
Universidade do Minho

Escola de Engenharia

JOÃO CARLOS CARDOSO DA SILVA

GUISURFER: A Generic Framework for Reverse Engineering of Graphical

User Interfaces

Tese de Doutoramento em Informática

Ramo de Fundamentos da Computação

Trabalho efectuado sob a orientação de

Professor Doutor José Creissac Campos

Professor Doutor Jõao Alexandre Saraiva

Dezembro de 2010

É autorizada a reprodução integral desta tese apenas para efeitos de investigação,

mediante declaração escrita do interessado, que a tal se compromete.

Universidade do Minho, / /

Assinatura:

Acknowledgments

Many people contributed to this thesis. I would like to use these lines to ac-

knowledge every person and institution that contributed to its elaboration.

First of all, I would like to thank my supervisors, Professor José Creissac Cam-

pos and Professor João Alexandre Saraiva, both from the Department of Informat-

ics of Universidade do Minho, for giving me the opportunity to do my Ph.D and

for their guidance and encouragement that made this thesis possible. I feel very

lucky to have been their student. Collaborating with them was an enriching profes-

sional experience, and an opportunity to work with two persons whose human side

I highly appreciate.

I would like to thank also my colleagues fromUniversidade do Minhoand

Instituto Polit́ecnico do Ćavado e do Avefor the continuous encouragement and

friendship.

I would like to thank theFundaç̃ao para a Cîencia e a Tecnologia(FCT) for

supporting this thesis under contract SFRH/BD/30729/2006.

I wish to express also my gratitude to my parents, Abı́lio and Gĺoria, who

always believed and supported me in every moment of my life, to my brother, José

Luı́s, for all his support and for being my biggest friend.

Finally, I would like to thank Susana for all her encouragement and compre-

hension.

This work was supported by projects CROSS (PTDC/EIA-CCO/108995/2008)

and SSAAPP (PTDC/EIA-CCO/108613/2008) funded by the Portuguese Founda-

tion for Science and Technology

i

Abstract

Tools are currently available to developers that allow for fast development of

user interfaces with graphical components. However, the design of interactive sys-

tems does not seem to be much improved by the use of such tools. Interfacesare

often difficult to understand and use by end users. In many cases users have prob-

lems in identifying all the supported tasks of a system, or in understanding how

to achieve their goals. Moreover, the code produced by such tools is difficult to

understand and maintain.

In the context of an effort to develop tools to support the automated analysis of

interactive system designs, this research investigates the applicability of reverse en-

gineering approaches to graphical user interface (GUI) analysis from source code.

Our objective consists in developing tools to automatically extract models contain-

ing GUI behaviours, from its source code. The models should specify which wid-

gets are present in the interface, when can a particular GUI event occurs, which are

the conditions, which system actions are executed, and which GUI state is gener-

ated next. Subsequently, this research aims to reasoning over GUI models inorder

to analyse aspects of the original application’s behaviour, and the implementation’s

quality.

GUISURFER, a tool developed in the context of this doctoral thesis, is capable

of automatically deriving and reason about graphical user interface behavioural

models of applications written inJava/Swing, WxHaskellandGWT. This work is

useful to enable the analysis of existing interactive applications, and also when an

existing application must be ported or simply updated.

ii

iii

Resumo

Os programadores têm j́a ao seu dispor diversas ferramentas que permitem o

rápido desenvolvimento de interfaces gráficas com o utilizador (GUI). Todavia,

o desenho dos sistemas interactivos não parece tirar partido destas ferramentas.

Em muitos casos, os utilizadores têm problemas em identificar todas as tarefas

suportadas pelo sistema, e têm dificuldades em perceber como atingir determinados

objectivos. Por outro lado, o código gerado pelas ferramentasé dif́ıcil de analisar

e manipular.

No contexto do desenvolvimento de ferramentas de suporteà analise automati-

zada de sistemas interactivos, foram realizados estudos baseados em engenharia re-

versa para a extracção de modelos comportamentais de interfaces com o utilizador.

O nosso objectivo consiste em desenvolver ferramentas para extrair automatica-

mente modelos descrevendo o comportamento da GUI. Os modelos descrevem

quando um evento pode ocorrer, sob que condições, quais s̃ao as acç̃oes execu-

tadas e quaĺe o estado da GUI gerado a seguir. Consequentemente,é posśıvel

raciocinar e testar os modelos da GUI de modo a analisar aspectos relacionados

com a usabilidade da aplicação e a qualidade da sua implementação.

A ferramenta, com nome GUISURFER, desenvolvida nôambito deste trabalho

de doutoramento, permite extrair e testar modelos de comportamentos de interfaces

gráficas com o utilizador escritas nas linguagensJava/Swing, WxHaskelle GWT.

