E-mal O Wae

ContactEditor

Find What: | Search Name
. a .

Match ¢
CICEENGERS Title: | | Nickname: | |

] Whole Words

Figure 3.1: A GUI application

Section 3.1 describes an example of an interactive application to be analysed

Section 3.2 describes an approach for GUI abstraction. Section 3.i8@saletails
about a methodology for GUI extraction from source code. Section &gepts
a methodology for a retargetable process. The behavioural modelstagiem
approach is defined in Section 3.5. Finally, the last Section presents soigla-co

sions.

3.1 An Interactive Application as Running Example

Throughout this document we will make use of interactive applicationsrasng
examples. The first application, namadenda models an agenda of contacts: it
allows users to perform the usual actions of adding, removing and eddirigas.
Furthermore, it also allows users to find a contact by giving its name. Tpleap
tion consists of four windows, nameagin, MainForm, Find and ContacEditor
as shown in Figure 3.1.

We will use this example to present our approach to GUI reverse engjigeer

3.1. AN INTERACTIVE APPLICATION AS RUNNING EXAMPLE 41

Let us discuss it in detail. The initidlogin window (Figure 3.1, top left window)

is used to control users’ access to the agenda. Thus, a login andopddsave

to be introduced by the user. If the user introduces a valid login/passpard
and presses th@k button, then the login window closes and the main window of
the application is displayed. On the contrary, if the user introduces an invalid lo
gin/password pair, then the input fields are cleared, a warning mesgagdiged,
and the login window continues to be displayed. By pressin@tugcelbutton in

the Loginwindow, the user exits the application.

Authorized users, can use the main window (Figure 3.1, top right window) to
find and edit contactd~{nd andEdit buttons). By pressing thiéind button in the
main window, the user opens tiénd window (Figure 3.1, bottom left window).
This window is used to search and obtain a particular contact’s data giveamits.

By pressing thdedit button in the main window, the user opens @entactEditor
window (Figure 3.1, bottom right window). This last window allows the edition
of all contact data, such as name, nickname, e-mails, etc.Atidexnd Remove
buttons enable edition of the list of e-mail addresses of the contact. Ifdnero

e-mails in the list then thRemoveéutton is automatically disabled.

Until now, the structure and behaviour of this interactive application has be
informally described. Such descriptions, however, can be ambigualigfean
lead to different interpretations of what the application should do. Inraoden-
ambiguously and rigorously define an application, a model may be useeolart
by using a model to define the interactive application, techniques can baased
refactor, manipulate and test such applications. Figure 3.2 shows alpassithel

to specify the behaviour of the running example: a finite state machine &nprds

42 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

in Section 2.5.2. In this machine, states represent the GUI idle periods, iem wh
there are no relevant events or actions being executed (filled boXessstatel,
state2, etc), and the transitions between states are defined by the egewis as
ated with the GUI objects. These are modeled in figure 3.2 by arrows (e.g. the
labeled arrowPress “Ok” button and valid user/pagsMoreover, the GUI actions
executed when a specific event occurs are represented using wkete (eog. the

Open “MainForm” windowbox).

This model is less verbose than our initial informal description and easier to
understand. For example, it can be seen that the action performed ven@®k th
button is pressed defines a transition in the machine to the same state if the user-

name/password pair is not valid, or into a different state, otherwise.

Considering the case where a valid pair username/password was tjigan,
the transition labeled witPress “Ok” button and valid user/passoves the sys-
tem to a different state (state2 of tiainForm window) and two GUI actions
are executed: the close of thegin window, and the opening of thélainForm
window.

As an illustration, the GUI model in Figure 3.2 (apart from some beautifying)
was automatically generated from the source code oAgendaapplication by the
tool developed in this thesis.

Well-known techniques can be used to detect properties of the intefface.
example, graph-based algorithms may be applied to compute if all states are ac-
cessible from the initial one, in order to detect whether a particular winddieo
application will ever be displayed or not. Valid or invaiidntencesf the language

may be also defined by the machine to be used as test cases. Thesestestinas

3.1. AN INTERACTIVE APPLICATION AS RUNNING EXAMPLE 43

Login Window

pen "Login" window

Press "OKL" button and
ralid uger/pags (meszage dialog)

Press "OK" button and

Press "Cancel” button . y
valid user/pass

cloge "Login" window
open "MainForm" window

exit application

Find Window T MainForm Window

Open "MainF orm" window

Press "Find" button
no contacts
(message dialog)

Press "Edit" button
without selected contac
jessage dialog)

Open
"Find" window

Press
Find" ["Show"

buttony button /

ress "Cancel” buttoy

Press "Find" button
with contacts

Press "Edit" button

Press "Exit" button with selected contact

Y

exit application open "Fmd" window open "ContactEditor" window

cloge "Find" window

>

ContactEditor Window

Press "Remove” button with selected e-mail and not last one

Press "Remove” button without selected e-mail{message dialog
Open "ContactEditor"
__window with e-mails

"Add" button

Open ancel" button
"ContactEditor"
window Press "Remove” button with Press
without selected e-mail and last one Press "0k button
e-mails "Cancel” button

‘_4 cloge "ContactEditor" window

Press
"Ok" button

Figure 3.2: Agend& GUI behavioural model automatically produced from its
source code

44 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

be used to prove more advanced properties of the interface, as willdessiesd in

Chapter 5.

3.2 GUI Reverse Engineering Approach

In order to extract a behavioural model (for example, the one deskirbigigure
3.2) from source code, we follow the reverse engineering approdeigume 3.3.

The goal is to be able to extract a range of models from the source code of
interactive systems, focusing on models that represent the behavithe GUI.

That is, models defining which are the graphical components of a GUI a&id th
relationship, when can a particular GUI event occurs, which are thiedet@ndi-
tions, which system actions are executed, and which GUI state is genaetied
This type of models has been choosen to enable reasoning about GUkrmode
order to analyse aspects of the original application’s behaviour.

To define such GUI models, a small set of abstractions is used for the inter-
actions between the user and the system. To illustrate this set of abstrattteons,
source code of theogin window of theAgendaapplication described in Section
3.1, will be used. Figure 3.4 contains tB@vasource code of theogin window.

This is essentially the same code already described in Section 1.1 (seeERure

As explained, this code was written in tdavaprogramming language mak-
ing use of the Swing class library which allow programmers to easily develop the
graphical user interface. A detailed description of the code has altm=aty pro-
vided. In brief, constructors are used to create widgets, methods edeauset
attribute values, and event listeners are attached to widget events. |iBt@mgrs

are the methods that implement the behaviour of the user interface.

3.2. GUI REVERSE ENGINEERING APPROACH

QuickCheck \

GUI properties definition

Behavioral Models:
Haskell GUI specification
State Machine / Event Flow Graph
Sequences events /States metrics >

GUI abstraction

Juspuadapur agengue]

GUI code slicing

GUI layer

- Program Dependency Graph Abstract
Syntax Tree

——»@f

Source code

GUI layer >

Business layer

J\

juspuadap a3en3ue

Data layer

Figure 3.3: The reverse engineering process

45

JButton Ok = new JButton();
JButton Cancel = new JButton();
. set Text (" Ck");
Cancel . set Text (" Cancel ") ;
JTextField login = new JTextFiel d();
JText Field password = new JTextFiel d();
Ok. addAct i onLi st ener (new Acti onLi stener() {
public void actionPerforned(Acti onEvent evt) {
i f (validLogin(login.getText(), password.getText()))
{ new Mai nForn(). setVisible(true);
thi s. di spose();
}
el se showvessageDi al og(thi s, "not valid","Login",O0);

)

Figure 3.4: TheAgendés Loginwindow source code

46 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Now, a set of abstractions will be defined over the above code relatinghiéto

four types of interactions between the user and the system, as follows:

e User input Any data inserted by the user.

In this particular case, abstractions must be defined for values intrddhyce
users through textfields. Considering the code fragment, this can be done
by extracting the instructions related to textfield input (the metetdext()

returns the textfield content):

JTextField login = new JText Fi el d();
| ogi n. get Text () ;

and

JText Fiel d password = new JText Fiel d();
passwor d. get Text () ;

e User selectionAny choice that the user can make between different options,

such as buttons instructions.

JButton Ok = new JButton();
JButton Cancel = new JButton();

e User action Any GUI action that is performed as the result of user input or

user selection, such as the listener related t@tkbutton in the example.

public void actionPerforned(Acti onEvent evt) {
i f (validLogin(login.getText(), password.getText()))
{ new Mai nForm(). setVisible(true);

thi s. di spose();

}
el se showMvessageDi al og(this,"not valid","Login",O0);

1)

3.2. GUI REVERSE ENGINEERING APPROACH 47

In this case, the code contains two GUI actions that are executed whsn use
press theOk button. First, theLogin window is closed and, then, a new

window form is opened when the pair username/password is valid:

new Mai nForn() . set Vi si bl e(true);
this. dispose();

and if the pair is not valid, a message dialog is displayed:

showessageDi al og(this, "not valid","Login",0);

e Output to User Any communication from the application to the user, such
as a user dialogue. As an example, if the user does not provide a valid login

and password then a message dialog is displayed.

showvessageDi al og(this,"not valid","Login",0);

e GUI control flow The control structure needs also to be identified, i.e. user
input, user selection, user action, or user output may be related to particula
conditions. As an example, the actions performed when the user presses th

Ok button are only executed if the following condition is true:

val i dLogi n(1l ogi n. get Text (), password. get Text())

From the user interface source code of an interactive system, andttbfsage
stractions, our research aims to generate its GUI behavioural models. Tiadne
ology explained in this Section helps to identify models for an interactive appli-
cation. This includes identifying data entities and actions that are involved in the
graphical user interface, as well as relationships between user a#&erampo-

nents.

48 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

3.3 GUI Source Code Extraction

The GUI source code extraction process starts by defining/reusimmend for
the programming language of the interactive application’s source codeeo
parser generators automatically produce a parser and the constructien Ab-
stract Syntax Tree (AST) given the context-free grammar defining thgram-
ming language of the source code. Using this front-end, an AST is obtaimad
the source code of the system for which the user interface related cooldoés
analysed. Then, the process needs to identify all fragments in the ASarthat
members of the GUI layer. To achieve this the set of abstractions desanibiesl

previous Section is used.

In order to extract user interface relevant data from the AST, a slicimgtifon
is proposed [Tip95, Luc01] which isolates the GUI sub-program froenethtire
program. The straightforward approach would be to define a explidirsee

function that traverses the AST of the program and returns the GUtreeb-

However, a typical grammar/AST for a real programming language Jike)
has more than one hundred of non-terminal symbols and productionS[A¥%G
a result, writing a function to traverse the AST forces the programmer tofhfive
knowledge of the grammar and to write a complex and long mutually recursive

function.

We propose the use of an alternative approach by using the strategreaipro
ming. In this style of programming, there is a pre-defined set of (strategi®rie
traversal functions that traverse any AST using different strategjlass, the pro-

grammer is able to focus in the nodes of interest only. In fact, the programmer

3.4. RETARGETABLE METHODOLOGY 49

does not need to have a deep knowledge of the entire grammar/AST, lipudfon
those parts he is interested in (the GUI sub-language in this case). Thiogoa
strategic programming is to be reused across different programming lgesgyaad
paradigms. Generic techniques can be used to workamytAST and not with a
particular one only.

Thus, for our reverse engineering approach, we heavily rely on mgukge-
independent techniques, namely code slicing [Tip95] and strategicgmuging
[Vis03a, VS04].

3.4 Retargetable Methodology Through Generic Program-
ming

Generic programming aims at the definition of algorithms and data structunes at a
abstract or generic level [DJ0O5]. Code slicing and strategic programanagvo
forms of generic programming and are both based on program deprgiaphs.

This Section describes these techniques in more detail.

3.4.1 Program Dependency Graph

A program dependency graph for a progrdmis a mathematical abstraction,
namely a graph, and consists of a set of vertices, and a set of edggsedge con-
nects two vertices in the graph [HR92]. In other words, a graph is & pai),
where V' is a finite set and¥ is a binary relation onV. V is called a vertex
set whose elements are called verticsis a collection of edges, where an edge
is a pair(u, v) with w,v in V. Graphs are directed or undirected. In a directed

graph, edges are ordered pairs, connecting a source vertex teavargx. In an

50 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

undirected graph edges are unordered pairs of two vertices.

A program dependency graph is a directed gréptwhose vertices represent
the assignment statements and predicateB.dfin addition, G includes a special
entry vertex which is the source of the dependency graph. The efifes graph
represent control and data dependence. The intuitive meaning ofemdkpce

edge from vertice: to verticew is the following:

e if the program component represented by vertices evaluated/validated
during program execution, then, assuming that the program terminates nor

mally, the component represented dwill eventually execute;

e if the verticew is not evaluated/validated, then the component represented

by v will never execute.

Figure 3.5 contains the program dependency graph oLdgen source code
shown in Figure 3.4. For example, the statement MainForm().set Visible(true);
will be executed only if expressiamlid Login (login.get Text(), password.get Text())
is valid. Furthermore, this last statement will be executed only if the following
statements have been previously executEttzt Fieldlogin = newJ TextField();
JTextFieldpassword = newJTextField(); and Ok.addActionListener. These

dependencies can be identified in the graph.

Program dependency graphs are the basis for code slicing which issést

in the next Section.

3.4. RETARGETABLE METHODOLOGY

Entry ﬁ

—_
[}
c
[}
2
2
|
c
)
=
3]
<
o)
)
«
x
(e}

Cancel.setText("Cancel");
JButton Ok = new JButton();

Ok.setText("Ok");

C

JTextField password = new JTextField();
JTextField login = new JTextField();
JButton Cancel = new JButton();

if (validLogin(login.getText(), password.getText()))

new MainForm().setVisible(true);

this.dispose();

if ('validLogin(login.getText(), password.getText()))

showMessageDialog(this,"not valid","Login",0);

Figure 3.5:Loginwindow’s program dependency graph

51

52 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

3.4.2 Code Slicing

Code slicing is a form of generic programming. Basically, a slicing process d
cards those parts of the program which can be determined to have nbugftm

the semantics of interest. Hence, a slice is a subset of program statemepts-tha
serves a predefined subset of the original behaviour of the progkaplications

of program slicing include software testing, program debugging, measnt, re-
verse engineering, program restructuring, etc. Most of the applicatosrslicing

are related to software testing and debugging, and to software maintenskee ta

[Tip95, Luc01].

In practical terms, the objective of program slicing is to remove statements
from a program that do not affect the values of variables at a poiimtefest.
Hence, the first step in code slicing is to identify the point of interest (i.e.ta-sta
ment in the program to be sliced) and a set of variables of interest. Thifled ca
the slicing criterion. A program slice is then executed by discarding statements
that can not affect (or can not be affected by, depending on theofygleing) the

values of the specified variables at the given point of interest.

There are two main types of code slicing, backward and forward sliciRRl
Backward slicing is executed by traversing backwards the code fromdiné of
interest finding all statements that are related to the specified variablespatitihe
of interest and removing the other statements. Conversely, forward skceng-
cuted forward from the point of interest finding all statements that carfféeted

by changes to the specified variables at the point of interest.

Figure 3.6(a) highlights in bold the fragments of the login source code that

3.4. RETARGETABLE METHODOLOGY 53

JButton Ok = new JButton();

JButton Cancel = new JButton();

Ok.setText("Ok");

Cancel.setText("Cancel");

JTextField login = new JTextField();

JTextField password = new JTextField();

Ok.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

if (validLogin(login.getText(), password.getText()))

{ new MainForm().setVisible(true);
this.dispose();

else showMessageDialog(this,"not valid","Login",0);

s

(a) Backward slice from “Ok.addActionListener”

JButton Ok = new JButton();

JButton Cancel = new JButton();

Ok.setText("Ok");

Cancel.setText("Cancel");

JTextField login = new JTextField();

JTextField password = new JTextField();

Ok.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent evt) {

if (validLogin(login.getText(), password.getText()))

{ new MainForm().setVisible(true);
this.dispose();

else showMessageDialog(this,"not valid","Login",0);

»;

(b) Forward slice from “Jbutton Ok = new JButton(),”

Figure 3.6: Example of code slicing (backward (a) and forward (b) gj)cin

are in the backward slice with respect to the statem@htuddActionListener().
And Figure 3.6(b) highlights in bold the fragments of the same program that ar

the forward slice with respect to statemehiButton Ok = newJButton().
3.4.3 Strategic Programming

In the two previous sections we have discussed two software engingedng
niques that will help us to automatically extract the GUI model from the source
code of an application. Now, we present a generic technique to traaeyseST
representing the source code expressahirprogramming language.

Strategic programming is another form of generic programming and is useful
for program construction, allowing a high level of composability and tisalaron-
trol through strategic functions [VS04]. For example, strategic progragnicem
be used to manipulate large heterogeneous data structures like an A&3erdprg
aJavaprogram [Vis03b, Vis03a]. Strategic programming has been defined-in dif
ferent programming paradigms [LV03], and can work on different tigias €.g,

lists, binary trees, ASTs) providing the right setting to express genesiersal

54 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

functions.
Strategic programming follows two programming concepdynamic type-

case andone-step traversal

e Dynamic type-caseallows for the computation of both generic behaviour
and type-specific behaviour: depending on the type of input data, dither

type-specific behaviour is executed, or the generic default behasgiour

e One-step traversahakes generic traversals through the use of combinators.

To implement the above two concepts in strategic programming, several com-
binators are offered. The mathematical representation of some of the basgie

binators proposed by strategic programming are:

e id - return input term unchanged;

e sequence(f,g)applyf to the input term, ang to the result of that;
e all(f) - applyf to allimmediate subterms of the input term;

e fail - react to any input term with failure;

e choice(f,g) dynamic type-case combinator used to apply the input term.

If it fails, apply g instead;
e one(f)- applyf to a single immediate subterm of the input term;

e adhoc(f,g) dynamic type-case combinator used to apptg the input term

if its type matches, otherwisgis applied,;

e apply(f,t)- apply strategy to input termt.

3.4. RETARGETABLE METHODOLOGY 55

Making use of these combinators, strategic programming enables the definition

of different types of generic traversals. Examples of generic traisesse:

e bottomup(f) = sequence(all(bottomup(f)),f)

o topdown(f) = sequence(f,all(topdown(f)))

The composed combinatobettomupand topdownmodel full bottom-up, or
top-down, recursive traversal schemes, respectively. They dpeiy argument
strategy at the root of the incoming data, and at all its immediate and non-immediate
components.

These combinators can be used to traverse particular structures pasgiag
rameter a working function. For example, taghoccombinator can be used to
create thenodeActiorworking function, and pass it as argument to bwtomup

combinator:

e nodeAction = adhoc(id,\z - .x > 0)

e searchPositives = bottomup(nodeAction)

The nodeActionfunction can be executed with a float number as parameter,
returning the true boolean value if the parameter is positive and false alkeerw
When applied to any other input term, the function returns the input term un-
changed. Thus, the traverssdarchPositivesvorks on input terms of any type.
This composed combinator follows a bottom-up traversal scheme and, ithitoeig
nodeActionworking function, transform numerical values into boolean values, i.e.

true value if positive and false value otherwise.

56 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

The above example serves to illustrate dynamic type-case and one stegeirave
concrete concepts. In this particular case, the type-case concegtifiespthrough
theadhoccombinator, and the one step traversal concept is defined with the use of
theall andsequenceombinators.

Strategic programming can be easily used with the object-oriented or func-
tional programming paradigms. Two example of application of strategic pregra
ming within these programs paradigms areTV [Mac10] orStrafunskiibraries
[LVO3], respectively. TOM is a framework for programming rule-based systems,
allowing the manipulation of any structureEOM incarnates the strategic paradigm
through an extension to thlavaprogramming language. All strategies defined in
this Section are implemented TOM. Strafunskiis a functional software bundle
that also aims to provide generic programming and language processatglcap

ties, in this case for thelaskellprogramming language.
3.4.4 Case Study: Regular Expressions Processing willOM

As an illustrative case study the implementation, usi@\, of an interpreter to
process and normalize regular expressions will now be described.
Regular Expressions are used in the recognition of character patteireze

composed by the following constructors:

e Sequence of expressiorah, abg

¢ Alternative combinator (i.e]), which defines the occurence of one of two

expressionsalbc, alic;

e Optional combinator (i.€?), which defines the occurrence of the expression

3.4. RETARGETABLE METHODOLOGY 57

between zero or one timea?, (abc)?

e Star combinator (i.e*) defining that there are zero or more occurrences of

an expressiona*, a|b*, (abc)*;

e Plus combinator (i.e+) defining that there are one or more occurrences of

an expressiona+, a(bc)+;

e Terminal symbols(,), *, +, ?,|,’a’,’'b’,’c’, ... , 'z’ ande.

Examples of regular expressions are: a?b+c*, (abc)?(def)&pg)tb+c*, etc.
To normalize a regular expression, all occurrences of optional conolpg@® must
be transposed to the expressalz, wheree is the empty expression.

To implement an interpreter for regular expressions processing anthlipa-
tion in TOM, a data type must be defined for the language to be used. Figure 3.7
provides a data type defined TOM for regular expressions. The list of construc-
tors from the above definition of regular expressions is transposedsaithe order
to the data type list in Figure 3.7. For example, the optional and star combinators

are implemented with th&pt and Star data types.

RegExp =
Seq(sl: RegExp , s2: RegExp)
| Alt(al: RegExp , a2: RegExp)
| Opt (o: RegExp)
| Star(s: RegExp)
| Pl us(p: RegExp)
| Literal (c:String)
| Empty()

Figure 3.7: Regular expression data typd @M, adapted from [Mac10]

58 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Finally, TOM strategies can be used to implement a solution for regular ex-
pression processing and normalization. To normalize any regular siqmssthe
solution needs to consider all occurrence of optional combin&pi) (replacing
them by an Alt). Thus, a full traversal is needed. Figure 3.8 provides a possi-
ble solution. This solution transposes all occurrences oOpgo) combinator to
Alt(Empty(),0) This is done through the following instruction:

visit RegExp {Opt(0) -> {return ‘Al t(Enmpty(),0)}};

A full traversal bottom-up approach making use of BwtomUpstrategy, ap-
pliesvisit to all nodes in the expression:

“BottonmJp(Norn()).visit(rg);

However, the top-down scheme can also be applied, because bothepaduit

traverse over regular expressions specification.