Este trabalhóe útil para analisar aplicações existentes bem como para dar apoio na

manutenç̃ao e migraç̃ao de aplicaç̃oes.

iv

v

to Susana and Rodrigo

vi

Contents

1 Introduction 1

1.1 Motivation . 1

1.1.1 User Interface Development 2

1.1.2 An Illustrative Example 4

1.2 Thesis Genesis . 10

1.3 Objectives . 11

1.4 Research Questions . 13

1.5 Structure of the Thesis . 14

2 Reverse Engineering Applied to GUI Modelling 17

2.1 Types of Engineering . 18

2.2 Reverse Engineering . 19

2.3 Graphical User Interfaces . 20

2.4 Types of GUI relevant Models 22

2.5 GUI Representations . 26

2.5.1 Grammars . 26

2.5.2 Finite State Machines . 29

2.5.3 Other Models . 30

vii

viii CONTENTS

2.5.4 Models for Quality Evaluation 33

2.6 GUI Reverse Engineering . 34

2.6.1 Dynamic Analysis . 35

2.6.2 Static Analysis . 36

2.7 Conclusions . 37

3 An Approach to GUI Reverse Engineering 39

3.1 An Interactive Application as Running Example 40

3.2 GUI Reverse Engineering Approach 44

3.3 GUI Source Code Extraction . 48

3.4 Retargetable Methodology . 49

3.4.1 Program Dependency Graph 49

3.4.2 Code Slicing . 52

3.4.3 Strategic Programming 53

3.4.4 Case Study: Regular Expressions Processing withTOM . 56

3.4.5 Retargetable Methodology 58

3.5 Behavioural Models Generation 59

3.6 Conclusions . 60

4 GUISURFER: A Reverse Engineering Tool 63

4.1 The Architecture of GUISURFER. 63

4.1.1 Source Code Slicing . 65

4.1.2 GUI Behavioural Modelling 65

4.1.3 GUI Reasoning . 65

4.2 The GUISURFERImplementation 66

CONTENTS ix

4.2.1 Parsing the Source Code 67

4.2.2 Extracting the GUI Layer 68

4.2.3 Generating of GUI Behavioural Models 74

4.2.4 Evaluating GUI Behavioural Models 75

4.3 Models for GUI Reverse Engineering 75

4.3.1 GUI Meta-Model . 75

4.3.2 MAL Interactors . 82

4.3.3 Event Flow Graphs . 84

4.3.4 Finite State Machines . 86

4.3.5 Others Models . 87

4.4 A Language Independent Tool 89

4.4.1 Retargetability . 91

4.4.2 WxHaskellexample . 93

4.4.3 GWTexample . 96

4.5 Conclusions . 98

5 GUI Reasoning from Reverse Engineering 101

5.1 Testing with theQuickCheckTool 103

5.2 GUI Inspection Through Graph Theory 106

5.2.1 Agenda’s Behavioural Graph 106

5.2.2 Graph Events Count . 106

5.2.3 Operations on Graphs 108

5.2.4 GUI Metrics . 109

5.2.5 Graph-Tool . 112

x CONTENTS

5.2.6 GUI Test Cases Generation 120

5.3 Conclusions . 125

6 HMS Case Study: A Larger Interactive System 127

6.1 Login Window . 128

6.2 Main Window . 131

6.3 Patient Management . 132

6.4 Doctors Management . 136

6.5 Bills Management . 136

6.6 Overall Behaviour . 137

6.7 GUI Reasonning . 140

6.8 Conclusions . 145

7 Conclusions and Future Work 149

7.1 Answers to Research Questions 149

7.2 Summary of Contributions . 152

7.3 Discussion . 153

7.4 Future Work . 155

7.4.1 GUISURFERExtension 155

7.4.2 GUI Reengineering . 156

7.4.3 Patterns for GUI transformation 156

Bibliography 159

A GUISURFERGUI Meta-Model Specification 179

CONTENTS xi

B Agenda’s GUISURFERScript Analysis 181

B.1 Meta-model, Interactor and State Machine Extraction 181

C Agenda’s Windows Behaviour Specification 183

C.1 LoginWindow . 183

C.2 MainFormWindow . 184

C.3 Find Window . 185

C.4 ContactEditorWindow . 186

D Agenda’s Windows States Extraction 189

D.1 LoginWindow . 189

D.2 MainFormWindow . 190

D.3 Find Window . 190

D.4 ContactEditorWindow . 190

E Agenda’s Windows Events Sequences Extraction 193

E.1 LoginWindow . 193

E.2 MainFormWindow . 193

E.3 Find Window . 194

E.4 ContactEditorWindow . 195

F AgendaScript Reasoning throughGraph-Tool 197

xii CONTENTS

List of Figures

1.1 A login window . 4

1.2 Java/Swingsource code for a login window 5

1.3 The login window behaviour . 9

2.1 System evolution . 19

2.2 A grammar for a login user interface 28

2.3 Finite state machine specification of a login user interface 31

3.1 A GUI application . 40

3.2 Agenda’s GUI behavioural model automatically produced from its

source code . 43

3.3 The reverse engineering process 45

3.4 TheAgenda’s Loginwindow source code 45

3.5 Loginwindow’s program dependency graph 51

3.6 Example of code slicing . 53

3.7 Regular expression data type inTOM 57

3.8 TOM strategy that normalizes a regular expression 58

4.1 GUISURFERarchitecture and retargetability 64

xiii

xiv LIST OF FIGURES

4.2 GUISURFERapplied to aLoginwindow 67

4.3 Java/Swing Loginclass . 71

4.4 Fragment of theLogin’s AST . 71

4.5 JButtonfragment of theLogin’s AST 73

4.6 JBanksystem . 82

4.7 Interactor’s attributes abstraction 83

4.8 Interactor’s actions abstraction 83

4.9 JClasssystem . 85

4.10 JClasssystem’s partial GUI event-flow graph 86

4.11 Agenda’s finite state machine . 88

4.12 Agendaapplication’s windows states 90

4.13 TwoAgendaapplications . 94

4.14 Login WxHaskellpartial source code implementation 95

4.15 Loginbehavioural state machine 95

4.16 GWTFlexTable application . 96

4.17 GWTFlexTable’s FSM behavioural model 97

5.1 Agenda’s behaviour graph . 107

5.2 Agendaapplication’s events Count 108

5.3 ComparingAgendaapplication’s windows states 109

5.4 Agenda’s behaviour graph . 112

5.5 Pythoncommand for Pagerank algorithm 116

5.6 Agenda’s pagerank results . 117

5.7 Pythoncommand for Betweenness algorithm 117

LIST OF FIGURES xv

5.8 Agenda’s betweenness values . 118

6.1 HMS: Login window . 128

6.2 HMS: Login state machine . 129

6.3 HMS: Main window . 131

6.4 HMS: Main window state machine 132

6.5 HMS: Main patient form . 133

6.6 HMS: Main patient state machine 134

6.7 HMS: View patient information form 134

6.8 HSM: View patient information state machine 135

6.9 HSM: Add doctor form . 137

6.10 HSM: Add doctor behavioural state machine 138

6.11 HSM: Billing form . 139

6.12 HSM: Billing form behaviour state machine 139

6.13 HSM: The overall behaviour (left part) 140

6.14 HSM: The overall behaviour (center part) 141

6.15 HSM: The overall behaviour (right part) 141

6.16 HSM: The overall behaviour . 142

6.17 HSM’s pagerank results . 144

6.18 HSM’s betweenness values . 146

7.1 Re-engineering of interactive applications from source code . . . 157

xvi LIST OF FIGURES

Chapter 1

Introduction

In the context of developing tool support to the automated analysis of interactive

systems implementations, this thesis investigates the applicability of reverse engi-

neering approaches to the derivation of user interfaces behavioural models. The

ultimate goal is that these models might be used to reason about the quality of the

system, both from an usability and an implementation perspective, as well as being

used to help systems’ maintenance, evolution and redesign.

This Chapter provides an introduction to this research. Section 1.1 presentsthe

motivation of the thesis. Section 1.2 describes the genesis of the thesis. Section

1.3 contains the objectives. Section 1.4 introduces the research questions. Finally,

Section 1.5 presents the structure of the thesis.

1.1 Motivation

Developers of interactive systems are faced with a fast changing technological

landscape, where a growing multitude of technologies (consider, for example, the

case of web applications) can be used to develop user interfaces for a multitude

of form factors, using a growing number of input/output techniques. Additionally,

1

2 CHAPTER 1. INTRODUCTION

they have to take into consideration non-functional requirements such as the us-

ability and the maintainability of the system. This means considering the quality

of the system both from the user’s (i.e. external) perspective, and from the im-

plementation’s (i.e. internal) perspective. A system that is poorly designedfrom

a usability perspective will most probably fail to be accepted by its end users. A

poorly implemented system will be hard to maintain and evolve, and might fail

to fulfill all intended requirements. Furthermore, when subsystems are subcon-

tracted, the problem is faced of how to guarantee the quality of the implemented

system during acceptance testing. The generation of user interface models from

source code has the potential to mitigate these problems. The analysis of these

models enables some degree of reasoning about the usability of the system, re-

ducing the need to resort to costly user testing (cf. [DFAB03]), and cansupport

acceptance testing processes. Moreover, the manipulation of the models supports

the evolution, redesign and comparison of systems.

1.1.1 User Interface Development

Many types of user interfaces can be identified in interactive systems. Dix et al.

[ASD04] identify a number of interaction styles: command line, menus, natural

language, question/answer and query dialog, form filling and spreadsheets, WIMP

(Windows, Icons, Mouse and Pointer), point and click, and three dimensional.

Other types could be included such as haptic, or sketch based.

From a reverse engineering perspective, the focus of interest is on the technol-

ogy used to implement the interface, whatever interaction strategy is used. The

more pervasive approach is to use toolkits consisting of collections of interaction

1.1. MOTIVATION 3

objects (widgets) to define the user interface contents, and an event-based approach

to define the behaviour of the interface. Widgets have a predefined behaviour that

is readily available without further programming effort [ASD04]. Widgets are con-

figured via attributes. For example, a button can be configured regardingits size,

position, label, which routine is executed when the button is clicked, and so on.

Particularly relevant here is the fact that objects react to user actions byexecut-

ing call-back routines which can change the interface and/or access underlying

functionality. From an implementation perspective, user interfaces consistof col-

lections of interaction objects glued together by call-back routines which areexe-

cuted in response to user actions. This means that understanding the logic of the

user interface becomes a non-trivial task.

Nowadays, there are tools which enable developers to see the layout of each

screen without having to execute the application. These are user interface devel-

opment tools. Such tools enable automatic generation of part of the user interface

source code and consequently enable creating user interfaces much morequickly.