%strategy Norn() {
visit RegExp{

ot (0) -> {return “At(Enpty(),0); }
}

}
‘BottomUp(Norn()).visit(rg);

Figure 3.8: TOM strategy that normalizes a regular expression, adapted from
[Mac10]

3.4.5 Retargetable Methodology

In this thesis we investigate the use of the presented (generic) programnthmgme
ologies in order to reason about interactive applications implemented inediffer

programming languages (i.8ava GWT, andHaskel). This approach proposes to

3.5. BEHAVIOURAL MODELS GENERATION 59

make use of generic programming and to apply it to different programming lan-
guages, i.e.Java (Swingor GWT toolkit) and Haskell programming languages
[LEWT02, JHAT99, HTO7]. The methodology will enable us to extract graphi-
cal user interface AST fragments through code slicing and strategicgmmoging.
Following a retargetable methodology, we will able to extract GUI fragmeaits fr
any AST, i.e Java/SwingWxHaskell C#, etc. This will allows us to identify all of
the program fragments that interacts with the graphical user interface.

Strategic programming and code slicing are techniques easily retargetable to
different programming languages. The next Chapter, the applicatiadefslicing

and strategic programming processes will be described in more detail.

3.5 Behavioural Models Generation

After defining a methodology to extract GUI related data, it is important torgéme
behavioural models. The approach proposes the generation oflskirets of
models. In this Section, different models are enumerated. A detailed destrip
of the different models, with examples of their application is provided in Chapte
4, where the GUdURFERtool will be discussed.
First, by using thédaskellprogramming language, the approach aims to model
GUI behaviour through a specification which maps events and relatedticosd
to a list of GUI actions references. This list of actions needs also to couotaén
relevant information, such as the window name and initial state, the window clos
and end application actions references, as well as new windows ad&oenees.
Another notation used for describing interactive systems is the language of

MAL interactors. It is a domain specific language and includes the notiortertin

60 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

actors as a mechanism for structuring the use of standard specificatiomniees
in the context of interactive systems specification [DH93].

For a visual experience and easier reasoning, event-flow gragdtisda state
machines will be used. Event-flow graph will enable the abstraction of alhtee
face widgets and their relationships, and the definition of all possible inimnac
by specifying the events in a GUI system [MBNO3]. For every exerdn event
flow graph identifies all the events that can follows evenFinite state machine
may be used to model GUI behaviour considering GUI events, relatedtioorsd
system actions execution, etc. This type of model has been choosecirmize
able to reason about, and test, the dialogue supported by a given GUI inmpéeme

tion.

3.6 Conclusions

This Chapter described the main building blocks of our retargetable agptoa
graphical user interface reverse engineering. Behavioural modeidengener-
ated which capture graphical user interface behaviour by detectingorenis in

the user interface through source code analysis. These componduteinser
interface objects, events, actions and respective control flow. Theitpe ex-

plained will help in identifying graphical user interface abstractions fronoree

code.

The contributions related to this Chapter were described in the followingpape

presented at international and national conferences:

e Combining Formal Methods and Functional Strategies Regarding the Re-

verse Engineering of Interactive ApplicationsC.Silva, J.C. Campos, J.

3.6. CONCLUSIONS 61

Saraiva, presented at the XlII International Workshop on Desigeci8-
cation and Verification of Interactive System (DS-VIS 2006), Dublinnldla

2006;

e Models for the Reverse Engineering of Java/Swing Applicatid:@ Silva,
J.C. Campos, J. Saraiva, presented at the 3rd International Werksho
Metamodels, Schemas, Grammars and Ontologies for Reverse Engineering

(ATEM 2006), Genova, Italy, 2006;

e Engenharia Reversa de Sistemas Interactivos Desenvolvidos emwang/S
J.C.Silva, J.C. Campos, J. Saraiva, presented at the “Segunda &mdier
Nacional em Intera@p Pessoa-&guina” Universidade do Minho (Interaag

2006), Braga, Portugal, 2006.

62 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Chapter 4

GUISURFER A Reverse
Engineering Tool

This Chapter describes GBURFER a tool developed as a testbed for the reverse
engineering approach proposed in the previous Chapter. The toohatitally
extracts GUI behavioural models from the applications source codedonhates
some of the activities involved in the analisys of these models.

This Chapter is organized as follows: Section 4.1 describes the archétectur
of the GUISURFERtool. Section 4.2 provides details about its implementation.
Section 4.3 presents models used within the tool for GUI reverse engigeéYin
description about the retargetability of the tool is provided in Section 4.4ll§ina

Section 4.5 presents some conclusions.

4.1 The Architecture of GUISURFER

One of GUBURFERs development objectives is making it as easily retargetable as
possible to new implementation languages. This is achieved by dividing the pro-

cess in two phases: a language dependent phase and a languagadiedéphase,

63

64 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

as shown in Figure 4.1. Hence, if there is the need of retargetingsGRHERINto

another language, ideally only the language dependent phase shaitddied.

Language dependent

Code slicing
Strategic programming

Language independent

Widgets names

T Entry point
Forms names

Abstract
Syntax Tree

TParser

TSource code files

‘Wx/Haskell code

GWT source code ‘
E Java/Swing code

GUI
Business
Data

UGS

Control flow and GUI related tree fragments
Program dependency graph

v

GUI statements

Conditional statements

Events statements

Maximum events sequence length

v v

v v

Flow between windows

Forms behavior

GUI models: Haskell specifications, event flow graph,

state machine

GUI inspection and certification

QuickCheck (Haskell properties)
Graph-Tool (Metrics)
Graph manipulation

Figure 4.1: GUSURFERarchitecture and retargetability

To support these two phases process, the a8 FERarchitecture is composed

of four modules:

e FileParser, which enables parsing the source code;

e AstAnalyserwhich performs code slicing;

e Graph which support GUI behavioural modelling;

e GUIAnalysis which also support also GUI behavioural modelling;

TheFileParserandAstAnalysemodules are implementation language depen-

dent. They are the front-end of the system. BraphandGUIAnalysismodules

are independent of the implementation language.

4.1. THE ARCHITECTURE OFSUISURFER 65

4.1.1 Source Code Slicing

The first step GUSURFER performs is the parsing of the source code. This is
achieved by executing a parser and generating an abstract syntaxAtre&ST

is a formal representation of the abstract syntactical structure of thieesoade.
Moreover, the AST represents the entire code of the application. Howtieer
tool’'s objective is to process the GUI layer of interactive systems, notritieee
source code. To this end, GEWRFERwas built using two generic techniques (see
Chapter 3): strategic programming and code slicing. On the one hand, géhe us
of strategic programming enables transversing heterogeneous datarssuwehile
aggregating uniform and type specific behaviours. On the other hadd sticing
allows extraction of relevant information from a program source codsedb on

the program dependency graph and a slicing criteria.

4.1.2 GUI Behavioural Modelling

Once the AST has been created and the GUI layer has been extractebeGU
havioural modelling can be processed. It consists in generating théntesgéace
behaviour. The relevant abstractions are user inputs, user selects@msactions
and output to user. In this phase, behavioural GUI models are cregtedefore,

a GUI intermediate representation is created in this phase (see Section 4.3.1).

4.1.3 GUI Reasoning

It is important to perform reasoning over the generated models. For éxamp
GUIsurRrFermodels can be tested by using tHaskell QuickCheckool [CHO0],

a tool that testslaskellprograms automatically. Thereby, the programmer defines

66 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

certain properties functions, and afterwards tests those propertieg/thttoe gen-
eration of random values.

GUISURFERIs also capable of creating event-flow graph models. Models that
abstract all the interface widgets and their relationships. Moreoverpifedgures
the automatic generation of finite state machine models of the interface. These
models are illustrated through state diagrams in order to make them visually ap-
pealing. The different diagrams GEWRFERproduces are a form of representation
of dialog models.

GUIsURFERs graphical models are created through the usa@raphViz an
open source set of tools that allows the visualization and manipulation oaebstr
graphs [EGK 01]. GUI reasoning is also performed through the us&rHph-
Tool! for the manipulation and statistical analysis of graphs. In this particular case

an analogy is considered between state machines and graphs.

4.2 TheGUIsURFERImplementation

The four architectural modules/components identifed in Section 4.1 (seesFigu
4.1), give rise to GUSURFERs four software components (cf. filled boxes in
Figure 4.1). GUSURFERSs executables arEileParser, AstAnalyserGuiAnalysis
andGraph

In this Section, we use thieogin's Agendawindow example (cf. Figure 4.2)
to outlines some of the more important features of each executable. Appendix
B contains the complete script to generate and analyse all available befaaviou

models for theAgendaapplication. The behavioural model on the right side of

lsee, http://projects.skewed.de/graph-tool/, last accessed 27 Nay@@ibe

4.2. THEGUISURFERIMPLEMENTATION 67

Figure 4.2 is one result obtained through the execution of BFER giving the

source code shown in Figure 1.3 as input.

New window actions:[(2.MainForm).(5.Login)]

state O

Ln_]jﬂc011d1nit1f[5.6.7,8.9]

|_0kfcond3/[4]

Cancel/condl/[1]Ok/cond2/[2,3]

EEX
Username lil

CIientDB Password | |

(&) ALoginwindow (b) Login's behaviour model

Figure 4.2: GUSURFERapplied to d_oginwindow

4.2.1 Parsing the Source Code

The FileParsermodule is used to parse source code. This tool is language depen-
dent. To implement this first tool, a parser for the programming language being
considered is used.

GUIsuURFERhas been used to reverse enginésva and Haskell programs
written using the Javg Swing GWT, and Haskel) WxHaskellGUI toolkits. For
the Java/Swingand GWT toolkits, the SGLR parser has been applied whose im-

plementation can be accessible via the Strafunski tool [LV03]. FovtkElaskell

68 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

toolkit the Haskell parser that is included on theaskell standard libraries was

used.
4.2.2 Extracting the GUI Layer

TheAstAnalysecomponent implements a GUI code slicing process using strategic
programming. This module is used to extract the GUI layer from the AST jgextiu
by the compiler. TheAstAnalyselis a language dependent tool used to slice an
AST, considering only it graphical user interface layer. Part of thisigeasily
retargetable, however most of the tool needs to be rewritten to considdrean
particular programming language. This happens because programmiungdesy
follows different programming paradigms.

The AstAnalysetool is composed of a slicing library, containing a generic set
of traversal functions that traverse any AST. This library is compogettidfiles

SlicingX.hsandGuiX.hs

e SlicingX.hscontains the generic slicing functions (which are language inde-
pendent). For example, a function to slice an AST to find all elements that

match a specific constructor given as a parameter;

e GuiX.hsuses the general slicing functions fragticingX.hsand contains

more specific language dependent slicing functions.

This tool must be used with three arguments, i.e. the AST, the entry point in
the source code (e.g., the main methodJavasource code), and a list with all
widgets to consider during the GUI slicing process.

As an illustrative example, the following function call enables us to extract the

4.2. THEGUISURFERIMPLEMENTATION 69

GUI layer fromLogin.javds AST (Login.java.asfile), starting the slice process at
themainmethod, extractingButtonrelated dataJava/Swingconstructor for but-
ton creation), and four othelava/Swingnstructions: exit, showMessageDialgg
disposeandsetEnabled

>Ast Anal yser

"Login.java. ast"

“mai n"

"JButton, set Enabl ed, exi t, showMessageDi al og, di spose”

By executing this command, the function generates two iiigState.guiand
eventsFromlInitState.guhich contain the GUI’s initial state and all possible GUI
events from the initial state, respectively.

GUIsURFERhas been implemented in théaskell programming language.

The following Haskellprototype function is one of the main functions of {G&ll

code slicindibrary:

slice : :AST — Const — InitPos — SliceType —

(Const x AST x InitAST x EndAST)* (4.1)

This function extracts a list of fragments in a particular AST. Sheefunction is
a generic function which is configured with the AST and the constructorrpdtie

be extracted. Basically, thgdicefunction receives four parameters:

e AST the abstract syntax tree;

e Const the AST constructor to be used to extract fragments by pattern match-
ing;

e InitPos the initial position in the AST for the code slicing process;

70 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

e SliceTypethe slice type which can deor 2. The type 1 code slicing extracts
the first pattern matching. Type 2 slicing continues within extracted sub

trees.

Theslicefunction returns all fragments in the AST that match the giving con-
structor.
As an example, to extract all buttons’s definitions frordaaza/Swingsource

code’s AST, the following instruction could be executed:
slice javaAST ‘‘JButton’’ 1 1

For aWxHaskelkource code’s AST, the same action could be executed as:

slice wxHaskel | AST ‘ ‘button’’ 1 1

whereJButtonand buttonare constructors which create buttons in fagaand
Haskellprogramming languages, respectively.

At this point, a set of AST fragments can be obtained that just consists of
instructions that affect the user interface as seen above. Anchds goirthese
fragments are detected by syntactic pattern matching.

To explain the developed GUI code slicing module in more detail, let us con-
sider theJava/Swing Logirlass fragment described in Figure 4.3, which defines a
new button through thé@Buttonclass:

Figure 4.4 describes the fragment of the AST obtained after parsingptiie
source code.

The AST described in Figure 4.4 uses several constructors. For éxatmg
ClassDecEconstructor is used to declare thegin class. TheStatemconstructor

is used to define a statement. Methods are specified throuddmtitteconstructor.

4.2. THEGUISURFERIMPLEMENTATION 71

public class Login extends javax.sw ng.JFranme {
public Login() {

i ni t Conponents();
}

private void initConponents() {
add = new JButton();

Figure 4.3:Java/Swing Logirtlass

fl TypeDecl ———— y g S,

ClassDecE : MBody
Mprivate $
Mpublic
Body
TypeName
Ident Login Dconst v
Statem
ClassType ClassType Mth
Q v Exps
[Ident javax, [] Ident void »
Ident swing, Eassign
Ident JFrame] Body [
& DecIName
Statem # Assign
¢ Ident initComponents g
Exps Enewalloc
Ident Login ¢ L
Emth
Mpublic Anewclass
P/ Evar ;
v/ Mmth w / ClassType
Ident initComponents Args] J
Ident add Ident JButton

Figure 4.4: Fragment of tHeogin's AST

72 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

In this case, the use of themth constructor is used to define thtComponents
method.
The knowledge of this particular fragment of theevaAST, enables us to define

a function that, given the complete AST, extractsl@uttonobject assignments:

e First, we need to collect the list of assignments in the source code. This

function is defined irHaskellmaking use of thslicefunction (cf. definition

4.1) in order to traverse the AST. Next, the slicing parameter to be used
while traversing the AST needs to be defined. This parameter identifies the
tree nodes where work has to be done. In the compbetaAST the nodes

of interest correspond to the construdiassi gn (see AST in Figure 4.4).
Thus, our slice function simply returns a singleton list with the left-hand side

of the assignment and the respective expression.

This function, namedtatementsAssignmeitdoks as follows:

st at ement sAssi gnment ast = slice ast "Eassign" 1 1

Having collected the list of assignments the process can now filter that list
again in order to produce the list containing #uttonsassignments in the

Java/Swingcode. The function to extradButtonassigments becomes:

st at enent sButt ons subast = slice subast "JButton" 1 1
As result, the fragment of the AST, provided in Figure 4.5, is obtained which

contain thelButtonobject assignment. This fragment correspond to the fol-

lowing Javacodeadd = new.JButton();

4.2. THEGUISURFERIMPLEMENTATION 73

Statem
v
Exps

»

Eassign

Assign

v

Enewalloc

v

Anewclass

Evar ¢

/ ClassType

Ident add Ident JButton

Figure 4.5:JButtonfragment of the_ogin's AST

Another important task is the extraction of the list of instructions executed from

a particular source code anchor point. In others words, to implement tlessee
engineering process from source code the tool must extract thersgoignstruc-
tions executed when a particular event occurs. This information is obttiraeyh
code slicing within a particular instructions block and considering all exténna
vocations. With this particulalavaparser, external invocations are identified with
the Emth constructor. HenceJavaexternal invocations are extracted by pattern
matching against thEmth constructor. The function implemented to extract all

external invocations from davaAST is:

st at ement sExt ernal Met hod ast = slice ast "Emh" 1 2

The GUIsuRFERtool uses these fragments to produce GUI models, like be-

74 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

havioural user interface descriptions. The fragments relevant to tHea&verse
engineering are widget related instructions, control flow information arttiads
invocation. Thus, the problem of understanding the interface has bdened to
the problem of understanding the slice done with respect to certain usdadate
components.

GUIsuRrFeRconsiders also GUI applications with several windows each con-
taining widgets which, in turn, may invoke one or more windows. To obtain a list
of all GUI windows that can be invoked from a GUI windaw; the tool queries
each ofw’s widgets. The GUsURFERprocedure performs a search of the GUI
tree rooted at GUI window, creating a list of the widgets inw, and searches the

list of widgets for those which invoke other GUI windows.
4.2.3 Generating of GUI Behavioural Models

The Graphmodule implements th&UI abstractionstep described in Figure 4.1.
The Graph tool is language independent and receives five argumentsinithe
State.guandeventsFrominitState.gfiles (both generated by thestAnalysemod-

ule), the names of windows in the application, the name of the window to be
analised, and finally the project's name. An exampleGoéph tool invocation

can be:

Graph eventsFrom nitState.gui initState. gui
"Cont act Edi t or, Fi nd, Logi n, Mai nFor nf
"Login" "dientDBjava"
This invocation generates behavioural models of the login window. Theqtro

(ClientDBjavg contains three others windows, namélgntactEditor Find, and

MainForm

4.3. MODELS FOR GUI REVERSE ENGINEERING 75

As a result of the invocation, th@raph toolgenerates GUI-related metadata
files with events, conditions, actions, and states. Each of these typetacdréa
related to a particular fragment from the AST. Results are stored irafilmns. txt
events.txtandconds.txt

Another important output generated by tGeaph tool are theGuiModel.hs
and GuiModelFull.hsfiles. These are GUI specifications written in tHaskell
programming language [JH799]. These specifications define the GUI layer by
mapping pairs of event/condition to actions.

The GuiAnalysistool supports the generation of visual models, such as state

machines and event flow graphs through@raphViztool [EGK*01].

4.2.4 Evaluating GUI Behavioural Models

Finally, external tools are used to enables reasoning over the grapharainter-
face models produced in the previous step. To implement this @skkCheck

Graph-Tooland graph theory are used. GUI reasoning is discussed in Chapter 5.

4.3 Models for GUI Reverse Engineering

GUIsurFERextracts different kinds of models. These are described in the follow-

ing Sections.

4.3.1 GUI Meta-Model

One GUI representation obtained with the reverse engineering procksmisd by
a meta-modelduimode) which represents the behaviour of the GUI's windows as

a mapping of events and related conditions to a list of GUI actions refesebe

76 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

guimodelmeta-data is defined in thdaskellprogramming language as follots

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [EzpRef]
Pres = Map ExzpRef (EventRef,Bool)

End = [EzpRef]

Close = [EzpRef]

Window = WindowName

NewWindow = Map ExpRef WindowName

The guimodelmodels a window at a particular tintein terms of the widgets
within the window, the events enabled by the widgets, and the conditionsatssbc
to events. The model describes also the window’s initial st&tes(type), end
application actions referencebr{d type), close window actions referencé&ddse
type), and finally open window actions referencé& ¢ Window type). In this
model, each data is related to a particular sub tree of the AST. So, it is always
possible to access concrete source code fragments.

As an example, and considering tAgendéas login source code (cf. Section

3.1), the respectivguimodelspecification i$:

guimodel :: GuiModel

guimodel = fromList
[(("Cancel","cond1"),[1]),
(("0k","cond2"), [2,3]),
(("0k","cond3"), [4]),
(("init","condInit1"),[5,6,7,8,9]1)]

pres :: Pres

pres = fromList
[(8, ("Cancel", True)),
(9, ("0k", True))]

2see Appendix A for complete definition
3see Appendix A for thé\genda windows specifications

4.3. MODELS FOR GUI REVERSE ENGINEERING 77

end :: End
end = [1]
newWindow :: NewWindow

newWindow = fromList
[(2,"MainForm"),

(5,"Login")]
close :: Close
close = [3]

This specification represents user events with associated conditiongand s
guences of GUI actions. Therefore, an event is only performed whierelated
condition is verified. In this case, the associated sequence of actionsisxée
cuted.

This model enables analysis of the dialogue supported by each window. Al-
though this is a very simple example, several conclusions can be reaohethe
analysis of this particular source code abstraction.

For instance, the expressi¢fiOk”’cond2"),[2,3]) means that th®©k event
has a condition, which GWIURFER automatically named asond2 and if the
condition is verified executes the actions referenced by the nuei3. The
AST slices that corresponds to conditioend2, and action® and3 are available
in the conds.txtandactions.txtfiles, respectively. In this particular case, trava

source code forond2 condition is:
valid(login.getText(), password.get Text())
TheJavasource code related to action referefigs:

newMainForm().set Visible(true);

78 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL
TheJavasource code related to action referefigs:;
this.dispose();

Therefore, all the visual information available in right side of Figure 4igioates
from the textual meta-model representation defined inGuiBModel.hdfile.

This model gives also access to data related with the initial state didjie
window:
pres :: Pres
pres = fromList

[(8, ("Cancel", True)),
(9, ("0k", True))]

Boolean values indicate whether events are initially enabled or not. In thés cas
both Canceland Ok events are initially enabled. Identifiers are assigned to each
event. In this cas€ancelandOk events are identified through referericand9,
respectively.

Another important aspect regards actions references which endgheagipn
or close the window. These actions are specified thrauwghand close functions:

end :: End
end = [1]

close :: Close
close = [3]

In this case numerical values refer to GUI actions in the source codgr{éat
of the AST) which enable ending the application (i.e. identifiem endfunction)
and closing thé.oginwindow (i.e. identifie3 in closefunction). These actions are
executed by("Cancel”’cond1”),[1]) and(("Ok”’cond2"),[2,3]) events respec-

tively. So the first eventGancelevent verifyingcondlcondition) terminates the

4.3. MODELS FOR GUI REVERSE ENGINEERING 79

Agendaapplication, and the last on®k event verifyingcond2condition) closes
the Login window.

Finally, the newWindow function, specifies all actions references which en-
able opening new windows:

newWindow :: NewWindow

newWindow = fromList
[(2,"MainForm"),
(5,"Login")]

This function maps actions references to the appropriate window identifiers
These are action referenc2sind5, enabling the oppening of thdainFormand
Loginwindows respectively.

As can be seen in the source code in Section 3.1ldgen window enables
the opening of thél/ainForm window and the closing of itself. This knowledge
is captured in th€("Ok”’cond2”),[2,3]) guimodel expression. In this case, if
the user presses ti@k button, and the relateebnd?2 condition is true then action
reference opens thel/ainForm window, and action referen@closes thelogin
window.