These tools are composed of a screen designer, an object navigator, aproperty

sheet, a toolbox of user interface classes, and a text editor. The screen designer

window enables the developer to see and directly manipulate the layout of each

screen. The object navigator provides a way of navigating through objects and

their associated source code. The property sheet is basically used to have access to

all properties names and values of each user interface object. The values of prop-

erties can be changed, and developers can immediately see the effect on related

objects without having to compile and execute the code. The toolbox of user inter-

face classes is a window containing a set of classes which are used to create user

4 CHAPTER 1. INTRODUCTION

interface objects. Finally, a text editor is used by developers to enter source code

for the application.

User interface development tools enable the construction of large and complex

user interfaces. Using these tools, part of the user interface source code is auto-

matically generated and consequently developers need to write a small amountof

code only. However, the generated source code can be difficult to understand and

maintain.

1.1.2 An Illustrative Example

In this Subsection a simple interactive application is presented and discussed. Fig-

ure 1.1 presents a sample Graphical User Interface (GUI) which will be used to

illustrate the objectives of the work.

Figure 1.1: A login window

The GUI provides a single window enabling users to login into the system

through an username and password pair. The window is composed of several wid-

gets, i.e. two textfield enabling users to introduce their username (textfield with

Usernamelabel) and password (textfield withPasswordlabel), and two buttons

enabling to cancel the window (Cancelbutton) or to confirm input data (Ok but-

ton).

1.1. MOTIVATION 5

The source code for programming this particular example is presented in Fig-

ure 1.2. The code is written in theJavaprogramming language making use of the

Swing class library to develop the graphical user interface [LEW+02].

public class Login extends JFrame {
public Login() {
JButton Cancel = new JButton();
JButton Ok = new JButton();
JLabel jLabel1 = new JLabel();
JLabel jLabel2 = new JLabel();
JLabel jLabel3 = new JLabel();
JTextField login = new JTextField();
JTextField password = new JTextField();
Cancel.setEnabled(true);
Ok.setEnabled(true);
Ok.setText("Ok");
Cancel.setText("Cancel");
jLabel1.setText("Password");
jLabel2.setText("Username");
jLabel3.setText("ClientDB");

Cancel.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{System.exit(0);}});

Ok.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{if (valid(login.getText(),password.getText()))

{new MainForm().setVisible(true);
this.dispose();
}

else showMessageDialog(this,"not valid","Login",0);
});}

public static void main(String args[])
{new Login().setVisible(true);} }

Figure 1.2:Java/Swingsource code for a login window

This Javaprogram uses several constructors/methods from the Swing library

6 CHAPTER 1. INTRODUCTION

to define GUI objects, namely,JLabel, JTextField, JButton, setText, getTextand

setEnabled.

The constructors used define object types. For example, in the case of the

textfields the constructor used isJTextField:

JTextField login = new JTextField();
JTextField password = new JTextField();

Labels are created with theJLabel constructor, and the text to be displayed

is given as an argument to thesetTextmethod. In this login window three labels

are created, namelyClientDB, UsernameandPassword. As stated, this is done by

using theJLabelconstructor, and thesetTextmethod to assign text to the labels:

JLabel jLabel1 = new JLabel();
JLabel jLabel2 = new JLabel();
JLabel jLabel3 = new JLabel();
jLabel1.setText("Password");
jLabel2.setText("Username");
jLabel3.setText("ClientDB");

Finally, buttons are defined via theJButtonconstructor, and the text to be as-

signed is the argument of thesetTextmethod. For example, in Figure 1.1 the two

buttons are created through the following code:

JButton Ok = new JButton();
JButton Cancel = new JButton();

ThesetTextmethod is used to assignOk andCancellabels to the previous two

buttons, as follows:

Ok.setText("Ok");
Cancel.setText("Cancel");

Buttons may be enabled, or not, using thesetEnabledmethod, i.e. click events

can be active or not. In this source code, the buttons are both enabled:

1.1. MOTIVATION 7

Cancel.setEnabled(true);
Ok.setEnabled(true);

Finally, the behaviour of the system when buttons are clicked is defined through

addActionListenermethods. Using this method enables the GUI programmer to

define a sequence of instructions to execute when a particular button is clicked by

the user. For example, the code executed when the user clicks theOkbutton is:

Ok.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{if (valid(login.getText(),password.getText()))

{new MainForm().setVisible(true);
this.dispose();
}

else showMessageDialog(this,"not valid","Login",0);
});}

This code extracts textfields contents through thegetTextmethod. Then an

auxiliary function (valid) is executed to test whether this input data is valid or not:

valid(login.getText(),password.getText())

If the user introduces a valid username and password, then the system opens

a new window (i.e. executing theMainForm window constructor) and closes the

Loginwindow (i.e. executing the instructionthis.dispose()):

new MainForm().setVisible(true);
this.dispose();

Otherwise, if the user introduces a non-valid username and password, the re-

spective action is implemented by calling theshowMessageDialogmethod that

sends a message box to the user as a modal window (in this case the action sends

the messagenot valid):

8 CHAPTER 1. INTRODUCTION

showMessageDialog(this,"not valid","Login",0);

The code executed when the user clicks theCancelbutton is also defined by

making use of theaddActionListenermethod, as follows:

Cancel.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt)
{System.exit(0);}});

This code enables the user to exit the system through the execution of the in-

struction:System.exit(0).