Let us consider another example and present alsgutheodel extracted from
the MainForm Agend& window:
guimodel :: GuilModel
guimodel = fromList

[(("Exit","cond1"),[1]),

(("Edit","cond2"), [2]),

(("Edit","cond3"), [3]),

(("Find","cond4"), [4]),

(("Find","cond5"), [5]),
(("init","condInit1"),[6,7,8,9,10,11,12,13,14,15])]

pres :: Pres
pres = fromList

80 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

[(10, ("Exit", True)),
(11, ("Edit", True)),
(12, ("Find", True))]

end :: End
end = [1]
newWindow :: NewWindow

newWindow = fromList
[(2,"ContactEditor"),
(4,"Find"),
(6,"MainForm")]

close :: Close
close = []

In this model, the window behaviour includes three evemisif, Fdit and
Find). All of them are enabled at the initial state window (cf. true values asdigne

to each event in thgres function).

The newWindowfunction defines three action references which open different
windows. These are action references 2, 4 an 6 which open winGontactE-
ditor, Find andMainForm, respectively. Hence, from th&/ainForm window, it
is possible to open th€ontactEditor and Find windows (action references
and 3 respectively) through the code associated with evéhtd and Find (cf.
(("Edit"’cond2”),[2]) and(("Find”’cond4”),[4]) expressions in thguimodel
function), which execute new window actiodgnd4 (cf. functionnew Window).
However to access these windowsid2 and cond4 must be valid, respectively.
Finally to close the application the source code related to action refetengst be
executed (cf.end function), which is triggered within th€”Exit”,"cond1”),[1])

event.

4.3. MODELS FOR GUI REVERSE ENGINEERING 81

Besides thegguiModel Haskelkpecification, other meta-models have been de-

fined to express other kinds of knowledge (see Appendix D and E) f &lleon are

also automatically generated. The following model relates pairs of states with all

possible event/condition pairs representing transitions between them Aigehea

Login window:

statesLogin :: (Map (StateRef,EventRef,CondRef, [EzpRef])
StateRef, Map StateRef State)

statesLogin = (fromList [

(("stateO0","init","condInit1", [5,6,7,8,9]),"statel"),
(("statel","Cancel","cond1",[1]),"state0"),
(("statel","0Ok","cond2",[2,3]),"state0"),
(("statel","0k","cond3", [4]),"statel")],

fromList [("stateO",fromList []),

("statel",fromList [("Cancel", True), ("0k", True)])])

The next model, specifies all possible sequences of events fditlie win-
dow from it initialization. As an example, if we consider an event sequemgghe

lower than 3, then 7 different sequences of events are obtained:

waysLogin :: [N]

waysLogin = [N (["condInit1"], ["init"]),
(["condInit1","cond1"], ["init","Cancel"]),
(["condInitl","cond2"], ["init","0k"]),
(["condIniti","cond3"], ["init","0k"]),
(["condInitl","cond3","cond1"], ["init","0k","Cancel"]),
(["condInitl","cond3","cond2"], ["init","0k","0k"]),
(["condIniti","cond3","cond3"], ["init","0k","0k"])]

=T=E====

It can be seen thdtinit”’Ok”,’Cancel”] is one possible sequence of events.

To execute this sequence, the conditienadnit1, cond3, and cond1l must be
verified. Each reference corresponds to a particular event condifibim the

sequence of events.

82 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

4.3.2 MAL Interactors

Another notation for describing interactive systems is the language of M#&l-in
actors [CHO1]. It is a domain specific language and includes the notiortest in
actors as a mechanism for structuring the use of standard specificatiomnees
in the context of interactive systems specification [DH93]. Modal Actiogito
[RFM91] is used to specify the behavioural parts of the models.

The definition of a MAL interactor contains a state, actions, axioms andrprese
tation information. This language allows to abstract both static and dynamic per-
spectives of interactive systems. The static perspective is achievedttsiitotes
and actions abstractions which aggregate the state and all visible compionents
particular instant. The axioms abstraction formalizes the dynamic perspkotive
an interactive state to another.

~ - 0OX

Bank Transfers

Options

| e | Cansult | Transfer | Clear | Exit |

Account |ol: 123456
Halder Marme: |Mary
Balance: 1000

Transfer Ta: 554321
Transfer Walue: =

Figure 4.6:JBanksystem

Now to describe an example of MAL interactors, let us consider another in-
teractive application: thdBanktransfers system. Basically, tliBanksystem

is a simpleJava/Swingexample allowing for account transfers (see Figure 4.6).

4.3. MODELS FOR GUI REVERSE ENGINEERING 83

Through a single window composed of several widgets, users haessat five
buttons, allowing the creation of new accounts, consulting the data foragach
count, execution of transfers from one account to another one, @ty fio clear
all input widget'’s values.

interactor JBank
attributes

[newEnabled, consultEnabled, transferEnabled, clearEnabled, exitEnabIed:Boolean]

\ — 0O X

Bank Transfers
. Options
accountld, holderName, transferTo: String|_ [wew | consur | vranster | ciear | exz ||
1y _ /Jekj\'
. S [accounti: [1zsa5e T
N LHoider name: [Many 1]
Sz iﬂalance: Looo |
;:_;//f r [Transtervo: _ [e5az21 1
[balance, transferValue: Integer] /____’(__———{Transrer valus: 400 =1
> 0

Figure 4.7: Interactor’s attributes abstraction

Applied to the code of théBankapplication, GUsURFERautomatically gen-
erates an interactor specification including the initial application state andnilyna
actions. This interactor contains a set of attributes (cf. Figure 4.7) -aneath

information input widget, and one for each button’s enabled status.

JBank Actions

[new, consult, transfer, clear, exit

‘setText_accou ntldtString)
setText_holderName(String)

setText_balance(lnteger) B KT £
setText_transferTo(String) Sl RSN
\setSelecteditem_transferValue(integer)) Options
) [Y . | tew | consur | Transter | ciear | e Jl
‘_\ Em——roy [12345¢ |
~—— Holder Name: |Mary |
— | | Barsnce: Rooo |
Transfer To: 654 |
| Transrer value: |s00 =]

Figure 4.8: Interactor’s actions abstraction

84 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

The interactor also contains a set of actions (cf. Figure 4.8) - one fr ea
button, and one for each input widget (representing user input). Firialyso
contains a set of MAL axioms like the presented bellow which define theteffec
thenewbutton in the interface. In this particular case, the effect ofntawbutton

is to enable theonsultbutton. All others widgets status remains unchanged.

[New

newEnabl ed’ =newEnabl ed & consul t Enabl ed’ =true &

t ransf er Enabl ed’ =t r ansf er Enabl ed &

cl ear Enabl ed’ =cl ear Enabl ed & exit Enabl ed’ =exi t Enabl ed &
account | d’ =accountld & hol der Nane’ =hol der Nane &
transferTo’ =transferTo & bal ance’ =bal ance &

transf er Val ue’ =t ransf er Val ue

Similar axioms are generated for all other actions.
4.3.3 Event Flow Graphs

At all times during interaction with a GUI, the user interacts through eventbeln
literature a GUI component’s flow of events may be represented as anfloven
graph [MBNO3].

An event flow graph defines all possible interactions by specifying thatsv
in a GUI system. For every eveatan event flow graph identify all the events that
can followe.

Formally, an event-flow graph is a 4-tuple (V, E, B,) where:
1. Vis a set of vertices representing all the events in the component;

2. F =V x Visaset of directed edges between vertices. Ewgfullows ei
if ej may be performed immediately after. An edge(vz,vy) € E if the

event represented hy, follows the event represented by;

4.3. MODELS FOR GUI REVERSE ENGINEERING 85

3. B C V is aset of vertices representing those event§' tfiat are available

to the user when the component is first invoked,;

4. I C V isthe set of events that explicitly terminates the application.

This Section shows the extraction of an event flow graph from anothdt sma
example: thelClassapplication. Basically, th@Classsystem is alava/Swingex-
ample allowing for student marks management (see Figure 4.9). Usergldan a
student’s dataAdd button), i.e. student’s number, name and two marks. The sys-
tem enables also findingonsultbutton) and removingkemovéutton) students.

The Clear button empties all system’s widgets.

Murnber: At
EmE: Consult
Markl: vl

— Remowe
Marks: & .

Clear
1] 5 10 15 20 :

Average:| \ Exit

Figure 4.9:JClasssystem

In this particular case, GWURFER enables the extraction of an event-flow
graph which allows the analysis of the code’s quality from a software enging
perspective. Figure 4.10 provides the obtained event-flow graph. ihsother
models, the graph is generated by tBeph module. All widgets and their re-
lationship are abstracted to this graph and arrows specify methods call®freom
widget to another. As an example, nodes with three internal fields spiuififons

abstractions.

86 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

Java/Swing objects data flow in JTurma class (generated automatically by SwingReverse prototype)
jLabeld
g Nota Pru00cltica:
add
jLabel3
Nota Teu00f3rica:
dados_panel
jLabel2
Nome:
jLabell
gt Value
add 4
JButton. (VariableName, Methods(lp getText &
adicionar_button omboBox-(VariableName)
add /| adicionar_action
Alicicnat setEnabled_true St -
Slider(VariableName)
add (VariableName, Methods,T et
‘nota_prati
setEnabled_tmue JRutton-(VariableName, Methods, Text) consultar_button @_pratica
consultar_action
setEnabled_false : ;
sctEnabled_false T
gtContentPanc -2 botoes_panel 2dd remover_button
= setEnabled_true
- remover_action
Remover Tt
add
add setEnabled_false,
JButton-(VariableName, Methods, Text)
T - (VariableName, Methods J4)
sair_action setnabled false
Sair
limpar_button
3 \ limpar_action |
I Limpar
quantos_panel
Quantos passam?

Figure 4.10:JClasssystem’s partial GUI event-flow graph

4.3.4 Finite State Machines

As has been discussed in Section 2.5.2, finite state machine may be used to model
GUI behaviour. This type of model has been choosen in order to sugasioning

about and testing the dialogue supported by a given GUI implementation.

An interactive system can be represented as a FSM considering thavasés

are mapped into arcs, and GUI states are mapped into vertices. When the use

4.3. MODELS FOR GUI REVERSE ENGINEERING 87

performs an event, the current statés changed to the next statewhere there is
an arc fromA to B labeled with that event.

GUIsurFERautomatically generates a finite state machine model of the in-
terface. Next, an example of FSM generation will be presented, comgjdiie
Agendainteractive system (cf. Figure 3.1).

The state machine in Figure 4.11 is obtained fromAlgendé& source code.
Arrows specify a user interface event changing from one state to emdththis
particular case each arrow abstracts a particular button press aetieny.(For
each action there is a associated conditmmn which must be validated to move
from one state to the next. Conditions are extracted directly from conditional
structions in the source code. For exampléf aondition then actionl else action2
conditional instruction is abstracted to two different transitions. A first ovith
actionsls graphical user interface instructions, that occurs when the condltion
true, and a second one wislttion2s graphical user interface instruction.

This model is composed by four finite state machine, one for égemdéas
window. As can be see, some events allow opening a new window, so tleese a

related to other finite state machine.

4.3.5 Others Models

In this Section, a further model is presented. The model is useful to visualiz
an application’s behaviour in terms of active windows (see. Figure 4.&a¢h
state of this model contains all the open windows in a particular period of time.
Transitions between states correspond to events that open or closewsirieiach

transition refers the source window’s name, it state status, the evenespeicr

88 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

Figure 4.11:Agendss finite state machine

4.4. ALANGUAGE INDEPENDENT TOOL 89

tive condition. In this case, one can reason about which windows capdreed
along a session, which are the related events and conditions. At the tapreft
ner, this model specifies theogin window as an entry point for the application.
Then, from theLogin window there is one transition tdainFormwindow. This
transition happens fromtatel in reaction of theOk event if conditioncond? is
verified. FromMainForm's statel, it is possible to open th€ontactEditor win-
dow through theFdit event if conditioncond2 holds. The referred transition is:
MainForm statel Edit cond?2

The model in Figure 4.12 was generated fromAlgendés source code consid-
ering non-modaMainForm, ContactEditorandFind windows. Thus, af\genda
session may be composed by several instances of the same windowsasmégt

in this model.

4.4 A Language Independent Tool

A particular emphasis has been placed on developing tools that are, agasmms
sible, language independent. Althougdva/Swingvas used as the target language
during initial development, through the use of generic programming tectsjique
the developed tool aims at being retargetable to different user interfattétgo
and different programming languages. Indeed, the J&IFERtool has already
been extended to enaB®NVTandWxHaskelbased applications analysis.

Google Web Toolkit GWT) is a Google technology [HT07]. GWT provides a
Javabased environment which allows for the developmentaafaScriptapplica-
tions using theJavaprogramming languagecWT enables the user to create rich

Internet applications. The fact that applications are developed ifatredanguage

90 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

Windows States (depth:

ContactEditor

ContactEditor

ClontactFditor
MainF orm

ContactFditor
statel Cancel cond3

ContactFitor ContactFditor
statel Ok cond6 | state2 Cancel cond3

MainForm
statel Edit cond2

ContactFditor
state2 Ok condé

MainForm
statel Edlit cond2

\ v ContactFditor
\. ContactEditor ContactEditor
ContactEditor — ContactEditor

MainForm ContactFditor

\ MainF orm

\
ClontactFditor ClontactFditor ClontactRditor MainForm
statel Ok cond6 \state2 Cancel conds tate2 Ok cond6 /statel Edit cond2

Lo T y ContactRditc
i = MainForm =
Login ContactFitor CtontactFclitor
statel Ok cond2 \statel Ok condé \state2 Cancel cond3

MamForm

MainF orm MainF orm
statel Find cond4 statel Find cond4

ClontactFditor
statel Cancel conds

ContactFclitor
state2 Ok condé,

ContactFditor
statel Cancel conds

MainF orm
statel Edit cond2

DMainF orm MainF orm
statel Find cond4 statel Find cond4
Find
F MainForm %

MamForm ContactEditor ContactEditor

ContactEditor / ContactEditor
statel Edlit cond2 \statel Cancel conds /statel OK condé

state2 Cancel conds \state2 Ok conds

ContactEditor

Fine >
MamnForm
MainForm MainForm ClontactRditor C'ontactRditor MainForm ClontactFditor ClontactRditor
statel Find cond4 statel Find cond4 \stateZ Cancel conds \state2 OK condé \ statel Edit cond2 statel Cancel conds jstatel Ok conde
-
ContactRditor ClontactRditor
Find T —————— .| ContactEditor

Find
MainForm

Find
MamForm

ContactEditor
state2 Cancel conds

ContactEditor
state2 Ok cond6

MainForm ContactEditor
statel Edit cond2 jstatel Cancel conds

ContactEditor
statel Ok conde

MainF orm

\ MainForm MainF orm
statel Edit cond2

statel Edit cond2 fratel Find conc4

ContactEditor
ClontactFditor

ContactEditor
ContactFditor

Find

—

Find Find ContactEditor
MainForm Find Find
MainF orm MainForm

MainF orm
statel Find cond4

MainF orm
statel Find cond4

Find

Find

Find
MainF orm

MamnForm
statel Find cond4

MainF orm
statel Edit cond2

Find ContactEditor
Find Find
Find Find
Find Find
MainF orm MainF orm

Figure 4.12:Agendaapplication’s windows states

4.4. ALANGUAGE INDEPENDENT TOOL 91

allows GWTto bring all of Javds benefits to web applications developmeBWT
provides a set of user interface widgets that can be used to createpkvagons.
SinceGWTproduced aavaScripiapplication, it does not require browser plug-ins
additions.

WxHaskells a portable and native GUI library fétaskell The library is used

to develop a GUI application in a functional programming setting.

4.4.1 Retargetability

In this Section the applicability of GWURFERt0o GWT and WxHaskellcode is
discussed. Our retargets@®NTandWxHaskelhighlight successes and problems
with the initial approach. The size of the adaptations and the time it took to code
them are distinct. They were also carried out under different condititms latter
was performed by the author, the former was performed by anothearcbse
under the author’s guidance [Sil10].

The adaptation t&WTwas easier because it reuses the sdavaparser. The
adaptation tdoVxHaskellwas more complex as the programming paradigm is dif-
ferent, i.e.Haskellis a lazy functional programming language.

The application of GU3URFERto WxHaskelhas been implemented by defin-
ing the slicing step for functional programming, more specifically for \fthe-
Haskellsyntax. This task was made complex by the fact thatitxélaskelkoolkit
has a different structure to define GUI components like windows, eiung,
etc. The first GUSURFERs phase FileParser, needed to be defined to consider
another programming language. Although a parser foHaskell programming

language has been reused to generate abstract syntax trees, wé twegdple-

92 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

ment the program dependency graph. Finally As¢Analysetimport file named

GuiX contains several changes, making use oftheédaskelkpecific constructors.

Considering the applicability of GWlURFERtO GWT, asGWTis written in the
Javaprogramming language, the first GRURFERs phase FileParser, remained
unchanged. The slicing was the same but applied to the set of GUI contponen
from GWT, which are different from those of Swing. During the adaptation to
GWTsome aspects of the slicing function that were relying on Swing specificities
were identified and generalised. For example, SwiagdActionListenemethod
was being used to identify actions. GWTthe corresponding method is thdd-

ClickHandlermethod.

Table 4.4.1 (from [Sil10]) shows the total number of language depeltidest
of code for the five GUSURFERmModules. The columdava/Swingcontains the
number of lines ofHaskell code eachlava/Swingmodule has. Aslava/Swing
was the first approach made with GRUIRFER the other languages were made by
re-targeting this initial approach. Hence, other columns, specifidalilaskell
andGWT, besides containing the number of lines each GLHFERmModule has,
also indicate (between parentheses) information regarding how many lasres w

changed.

As an exampleFileParsermade forJava/Swinghas 54 source lines of code.
Fileparser fonWxHaskellhas 26 lines, and 41 lines from tldava/Swingsource
code were changedGWTs FileParser has 54 lines where no line was changed,

thus it is identical to thdava/Swindile.

“Lines changed include code lines erased and source code lines dh@ihgevisual file compar-
ison tool named ExamDiff was used to compare files.

4.4. ALANGUAGE INDEPENDENT TOOL 93

GUISURFERas a retargetable tool incurred in few source code updates for
the new programming languages. Focusing on the approaGW@ just a few
line codes were changed. Moreover, changes performed to extehd URBER
to a new programming language, specificdWT or WxHaskell did not reflect
on architectural changes. Hence, GURFERs objective of being a retargetable
tool was accomplished. It should be stressed that changes madeGaithds
SlicingX.hs andGraph.hsfiles represent improvements to for the modules which

are backwards compatibles.

Module/Toolkit Java/Swing WxHaskell GWT

FileParser.hs 54 26(41) 54(0)
AstAnalyser.hs 88 85(5) 87(9)
GuiX.hs 218 140(179) 219(5)
SlicingX.hs 135 135(0) 135(0)
Graph.hs 665 467(245) 669(9)

Table 4.1: Total language dependent lines of code [Sil10]

4.4.2 WxHaskelkexample

Throughout this Section anothAgendainteractive application implementation is
used to illustrate the applicability of the tool to different languages (cf. Eigur
4.13).

The newAgendawas implemented ilVxHaskellwith the same functionalities
of the Java/Swingmplementation. Users can perform the usual actions of adding,
removing, finding and editing contacts.

Figure 4.14 provides th&/xHaskellsource code of theogin implementation

(window at the top left corner of the bottom half of Figure 4.13). As caséden,

94 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

-loj x| CREEN— ~io(x|
File Help
Username |\—
L = |
Password
Ok Qi
mirind N alE] JST=TE
Find what: l— p— First name: I Last name; I
Tithe: Mickname:
FF Mtk rass ol [[
™ Whole words (B Add
Clients: - T —
= Ok Cancel

Figure 4.13: TwoAgendaapplications Java/Swingtop) andwxHaskellbottom)

widget constructors are specific to téxHaskellanguage. These astaticText
textEntryand buttonto define labels, text boxes and buttons, respectively. The
constructoron commands used to define the behaviour when a button is clicked.

For example the instruction:

quit = button pn [text := "Quit", on command := close fr]

creates thQuit button which closes the login window when clickedh(command : =
close fr).

From the source code of this new implementation,GtHsurfertool has gen-
erated the same kind of behavioural models as those obtained fralaviSwing
implementation. Figure 4.15 provides the behavioural state machine fauothe
gin WxHaskelimplementation. As can be seen, the extracted model reflects the

behaviour of the implemented source code.

4.4. ALANGUAGE INDEPENDENT TOOL 95

login :: I0 ()

login =
fr = frame [text := "Login"]
pn = panel fr []
1bl = staticText pn [text := "Username"]
tbl = textEntry pn [enabled := True,
wrap := WrapNone]
1b2 = staticText pn [text := "Password"]
tb2 = textEntry pn [enabled := True,
wrap := WrapNone]
ok = button pn [text := "Ok",
on command := {close fr;
start mainForm}]
quit = button pn [text := "Quit",
on command := close fr]

Figure 4.14:Login WxHaskelpartial source code implementation

Application ClientDBhaskell - Window Login - New window actions:[]

state 0

imit/condnitl /[3,4]

Quit/cond2/[2]

Figure 4.15:Login behavioural state machiné/xHaskelimplementation)

96 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL
4.4.3 GWTexample

FlexTable is an example of @WTapplication. The applicatidrsimulates a dy-

namic table as presented in Figure 4.16. It starts, as shown on the leftf $ige o

image with an empty table, and a single button visible, the butew Row After

the buttorNew Rows pressed, the table has a new row, and the application enables

two others buttonsNew CellandClear. The buttonNew Celladds a new cell in

the last created row. Moreover each cells has the values of its regpeativdinate

on the table. Finally, the buttc@lear, clears the table, removing all created cells.
Applying GUISURFERInto the source code of the application, it produced the

finite state machine depicted on Figure 4.17.

[New Row][New Cell ” Clear]

B -
0,0[0,1]0,2]

1,0[1,1]l

Figure 4.16:GWTFlexTable application

The FSM from Figure 4.17 is composed of three states, the initial stiatie(),
the state with a single button, namely the butddew Row(state) and the state
with the three buttons visiblestated.

Because the application always has either one or three buttonssURBER
has correctly identified two states. Moreover, GURFERproperly defined two
different events after pressing the butfdaw Row(eventdownButtonin the state

machine model), if the table is empty, it will perform a transition to the following

Scf. http://fexamples.roughian.com/index.htm#WidgetsFlex Talavailable source code, last
accessed November 22, 2010

4.4. ALANGUAGE INDEPENDENT TOOL 97

Application GWTFlexTable - Window FlexTable - New window actions:[]

state O

it/ condnitl/[5.6]

downButton/condl/[1,2] clearButton/cond3/[3,4]

—_—

e downButton-"c011(11..-@lightButtonfc ond2/]

-

Figure 4.17.GWTFlexTable’'s FSM behavioural model

state,state2 Otherwise it will remain in the same state. The example shows that
GUIsuRFERWas able to correctly deduce the behaviour of kesv Rowbutton.
Creating two transitions to model it. This is relevant because the handleiassb

to the event has no conditional guards. The decision to create the twiitrass
was not based on the code alone, but on an inference about the stiaéeimter-

face, and the fact that the button will always make@hear andNew Cellbuttons
visible. Figure 4.17 also shows that there is no final states, that is, tleemeebse

or cancelstates. This is because the FlexTable application does not end (WEB ap-
plications can always end by navigating to a different web page) ane ithprst a

single window in that application.