So far, the login interactive application has been presented/developed bywrit-

ing its source code (inJava, in this case), and GUI functionality has been reused

as provided by the Swing library. As can be seen, from the source codeit is not

possible to graphically visualize the behavior of the system.

Nowadays, user interface development tools can be used. Such tools enable to

the quick creation of user interfaces. These tools enable programmers to develop

GUIs without the need to write all the source code related to widgets creation and

manipulation. Most of the user interface code is automatically generated and these

tools enable programmers to visualize the screen layout without having to compile

and execute the code. However, with user interface development tools there is

no support for GUI behaviour analysis. Developers can only see the behaviour

of the system when executing its code. Consequently, new tools are needed for

the automatic generation of GUI behaviour from source code and subsequent GUI

behavioural reasoning.

Next, a graphical model that (abstractly) specifies the behaviour of the login

application is presented. Considering the above source code and its analysis, a

1.1. MOTIVATION 9

kind of model defined in Figure 1.3 could be useful to understand and testthe

system. With this model, the system’s behaviour can be graphically visualized.

Figure 1.3: The login window behaviour

The model represents user events as arrows and system actions/states as nodes.

By using such a graphical model it becomes easier to understand the behaviour of

the graphical user interface of the login window. Hence, the system startsfrom an

initial state where users can introduce their usernames and passwords. The model

then specifies then another state from which users can execute one of three events.

They can click theOk button after entering a valid input. In this case the system

responds by opening theMainFormwindow and closing theLogin window. Users

can also click the same button after entering an invalid input. This originates an

invalid inputmessage box. Afterward, the model defines that the system returns to

the previous state allowing users to introduce new username and password. Finally

10 CHAPTER 1. INTRODUCTION

users can click on theCancelbutton which causes the application to exit.

In this Section, the source code of a (simple) interactive application (Figure

1.2) has been presented. A behavioural model of that application (Figure1.3) has

been defined. In fact, this is the kind of behavioural model we will automatically

generate from source code.

1.2 Thesis Genesis

This thesis has its genesis in a R&D project named IVY, a model-based usabil-

ity analysis environment1 which aimed at developing a model-based tool for the

analysis of interactive systems designs [SCS06a, SCS06c, SCS06b]. The reverse

engineering results obtained during the IVY project are being explored intwo oth-

ers R&D projects, namely, an Infrastructure for Certification and Re-engineering of

Open Source Software2 (CROSS) and SpreadSheets as a Programming Paradigm3

(SSaaPP).

In the context of the IVY project this research aimed to investigate the applica-

bility of reverse engineering approaches to the derivation of user interface’s models

amenable for verification of usability related properties. IVY follows from the de-

velopment ofI2SMV [CH01], a compiler enabling the verification of interactive

system’s models using the SMV model checker [McM93]. The objective wasto

develop, as a front end to SMV, a model based tool for the analysis of behavioural

issues of interactive systems’ designs. This tool translates the models into theSMV

1A model-based usability analysis environment -http://www.di.uminho.pt/ivy, last accessed
November 22, 2010

2http://wiki.di.uminho.pt/twiki/bin/view/Research/CROSS/, last accessed November 22, 2010.
3http://ssaapp.di.uminho.pt, last accessed November 22, 2010i.

1.3. OBJECTIVES 11

input language, and fully supports the process of modelling and analysis by pro-

viding editors, for models and properties, and a reply visualizer for the analysis of

the verification results.

Being modular, the IVY tool acts as a test-bed for different styles of mod-

elling/analysis of interactive systems. One approach that needed to be explored

was the use of reverse engineering techniques to enable the generation of models

from user interface code. The goal being to support the verification ofexisting user

interfaces in a semi-automated manner.

Next Chapters describe the techniques, models and tools defined to achieve

these results and describe also techniques used to reason about extracted models.

1.3 Objectives

Human-Computer interaction is an important and evolving area. Therefore,it is

very important to reason about GUIs. In several situations (for examplethe mobile

industry) it is the quality of the GUI that influences the adoption of certain software.

In order for a user interface to have good usability characteristics it mustboth

be adequately designed and adequately implemented. Tools are currently available

to developers that allow for the fast development of user interfaces with graphical

components. However, the design of interactive systems does not seem tobe much

improved by the use of such tools.

Interfaces are often difficult to understand and use by end users. Inmany cases

users have problems in identifying all the supported tasks of a system, or in under-

standing how to achieve their goals [LH05].

Moreover, these tools producespaghetticode which is difficult to understand

12 CHAPTER 1. INTRODUCTION

and maintain. The generated code is composed by call-back procedures for most

widgets like buttons, scroll bars, menu items, and other widgets in the interface.

These procedures are called by the system when the user interacts with thesystem

through widget’s event. Graphical user interfaces may contains hundreds of wid-

gets, and therefore many call-back procedures which makes difficult to understand

and maintain the source code [Mye91].