98 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

45 Conclusions

In this Chapter a reverse engineering tool was described. Thes GRHERtOOI
enables extraction of different behavioural models from applicatianisce code.
The tool is flexible, indeed the same techniques has already been appliectd e
similar models from different programming paradigm.

The GUIsURFERarchitecture was presented and important parameters for each
GUISURFERs executable file were outlined. A particular emphasis was placed on
developing a tool that is, as much as possible, language independent.

A technique was presented to help identifying a graphical user interface a
straction from legacy code. Then different kinds of GUI models extdabiethe
tool were described. These ataskell GUI behavioural specification, MAL in-
teractors, event flow graphs, finite state machines, GUI internal stateGdhs
windows states. For each model, a particular example was presented.

This work will not only be useful to enable the analysis of existing interactiv
applications, but can also be helpful in a re-engineering process arheristing
application must be ported or simply updated [Mel96]. In this case, being@ble
reason at a higher level of abstraction than that of code, will help inagteeing
that the new/updated user interface has the same characteristics ofibapomne.

The contributions related with this Chapter were described in the following

papers presented at international conferences:

e A Generic Library for GUI Reasoning and TestjnC.Silva, J.C. Campos,
J. Saraiva, presented at the 24th Annual ACM Symposium on Applied Com-
puting (SAC 2009), USA, 2009;

4.5. CONCLUSIONS 99

e TheGUIsSURFERtool: towards a language independent approach to reverse
engineering GUI codel.C.Silva, C. Silva, J.C. Campos, J. Saraiva, in pro-
ceedings of the 2nd ACM SIGCHI symposium on Engineering interactive
computing systems (EICS 2010), pages 181-186. ACM, Berlin, Germany,
2010.

100 CHAPTER 4. GUISURFER A REVERSE ENGINEERING TOOL

Chapter 5

GUI Reasoning from Reverse
Engineering

The term GUI reasoning refers to the process of validating and veriffinggrac-

tive applications behave as expected [Ber01, dSGD98, Cam99]. infids the
process of checking whether an application is correct, i.e. if it meets itdispec
tion. Validation is the process of checking if an application meets the requitemen
of its users [BA95]. Hence, a verification and validation process is tsedalu-

ate the quality of an application. For example, to check if a given requireiment

implemented (Validation), or to detect the presence of bugs (VerificaticiDB.

GUI quality is a multifaceted problem. Two main aspects can be identified.
For the Human-Computer Interaction (HCI) practitioner the focus of aisaigs
on Usability, how the system supports users in achieving their goals. For the
Software Engineer, the focus of analysis is on the quality of the implementation.
Clearly, there is an interplay between these two dimensions. Usability will be a
(non-functional) requirement to take into consideration during developraed

problems with the implementation will create problems to the user.

101

102 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

In a survey of usability evaluation methods, Ivory and Hearst [IHO1jtified
132 methods for usability evaluation, classifying them into five differentselsis
(User) Testing; Inspection; Inquiry; Analytical Modelling; and Simulatidiney
concluded that automation of the evaluation process is greatly unexpléued.
tomating evaluation is a relevant issue since it will help reduce analysis opsts b
enabling a more systematic approach.

Another possible division of evaluation methods is between those thateequir
users to use the system, and those that rely on models or simulations of tlme syste
for the analysis. In the first case, the costs remain high due to the neexbtiog
sessions with real users of the system to be carried out. Moreovegiardthe
high costs of user testing, the analysis will not be exhaustive in terms ofeall th
possible interactions between the users and the system. This means tleprob
with the implementation might remain unnoticed during the analysis. In the second
case, an assumption is being made that the implementation will be faithful to the
model. This begs the question of how to evaluate the implementation (ideally,
without resorting to human users).

The reverse engineering approach described in this thesis allows fexthe
traction of GUI behavioural models from source code. This Chapterritbes
an approach to GUI reasoning from these models. To this endQtliekCheck
Haskelllibrary [CHOO], graph theory, and ti@raph-Toot are used.

A description about the techniques implemented for GUI reasoning is pobvide
in the following Sections. Section 5.1 illustrates an approach for GUI ré@agon

making use of th&uickCheckool. Section 5.2 describes others approaches mak-

lsee, http://projects.skewed.de/graph-tool/, last accessed 27 Nay@@ibe.

5.1. TESTING WITH THEQUICKCHECKTOOL 103

ing use of graph theory and ti&aph-Tool Finally, Section 5.3 presents conclu-

sions.

5.1 Testing with theQuickCheckrool

This Section illustrates an approach, based onQb&kCheckool, that enables
the automatic generation and validation of test cases. This approach edes th
havioural model of the interactive application under test.

QuickChecks a tool for testindHaskellprograms automatically. The program-
mer provides a specification of the program, in the form of propertiesuhatibns
in the program should satisfy, ar@uickCheckhen tests that the properties hold
in a large number of randomly generated test cases. Specificationspaessed
in Haskell using combinators defined in tiuickCheckibrary. QuickCheckpro-
vides combinators to define properties, observe the distribution of testatata
define test data generators.

Using QuickChecktest cases may be generated automatically from a model of
the GUI. This Section present methodologies to perform model-basedgakim-
ing by generating, executing and verifying GUI test cases [Bel01, Bur&®5].
The guimodelspecification described in Section 4.3.1 is used as the basis for the
approach.

To illustrate the approach, thgendaapplication’sguimodel(cf. Figure 3.1)
will be considered. The goal will be to test if the application satisfies the foligpw
rule: users can only access the following winddvegyin, MainForm, Find, and
ContactEditor The objective is to test whether there is any hidden code in the

application, providing access to extraneous windows. This would belly$ef

104 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

example, in the maintenance or migration of large and complex interactive systems
The rule is specified in thdaskelllanguage on top of thguimodeltest cases.

From theguimodelspecificationQuickCheclautomatically generates random test

cases. Then the rule can be tested on them. Each randomly generatedddstac

sequence of valid events associated with their conditions (which will bedineg

the event is valid), system actions and target windows. The folloWeskellcode

express a particular test case for fkgenda guimodel
[("Login","Ck","cond2",[2,3]),
(" Mai nFornt', "Fi nd", "cond3",[3]),
("Find","Search","condl",[]),
("Find","Cancel","cond2",[1]),
("Mai nFormt', "Exi t", "condl",[1])]

The above expression contains a sequence of events that can bedxeithin
the Agendaapplication. This is a list of tuple@w, e, ¢, la) wherew is the window
name e express the event executeds the related condition and finally contains
a list of GUI actions references.

In this particular sentence, the user starts by pressin@kieitton in theLogin
window with a valid username/passwortiggin”,"Ok”,’cond2”,[2,3]). Condi-
tion referencecond2represent the invocation of thgValid boolean function, cf.
Section 1.1. Associated actions references 2 and 3 representstirespéogin
window closing andMainFormwindow opening. Then, from thielainFormwin-
dow, the user presses tRd button, (MainForm”,"Find”,"cond3”,[3]). Condi-
tion referenceond3test if there are contacts in the agenda. InNtenFormwin-
dow action reference 3 correspond to Fied window opening action. Next, from

theFind window, the user makes a sear€kiNd”,’'Search”,’cond1”,[]), and then

cancels the window,"Find”;"Cancel”’cond2”,[1]). Finally with the last action,

5.1. TESTING WITH THEQUICKCHECKTOOL 105

the user exits the application pressing Ehat button from theMainFormwindow
("MainForm”Exit"’cond1”,[1]).

Now, considering/tc a valid test case, the rule can be specifiedaskellas:

rule :: [(Window, Event, Condition, Actions)] - Bool
rule vtc =
all (elem’ ["Login","MainForm","Find","ContactEditor"]) wl
wl = map (A(w,_,_,_) = w) vtc
where

e 'clem’ returns true if a list contains a particular item;
e qll returns True if all items in a list fulfill a condition.

This rule receives a test case as parameter (list of tuples) and vetifiesgh
the all function) if each of the events gives access to one, and only one, of the
following windows: Login, MainForm, Find or ContactEditor

Testing the application'guimodelwith this rule throughQuickCheck and
making use of 10000 randomly generated test cases, the following resutib-a

tained:

*GuiModelAnalysis> deepCheck rulel
OK, passed 10000 tests.

87% events sequence length: 5.

10% events sequence length: 4.

1% events sequence length: 3.

0% events sequence length: 2.

0% events sequence length: 1.

The rule hold in 10000 randomly generated test cases with up to 5 events
length. All of test cases satisfies the rule. This approach is non-eifebsit

could be applied to test a GUI model with a wider range of test cases.

106 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

5.2 GUI Inspection Through Graph Theory

This Section describes additional behavioural analysis performedginrgaph
theory. To illustrate the approach, tAgendaapplication’s behavioural model will
be considered (cf. Figure 5.1Graph-Toolwill be used to manipulate and analyse

the graph.
5.2.1 Agendés Behavioural Graph

Until now, several behavioural models of the interactive application heea de-
scribed. Such models unambiguously and rigorously define the behafiaur
application. Moreover, by using models to define the interactive applican,
eral techniques can be used to implement GUI reasoning.

One particular modeling approach that has been considered to enabte& Ul
soning from GUI models is the use of finite state machine model. In this Section,
graph theory is used to explore these models.

Within this approach, an analogy will be considered between state machines
and graphs. State machines states will be represented as vertivesarasitioins
as edges. For example, Figure 5.1 shows a graphs expressing thebebéathe
Agendaapplication. Now GUI reasoning will be executed through this representa-

tion.

5.2.2 Graph Events Count

A first useful model that can be automatically extracted from Figure 5.1atek
to GUI events counts between states (i.e. edges count between verfidas).

model helps to visualize the behavioural complexity of a particular windove Th

5.2. GUI'INSPECTION THROUGH GRAPH THEORY

Loginstate0

107

init/condInit1/5,6,7,8,9]

V

Cancel/condl/[1] Ok/cond2/[2,3]

WV N
<J

Cancel/cond2/[1] Open MainForm window

- B
MainFormstate0

2 £

| 1/
MainFormstatel

N

Open Find window /Open ContactEditor window \Exit/condl/[1]

Findstate0 ContactEditorstate0

initfcondinit2/(18,19,11,12,13,14,15,16,17]

ContactEditorstatel

init/condInit1/[9,10,11,12,13,14,15,16,17]

N £
Cancel/cond5/17] ContactEditorstate2 Y Add/cond1/1, JRemove/cond4/[5,6]
<F

e MWL o

" ContactEditorclose

Figure 5.1:Agendés behaviour graph

nit/condinit1/2,3,4,5,6,7.8] Close Find window /init/condinit1/[6,7,8,9,10,11,12,13,14,15]

Edit/cond2/[Z}E dit/cond3/[3)Find/cond4/[43Fin d/cond5/[5]

Close ContactEditor window

108 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

total number of events from each state to another one can be visualiz&ib{afe
5.2). This model can be used to measure aspects related to the distributientsf ev

considering the overall application behaviour.

‘Window ContactEditor Window Find Wmndow Login Wmdow MamnForm
ContactEditorstate2 DB Findstatel ;)2 Loginstatel :}1 MainF ormstatel)z
A f’l /l /
1 (1 b m
(v ' v
2 | ContactEditorstatel DO 1 Findstated DO Loginstate0 DO MamF ormstate DO

T

o
;

ClontactFditorstated DO

Windows Events Number

Figure 5.2:Agendaapplication’s events Count

5.2.3 Operations on Graphs

Graphs may be easily manipulated through intersection, union, and ddéeogn
erators. This operations allow us to compare, for example, the GUI modebof tw
versions of an interactive application. This is particularly relevant ingires of
evolving applications.

An example of such a result is shown in Figure 5.3. The Figure correlsjoon
the union of two graphs, generated by GURFER using two distinct versions of
theAgendaapplication (one version make use dfiad windows to search contacts
while the other does not).

As indicated in the legend, bold edges correspond to events from thesfirst

sion of the application only, filled edges correspond to events from thendec

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 109

version, and dotted edges are events that can be executed on baths/ess it
can be seen, the first version enables access tGon¢actEditorwindow, while
the second edition does not. In fact, as demonstrated by the absencel @&ddles,
the second version implements a subset of the first version’s behavilyur o
This approach is helpful to reason about different versions of alicapion.
These can be versions implemented in the same programming language or not.

GUIsurreRfunctionalities also include graph intersection and difference.

Windows States (depth: 3, version 1 and 2: dotted, versionl: bold, version2: filled)

ContactEditor
MainForm

Login

H Login Cor i
" statel/statel Ok/Ok cond2/cond2 (statel Ok cond6

C i C i MainForm
state2 Cancel cond5/ state2 Ok cond6/statel Edit cond2

----------------------- o

Find N MainForm
- statel/statel Cancel/Cancel cond2/cond2 statel/statel Find/Find cond4/cond3

el Find
MainForm
MainForm MainForm
. statel/statel Find/Find cond4/cond3 \statel Edit cond2
A

Find ContactEditor
Find Find
MainForm MainForm

ContactEditor
Statel Cancel cond5

MainForm
tatel Edit cond2

ContactEditor
ContactEditor
MainForm

MainForm
statel Find cond4

Figure 5.3: Comparindgendaapplication’s windows states

5.2.4 GUI Metrics

The analysis of source code can provide a means to guide the develapfintieat
application and to certify software. Software metrics aim to address seftyuei-
ity by measuring software aspects, such as lines of code, functiongativas,
etc. For that purpose, adequate metrics must be specified and calcii&teids

can be divided into two groups: internal and external [ISO99].

110 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

External metrics are defined in relation to running software. In whatexoisc
GUIs, external metrics can be used as usability indicators. They areassemci-

ated with the following attributes [Nie93]:

Easy to learn: The user can carry out the desired tasks easily witremit pr

ous knowledge;
e Efficient to use: The user reaches a high level of productivity;

e Easytoremember: The re-utilization of the system is possible without a high

level of effort;

e Few errors: The system prevents users from making errors, andengc

from them when they happen;
e Pleasant to use: The users are satisfied with the use of the system.

However, the values for these metrics are not obtainable from souleeat@lysis,
rather through users’ feedback.

In contrast, internal metrics are obtained from the source code, andti@ro
information to improve software development. A number of authors have dooke
at the relation between internal metrics and GUI quality.

Stamelos et al. [SAOB02] used the Logiscopeol to calculate values of se-
lected metrics in order to study the quality of open source code. Ten ditfieret-
rics were used. The results enable evaluation of each function agaimgbdsic

criteria: testability, simplicity, readability and self-descriptiveness. While tbié G

2http://www-01.ibm.com/software/awdtools/logiscope/, last accessedmime22, 2010

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 111

layer was not specifically targeted in the analysis, the results indicatedativeeg

correlation between component size and user satisfaction with the saftware

Yoon and Yoon [YYO07] developed quantitative metrics to support decision
making during the GUI design process. Their goal was to quantify thelingab
attributes of interaction design. Three internal metrics were proposededime:d
as numerical values: complexity, inefficiency and incongruity. The astéxpect

that these metrics can be used to reduce the development costs of usetimrer

While the above approaches focus on calculating metrics over the cade, Th
bleby and Gow [TGO08] calculate them over a model capturing the behavide
application. Using graph theory they analyse metrics related to the uséitg ab
to use the interface (e.g., strong connectedness ensure no part detifeca ever
becomes unreachable), the cost of erroneous actions (e.g., calctitegtiogst of
undoing an action), or the knowledge needed to use the system. In @ bgnse
calculating the metrics over a model capturing GUI relevant information instead
of over the code, the knowledge gained becomes closer to the type ofddumv

obtained from external metrics.

While Thimbleby and Gow manually develop their models from inspections of
the running software/devices, an analogous approach can be cautiadalysing
the models generated by G&URFER Indeed, by calculating metrics over the be-
havioural models produced by GEWRFER relevant knowledge may be acquired
about the dialogue induced by the interface, and, as a consequéacg, heaw

users might react to it.

112 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING
5.2.5 Graph-Tool

Graph-Toolis an efficient python module for manipulation and statistical analysis

of graphs$. It allows for the easy creation and manipulation of both directed or

undirected graphs. Arbitrary information can be associated with the v&rédges

or even the graph itself, by means of property maps.
FurthermoreGraph-Toolimplements all sorts of algorithms, statistics and met-

rics over graphs, such as shortest distance, isomorphism, connect@drments,

and centrality measures.

Figure 5.4:Agendé behaviour graph (numbered)

3see, http://projects.skewed.de/graph-tool/, last accessed 27 Nay@obe.

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 113

Now, for brevity, the graph described in Figure 5.4 (automatically obtained
from model of Figure 5.1) will be considered. All vertices and edgedadreled
with unique identifiers.

To illustrate the analysis performed wiBraph-Too] three metrics will be con-
sidered: Shortest distance between vertices, Pagerank and BeésseAppendix

F contains the completeythonscript for generating the results of these metrics.
Shortest Distance

Graph-Toolenables the calculation of the shortest path between two vertices. A
path is a sequence of edges in a graph such that the target vertex efdegris the
source vertex of the next edge in the sequence. If there is a path strtiagex

u and ending at vertex thenw is reachable fromu.

For example, the followind’ythoncommand calculate the shortest path be-
tween vertices 11 and 6 (i.e. between lthgin window and a particulaContactE-
ditor window state), cf. Figure 5.4.

vlist, elist = shortest_path(g, g.vertex(1l), g.vertex(6))
print "shortest path vertices", [str(v) for v in vlist]
print "shortest path edges", [str(e) for e in elist]

The results for the shortest path between vertices 11 and 6 are:

shortest path vertices:
[11,'10",'13,'8 ,'7",'5 ,"4,'6"]
shortest path edges:
['(11,10)',’(10,13)",'(13,8)",'(8,7)",
1(7'5)1 ,,(5,4),,’(4,6),
]

Two representations of the path are provided, one focusing on vertlees

another on edges. This is useful to calculate the number of steps a esksrtoe

114 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

perform in order a particular task.

Now let us consider another inspection. The next result gives théesihaiis-
tance (minimum number of edges) from thegin window (vertice 11) to all other
vertices. ThéP?ythoncommand is defined as follows:

di st = shortest_distance(g, source=g.vertex(11))
print "shortest distance from Login"
print dist.get_array()
The obtained result is a sequence of values:
shortest distance from Login
[6 576657435102 2]

Each value gives the distance from vertice 11 to a particular target vertice
The index of the value in the sequence corresponds to the vertice’s ielerfidir
example the first value is the shortest distance from vertice 11 to verticbiGhw
is 6 edges long.

Another similar example makes useMainFormwindow (vertice 7) as start-
ing point:

di st = shortest_distance(g, source=g.vertex(7))
print "shortest _distance from M nFornf
print dist.get_array()
The result list may contains negative values: they indicate that there are no
paths from Mainform to those vertices.
shortest distance from Mai nForm
[21322130-11-1-1-1-1]
This second kind of metric is useful to analyse the complexity of an inter-

active application’s user interface. Higher values represent com&s tahile

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 115

lower values express behaviour composed by more simple tasks. Thislexamp
also shows that its possible to detect parts of the interface that can benawé-u
able. In this case, there is no way to go back to the login window once the Main
window is displayed (the value at indexs 10-13 are equal to -1).

This metric can also be used to calculate the center of a graph. The center
of a graph is the set of all vertices where the greatest distance to ottieesas
minimal. The vertices in the center are called central points. Thus vertices in the
center minimize the maximal distance from other points in the graph.

Finding the center of a graph is useful in GUI applications where the gtal is
minimize the steps to execute tasks (i.e. edges between two points). For example,
placing the main window of an interactive system at a central point redbees

number of steps a user has to execute to accomplish tasks.

Pagerank

Pagerank is a distribution used to represent the probability that a pensdomly
clicking on links will arrive at any particular page [Ber05]. That prbility is
expressed as a numeric value between 0 and 1. A 0.5 probability is commonly
expressed as a "50% chance” of something happening.

Pagerank is a link analysis algorithm, used by the Google Internet search e
gine, that assigns a numerical weighting to each element of a hyperlinked se
documents. The main objective is to measure their relative importance.

This same algorithm can be applied to our GUI's behavioural graphs.rd-igu
5.5 provides thé?ythoncommand when applying this algorithm to tAgenda

graph model.

116 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

pr = pagerank(Qg)
graph_draw(g, size=(70,70),
| ayout ="dot ",
vsize = pr,
vcol or="gray",
ecol or ="bl ack",
out put ="graphTool - Pager ank. pdf ",
vprops=dict ([(' label’, "")]),
eprops=dict ([('label’, ""),
(" arrowsi ze', 2.0),
(" arrowhead’ ,"enpty")]))

Figure 5.5:Pythoncommand for Pagerank algorithm

Figure 5.6 shows the result of the Pagerank algorithm givingAthendés
model/graph as input. The size of a vertex corresponds to its importance within
the overall application behaviour. This metric is useful, for example, to aealy
whether complexity is well distributed along the application behaviour. In this
case, the Main window is clearly a central point in the interaction (cf. Figubel

to see vertices and edges description).
Betweenness

Betweenness is a centrality measure of a vertex or an edge within a gegldo]S
Vertices that occur on many shortest paths between other vertices igaee be-
tweenness than those that do not. Similar to vertices betweenness centigkity, e
betweenness centrality is related to shortest path between two verticess tBeg
occur on many shortest paths between vertices have higher edge hetsse

Figure 5.7 provides th@ythoncommand for applying this algorithm to the
Agenda graph model. Figure 5.8 displays the result. Betweenness values for

vertices and edges are expressed visually. Highest betweennessvedlges are

5.2. GUI'INSPECTION THROUGH GRAPH THEORY

Figure 5.6:Agendés pagerank results

117

bv, be = betweenness(Q)
bel = be
bel.get _array()[:] = bel.get_array()[:]*120+1
graph_draw(g, size=(70,70),
| ayout ="dot ",
vcol or="white",
ecol or="gray",
out put =" graphTool - Bet weenness. pdf ",
vprops=dict([('l abel’, bv)]),
eprops=dict ([(' | abel’, be),
("arrowsi ze',1.2),
(" arrowhead’ , "normal "),
(' penwi dth’, bel)]))

Figure 5.7:Pythoncommand for Betweenness algorithm

118 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

()

957102857103

“oresasores2al > 10

310ea131088 15 5054545085

¢ oa02s64102584 > 1010 (D) oneea0s1zeaos >

16 8241750242 207502157802

e — ——
ooessaza Coanarsszaor >

105021978022 14 8461538452 237362637363

s

0455128205128 > 10101010
— Oaviaea0ne

Z07802157802 25 3956043356 as1208751208
Comumsanriies > o teseeeseses > @

12 2087912088

165934065934 163934063934

s 61530461538 s 61530461530 Coomssimis S 10010

153846153 _/5.61538461538

Comsrassanns S

Figure 5.8:Agendés betweenness values

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 119

represented with thicker edges. The Main window has the highest (veaticks
edges values) betweenness, meaning it acts as a hub from whererdiffarts of

the interface can be reached. Clearly it will be a central point in the interac

Cyclomatic Complexity

Another important metric is cyclomatic complexity which aims to measures the
total number of decision points in an application [Tho76]. It is used to giee th
number of tests for software and to keep software reliable, testable, amafma
able. Cyclomatic complexity is based entirely on the structure of softwaretsato
flow graph and is defined a8 = E-V + 2P (considering a single exit statement)
whereF is the number of edged/ is the number of vertices and is the number

of connected components.

Considering Figure 5.6 where edges represent decision logic iAdkada
GUI layer, the GUI's overall cyclomatic complexity is 18 and edgfendas win-
dow has a cyclomatic complexity less or equal than 10. In applications there ar
many good reasons to limit cyclomatic complexity. Complex structures are more
prone to error, are harder to analyse, to test, and to maintain. The sasoasea
could be applied to user interfaces. McCabe proposed a limit of 10 fotituns's
code, but limits as high as 15 have been used successfully as well [[THd¢6
Cabe suggest limits greater than 10 for projects that have operatioraitages
over typical projects, for example formal design. User interfaces paly dhe
same limits of complexity, i.e. each window behaviour complexity could be limited
to a particular cyclomatic complexity. Defining appropriate values is an integestin

topic for further research, but one that is out of the scope of theptéisesis.

120 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING
5.2.6 GUI Test Cases Generation

Test case generation is very important since it enables the evaluatiopstéansoy
manual or automatic means, and the verification that it satisfies specifieztesp
or identification of differences between expected and actual results.

Section 5.1 has already presented an approach to test case genemdtion a
execution usingQuickCheck This Section use the graph models generated by

GUISURFERINn an approach to GUI test cases generation.

Coverage Criteria

Ideally test cases should contain event sequences to test the totality pplan a
cation. Typically this is not possible due the applications’ size. Coveratgziar
help to determine if a GUI has been sufficiently tested. These coverageacrite
use events sequences to specify a measure of test adequacy. Mereowerage
means higher testing quality. Since the total number of permutations of ewent an
condition sequences in any GUI is extremely large, the GUI's data will bleikeg

to identify the important event sequences to be tested.

Usually, testers make thousands of paths to cover the most likely user opera
tions. However simulating user behaviour is not enough to prove that thelmod
based testing process covers all user actions. Considering testgesmgation,
some user behaviour will be more likely than other. Consequently, if tess cae
generated randomly then there is no guaranteeitibetestingbehaviours will be
tested.

Because our GUI's model representation can be viewed as a graphethen

approach to coverage criteria for GUI reasoning has been applieB(QUS This

5.2. GUI'INSPECTION THROUGH GRAPH THEORY 121

Section defines several coverage criteria following Memon’s appro&aist an
event sequence is formally defined, which is used to describe all theagmveri-
teria.

An event-sequence is a tupte el, e2, e3, ..., en > wheree; is a particular
event which can be executed after event, 2 < 7 < n.

Next three coverage criterion are presented. These are applied td&UI

haviour graph-based models.

e Event Coverage: The event coverage criterion enables to captatech s
event-sequences considering all possible events. The event geeite-
rion is satisfied if and only if for any evert, there is at least one event

sequences such thates containse;

e State Coverage: State coverage requires that each state is reachest at le

once, i.e. for any state there is at least one event-sequergesuch that

states is reached ires;

e Length-n-Event-sequence Coverage: Within GUI systems, the behaifiou
events may change when executed in different contexts. The lengtéat-e
sequence coverage criterion defines the set of event-sequenioisooh-
tains all event-sequences of length equahtoFor example the length-n-
event-sequence coverage criterion applied tdpendés behavioural model

in Figure 5.1 returns the number of test cases provided in the following table:

The result of this last criterion shows that the total number of event segae

grows with increasing length. The large number of event sequences iihalkié-

cult to test a GUI for all possible event sequences.

122 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

Length-n Event-sequences total number
1 1
3
4
10
40
190
940
4690
23440
117190

© oo ~NO UL WN

=
o

Table 5.1:Agendés total number of event-sequences foevent-sequence length

Consequently, Memon proposes to assign priorities to each event-seqreh
first test event-sequences with higher priorities. For example, evgoesees re-
lated with the main window could have a higher priority since they may be used

more times.

The considerations in this Section enable construction of test suites. Aitest s
is a set of event sequences starting from the initial vertice of the grapiitively,
if a test suite satisfies event coverage, it also satisfy state coveragtemhand
event coverage and state coverage are special cases of lengthtrsequence

coverage.

Moreover, in some cases it could be interesting to consider the overall be-
haviour of the GUI. This perspective can be achieved trough a unigiirerpach-
ing all possible states (or all possible events) between a start state antisidtn.
These particular test cases are generated through the Chinese Postmamd

Travelling Salesman Problem algorithms, described next.

5.2. GUIINSPECTION THROUGH GRAPH THEORY 123
Chinese Postman Tour

The background of the Chinese Postman Problem is about a Chinese pagima
wishes to travel along every road in a city in order to deliver letters, whilelirey

the least possible distance. Solving the problem corresponds to findisgdhest

route in a graph in which each edge is traversed at least once [Thi03, B&i9O0].

The Chinese postman problem was defined by a Chinese mathematician, Meigu
Guan. If the path must get back to the starting point, the problem is said to be
closed. If it does not need to go back, it is called an open problem.

The algorithm to solve the open problem is used to generate minimal sequences
of user actions between pairs of states, each sequence includingsalilpasers
actions in the interface. These sequences are used as test casasirfgrtbe
interface against defined properties.

The length of the optimal path for the closed problem acts as a measure of
the user interface’s complexity [Thi03]. Considering weighted graphs assign
weights to the transitions that correspond to the time users are expected to take
performing the corresponding actions, the optimal path for closed prablased
to calculate how long a user takes to explore an entire application.

In order to optimize our model-based reasoning approach, we apply the Ch
nese postman algorithm to generate a test case that uses all possible evedis /

tions and states.

Travelling Salesman Problem

The Travelling Salesman Problem (TSP) considers a salesman whosettefiids

a shortest possible tour that visits each city in a region exactly once.

124 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

While in the Chinese Postman Problem the goal is to traverse every edge at
least once, in the Travelling Salesman Problem the goal is to visit every. node
There is no need to use all edges in the graph. Paths produced as andoltitis
problem specify that all window states will be visited by the user, while keepin
user actions to a minimum.

Both algorithms are implemented and used in GURFER These algorithms
generate test cases which are used to explore an entire applicationecimusall

possible events and states.

Related Work

Several alternatives to generate test cases are proposed in the EtefFaite state
machines can be used to model system and to generate test cases [B19%8Y9, U

Memon'’s approach to coverage criteria for GUI testing makes use ofert ev
flow graph for GUI's behavioural representation [MSPO01]. His wprksents a
methodology for generating test cases from GUI behaviour grapddiseecifica-
tions. Coverage criteria is presented to help determine whether a GUI bas be
adequately tested.

Ping Li describes another approach to testing GUI systems in [LHRM®7]. |
the proposed approach, GUI systems are divided into two abstractttiersom-
ponent tier and the system tier. On the component tier, a flow graph isafeate
each GUI component, describing relationships between the pre-condithoerst
sequences and post-conditions. On the system tier, the components giat@ute
resulting in a view of the entire system. Finally, tests on the system tier analyse the

interactions between the components.

5.3. CONCLUSIONS 125

5.3 Conclusions

In this Chapter a GLWHURFERbased GUI analysis process has been illustrated.
The process uses GBURFERS reverse engineering capabilities to enable a range
of model-based analysis being carried out. Different analysis methddslage
described. The methodologies automate the activities involved in GUI regsonin
such as, test case generation, or verification. GUI behavioural matecalso
described as a way to analyse GUI quality.

The contributions related with this Chapter were described in the following

papers presented at international and national conferences:

e GUI Behaviour from Source Code AnalysisC.Silva, J.C. Campos, J. Saraiva,
presented at the 4tBonfeéncia Nacional Interacgo Humano-Computador

(Interac@o 2010)Universidade de Aveiro, Aveiro, Portugal, 2010;

e GUI Inspection from Source Code Analysik C. Silva, J. C. Campos, J.
Saraiva. In proceedings of the Fourth International Workshop am+o
dations and Techniques for Open Source Software Certification (GpenC

2010). Electronic Communications of the EASST, Pisa, Italy, 2010.

126 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

Chapter 6

HMS Case Study: A Larger
Interactive System

In previous Chapters, we have presented the SJ&FERtool and all the differ-

ent techniques involved in the analysis an the reasoning of interactilieatms.

We have used several simple/small examples in order to motivate and explain ou
approach. In this Chapter, we present the application of Sb#FERt0 a com-
plex/large real interactive system: a Healthcare management system laviadab
Planet-source-codeThe goal of this Chapter is twofold: Firstly, it is a proof of
concept for the GWBURFER Secondly, we wish to analyse the interactive parts of
a real application.

The choosen interactive system is related to a Healthcare Managem@amSys
(HMS), and can be downloaded froRtanet-source-coderebsité. Planet-source-
codeis one of the largest public source code database on the Internet.

The HMS system is implemented lmva/Swingand supports patients, doc-

tors and bills management. The implementation contains 66 classes, 29 windows

http://www.planet-source-code.com/vb/scripts/ShowCode.asp 2t 1&IngWid=2,
last accessed November 22, 2010

127

128 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

forms (message box included) and 3588 lines of code. The followingeStibas
provide a description of the maldMS windows and the results generated by the

application of GUBURFERTtO its source code.

6.1 Login Window

The window in Figure 6.1 is the firsiMS window that appears to users. This
window gives authorized users access to the system, andMt&main form by
introducing a username and password. This window is very similar tAgkedés
login window we have presented in the thesis (see Section 3.1). It is cothpbse
two text box (i.e. username and password input) and two buttons_@gin and
Exit buttons).

If the user introduces a valid username/password and presdesgimbutton,
then the window closes and the main window of the application is displayed. On
the contrary, if the user introduces invalid data, then a warning messagelised
and the login window continues to be displayed. By pressind=ttiebutton, the

user exits the application.

Hospital Managment

Username :

Password :

% Exit

Figure 6.1:HMS Login window

Applying the GUBURFERto the source code of the application, and focusing

6.1. LOGIN WINDOW 129

on the login window, enables the generation of several models. Figurlbo6eX-

ample, shows the state machine generated to capture the login window'sdeghav

Application Hospital - Window mainApp - New window actions:[(2,startApp),(7, mainApp)]

mainAppstate0

initjcondinit1/17,8,9,10,11,12]

' _loginBtn/cond3/[5]

exitBtn/cond4{[6]/loginBtn/cond2/[4] “\loginBtn/condl/[1,2,3]

Figure 6.2:HMS Login state machine

Analysing this model, one can infer that there is a pair event/condition (edge
loginBtn/condlwith action list [1,2,3]) which closes the window (cf. edge mov-
ing to closenode) and subsequently opens another window (identifieteaApp
through action reference 2). Furthermore, one can also infer thagt #rertwo
event/condition pairs (edgitBtn/cond4with action list [6] and edgginBtn/cond2
with to action list [4]) which exit the system. These events can be executed by
clicking the Exit or Login buttons, respectively.

The informal description of login window behaviour provided at the steti®
Section did not included the possibility of exiting the system by pressingdbim

button. The extracted state machine however defines that possibility, wéaich c

130 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

occur if conditioncond2is verified (cf. paidoginBtn/cond2with action list [4])).
Analysing conditioncond2(source.equals(exitBtj))dead code was encountered.
The source code executed when pressingd-tiggn button is the following:

public void actionPerfornmed(Acti onEvent event)
{ Object source = event.get Source();
i f (source.equal s(loginBtn))
{ String | ogi nnane, | ogi npass;
| ogi nnane = userTxt.getText().trin();
| ogi npass = passwordTxt.get Text().trim);
i f(valid(loginname, |oginpass))
{ new start();
set Vi si bl e(fal se);
frane. di spose();

}

el se showMvessageDi al og("Invalid User name and password");

}

el se if(source. equal s(exitBtn))
{ Systemexit(0);
}

This code uses a condition to test whether the clicked button ikdbi but-
ton or not. This is done through the boolean expressimirce.equals(loginBtn)
However, the above action source code is only performed when pgdabgibogin
button. Thus, the condition will always be verified and the followétgecompo-
nent of the conditional statement will never be executed.

el se if(source. equal s(exitBtn))
{ Systemexit(0);
}
Summarizing the results obtained for the login window, one can say that the
generated state machine contains an event/condition/actions representatibn w

can not be executed despite being defined on the behavioural modetxahiple

demonstrates how comparing expected application behaviour against tleésmod

6.2. MAIN WINDOW 131

generated by GUWHURFERcan help to understand and detect dead code in applica-

tions.

6.2 Main Window

The window displayed biAMSsystem after login is presented in Figure 6.3. From
this window, users can have access to four other windows through biradient
Doctor, Billing andReport Users can also exit the applications throughBEX@T
button, and finally th&8ACK button ends the session and the system goes back to

the login window.

SELECT THE APPROPRIATE OPTION

1. For Inserting, Modifying, Retrieving Patients related Data ‘ i Patient ‘
2. For Inserting, Modifying, Retrieving Doctors related Data ‘ i Doctor ‘
3. Billing Details ‘ W Billing ‘
4. Patient and Doctor related Data ‘ [Reports ‘

'3 BACK 3% exit

Figure 6.3:HMS Main window

Figure 6.4 shows the state machine generatedHfdSs main window. As
expected, GU3URFERiInferred six events, one for each button. Five events close
the main window when executed (edges moving todlesenode). These events

are identified as the followingback, bbill, bdoc, bpatandbreport At the top

132 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

of the Figure 6.4, the first line defines action references to open othedows
(New window actionjs These ard, 3, 5, 8 and10 which open windowgatStart
docStart Billing, mainAppand Report respectively. Thus, eventshack, bbill,
bdoc, bpatand breport open windowsmainApp Billing, docStart patStart and
Report respectively. Finally, theexitevent ends the application (edge moving to

theendnode).

Application Hospital - Window start - New window actions:[(1, patStart),(3,docStart),(5,Billing),(8, mainApp),(10,Report),(12,start)]

startstate0 ‘

finitjcondinit1/[12,13,14,15,16,17,18,19,20,21,22,23,24]

Figure 6.4:HMS Main window state machine

6.3 Patient Management

In this Section, Figures 6.5 and 6.7 present two forms related to the patient man
agement. The first Figure contains the patient's main form. Through fdtorisy
users can open forms to add new patient information (clicking on bédtioirDatg,

to modify patient information (clicking on buttoviodify Datg or to view patient
information (clicking on buttorView Datg. Finally the BACK button takes the
interface back to the previous form (cf. Main window in Figure 6.3). Cligkim

each of these buttons will also close the patient’s main form.

6.3. PATIENT MANAGEMENT 133

The second Figure (6.7) provides the form that users can accessclidieng
on buttonView Datafrom the patient’s main form (see Figure 6.5). Basically, this
form enables viewing information regarding a particular patient identifiexlitiir
the patient’s number. This form is composed of several text and list bGtese
buttons are also present allowing to search of new patient information lkyngjic
on buttonSEARCH the clearing of all widget data is done by clicking on button
CLEAR and going back to the patient’s main form is done by clicking on button

BACK

Patient’s Information

1. Add Patients Information

[} addpata

2. Modify Patients Information

j Modify Data

3. View Patients Information

L View Data

=M
£ BACK

Figure 6.5:HMS Main patient form

Applying GUISURFERto the source code of these two forms (cf. Figure 6.5

and 6.7) enables the generation of two states machines. The state machimeen Fig

134 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Application Hospital - Window patStart - New window actions:[(1,PatientInfo),(3,Patientinfomodify),(5,PatientinfoView),(7,startApp),(9, patStart)]

patStartstateO

fitjeondnit119,10,11,12,13,14,15,16,17]

bback/cond4/[7,8]bmeod/cond2/[3,4] “bview/cond3/[5,6]

Figure 6.6:HMS Main patient state machine

badd/cond1/[1,2]

iew Patient Information

Personal Information Insert Patient Humber
Name : J Patient No.: | | RoomNo: |
Address : ;I Contact : | |

Date Of Admission : {dd-mm-yyy)
_'l—l Gender :

Medical Information

Date of Birth : (dd-mm-wasy)

Blood Group :

|
History : L :l Current Problem : ;l
|

Type Of Room : Attending Doctor : |

Q, SEARCH | ‘ # CLEAR || i3 BACK

Figure 6.7:HMS View patient information form

6.3. PATIENT MANAGEMENT 135

Application Hospital - Window PatientlnfoView - New window actions:[(1,patStart),(3,PatientInfoView)]

PatientInfoViewstate0
{finitlcondlnitll[3,4,5,6]'jnitfcondlnit2[[3,4,5,6]

belr/condL/[Tbsublcond2/[Iosublcond3/[]

back/cond4/[1,2]

Figure 6.8:HSM View patient information state machine

6.6 represents the first form’s behaviour. From spettStartstatelthere are four
possible pairs of event/condition. As described above, users camadify, view
patient information or go back to the previous form (i.e. togtegtAppform). This

state machine patient’s information also shows that each pair of event/condition
when executed will close the patient’s information form (each pair moves to the

closenode).

Finally, the state machine in Figure 6.8 describes the behaviour model extracted
from the form shown in Figure 6.7. As expected, the obtained results 8w
users can execute several searches from the same form stat@gstdnfoView-
stateland pairs of event/conditiobclr/condl, bsub/cond2, bsub/cond3dJsers
can also exit the form and go back to the main patient’s fgratStar) through the
bback/cond4event/condition pair. This pair is associated with action referénce

which opens the main patient’s form (see at the top of the Figuré\&®&,window

136 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

actions 1, patStar} wherepatStartspecifies the main patient form described in

Figure 6.5).

6.4 Doctors Management

More results are listed in this Section considering doctor’s information manage
ment forms. Figure 6.9 contains a form (namédgctorinfoAdd which can be

used to insert new doctor’s data in the system. The form uses the usugdtsyid

i.e. textfields, labels, list boxes, buttons, etc. As with previous formsSBHFER
automatically generates a state machine specifying its behaviour. This state ma-
chine is shown in Figure 6.10. The generated state machine specifieal sever
event/condition pairs manipulatim@pctorinfoAddform’s stateDoctorinfoAddstatel
Furthermore, there is only one pair event/condition to close the form, i.e. pair
bback/cond1/[5,6jmoving to theclosenode, where action referenéeopens the

docStartform.

6.5 Bills Management

This Section presents results obtained when working with the billing formigedv
in Figure 6.11. Using this form, users can search bills (by clicking oiS#H&RCH
button), clear all widget’s assigned values (by clicking on @d=ARbutton) or
go back to the previous form (i.estartAppform provided in Figure 6.3). Figure
6.12 presents the generated state machine. There is only one way to clfiseithe
Billing. Users must select tHebackevent, verifying thecond9condition (cf. pair
bback/cond9/[1,2)] This event enables moving to thkwsenode, thus closing the

Billing form, and opening thstartAppform through action referende

6.6. OVERALL BEHAVIOUR 137

Doctor Information
Doctor Information

Name : | Doctor ID:

Address : ;I Contact : |

Specialization : ;l Working hours : From: J to: J
| _>l_I
‘ [aoD ‘ ‘ #2 CLEAR ‘ ‘ £ BACK ‘

Figure 6.9:HSM Add doctor form

6.6 Overall Behaviour

GUIsuRFERextracts the overall behavioural model of an interactive system con-
sidering its windows. Figures 6.13, 6.14 and 6.15 provides three fragrokats
same model that constitutes the behavioural model: left, right and centergpar

a state machine where each node specifies a window. Edges betwesrdafide
tuples ofstate/ event/ condition/ actionsshowing whicheventallows opening a
new window from a particulastateof the source window. Each of these transi-
tions between nodes opens a new window and closes the initial one. Foplexa

in Figure 6.14, from the internal state of te&rtAppwindow statel users have
access to th@atStartwindow through thebpat event if condlis verified. This

information is specified by an edge with the labetrtApp statel bpat condl,

138 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

[£)/6Puca/ansafZ}igpuos/ansal T1/puoojansaflfgpucsfansaf [igpucsfansallfzpuosfansaflfgpuosjqnsaflfzpucajansaly o TPUoo/qnsal [TPUOS/jag->]

\
5._”,m.m.h_\wu_c_ucouh_c.q,_o._”.m,m.t_r_”u_c_UCOU\”_:_\.,,
\

"
%

093E3spPYOULI0320Q

[(PPVosuO3CQ" 1) (1123520p S)(3a3 ‘¥) (TBOjel 40443 €) (Bojel40.413 2) (ZBoe1gl0.44T T) :SUoI3oR MOopUIM MBN - PPYO4UII0I200 MOPUIA - [e3idsoH uoijedljddy

Figure 6.10:HSM Add doctor behavioural state machine

6.6. OVERALL BEHAVIOUR 139

Billing Information

Patient Name : [Patient No. :

Date of Admission : Date of Discharge: 13-09-2010

Room Type :

Total Amount :

[E) SEARCH | {2 CLEAR | | 4 BACK

Figure 6.11:HSM Billing form

Application Hospital - Window Billing - New window actions:[(1,startApp),(3,Billing),(7,ErrorDialog2)]

| BillingstateO |
o il = = . ———

S5 = - N
‘ init/condInit1/[3,4,5,6] "/initlcondlnit2I[3,4,5,6\]initlcondlnit3l[3,4

linit/condInit4/[7,3,4,5,6]

- ——— = =
IRWI@E@EJMZ bsub/cond3][bsub/cond4][Ibsub/cond5][Josub/cond6/[Hosub/cond7 [ibsub/cond8/[]

bback/cond9/[1,2]

Figure 6.12:HSM Billing form behaviour state machine

140 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

from thestartAppnode topatStartnode

/,,/ startApp - mainApp
\ statel bback cond}’ statel loginBtn cond},r' H

mainApp | | docStart == —
S 1]
——————— = X
/" docstart / docStart / docStart | DoctorlnfoAdd
[statel bmod cond2 statel bview cond3| statel badd condl statel bback cond11

L] s

DoctorInfoView JJ DoctorlnfoAdd E ———

T ~ —

Doctorlnfomodify

(/ ErrorDlaIcg / DoctorlnfoAdd / ErrorDlangl / DoctorlnfoAdd ‘/ ErrorDlangZ | DoctorInfoAdd DoctorlnfoAdd \\\
\statel view condl statel bsub condgstatel view condl / statel bsub condQ\statel view condl/ statel bsub cond7 \ statel bsub condl0/state

\ \ S,)
DoctorlnfoAdd DoctorlnfoAdd | DoctorlnfoAdd DoctorinfoAdd |
ErrorDialog ErrorDialogl ErrorDialog2 EDt

Figure 6.13:HSM The overall behaviour (left part)

6.7 GUI Reasonning

Section 5.2 described GUI analysis performed on Algendaapplication’s be-
havioural graph (cf. Figure 5.1), using traph-Toolfor the manipulation and
statistical analysis of graphs.