At the same time it is important to ensure that GUI based applications behave as

expected [Mem01]. The correctness of the GUI is essential to the correct execution

of the software [Ber01]. Regarding user interfaces, correctness isusually expressed

as usability: the effectiveness, efficiency, and satisfaction with which users can use

the system to achieve their goals [SC494, ABD+89].

The main objective of this thesis consists in developing tools to automatically

extract models containing the GUI behaviour. Models allow designers to anal-

yse systems and could be used to validate system requirements at reasonablecost

[MTWH04]. Different types of models can be used for interactive systems, like

user and task models. Models must specify which GUI components are present in

the interface and their relationship, when a particular GUI event may occurand the

associated conditions, which system actions are executed and which GUI state is

generated next. Another goal of this thesis is to be able to reason about, and test

these GUI models, in order to analyse aspects of the original application’s usability,

and the implementation quality.

This work will be useful to enable the analysis of existing interactive applica-

tions and to evolve/update existing applications [Mel96]. In this case, being able

to reason at a higher level of abstraction than that of code will help in guarantee-

1.4. RESEARCH QUESTIONS 13

ing that the new/updated user interface has the same characteristics of the previous

one.

As can be seen, the main objective of this thesis is not to develop a new method-

ology, but indeed to combine a set of methodologies from several area ofsoftware

engineering in the construction of a tool to solve the described problem.

1.4 Research Questions

Given the objectives above, this research is essentially a study guided byan over-

arching goal which is to investigate whether:

Interactive application’s source code can be used for the automatic generation

of GUI behavioural models and subsequent GUI behavioural reasoning through a

retargetable approach.

This goal raises a number of issues that need to be addressed. Firstly, there

is a need to identify the characteristics of realistic behavioural models of a GUI.

Secondly, the research goal is based on a retargetable approach. Here, there is a

need to generate GUI behavioural models from several programming languages

and paradigms. Thirdly, there is the implication that methods can be used to reason

about GUI behavioural models.

Therefore the three primary questions the research needs to address are:

• Question One: Can we infer realistic behavioural models of a GUI from

its application’s source code?The source code is the most detailed spec-

ification of a software implementation. Through this research question, a

methodology needs to be defined allowing to infer behavioural models from

source code.

14 CHAPTER 1. INTRODUCTION

• Question Two: Can we define a language independent technique for GUI

modelling and reasoning?To answer this question, a retargetable technique

needs to be investigated, implemented, and applied to different programming

languages and paradigms.

• Question Three: Can we use well-known algorithms and metrics to rea-

son about GUI behavioural models?Considering this last question, algo-

rithms and metrics are required to reason about GUI behavioural models.

This needs to be investigated and results need to be evaluated.

1.5 Structure of the Thesis

This thesis is structured into three main logical parts. The first one presentsthe

reverse engineering area relating it to the GUI modelling area. It consists of Chap-

ter 2. Reverse engineering techniques’ state of the art, related work andadditional

methodologies used within this research are firstly described. Then, the Chapter

follows with a review of the approaches to model GUIs. A graphical user inter-

face representation is exposed, and the aspects usually specified by graphical user

interfaces are described.

The second part presents the approach proposed in this thesis in Chapters 3,

4, 5 and 6. Chapter 3 presents methodologies to retargetable GUI reverseengi-

neering. This contribution has been described in the following papers presented at

international and national conferences:

• Combining Formal Methods and Functional Strategies Regarding the Re-

verse Engineering of Interactive Applications, J.C.Silva, J.C. Campos, J.

1.5. STRUCTURE OF THE THESIS 15

Saraiva, presented at the XIII International Workshop on Design, Specifi-

cation and Verification of Interactive System (DS-VIS 2006), Dublin, Irland,

2006;

• Models for the Reverse Engineering of Java/Swing Applications, J.C.Silva,

J.C. Campos, J. Saraiva, presented at the 3rd International Workshop on

Metamodels, Schemas, Grammars and Ontologies for Reverse Engineering

(ATEM 2006), Genova, Italy, 2006;

• Engenharia Reversa de Sistemas Interactivos Desenvolvidos em Java/Swing,

J.C.Silva, J.C. Campos, J. Saraiva, presented at the “Segunda Conferência

Nacional em Interacç̃ao Pessoa-Ḿaquina” Universidade do Minho (Interacção

2006), Braga, Portugal, 2006.

Chapter 4 presents the GUISURFER: the developed reverse engineering tool.

It describes the GUISURFERarchitecture, the techniques applied for GUI reverse

engineering and respective generated models. These contributions were described

in the following papers presented at international conferences:

• A Generic Library for GUI Reasoning and Testing, J.C.Silva, J.C. Campos,

J. Saraiva, presented at the 24th Annual ACM Symposium on Applied Com-

puting (SAC 2009), USA, 2009;

• TheGUISURFERtool: towards a language independent approach to reverse

engineering GUI code, J.C.Silva, C. Silva, J.C. Campos, J. Saraiva, in pro-

ceedings of the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems (EICS 2010), pages 181-186. ACM, Berlin, Germany,

2010.