In this Section, two metrics will be applied in order to illustrate the same kind
of analysis: Pagerank and Betweenness.

Figure 6.16 provides a graph with the overall behaviour of the HMS system.
This model can be seen in more detail in the electronic version of this thesis. Ba
sically, this model aggregates the state machines of all HMS forms. The right to
corner node specifies the HMS entry point, i.e. th@inAppstate@reation state
from the login’s state machine (cf. Figure 6.2).

Pagerank is a link analysis algorithm, that assigns a numerical weighting to

6.7. GUI REASONNING 141

Windows States (depth: 6)

Billing

Billing

@el bback cond9

/
m’t 7 startApp

d1/ statel bback condd/ statel bdoc cond2
~ o

startApp
tatel bbill cond3

startApp \ patSt;t‘ == startApp
statel bpat condl \statel bback cond4 ——————_ statel breport condé
== S~z \ Sy

— e . g e

/ patStart PatientInfoView | patStart PatientInfomodify patStart Pat
‘\st:tel bview cond3 statel bback cond4ftate1 bmow‘statel bback cond17 W statel |
‘ PatientinfoView ‘ PatientInfomodify [77::
_ =

L e i F S =
et [iy 4

EDt [Patientinfomodify ErrorDialogl | Patientinfomodify \ ErrorDialog2 /Patientlnfo ErrorDialogl
/statel view condl | statel bmod cond16/ statel view condl \statel bmod condlyﬁatel view condl %:el bsub condy statel view condl%

ErrorDialogl ErrorDialog2 | ErrorDialogl
PatientInfomodify PatientInfomodify Patientinfo

Figure 6.14:HSM The overall behaviour (center part)

——

=5
e ~
Patientinfo Report PatientTableFromDatabase\ Report \\DoctorTableFromDatabase
itatel bback cond18 \statel bpat condl statel view condl {titel bdoc cond2 / statel view condl
=

S

DoctorTableFromDatabase
Report

PatientTableFromDatabase

ey
Patlentlnfo‘ ‘ Report

ErrorDialog Patientinfo Patientinfo Patientinfo \\ EDt
statel view condl statel bsub cond14 statel bsub cond17 \ atel bsub condlz/statel view condl

E PatientInfo ErrorDialog2 :
1d1\statel bsub condl13 jstatel view condl

| ErrorDialog EDt

Patientinfo

ErrorDialog2
Patientinfo

Patientinfo

Figure 6.15:HSM The overall behaviour (right part)

142 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.16:HSM The overall behaviour

6.7. GUI REASONNING 143

each node. The main objective is to measure the relative importance of the state
Larger nodes specifies window internal states with higher importance witain th

overall application behaviour.

Figure 6.17 provides the result obtained when applying the pageranitiatgo
to graph of Figure 6.16. This metric can have several applications, fongbe,
to analyse whether complexity is well distributed along the application behaviour
In this case, there are several points with higher importance. The interactio-

plexity is well distributed considering the overall application.

Betweenness is a centrality measure of a vertex or an edge within a graph.
Vertices that occur on many shortest paths between other verticesighee be-
tweenness than those that do not. Similar to vertices betweenness centigkity, e
betweenness centrality is related to shortest path between two vertices they
occur on many shortest paths between vertices have higher edge he¢seerig-
ure 6.18 provides the obtained result when applying the betweennesthag@. f
Section 5.2.4). Betweenness values are expressed numerically fareztichs and
edges. Highest betweenness edges values are represented bedgeg Some
states and edges have the highest betweenness, meaning they actascanhu
where different parts of the interface can be reached. Clearly tipeggent a cen-
tral axis in the interaction between users and the system. In a top down thider
axis traverses the following statestStartstateQpatStartstatelstartAppstateQ
startAppstateldocStartstate@nddocStartstatelStatesstartAppstate@ndstar-
tAppstatelare the main states of ttstartAppwindow’s state machine (cf. Figure
6.3 and Figure 6.4). StatgatStartstateQpatStartstate’are the main states of the

patStartwindow’s state machine (cf. Figure 6.5 and Figure 6.6). FindihStart-

144 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.17:HSMs pagerank results

6.8. CONCLUSIONS 145

stateOanddocStartstate belong todocStartwindow’s state machinedpcStartis
the main doctor window).
As another perspective, the event/condition/actions tuples present irethis ¢

tral axis are:

e bback/cond4/[7,8] This tuple specifies patStartform’s event opening the
startAppwindow from patStartstatestate. See Figures 6.5 and 6.6 provid-

ing patStartform andpatStarts state machine;

e bdoc/cond2/[3,4] This tuple defines atartAppform’s event openingloc-
Startwindow from startAppstatestate. See Figures 6.3 and 6.4 providing

startAppform andstartAppgs state machine;

e bpat/cond1/[1,2] This tuple defines atartAppform’s event openingpat-
Startwindow from startAppstatestate. See Figures 6.3 and 6.4 providing

startAppform andstartApps state machine;

e bback/cond4/[7,8] This tuple defines docStartwindow event. This is the

bbackevent which opens th&tarAppwindow fromdocStartstate state.

It is expectable that the dialogue between usersHii® system is essentially

around these events, states and windows.

6.8 Conclusions

This Chapter described the results obtained with &LRFERWhen applying it to
a larger interactive system. The choosen interactive system case stediytés!

to a healthcare management systétMS). The HMS system is implemented in

146 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

® O]

Figure 6.18:HSMs betweenness values

6.8. CONCLUSIONS 147

Java/Swingrogramming language and implement operations to allow for patients,
doctors and bills management. A description of ntdMSwindows has been pro-
vided, andGUIsurferresults have been described. The GURFERtool enabled

the extraction of different behavioural models. Methodologies have blse ap-
plied automating the activities involved in GUI model-based reasoning, suych as
pagerank and betweenness algorithms. GUI behavioural metrics hemeubed

as a way to analyse GUI quality. This case study demonstrated thad GRBER

enables the analysis of real interactive applications written by third parties.

148 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Chapter 7

Conclusions and Future Work

This thesis presented an approach to GUI reasoning using reveiseeting tech-
niques. This document concludes with a review of the work developed.rdh
sulting research contributions are presented and directions for futrkeare sug-
gested.

The first Section presents the answers to research questions defthedirst
Chapter. The second Section describes the contributions of the thesszussion
about GUBURFERIimitations is provided in Section 3. Finally, the last Section

presents some future work.
7.1 Answers to Research Questions

In the beginning of this Phd project several aspects of interactive afipls have
been identified. In order to guide our study three research questiorsbiean
raised. These are defined in the introduction of this document and willeaadw
in this Section.

The research goal for this thesis was to demonstrate that:

Interactive application’s source code can be used for automatic genarafio

149

150 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

GUI behavioural models and subsequent GUI behavioural reagpotiirough a
retargetable approach.

The three research questions raised by the research goal providedce for
the research. The findings related both directly and indirectly to answeécly
guestion have been discussed in depth along appropriate Chaptees fskted
to answering Question One about inferring realistic behavioural model<ziil
from its application’s source code are discussed in Chapter 3 (Sectiyrgs3and
3.5) and Chapter 4 (Section 4.3). Results related to Question Two, abgualgs
independent techniques for GUI modelling and reasoning are discusSéapter
3 (Section 3.4) and Chapter 4 (Section 4.4). The third research questivedted
at re-using well-known algorithms and metrics for GUI reasoning through G
behavioural models. Results related to this question are discussed alapteCh
5 (Sections 5.1 and 5.2). The following Sections summarize these discuanibns

reflect more widely on relevant issues.

e Question One Can we infer realistic behavioural models of a GUI from

its application’s source codeThis research has demonstrated that the be-
haviour of a GUI can be automatically extracted considering the software’s
windows, their widgets, properties, values and control flow. The ambro
follows a reverse engineering methodology and starts by making use of a
parser to generate an AST. Therefore, traversals of the AST mayese ex
cuted enabling extraction of the GUI layer. The execution model of the user
interface is obtained by using a classification of its events. The approach
has proven very flexible. From application’s source code the dewe oo

is able to derive both interactor based models, event flow graphs and state

7.1. ANSWERS TO RESEARCH QUESTIONS 151

machines. In the first case the models capture a user oriented view of the
interface. In other cases models capture the internal behaviour of the ap
plication. Several examples of case studies have been describednghow

realistic behavioural models automatically extracted from source code.

e Question Twa Can we define a language independent technique for GUI
modelling and reasoning®ur study demonstrated that strategic program-
ming and slicing techniques can be combined to reverse engineer user inter-
faces from the source code of its application written in different langaiage
(cf. Section 4.4). A first prototype has been developed allowing analysis
of Java/Swingsource code. Afterwards, the prototype was extended to con-
sider other programming languages, nam@W/Tand WxHaskell Hence,
the work has proven the retargetability of the proposed techniques and the

developed prototype.

e Question Three Can we use well-known algorithms and metrics to reason
about GUI behavioural modelsThis research has demonstrated that GUI
reasoning can be done making use of GUI behavioural models. Two tools
have been applied. The first one enables generation and validatiort of tes
cases from a model of the GUI usiquickChecka tool for testingHaskell
programs automaticallyGraph-Toolis another tool used for manipulation
and statistical analysis of graphs. The tool implements all sorts of algo-
rithms, statistics and metrics over graphs, such as shortest distance,-isomor
phism, and centrality measures. Usi@gaph-Tooland an analogy between

state machines and graphs, several algorithms and metrics have beém used

152 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

reason about GUI behavioural models.

7.2 Summary of Contributions

The major contribution of this work is the development of the GURFERproto-
type, an approach for improving GUI analysis through reverse engjgeer his
research has demonstrated how user interface layer can be extractedifferent
source codes, identifying a set of widgets (graphical objects) thateamodeled,
and identifying also a set of user interface actions. Finally this thesis basmed
a methodology to generate behavioural user interface models from tlaetextr
information and to reason about it.

The approach is very flexible, indeed the same techniques have bdex app
extract similar models fromdava/SwingGWTandWxHaskelliinteractive applica-
tions.

In what concerns user interface development, two perspectivesatitygran
be considered. Users, on one hand, are typically interested on whatazalled
external quality: the quality of the interaction between users and systegrairo
mers, on the other hand, are typically more focused on the quality attributies of
code being produced.

This work is an approach to bridging the gap between users and program-
mers by allowing the reasoning about GUI models from source code. Téus th
sis described GUI models extracted automatically from the code, and frdsen
methodology to reason about the user interface model. A number of metdacs ov
the graphs representing the user interface were investigated. Some ioitighth

on testing the graph against desirable properties of the interface wengualfor-

7.3. DISCUSSION 153

ward. We believe this style of approach can feel a gap between the isralgede
quality via the use of metrics or other techniques, and usability analysigmerdo
on a running system with actual users.

This thesis has shown that reasoning from models provides an easy way to
implement interactive systems analysis. Models provide a tool to explore GUI
properties. This thesis provides a variety of models and discuss their impet@a
GUI analysis. These models have been from different case studiesndé&rating

how the approach enables to reason about GUI models.

7.3 Discussion

Using GUISURFER programmers are able to reason about the interaction between
users and a given system at a higher level of abstraction than thatdef dde
generated models are amenable to analysis via model checking (c.f. [CHi®9]
this work, alternative lighter weight approaches have been explored .

Considering that the models generated by the reverse engineeringparee
representations of the interaction between users and system, this hessgalored
how metrics defined over those models can be used to obtain relevant itilorma
about the interaction. This means that the approach enable to analysalibeafu
the user interface, from the users perspective, without having tot tesexternal
metrics which would imply testing the system with real users, with all the costs
that the process carries.

It must be noted that, while the approach enables to analyse aspects of use
interface quality without resorting to human test subjects, the goal is ngblace

user testing. Ultimately, only user testing will provide factual evidence of he u

154 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ability of a user interface. The possibility of performing the type of analydiis w
help in gaining a deeper understanding of a given user interface. Themote
the identification of potential problems in the interface, and support the asopa
of different interfaces, complementing and minimizing the need to resort tty cos

user testing.

Results show the reverse engineering approach adopted is usefiaétmiire
still some limitations. One relates to the focus on event listeners for discrettseve
This means the approach is not able to deal with continuous media and ynchr
nization/timing constraints among objects. Another limitation has to due with lay-
out management issues. CAURFERcannot extract, for example, information
about overlapping windows since this must be determined at run time. Tloas, it
not be find out in a static way whether important information for the user might
be obscured by other parts of the interface. A third issue relates to ththédc
generated models reflect what was programmed as opposed to whatsigrsed.
Hence, if the source code does the wrong thing, static analysis alone islymék
help because it is unable to know what the intended outcome was. For ex@#@mple
an action is intended to insert a result into a text box, but input is sent themo
instead. However, if the design model is available, GURFERcan be used to
extract a model of the implemented system, and a comparison between the two can

be carried out.

A number of others issues still needs addressing. In the examples useglthr
out the thesis, only one windows could be active at any given time (i.e., wimdo
were modal). When non-modal windows are considered (i.e., when aiseable

to freely move between open application windows), nodes in the graph come to

7.4. FUTURE WORK 155

represents sets of open windows instead of a single active window. Hatesr
problems with the interpretation of metrics that need further consideratioa. Th
problem is exacerbated when multiple windows of a given type are allowgd (e

multiple editing windows).

7.4 Future Work

The work developed in this thesis open a new set of interesting problenrssthet

research. This Section provides some pointers for future work.

7.4.1 GUISURFEREXxtension

In the future, the implementation can be extended to handle more complex widgets.
Others programming languages/toolkits can be considered, in order to neke th
approach as generic as possible.

GUIsUuRFERMay be also extended to other kinds of interactive applications.
There are categories of user interfaces that cannot be modeled inu&B&ER for
example, system incorporating continuous media or synchronization/timing con
straints among objects. Thus, the identification of the problems thasGRHER
may present when modelling these user interfaces would be the first steqltow
a version of GUsURFERsuitable for use with other kinds of interactive applica-
tions. Finally, the tool and the approach must be validated externally. Althoug
the approach has already been applied by another researcher niti&grantal to
apply this methodology with designers and programmers. Empirical studids nee
also to be executed to compare the GUI models users would define by hand with

the automatic one produced by GRURFER

156 CHAPTER 7. CONCLUSIONS AND FUTURE WORK
7.4.2 GUI Reengineering

As another area of future work, techniques can be explored fouotgting GUI
source code in order to make it more reusable, reliable and maintainable. The
GUISURFERtool is capable of deriving GUI models of applications written in
different programming paradigms. Now, the goal is to go one step furtiterea
engineer GUI applications, extending the existing approach, exploringlrtrads-
formation and analysis, and applying the approach to large scale indagttiams.
Figure 7.1 models the proposed re-engineering process of interapplieagions
from source code. The approach is basically a process of revaeggeeering fol-
lowed by a forward engineering process in order to change a systenteHine
re-engineering process involves moving to a higher abstraction levdilimgpao
create GUI specifications, adding new functionality to this specification enel-d
oping a new implementation by using forward engineering techniques. Therhig
GUI abstraction level could be used as the basis for a transformatiariterfs
process. Then, through forward engineering, a new source codesf GUI could

be generated.

7.4.3 Patterns for GUI transformation

Patterns may be used to obtain better systems through the re-engineeribg of G
source code across paradigms and architectures. The archite¢o@ineisAlexan-

der has introduced design patterns in early 1970. He defines a patgerelation
between a context, a problem, and a solution. Each pattern describagr@mec
problem, and then describes the solution to that problem. Design patteresl gain

popularity in computer science, cf. [GHJV95]. In software engineerngdesign

7.4. FUTURE WORK 157

Rules testing

[Gui Abstraction | (GUI Abstraction

Transformation/Refactoring

wiapuadapul abenbuey

Code slicing

GUI layer |

Ny

Identity

Business layer |+| Data layer

wapuadap abenbue

Business Business

Data Data

J

Figure 7.1: Re-engineering of interactive applications from source cod

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

pattern is a general reusable solution to a commonly occurring problemtin sof
ware design. Patterns are used in different areas including softwarigeature,
requirements and analysis. The human computer interaction (HCI) commugity ha
also adopted patterns as a user interface design tool. In the HCI commuanity, p
terns are used to create solutions which help user interfaces desigmesslie
GUI development problems. Patterns have been used in two differetextsn
[SIBGO8] proposes usability supporting software architectural pat{@8APS)
that provide developers with useful guidance for producing a softaethitecture
design that supports usability (called these architectural patterns). [T[dwi€5]
uses patterns from a user interface design perspective, definirtgseslto com-
mon user interface design problems, without explicit consideration of fhwae
architecture (called these interaction patterns). Harrison makes userattita
styles to describe design and architectural patterns to characterizepestps of
user interfaces [GHO4]. In any case these patterns have typicallyuseehin a

forward engineering context.

The use of re-engineering approaches has been explored bylsau#rors
in order to derive new interactive systems. The re-engineering agpioeludes

three phases: reverse engineering, transformation and forwairteerigg.

Application of patterns-based re-engineering techniques could betaised
plement the interactive systems adaptation process. One of the most important
features of patterns, which justifies its use here, is that they are platfutrima
plementation independent solutions. Pattern-based approach maytauggran-
terface plasticity [CC08] and generally help the maintenance and migratiodlof G

code.

7.4. FUTURE WORK 159

The main goal could be to develop patterns-based techniques and tools to
demonstrate that source code may be automatically transformed, in a ppbess
structuring interactive systems, to make it more reusable, reliable and mali¢aina
[Sut95]. The use of patterns may be an interesting technique for reesriig be-

cause the same pattern can be implemented in several platforms.

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[ABD*89] G. Abowd, J. Bowen, A. Dix, M. Harrison, and R. Took. User in-
terface languages: a survey of existing methods. Technical report,

Programming Research Group, Oxford University, 1989.

[ACRPMO7] J@o C. P. Faria Ana C. R. Paiva and Pedro M. C. Mendes. Reverse
engineered formal models for GUI testirtR2th International Work-
shop on Formal Methods for Industrial Critical Systems (FMICS
2007) July 2007.

[ASDO04] O. Al-Shara and A. Dix. Graphical user interface developnesn
hancer (guide). 2004.

[AVO5] Tiago Alves and Joost Visser. Metrication of sdf grammars. Tech
nical Report DI-PURe-05.05.01, Departamento de Infatica, Uni-

versidade do Minho, 2005.

[BA95] Peter Bumbulis and P.S C. Alencar. A framework for prototyping

and mechaniacally verifying a class of user interfa¢dE&E, 1995.

[BC96] R.J. Butterworth and D.J. Cooke. Using temporal logic in the spec-

ification of reactive and interactive systems. Rroceedings of the

161

162

[Bel01]

[Ber01]

[Ber05]

[BUm96]

[BY93]

[Cam99]

[CamO04]

BIBLIOGRAPHY

BCS-FACS WorkShop on Formal Aspects of the Human Computer

Interface Sheffield Hallam University, September 1996.

Fevzi Belli. Finite state testing and analysis of graphical user in-
terfaces. InProceedings.of the 12th International Symposium on
Software Reliability Engineering, ISSRE 20@hges 34-42. IEEE,

November 2001.

B. Berard. Systems and Software VerificatiorSpringer edition,

2001.

Pavel Berkhin. A survey on pagerank computimgternet Mathe-

matics 2:73-120, 2005.

Peter BumbulisCombining Formal Techniques and Prototyping in
User Interface Construction and VerificatioRhD thesis, University

of Waterloo, 1996.

Ann E. Blandford and Richard M. Young. Developing runnalmer
models: Separating the problem solving techniques from the domain
knowledge. In J. Alty, D. Diaper, and S. Guest, editésople and
Computers VIII — Proceedings of HCI'9pages 111-122, Cam-

bridge, 1993. Cambridge University Press.

J. C. CamposAutomated Deduction and Usability ReasonifinD

thesis, Department of Computer Science, University of York, 1999.

Joé C. Campos. The modelling gap between software engineering

and human-computer interaction. In Rick Kazman, Len Bass, and

BIBLIOGRAPHY 163

[CCo8]

[CCT+03]

[CHOO]

[CHO1]

[CHO9]

[Chi93]

Bonnie John, editordCSE 2004 Workshop: Bridging the Gaps Il
pages 54-61. The IEE, 2004.

Jéélle Coutaz and Gale Calvary. HCI and software engineering:
Designing for user interface plasticity. Trhe Human Computer In-

teraction Handbookchapter 56, pages 1107-1125. 2008.

G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and
J. Vanderdonckt. A unifying reference framework for multi-target

user interfaceslnteracting with Computersl5:289-308, 2003.

Koen Claessen and John Hughes. Quickcheck: A lightweiglht too
for random testing of haskell programs. IBFP, ACM SIGPLAN,

2000 2000.

Jo& C. Campos and Michael D. Harrison. Model checking interactor
specifications. Automated Software Engineering(3-4):275-310,

August 2001.

J. C. Campos and M. D. Harrison. Interaction engineering ubiag
IVY tool. In ACM Sympaosium on Engineering Interactive Comput-
ing Systems (EICS 2009)ages 35-44, New York, NY, USA, 2009.
ACM.

Elliot J. Chikofsky. Business reengineering and software mainte

nance. INCSM page 100, 1993.

164

[Cle9s]

[CMPO4]

[CS01]

[DBDMO98]

[dDR96]

[DFABO3]

BIBLIOGRAPHY

T. Clement. The formal development of a windows interfac®rtn
ceeding of the 3rd BCS-FACS Northern Formal Methods Workshop

1998.

A. Campi, E. Martinez, and P.S. Pietro. Experiences with a formal
method for design and automatic checking of user interfaces. In
Proceedings of the Position paper in IUI/CADUI’2004 Workshop on

Making Model-Based Ul Design Practical: usable and open meth-

ods and toolsJanuary 2004.