16 CHAPTER 1. INTRODUCTION

Then, Chapter 5, describe the research about GUI reasoning through behavioural

models of interactive applications. This contribution was described in the follow-

ing papers presented in international and national conferences:

• GUI Behaviour from Source Code Analysis, J.C.Silva, J.C. Campos, J. Saraiva,

presented at the 4thConfer̂encia Nacional Interacç̃ao Humano-Computador

(Interacç̃ao 2010), Aveiro, Portugal, 2010;

• GUI Inspection from Source Code Analysis, J. C. Silva, J. C. Campos, J.

Saraiva. In proceedings of the 4th International Workshop on Foundations

and Techniques for Open Source Software Certification (OpenCert 2010).

Electronic Communications of the EASST, Pisa, Italy, 2010.

Chapter 6 describes the application of GUISURFER to a realistic third-party

application.

Finally, the last part (Chapter 7) presents conclusions, discussing the contri-

butions achieved with this research, and indicating possible directions for future

work.

Chapter 2

Reverse Engineering Applied to
GUI Modelling

In the Software Engineering area, the use of reverse engineering approaches has

been explored in order to derive models directly from existing systems Reverse

engineering is a process that helps understand a computer system. Similarly,user

interface modelling helps designers and software engineers understandan interac-

tive application from a user interface perspective. This includes identifying data

entities and actions that are present in the user interface, as well as relationships

between user interface objects.

In this Chapter, reverse engineering and user interface modelling aspectsare

described [Cam04, DH93]. Section 2.1 describes different types of engineering.

Section 2.2 provides details about the reverse engineering area. Section2.3 identi-

fies the specific type of user interface we will study. Then, the type of GUIs models

to be used is discussed in Section 2.4. GUI representations are provided inSection

2.5. Methodologies and tools to reverse engineer interactive systems are described

in Section 2.6. Finally, the last Section summarizes the Chapter presenting some

17

18CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

conclusions.

2.1 Types of Engineering

According to Chikofsky [Chi93] the following four terms characterize software

systems evolution (Figure 2.1):

• forward engineering: This process implies moving from high-level abstrac-

tions to a system’s physical implementation. The process moves first from

the requirements phase to the design phase. Then from this one to the im-

plementation phase. Therefore, forward engineering corresponds toone or

more transitions to a lower abstraction level;

• reverse engineering: Reverse engineering aims to extract information from

already existing application systems. It can be described as analysing a soft-

ware system in order to obtain representations of the system at a higher level

of abstraction. This process is the inverse of forward engineering. Itcon-

sists on a process of analysing a system to discover its components and their

interrelationships.

• restructuring: This process is used to change a representation to a new one

at the same abstraction level. The system should maintain the same level of

functionality as well as semantics. Restructuring transforms the system but

functionality remains the same. Code refactoring is an example of restructur-

ing at source code level enabling, for example, to change source codefrom

an unstructured form to a structured one;

2.2. REVERSE ENGINEERING 19

• reengineering: This is a process of reverse engineering followed by forward

engineering in order to change the system. The main difference between

reengineering and restructuring is that while restructuring is made at the

same level of abstraction, reengineering involves moving to a higher abstrac-

tion level. The reengineering process enables the creation of a specification

at a higher abstraction level, new functionalities can then be added to this

specification and a new implementation can be developed using forward en-

gineering techniques.

Figure 2.1: System evolution

2.2 Reverse Engineering

Reverse engineering is useful in several tasks like documentation, maintenance,

and re-engineering [ESS03].

In the software engineering area, the use of reverse engineering approaches has

been explored in order to derive models directly from existing interactive system

using both static and dynamics analysis [PFM07, CS01, Sys01]. Static analysis is

20CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

performed on the source code without executing the application. Static approaches

are well suited for extracting information about the internal structure of thesys-

tem, and about dependencies among structural elements. Classes, methods, and

variables information can be obtained from the analysis of the source code. On the

contrary, dynamic analysis extracts information from the application by executing

it [Moo96]. Within a dynamic approach the system is executed and its external

behaviour is analysed.

Program analysis, plan recognition and redocumentation are applications for

reverse engineering [MJS+00]. Source code program analysis is an important goal

of reverse engineering. It enables the creation of a model of the analysed program

from its source code. The analysis can be performed at several different levels of

abstraction. Plan recognition aims to recognize structural or behavioural patterns

in the source code. Pattern-matching heuristics are used on source codeto detect

patterns of higher abstraction levels in the lower level code. Redocumentation

enables one to change or create documentation for an existing system fromsource

code. The generation of the documentation can be considered as the generation of

a higher abstraction level representation of the system.

2.3 Graphical User Interfaces

A Graphical User Interface (GUI) is a graphical front-end to an application that

accepts events as input and produces graphical output. A GUI containsgraphical

widgets. Each widget has a set of properties and respective values which consti-

tutes the state of the GUI. Users interact with the system by performing actionson

the GUI. In brief, and from a user’s perspective, graphical user interfaces accept as

2.3. GRAPHICAL USER INTERFACES 21

input a pre-defined set of user-generated events, and produce graphical output.

The most common class of graphical user interfaces are those whose pre-

sentation structure consists of a hierarchy of graphical widgets (buttons, menus,

textfields, etc) creating a front-end to software systems [Pat00]. An event-based

programming model is used to link the graphical objects to the rest of the sys-

tem’s implementation. Users interact with the system by performing actions on the

graphical user interface’s widgets. These, in turn, generate events at the software

level, which are handled by appropriate listener methods. Events cause changes

to the state of the interactive application that may be reflected by a change in the

presentation layer.