J. Chen and S. Subramaniam. A GUI environment for testing gui-
based applications in JavRroceedings of the 34th Hawaii Interna-

tional Conferences on System Sciengasuary 2001.

D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetideilng.
Human-Computer Interactiqri3(4):337-393, 1998.

Bruno d’Ausbourg, Guy Durrieu, and Pierre Réclberiving a for-

mal model of an interactive system from its UIL description in or-
der to verify and to test its behaviour. In F. Bodart and J. Vander-
donckt, editorsPesign, Specification and Verification of Interactive
Systems '96Springer Computer Science, pages 105-122. Springer-

Verlag/Wien, June 1996.

Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Russetial.
Human-Computer Interaction (3rd Editionprentice-Hall, Inc., Up-

per Saddle River, NJ, USA, 2003.

BIBLIOGRAPHY 165

[DH93] David J. Duke and Michael D. Harrison. Abstract interactiojeots.
Computer Graphics Foruni2(3):25-36, 1993.

[DJO5] Gabriel Dos Reis and Jaakkardi. What is generic programming?
In Proceedings of the First International Workshop of Library-
Centric Software Design (LCSD '05). An OOPSLA '05 workshop

October 2005.

[Doh98] Gavin John DohertyA Pragmatic Approach to the Formal Specifi-
cation of Interactive System®&hD thesis, Department of Computer

Science, University of York, 1998.

[dS02] Paulo Pinheiro da SilvaObject Modelling of Interactive Systems:
The UMLi Approach PhD thesis, Department of Computer Science,

University of Manchester, United Kingdom, 2002.

[dSGD98] Bruno d’Ausbourg, Christel Seguin, and Pierre Rochi Burrieu.
Helping the automated validation process of user interfaces systems.

IEEE, 1998.

[EGKT01] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North,
and Gordon Woodhull. Graphviz - an open source graph draw-
ing tools. InLecture Notes in Computer Sciengeages 483—-484.

Springer-Verlag, 2001.

[ESS03] P. Iglinski E. Stroulia, M. El-ramly and P. Sorenson. User fiater
reverse engineering in support of interface migration to the vab.

tomated Software Engineering003.

166

[FMD97]

[GHO4]

[GHJIV95]

[Harso]

[HF94]

[HR92]

BIBLIOGRAPHY

Bob Fields, Nick Merriam, and Andy Dearden. DMVIS: Design,
modelling and validation of interactive systems. In M. D. Harrison
and J. C. Torres, editor®esign, Specification and Verification of

Interactive Systems '9Bpringer Computer Science, pages 29-44.

Springer-Verlag/Wien, June 1997.

Stephen W. Gilroy and Michael D. Harrison. Using interaction style
to match the ubiquitous user interface to the device-to-hand. In

EHCI/DS-VIS pages 325-345, 2004.

Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vigsside
Design Patterns: Elements of Reusable Object-Oriented Software

Addison-Wesley, Reading, MA, 1995.

D. Harel. Statecharts: a visual formalism for complex systems. In
Science of Computer Programming, vol. 8(Edpages 231 — 274,
1980.

Dan Heller and Paula M. Fergusomotif Programming Manual
volume 6A of X Window System Seri®’Reilly & Associates, Inc.,

second edition, 1994.

Susan Horwitz and Thomas Reps. The use of program depeade
graphs in software engineering. Rroceedings of the 14th inter-
national conference on Software engineeril@SE '92, pages 392—

411, New York, NY, USA, 1992. ACM.

BIBLIOGRAPHY 167

[HT90] M. Harrison and H. Thimbleby, editorsormal Methods in Human-
Computer Interaction Cambridge Series on Human-Computer In-

teraction. Cambridge University Press, 1990.

[HTO7] Robert Hanson and Adam TacysWT in Action: Easy Ajax with
the Google Web ToolkiManning Publications Co., Greenwich, CT,
USA, 2007.

[IHO1] Melody Y. Ivory and Marti A. Hearst. The state of the art in au-
tomating usability evaluation of user interfacA&&€M COMPUTING
SURVEYS33:470-516, 2001.

[1SO99] ISO/IEC. Software products evaluation, 1999. DIS 14598-1

[Jac83] Robert J. K. Jacob. Using formal specifications in the design
of a human-computer interface.Communications of the ACM

26(4):259-264, 1983.

[JBS78] Harold W. Lawson Jr., Miquel Bertran, and Javier Sanagustire
formal definition of human/machine communicatioS®ftw., Pract.

Exper, 8(1):51-58, 1978.

[JHAT99] S. P. Jones, J. Hughes, L. Augustsson, et al. Report on the pro
gramming language haskell 98. Technical report, Yale University,

February 1999.

[JNeC03] Joaquim A. Jorge, Nuno Jardim Nunes, aritbJeal@o e Cunha,

editors. Interactive Systems. Design, Specification, and Verification,

168

[LEW02]

[LHO5]

[LHRMO7]

[LPWR90]

[Luc01]

[LVO3]

BIBLIOGRAPHY

10th International Workshop, DSV-IS 2003, Funchal, Madeira Is-
land, Portugal, June 11-13, 2003, Revised Papeadume 2844 of

Lecture Notes in Computer Scien&pringer, 2003.

Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian

Cole. Java Swing, 2nd EditianO Reilly, 2002.

K. Loer and M.D. Harrison. Analysing user confusion in comtex
aware mobile applications. In M.F. Constabile and F. Pateedi-
tors,PINTERACT 2005volume 3585 ot ecture Notes in Computer
Sciencepages 184-197, New York, NY, USA, 2005. Springer.

Ping Li, Toan Huynh, Marek Reformat, and James Miller. A
practical approach to testing GUI systentSmpirical Softw. Eng.
12(4):331-357, 2007.

Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rie-
man. Testing a walkthrough methodology for theory-based design
of walk-up-and-use interfaces. @HI '90 Proceedingspages 235—

242, New York, April 1990. ACM Press.

Andrea De Lucia. Program slicing: Methods and applicatitEEE
workshop on Source Code Analysis and Manipulation (SCAM 2001)
2001.

R. Lammel and J. Visser. ATRAFUNSKI application letter. Tech-
nical report, CWI, Vrije Universiteit, Software Improvement Group,

Kruislaan, Amsterdam, 2003.

BIBLIOGRAPHY 169

[LVM *+04]

[Mac10]

[MBNO3]

[McM93]

[Mel96]

[MemO01]

Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent
Bouillon, Murielle Florins, and Daniela Trevisan. Usixml: A user
interface description language for context-sensitive user interfaces.
In Workshop Developing User Interfaces with XML: Advances on
User Interface Description Languages, Advanced Visual Interfaces

2004, Gallipolli, Italy, 2004.

Helder Nuno Ribeiro Macedo. A strategic-based weaverdpeet-
matlab design and implementation, 2010. Departamento de In-

formatica, Universidade do Minho.

Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI rigpin
Reverse engineering of graphical user interfaces for testing. iFechn
cal report, Department of Computer Science and Fraunhofer Center
for Experimental Software Engineering, Department of Computer

Science University of Maryland,USA, 2003.

Kenneth L. McMillan.Symbolic Model Checkinglluwer Academic
Publishers, 1993.

Moore Melody. A survey of representations for recoverisgmin-
terface specifications for reengineering. Technical report, Institute

of Technology, Atlanta GA 30332-0280, june 1996.

A. M. Memon. A Comprehensive Framework for Testing Graphi-
cal User Interfaces PhD thesis, Department of Computer Science,

University of PittsBurgh, july 2001.

170

[MGG*95]

[MJS00]

[Mo096]

[MSPO1]

[MTO6]

[MTWHO4]

BIBLIOGRAPHY

E. Merlo, P. Gagne, J. F. Girard, K. Kontogiannis, L.J. Hendren,
P. Panangaden, and R. Mori. Reengineering user interfdE&E

Software, 12(1), 64-73.995.

Hausi A. Miller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne
Storey, Scott R. Tilley, and Kenny Wong. Reverse engineering: a
roadmap. INCSE '00: Proceedings of the Conference on The Future
of Software Engineeringpages 47—60, New York, NY, USA, 2000.
ACM.

M. M. Moore. Rule-based detection for reverse engineeusey
interfacesProceedings of the Third Working Conference on Reverse

Engineering, pages 42-8, Monterey, G¥vember 1996.

Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Cowgga
criteria for GUI testing. IlESEC/FSE-9: Proceedings of the 8th Eu-
ropean software engineering conference held jointly with 9th ACM
SIGSOFT international symposium on Foundations of software en-

gineering pages 256-267, New York, NY, USA, 2001. ACM Press.

Pedro J. Molina and Hallvard Traetteberg. An approach toirefin
specifications towards implementation. Qomputer-Aided Design

of User Interfaces IVpages 211-222. Springer Netherlands, 2006.

Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mais.P
Heimdahl. Proving the shalls early validation of requirements

through formal methods. 2004.

BIBLIOGRAPHY 171

[Mye91]

[Nie93]

[NM90]

[Palo4]

[Pat95]

[Pat00]

[PCO5]

[PFMO7]

Brad A. Myers. Separating application code from toolkits: Eliminat-

ing the spaghetti of call-backs. 1991.

J. NielsenUsability Engineering Academic Press, San Diego, CA,

1993.

Jakob Nielsen and Rolf Molich. Heuristic evaluation of user inter-
faces. InCHI 90 Proceedingspages 249-256, New York, April
1990. ACM Press.

P. Palanque. Petri net design of user-driven interfadeg irderac-
tive cooperative objects formalism. Froceeding of the Design,
Specification and Verification of Interactive Systems - DSV-|S'94

1994.

Fabio D. Patetn A Method for Formal Specification and Verifica-
tion of Interactive SystemsPhD thesis, Department of Computer
Science, University of York, 1995. Available as Technical Report

YCST 96/03.

Fabio Patetn Model-Based Design and Evaluation of Interactive

Applications Springer-Verlag, London, 2000.

W. L. Pearn and W. C. Chiu. Approximate solutions for the
maximum benefit chinese postman probledmtern. J. Syst. Sci.

36(13):815-822, 2005.

Ana C. R. Paiva, &» C. P. Faria, and Pedro M. C. Mendes, editors.

Reverse Engineered Formal Models for GUI Testing, 10th Interna-

172

[PP98]

[Pre9s]

[RFMO1]

[SAOB02]

[SC494]

[SCS]

BIBLIOGRAPHY

tional Workshop on Formal Methods for Industrial Critical Systems

2007. Berlin, Germany.

Philipe Palanque and Fabio Patereditors. Formal Methods in
Human-Computer Interaction Formal Approaches to Computing

and Information Technology series. Springer-Verlag, London, 1998

Cambridge University Press, editdr. Fitzgerald and P.G. Larsen
Modelling Systems: Practical Tools and Techniques in Software De-

velpment, 1998.

Mark Ryan, Jos Fiadeiro, and Tom Maibaum. Sharing actions and
attributes in modal action logic. In T. Ito and A. R. Meyer, editors,
Theoretical Aspects of Computer Softwarelume 526 ofLecture

Notes in Computer Sciengeages 569-593. Springer-Verlag, 1991.

loannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and
Georgios L. Bleris. Code quality analysis in open source software

developmentinformation Systems Journd?2:43—-60, 2002.

ISO/TC159 Sub-Commitee SC4. Draft International 1ISO DIS
9241-11 Standard. International Organization for Standardization,

September 1994.

J@o Carlos Silva, JésCreissac Campos, andadoSaraiva. The
GUISurfer tool: towards a language independent approach to eevers
engineering gui coddn Proceedings of the 2nd ACM SIGCHI sym-

posium on Engineering interactive computing systems, Berlin

BIBLIOGRAPHY 173

[SCS06a] Jao Carlos Silva, JésCreissac Campos, anda@oSaraiva. Com-
bining formal methods and functional strategies regarding the re-
verse engineering of interactive applicationslirteractive Systems,
Design, Specifications and Verification, Lecture Notes in Computer
Science. DSV-IS 2006, the XIII International Workshop on Design,
Specification and Verification of Interactive System, Dublin, IrJand

pages 137-150. Springer Berlin / Heidelberg, July 2006.

[SCS06b] Jao Carlos Silva, J@Creissac Campos, andadoSaraiva. Engen-
haria reversa de sistemas interactivos desenvolvidos em Java/Swing.
Interac@o 2006, Segunda Confarcia Nacional em Interaép

Pessoa-Mquina, Universidade do Minh@ctober 2006.

[SCS06¢c] Jao Carlos Silva, J@sCreissac Campos, andadoSaraiva. Mod-
els for the reverse engineering of Java/Swing applicatichBEM
2006, 3rd International Workshop on Metamodels, Schemas, Gram-
mars and Ontologies for Reverse Engineering, Genova,, l@dyo-

ber 2006.

[SCS09] Jao Carlos Silva, J@sCreissac Campos, anda@oSaraiva. A
generic library for GUI reasoning and testin@4th Annual ACM

Symposium on Applied Computing, USAarch 2009.

[SCS10a] Jao Carlos Silva, Jé@sCreissac Campos, andadoSaraiva. GUI
behavior from source code analyslateracgo 2010, Quarta Con-
ferencia Nacional em Interaé@ Humano-Computador, Universi-

dade de AveirpOctober 2010.

174

[SCS10b]

[Sea09]

[Shn82a]

[Shn82b]

[Sil10]

[SIBGOS]

[Ski9O]

[SL89]

BIBLIOGRAPHY

Jao Carlos Silva, J@sCreissac Campos, anda#oSaraiva. GUI
inspection from source code analys@@penCert-2010, 4th Interna-
tional Workshop on Foundations and Techniques for Open Source

Software Certification, Pisa, ItaJyseptember 2010.

Shu Yan Shan and et al. Fast centrality approximation in modular

networks, 2009.

Ben Shneiderman. Multi-party grammat&EE Transactions on

Systems, Man, and Cybernetit982.

Ben Shneiderman. Multi-party grammars and related features fo
defining interactive systemdEEE Systems, Man, and Cybernetics

SMC-12 pages 148-154, 1982.

Carlos Eduardo Silva. Reverse engineering of rich internetiepp

tions, 2010. Master thesis, Universidade do Minho.

Pia Stoll, Bonnie E. John, Len Bass, and Elspeth Goldenaifngp
usability supporting architectural patterns for industrial use, 2008.
Computer science, Datavetenskap, Malardalen University, School of

Innovation, Design and Engineering.

S. Skiena. Implementing discrete mathematics: Combinatorics and

graph theory with Mathematic&ddison-Weslgy1990.

Deepinder P. Sidhu and Ting-kau Leung. Formal methods taopr
col testing: A detailed studylEEE Trans. Softw. Eng15(4):413—

426, 1989.

BIBLIOGRAPHY 175

[SRF+10]

[SS97]

[Sut95]

[Sys01]

[Tau90]

[TGO8]

[TH90]

J. L. Silva, O. R. Ribeiro, J. M. Fernandes, J. C. Campos, and:M. D
Harrison. The apex framework: prototyping of ubiquitous environ-
ments based on petri nets. In J. Gulliksen R. Bernhaupt, P. Forbrig
and M.K. Larusabttir, editors,Human-Centred Software Engineer-
ing, volume 6409 of_ecture Notes in Computer Scienpages 6—-21.

Springer, 2010.

R.K. Shehady and D.P. Siewiorek. A method to automate user inter-
face testing using variable finite state machine®roceeding of the

27th International Symposium on Fault-Tolerant Computit@Q7.

A. G. Sutcliffe. Human-Computer Interface Desigh995. MacMil-

lan, 2nd edition.

T. Systa. Dynamic reverse engineering of Java softwaiehnical

report, University of Tampere, Finland, 2001.

M. J. Tauber. Etag : Extended task action grammar, a langoage f
the description of the user’s task languag8ed IFIP TC 13 Confer-

ence On Human-Computer Interaction Interat®90.

Harold Thimbleby and Jeremy Gow. Applying graph theory to inter-
action design. pages 501-519, 2008.

Harold. Thimbleby and M. D. Harrisorzormal methods in human-
computer interaction / edited by Michael Harrison and Harold Thim-

bleby. Cambridge University Press, Cambridge ; New York :, 1990.

176

[Thi03]

[Tho76]

[TidO5]

[Tip95]

[Ura92]

[VCG*08]

[Vis03a]

[VisO3b]

BIBLIOGRAPHY

Harold Thimbleby. The directed chinese postman problenour-

nal of Software - Practice and Experien@903.

J. McCabe Thomas. A complexity measuidatern. J. Syst. Sqi.

2(4):308, 1976.

Jenifer Tidwell. Designing Interfaces: Patterns for Effective Inter-

action Design 2005. O’Reilly Media, Inc.

Frank Tip. A survey of program slicing techniqueurnal of Pro-

gramming Languageseptember 1995.

H. Ural. Formal methods for test sequence generatio@omputer

Comm, pages 311-325, 1992.

Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram
Schulte, Nikolai Tillmann, and Lev Nachmanson. Formal methods
and testing. chapter Model-based testing of object-oriented reactive
systems with spec explorer, pages 39-76. Springer-Verlag, Berlin,

Heidelberg, 2008.

Eelco Visser. Program transformation with Stratego/XT: Rules,
strategies, tools, and systems in StrategoXT-0.9. In Lengauer et al.,
editors, Domain-Specific Program Generatiobecture Notes in
Computer Science. Spinger-Verlag, November 2003. (Draft; Ac-

cepted for publication).

Joost VisserGeneric Traversal over Typed Source Code Represen-

tations PhD thesis, University of Amsterdam, February 2003.

BIBLIOGRAPHY 177

[VS04]

[Was85]

[YGS89]

[YY07]

Joost Visser and 30 Saraiva. Tutorial on strategic programming
across programming paradigms 8t Brazilian Symposium on Pro-

gramming Language®iteroi, Brazil, May 2004.

Anthony I. Wasserman. Extending state transition diagrams for the
specification of human-computer interactiohEEE Trans. Softw.

Eng, 11(8):699-713, 1985.

Richard M. Young, T. R. G. Green, and Tony Simon. Prograbiena
user models for predictive evaluation of interface designs. In K. Bice
and C. Lewis, editorsCHI'89 Proceedings pages 15-19. ACM

Press, NY, May 1989.

Young Sik Yoon and Wan Chul Yoon. Development of quantita-
tive metrics to support Ul designer decision-making in the design
process. I'Human-Computer Interaction. Interaction Design and

Usability, pages 316—324. Springer Berlin / Heidelberg, 2007.

178 BIBLIOGRAPHY

Appendix A

GUISURFERGUI Meta-Model
Specification

This Appendix shows the complegeimodelabstract data type.

GuiTypes
Data.Map
EventRef = String
CondRef = String
WindowName = String
ExzpRef = Int
GuiModel = Map (EventRef,CondRef) [EzpRef]
Pres = Map EzpRef (EventRef,Bool)
End = [EzpRef]
Close = [ExpRef]
Window = WindowName
NewWindow = Map ExzpRef WindowName
State = Map EventRef Bool
StateRef = String
N = N ([CondRef], [EventRef])
(Eq, Show)
Type = String
AstList = [[String]l]
InitPos = Int
EndPos = Int
SourcePosList = [(InitPos,EndPos)]
Ezp = (Type,AstList,InitPos,EndPos,SourcePosList)
Ezps = Map ExzpRef Ezxp
Events = Map EventRef Exp
Conds = Map CondRef [Ezp]

179

180 APPENDIX A. GUISURFERGUI META-MODEL SPECIFICATION

Appendix B

Agendas GUISURFERSCcript
Analysis

This appendix presents the script used to reverse engineer and thag@enda

application.

B.1 Meta-model, Interactor and State Machine Extrac-
tion

ghc --nmake FileParser.hs -o FileParser -fglasgow exts
ghc --nmake Ast Anal yser.hs -o Ast Anal yser -fgl asgow exts
ghc --make Graph. hs -o Graph -fgl asgow exts

Fi | ePar ser Login.java

Ast Anal yser "Login.java.ast" "nmmin" "JButton, setEnabled, exit,
showessageDi al og, di spose, ContactEditor, Find, Login, MinFornt
Graph eventsFrom nitState.gui initState.gui 0 "ContactEditor,
Find, Login, MinForm w ndowNane.gui "Login" "CientDBjava" 1
dot -Tpng graph.dot -o graphd i ent DBj avaLogi n. png

Fi | eParser ContactEditor.java

Ast Anal yser "ContactEditor.java.ast" "nmain" "JButton,

set Enabl ed, exit, showMessageDi al og, di spose, ContactEditor,

Fi nd, Login, MainFornt

Graph eventsFrom nitState.gui initState.gui 0 "ContactEditor,
Find, Login, MinFornm w ndowNane.gui "Login" "CientDBjava" 1
dot -Tpng graph.dot -o graphd i ent DBj avaCont act Edi t or. png

181

182 APPENDIX B. AGENDAS GUISURFERSCRIPT ANALYSIS

Fi | eParser Mai nForm j ava

Ast Anal yser "Mai nFormjava.ast" "main" "JButton, setEnabled,
exit, showvessageDi al og, dispose, ContactEditor, Find, Login,
Mai nFor ni'

Graph eventsFrom nitState.gui initState.gui 0 "ContactEditor,
Fi nd, Logi n, Mai nForm’ wi ndowNane. gui "Login" "dientDBjava" 1
dot -Tpng graph.dot -o graphd i ent DBj avaMai nFor m png

Fi | eParser Find.java

Ast Anal yser "Find.java.ast” "main" "JButton, setEnabl ed,
exit, showMvessageDi al og, di spose, ContactEditor, Find,

Logi n, Mai nForn{

Graph eventsFrom nitState.gui initState.gui 0 "ContactEditor,
Fi nd, Logi n, Mai nFor mi' wi ndowNane. gui "Login" "CientDBjava" 1
dot -Tpng graph.dot -o graphd ientDBj avaFi nd. png

Appendix C

Agenda Windows Behaviour
Specification

The following specifications are generated automatically by SJ&IFER from
script in appendix B. These are written askell programming language and

define the behaviour of eadtgendaapplication’s window.

C.1 LoginWindow

-- Generated automatically by GuiSurfer

GuiModel
Data.Map

EventRef = String

CondRef = String

WindowName = String

EzpRef = Int

GuiModel = Map (EventRef,CondRef) [EzpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [EzpRef]

Close = [ExpRef]

NewWindow = Map ExzpRef WindowName

guimodel :: GuilModel

guimodel = fromList
[(("Cancel","cond1"), [11),
(("0k","cond2"), [2,3]),
(("0k","cond3"), [4]),

183

184 APPENDIX C. AGENDAS WINDOWS BEHAVIOUR SPECIFICATION

(("init","condInit1"),[5,6,7,8,9])]

pres :: Pres

pres = fromList
[(8,("Cancel", True)),
(9, ("0k", True))]

end :: End
end = [1]
newWindow :: NewWindow

newWindow = fromList
[(2,"MainForm"),

(5,"Login")]
close :: Close
close = [3]

C.2 MainFormWindow

-- Generated automatically by GuiSurfer

GuiModel
Data.Map

EventRef = String

CondRef = String

WindowName = String

EzpRef = Int

GuiModel = Map (EventRef,CondRef) [EzpRef]

Pres = Map EzpRef (EventRef,Bool)

End = [EzpRef]

Close = [EzpRef]

NewWindow = Map ExzpRef WindowName

guimodel :: GuiModel
guimodel = fromList
[(("Exit","cond1"),[11),
(("Edit","cond2"), [2]),
(("Edit","cond3"), [3]),
(("Find","cond4"), [4]),
(("Find","cond5"), [5]),
(("init","condInit1"),[6,7,8,9,10,11,12,13,14,15])]

C.3. FIND WINDOW

pres :: Pres

pres = fromList
[(10, ("Exit", True)),
(11, ("Edit", True)),
(12, ("Find", True))]

end :: End
end = [1]
newWindow :: NewWindow

newWindow = fromList

[(2,"ContactEditor"),

(4,"Find"),
(6,"MainForm")]

close :: Close
close = []

C.3 Find Window

-- Generated automatically by GuiSurfer

GuiModel

Data.Map
EventRef = String
CondRef = String
WindowName = String
EzpRef = Int

GuiModel = Map (EventRef,CondRef) [EzpRef]
Pres = Map EzpRef (EventRef,Bool)

End = [EzpRef]
Close = [EzpRef]

NewWindow = Map ExzpRef WindowName

guimodel :: GuiModel
guimodel = fromList

[(("Search","condl1"),[1),
(("Cancel","cond2"), [1]),
(("Show","cond3"), [1),
(("init","condInit1"),[2,3,4,5,6,7,8])]

pres :: Pres
pres = fromList

185

186 APPENDIX C. AGENDAS WINDOWS BEHAVIOUR SPECIFICATION

[(6,("Search", True)),
(7,("Cancel", True)) ,
(8, ("Show", True))]

end :: End
end = []
newWindow :: NewWindow

newWindow = fromList
[(2,"Find")]

close :: Close
close = [1]

C.4 ContactEditorWindow

-- Generated automatically by GuiSurfer

GuiModel
Data.Map

EventRef = String

CondRef = String

WindowName = String

ExzpRef = Int

GuiModel = Map (EventRef,CondRef) [EzpRef]

Pres = Map EzpRef (EventRef,Bool)

End = [EzpRef]

Close = [ExpRef]

NewWindow = Map ExpRef WindowName

guimodel :: GuiModel

guimodel = fromList
[(("Add","cond1"),[1,2]),
(("Edit","cond2"),[1),
(("Remove","cond3"), [3,4]),
(("Remove","cond4"),[5,6]),
(("Cancel","cond5"), [71),
(("0k","cond6"), [8]1),
(("init","condInit1"),[9,10,11,12,13,14,15,16,17]),
(("init","condInit2"),[18,19,11,12,13,14,15,16,17]1)]

pres :: Pres
pres = fromList

C.4. CONTACTEDITORNVINDOW

[(1,("Edit", True)),
(2, ("Remove", True)) ,
(5, ("Edit", True)),

(6, ("Remove", True)),
(9, ("Edit", True)),
(10, ("Remove", True)) ,
(17, ("Add", True)),
(3,("Edit",False)),
(4, ("Remove",False)),
(18, ("Edit",False)),
(19, ("Remove" ,False))]

end :: End
end =
newWindow :: NewWindow

newWindow = fromList

close ::
close =

[(11,"ContactEditor")]

Close
[7,8]

187

188 APPENDIX C. AGENDAS WINDOWS BEHAVIOUR SPECIFICATION

Appendix D

Agendas Windows States
Extraction

From script described in appendix B, the GQURFERtool generates automati-
cally all windows states. This appendix presents for e&gbnda window the

generated states.

D.1 Login Window

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavalLogin
Data.Map
GuiTypes

statesLogin :: (Map (StateRef,EventRef,CondRef, [EzpRef])
StateRef, Map StateRef State)

statesLogin = (fromList [
(("state0","init","condInit1",[5,6,7,8,9]),"statel"),
(("statel","Cancel","cond1",[1]),"state0"),
(("statel","0Ok","cond2",[2,3]),"state0"),
(("statel","0k","cond3", [4]),"statel")],

fromList [("stateO",fromList []),

("statel",fromList [("Cancel", True), ("0k", True)])])

189

190 APPENDIX D. AGENDAS WINDOWS STATES EXTRACTION

D.2 MainFormWindow

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavaMainForm
Data.Map
GuiTypes

statesMainForm :: (Map (StateRef,EventRef,CondRef, [ExpRef])
StateRef, Map StateRef State)

statesMainForm = (fromList [
(("state0","init","condInit1",[6,7,8,9,10,11,12,13,14,15]),"statel"),
(("statel","Edit","cond2",[2]),"statel"),
(("statel","Edit","cond3",[3]),"statel"),
(("statel","Exit","cond1",[1]),"state0"),
(("statel","Find","cond4", [4]),"statel"),
(("statel","Find","cond5", [5]),"statel")],

fromList [("stateO",fromList []),

("statel",fromList [("Edit", True), ("Exit", True), ("Find", True)])])

D.3 Find Window

-- Generated automatically by GuiSurfer
GuiModelStatesFind
Data.Map
GuiTypes

statesFind :: (Map (StateRef,EventRef,CondRef, [ExpRef])
StateRef, Map StateRef State)

statesFind = (fromList [
(("stateO","init","condIniti",[2,3,4,5,6,7,8]),"statel"),
(("statel","Cancel","cond2",[1]),"stateO"),
(("statel","Search","condl",[]),"statel"),
(("statel","Show","cond3",[]),"statel")],

fromList [

("state0",fromList []),

("statel",fromList [("Cancel", True), ("Search", True),
("Show", True)1)1)

D.4 ContactEditorwWindow

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavaContactEditor
Data.Map

D.4. CONTACTEDITORVINDOW 191

GuiTypes

statesContactEditor ::

(Map (StateRef,EventRef,CondRef, [ExpRef]) StateRef,
Map StateRef State)

statesContactEditor = (fromList [
(("state0","init","condInitl",
[9,10,11,12,13,14,15,16,17]) ,"state2"),
(("state0","init","condInit2",
[18,19,11,12,13,14,15,16,17]) ,"statel"),
(("statel","Add","cond1",[1,2]),"state2"),
(("statel","Cancel","cond5",[7]),"state0"),
(("statel","0Ok","cond6", [8]),"state0"),
(("state2","Add","cond1",[1,2]),"state2"),
(("state2","Cancel","cond5", [7]),"state0"),
(("state2","Edit","cond2",[]),"state2"),
(("state2","0k","cond6", [8]),"state0"),
(("state2","Remove","cond3", [3,4]),"statel"),
(("state2","Remove","cond4", [5,6]),"state2")],
fromList [("stateO",fromList []),
("statel",fromList [("Add", True), ("Cancel", True), ("Edit",False),
("0k", True) , ("Remove", False)]),

("state2",fromList [("Add", True), ("Cancel", True), ("Edit", True),
("0k", True) , ("Remove", True)])])

192 APPENDIX D. AGENDAS WINDOWS STATES EXTRACTION

Appendix E

Agendas Windows Events
Sequences Extraction

From script described in appendix B, the GJURFERtool generates automatically
test cases. This Section presents for eaghnda window the obtained results

(considering only sequences with one or two events).

E.1 LoginWindow

-- Generated automatically by GuiSurfer
GuiModelWaysLogin
GuiTypes

waysLogin :: [N]

waysLogin = [N (["condInit1"],["init"]),

N (["condInitil","cond1"],["init","Cancel"]),

N (["condInitl","cond2"], ["init","0k"]),

N (["condInitl","cond3"],["init","0k"]),

N (["condInitl","cond3","condl"], ["init","0Ok","Cancel"]),
N (["condInitl","cond3","cond2"], ["init","0k","0k"]),

N (["condInitl","cond3","cond3"], ["init","0k","0k"])]

E.2 MainFormWindow

-- Generated automatically by GuiSurfer
GuiModelWaysMainForm

193

194APPENDIX E. AGENDAS WINDOWS EVENTS SEQUENCES EXTRACTION

GuiTypes

waysMainForm :: [N]

waysMainForm = [N (["condIniti"],["init"]),

N (["condInitl","cond2"],["init","Edit"]),
(["condInitil","cond3"], ["init","Edit"]),
(["condInitl","cond2","cond2"], ["init","Edit","Edit"]),
(["condInitl","cond2","cond3"],["init","Edit","Edit"]),
(["condInitl","cond2","cond1"], ["init","Edit","Exit"]),
(["condInitl","cond2","cond4"], ["init","Edit","Find"]),
(["condInitl","cond2","cond5"], ["init","Edit","Find"]),
(["condInitl","cond3","cond2"], ["init","Edit","Edit"]),
(["condIniti","cond3","cond3"], ["init","Edit","Edit"]),
(["condIniti","cond3","cond1"], ["init","Edit","Exit"]),
(["condInitl","cond3","cond4"], ["init","Edit","Find"]),
(["condInitl","cond3","cond5"], ["init","Edit","Find"]),
(["condIniti","cond1"], ["init","Exit"]),
(["condInitl","cond4"], ["init","Find"]),
(["condInit1","cond5"], ["init","Find"]),
(["condInitl","cond4","cond2"], ["init","Find","Edit"]),
(["condInitl","cond4","cond3"], ["init","Find","Edit"]),
(["condInitl","cond4","cond1"], ["init","Find","Exit"]),
(["condInitl","cond4","cond4"],["init","Find","Find"]),
(["condInitl","cond4","cond5"], ["init","Find","Find"]),
(["condInit1","cond5","cond2"], ["init","Find","Edit"]),
(["condInitl","cond5","cond3"], ["init","Find","Edit"]),
(["condInitl","cond5","cond1"], ["init","Find","Exit"]),
(["condInitl","cond5","cond4"], ["init","Find","Find"]),
(["condInitl","cond5","cond5"], ["init","Find","Find"])]

TEEEEEEEEEEEEEEEEEEEEEEEEERERRERE

E.3 Find Window

-- Generated automatically by GuiSurfer
GuiModelWaysFind
GuiTypes

waysFind :: [N]

waysFind = [N (["condIniti"],["init"]),
(["condInitl","cond2"], ["init","Cancel"]),
(["condIniti","cond1"], ["init","Search"]),
(["condInitl","condl","cond2"], ["init","Search","Cancel"]),
(["condInitl","condl","cond1"], ["init","Search","Search"]),
(["condInitl","condl","cond3"], ["init","Search","Show"]),
(["condInit1","cond3"], ["init","Show"]),

=T=====

E.4. CONTACTEDITORNVINDOW 195

N (["condInitl","cond3","cond2"], ["init","Show","Cancel"]),
N (["condInitl","cond3","cond1"],["init","Show","Search"]),
N (["condInitl","cond3","cond3"],["init","Show","Show"])]

E.4 ContactEditorWindow

-- Generated automatically by GuiSurfer
GuiModelWaysContactEditor
GuiTypes

waysContactEditor :: [N]

waysContactEditor = [N (["condIniti"],["init"]),
(["condInit2"], ["init"]),

(["condInitl","cond1"], ["init","Add"]),
(["condInitl","condl","cond1"], ["init","Add","Add"]),
(["condInitl","condl","cond5"], ["init","Add","Cancel"]),
(["condIniti1","condl","cond2"], ["init","Add","Edit"]),
(["condInitl1","condl","cond6"], ["init","Add","0k"]),
(["condInitl","condl","cond3"],["init","Add","Remove"]),
(["condInitl1","cond1","cond4"], ["init","Add","Remove"]),
(["condInitl","cond5"], ["init","Cancel"]),
(["condInitl","cond2"], ["init","Edit"]),
(["condInitl","cond2","cond1"], ["init","Edit","Add"]),
(["condIniti","cond2","cond5"], ["init","Edit","Cancel"]),
(["condInitl","cond2","cond2"], ["init","Edit","Edit"]),
(["condInitl","cond2","cond6"], ["init","Edit","0k"]),
(["condInit1","cond2","cond3"], ["init","Edit","Remove"]),
(["condInitl","cond2","cond4"], ["init","Edit", "Remove"]),
(["condIniti","cond6"], ["init","0k"]),
(["condInitl","cond3"], ["init","Remove"]),
(["condInitl","cond4"],["init","Remove"]),
(["condInit1","cond3","cond1"], ["init","Remove","Add"]),
(["condIniti","cond3","cond5"], ["init", "Remove","Cancel"]),
(["condInit1","cond3","cond6"], ["init","Remove","0k"]),
(["condInit1","cond4","cond1"], ["init","Remove","Add"]),
(["condInitl","cond4","cond5"], ["init","Remove","Cancel"]),
(["condInitl1","cond4","cond2"], ["init","Remove","Edit"]),
(["condInitl","cond4","cond6"], ["init","Remove","0k"]),
(["condInitl","cond4","cond3"],["init","Remove","Remove"]),
(["condIniti","cond4","cond4"], ["init","Remove","Remove"]),
(["condInit2","cond1"], ["init","Add"]),
(["condInit2","condl","cond1"], ["init","Add","Add"]),
(["condInit2","condl","cond5"], ["init","Add","Cancel"]),
(["condInit2","condl","cond2"], ["init","Add","Edit"]),

TEEEEEEEEEEEEEREEREEEREREREREEREREEEEEREREEYESE

196APPENDIX E. AGENDAS WINDOWS EVENTS SEQUENCES EXTRACTION

N (["condInit2","condl","cond6"],["init","Add","0k"]),

N (["condInit2","condl","cond3"], ["init","Add","Remove"]),
N (["condInit2","condl","cond4"],["init","Add","Remove"]),
N (["condInit2","cond5"],["init","Cancel"]),

N (["condInit2","cond6"], ["init","0k"])]

Appendix F

AgendaScript Reasoning through
Graph-Tool

This appendix contains the compld®gthonscript (Graph-Too) which generates

several metrics results of thegendaapplication.

#! [usr/bin/env python

i mport sys, o0s

frompylab inmport =

fromgraph_tool.all inport =

g = Gaph()

v_age = ¢g.new vertex_property("string")
e_age = g.new_edge_property("string")
Findstatel = g.add_vertex()
v_age[Fi ndstatel] = "Findstatel"
Findinit = g.add _vertex()
v_age[Findinit] = "Fi ndstateQ"

Fi ndcl ose = g.add_vertex()
v_age[Fi ndcl ose] = "Fi ndcl ose"

e = g.add_edge(Findinit, Findstatel)

e _age[e] = "init/condlnitl/[2,3,4,5,6,7,8]"
e = g.add_edge(Fi ndst atel, Fi ndcl ose)

e _age[e] = "Cancel/cond2/[1]"

e = ¢g.add_edge(Fi ndstatel, Fi ndst at el)

e _age[e] = "Search/condl/[]"

e = g.add_edge(Fi ndst at el, Fi ndst at el)

e _age[e] = "Show cond3/[]"
ContactEditorstatel = g.add vertex()
v_age[Contact Edi torstatel] = "ContactEditorstatel”

197

198APPENDIX F. AGENDASCRIPT REASONING THROUGHK5RAPH-TOOL

ContactEditorstate2 = g.add _vertex()
v_age[Cont act Edi t or st at e2] = " Cont act Edi t or st at e2"
ContactEditorinit = g.add_vertex()
v_age[ContactEditorinit] = "ContactEditorstate0"
Cont act Edi torcl ose = g. add_vertex()
v_age[Cont act Edi torcl ose] = "Contact Edi t orcl ose”
e = g.add_edge(Contact Editorinit, ContactEditorstate2)
—age[e] = "init/condlnitl/[9,10,11,12,13, 14, 15, 16, 17]"
g. add_edge(Contact Editorinit, Contact Editorstatel)
_age[e] = "init/condlnit2/[18,19,11, 12,13, 14, 15, 16, 17]"
g. add_edge(Cont act Edi t or st at el, Cont act Edi t or st at e2)
_age[e] = "Add/condl/[1, 2]"
g. add_edge(Cont act Edi t or st at el, Cont act Edi t or cl ose)
_age[e] = "Cancel/cond5/[7]"
g. add_edge(Cont act Edi t or st at e1, Cont act Edi t or cl ose)
—age[e] = "Ck/cond6/[8]"
g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or st at e2)
_age[e] = "Add/condl/[1, 2]"
g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or cl ose)
_age[e] = "Cancel/cond5/[7]"
g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or st at e2)
—age[e] = "Edit/cond2/[]"
g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or cl ose)
_age[e] = "Ck/cond6/[8]"
g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or st at el)
—age[e] = "Renove/cond3/[3,4]"

= g. add_edge(Cont act Edi t or st at e2, Cont act Edi t or st at e2)
e _age[e] = "Renove/cond4/[5,6]"

Mai nFor st atel = g.add_vertex()
v_age[Mai nFor nst at el] = " Mai nFor nst at el"

Mai nForminit = g.add_vertex()
v_age[Mai nFormi nit] = "MinFor nst at e0"

Mai nFor mend = g. add_vertex()
v_age[Mai nFor nrend] = " Mai nFor nend"
e = ¢g.add_edge(Mai nForm nit, Mai nFor nst at el)
e_age[e] = "init/condlnitl/[6,7,8,9,10,11,12,13, 14, 15]"
g. add_edge(Mai nFor nst at el, Mai nFor nst at el)
~age[e] = "Edit/cond2/[2]"
g. add_edge(Mai nFornst at el, Contact Editorinit)
_age[e] = "Open Contact Editor w ndow'
g. add_edge(Mai nFor nst at el, Mai nFor nst at el)
—age[e] = "Edit/cond3/[3]"
g. add_edge(Mai nFor st at el, Mai nFor nend)
—age[e] = "Exit/condl/[1]"
g. add_edge(Mai nFor nst at el, Mai nFor nst at el)

® D®D®D®D®D®D®D®DDDDDDD®DdDDD D

® D®D®Dd®D®D®DD D
1

199

e _age[e] = "Find/cond4/[4]"

e = g.add_edge(Mi nFornstatel, Findinit)

e _age[e] = "Open Find w ndow'

e = ¢.add_edge(Mai nFor st at el, Mai nFor nst at el)
e_age[e] = "Find/cond5/[5]"

Loginstatel = g.add_vertex()

v_age[Logi nstatel] = "Logi nstatel"
Logininit = g.add _vertex()

v_age[Logininit] = "Loginstate0"

Logi nend = g. add_vertex()
v_age[Logi nend] = "Logi nend"

Logi ncl ose = g.add_vertex()
v_age[Logi ncl ose] = "Logi ncl ose"

e = ¢.add_edge(Logininit,Loginstatel)

e _age[e] = "init/condlnitl/[5,6,7,8,9]"
e g. add_edge(Logi nst at el, Logi nend)

e _age[e] = "Cancel/cond1/[1]"

e = g.add_edge(Logi nstatel, Logi ncl ose)
e _age[e] = "Ok/cond2/[2,3]"

e = g.add_edge(Logi ncl ose, Mai nForni ni t)
e_age[e] = "Open Mai nForm wi ndow"
e
e
e
e
e
e

= ¢. add_edge(Logi nstatel, Logi nstatel)
_age[e] = "Ok/cond3/[4]"

= ¢. add_edge(Fi ndcl ose, Mai nFor nst at el)
—age[e] = "Close Find wi ndow'

= g. add_edge(Cont act Edi t or cl ose, Mai nFor st at el)
—age[e] = "C ose ContactEditor w ndow'

graph_draw(g, size=(30,30), |ayout="dot", vcol or="white"
ecol or ="bl ack", output="graphTool - DBcli entjava. pdf",
vprops=dict([('|abel’, v_age)]),

eprops=dict ([(’'label’, e_age),
("arrowsize',2.0),(arrowhead ,"enpty")]))

graph_draw(g, size=(30,30), |ayout="dot",
vcol or="whi te", ecol or="bl ack",

out put ="graphTool - DBcl i ent j avaNunber ed. pdf ",
vprops=dict ([('l abel’, g.vertex_index)]),
eprops=dict ([(' | abel’, g.edge_index),
("arrowsize',2.0), (" arrowhead ,"enpty")]))

bv, be = betweenness(g)

bel = be

bel.get array()[:] = bel.get _array()[:]*120+1
graph_draw(g, size=(70,70), |ayout="dot",

200APPENDIX F. AGENDASCRIPT REASONING THROUGKRAPH-TOOL

vcol or="whi te", ecol or="gray",

out put ="graphTool - Bet weenness. pdf ",
vprops=dict([('l abel’, bv)]),
eprops=dict ([(' | abel’, be), (' arrowsize',1.2),
(’arrowhead’ ,"normal "), (' penwi dth’, bel)]))

pr = pagerank(Q)

graph_draw(g, size=(70,70), |ayout="dot",
vsize = pr, vcolor="gray", ecol or="bl ack"

out put =" gr aphTool - Pager ank. pdf ",
vprops=dict ([(' label”, "™)]),

eprops=dict ([('label’, ""),(arrowsize’, 2.0),
(" arrowhead’ ,"enpty")]))

g.set _edge_filter(None)

bv, be = betweenness(g)

be.a *= 10

graph_draw(g, pin=True, size=(8, 8),

vsi ze=0. 07, vcol or=bv,
eprops={"penw dt h": be},

out put =" G aphTool - nonfiltered-bt.pdf")

pr = pagerank(Q)
print "pagerank", pr.a

vb, eb = betweenness(Q)
print "betweenness", vb.a

vb, eb = betweenness(Q)
print "central _point_dom nance"
central _point_doni nance(g, vb)

print "isonorphisnt, isonorphisn(g, g)

tc = transitive_closure(Q)
graph_draw(tc, size=(15,15), l|ayout="dot",
out put ="graphTool - Transi ti veCd osure. pdf ")

di st = shortest_distance(g, source=g.vertex(7))
print "shortest distance from M nFornt
print dist.get_array()

di st = shortest_distance(g, source=g.vertex(11))
print "shortest distance from Login"
print dist.get _array()

201

vlist, elist = shortest_path(g, g.vertex(1ll), g.vertex(6))
print "shortest path vertices", [str(v) for v in vlist]
print "shortest path edges", [str(e) for e in elist]

m = adj acency(Q)
print mtodense()

for v in g.vertices():
print v, v_age[V]

for e in g.edges():
print e, e _age[e]