This thesis focuses on techniques to reverse engineer this class of userinter-

faces. Interactive applications with synchronization constraints or non-deterministic

behaviour are not considered in this thesis [JNeC03, dS02].

Our assumptions are the following:

1. An interactive system allows a dialogue between the system and one or more

users;

2. Interactive systems only respond after the user provides input, or some inter-

nal event has happened;

3. User interfaces contains a set of widgets (windows, buttons, textfields, etc).

A GUI may have multiple windows on screen with interactive objects. Typi-

cally, the user makes use of the mouse as a pointing device to select a command

from the menu, click on a button, select an item, etc.

22CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

There are several types of GUIs such as web-based, form-based,and virtual

reality. Web-based user interfaces allow the access remote computers through the

Internet or an intranet. They accept input and provide output by generating web

pages which can be viewed by the user using a web browser application. Form-

based interface are composed by independent graphical windows. Finally, virtual

reality user interfaces simulate a real environment with three dimensions.

Like other systems, user interfaces can be sequential or concurrent, synchronous

or asynchronous, and timed, timeless or real time. GUIs present a complex struc-

ture and a complex event-driven behaviour. Based on the literature, the next Section

describes which methodologies are used to model GUIs.

2.4 Types of GUI relevant Models

Model-based development of software systems, and of interactive computing sys-

tems in particular, promotes a development life cycle in which models guide the

development process, and are iteratively refined until the source codeof the system

is obtained. Models can be used to capture, not only the envisaged design, but also

its rational, thus documenting the decision process undertook during development.

Hence, they provide valuable information for the maintenance and evolution of the

systems.

User interface models can describe the domain over which the user interface

acts, the tasks that the user interface supports, and others aspects of the graphi-

cal view presented to the user [MGG+95]. The use of interface models gives an

abstract description of the user interface, potentially allowing to:

• express the user interfaces at different levels of abstraction, thus enabling

2.4. TYPES OF GUI RELEVANT MODELS 23

choice of the most appropriate abstraction level;

• perform incremental refinement of the models, thus increasing the guarantee

of quality of the final product;

• re-use user interface specifications between projects, thus decreasing the cost

of development;

• reason about the properties of the models, thus allowing validation of the

user interface within its design, implementation and maintenance processes.

One possible disadvantage of a model based approach is the cost incurred in de-

veloping the models. The complexity of today’s systems, however, means that

controlling their development becomes very difficult without some degree ofab-

straction and automation. In this context, modelling has become an integral partof

development.

However, there is currently no agreement as to which model is more com-

plete for describing user interfaces [Bum96]. In fact, it is commonly argued that

a number of models is required, each addressing specific aspects of the design

[ACRPM07, FMD97, Doh98, ABD+89]. This is also the view that this thesis will

take.

Two questions must be considered when thinking of modelling an interactive

system:

• which aspects of the system are programmers interested in modelling;

• which modelling approach should programmers use.

24CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

These two issues will now be discussed.

In order to build any kind of model of a system, the boundaries of such system

must be identified. Therefore the following kinds of models may be considered of

interest for user interface modelling:

• Domain modelsare useful to define the domain of discourse of a given in-

teractive system. Domain models are able to describe object relationships in

a specific domain but do not express the semantic functions associated with

the domain’s objects. Hence they define the objects that a user can view,

access and manipulate through the user interface.

• User modelsare a first type of model. In its simplest form, they can represent

the different characteristics of end users and the roles they are playing. Such

user models can provide a way to model preferences for users and group of

users, and are supported in some model-based user interface development

environments [BY93]. In their more ambitious form, user models attempt

to mimic user cognitive capabilities, in order to enable prediction of how

the interaction between the user and the device will progress [DBDM98,

YGS89];

• Task modelsexpress the tasks a user performs in order to achieve goals.

Task models describe the activities users should complete to accomplish their

objectives. The goal of a task model is not to express how the user interface

behaves, but rather how a user will use it. Task models are important in

the application domain’s analysis and comprehension phase because they

capture the main application activities and their relationships. Another of

2.4. TYPES OF GUI RELEVANT MODELS 25

task models applications is as a tool to measure the complexity of how users

will reach their goals. Task models can also be used as a documentation

method in order to support the users in using the system, and developers in

developing it since they are an abstract model of the interaction the system

should support;

• Dialogue modelsdescribe the behaviour of the user interface. Unlike task

models, where the main emphasis is the users, dialogue model focus on the

device, defining which actions are made available to users via the user in-

terface, and how it responds to them. These models capture all possible

dialogues between users and the user interface. Dialog models express the

interaction between human and computer. To this end, they stipulate all the

widgets the user can interact with (e.g. buttons, commands, etc.) and the

results of those interactions on the system;

• Presentation modelsrepresent the application appearance. They describe

the graphical objects in the user interface. Presentation models representthe

materialization of widgets in the various dialog states. They define the visual

appearance of the interface;

• Navigation modelsdefines how objects can be navigated through the user

interface from a user view perspective. These models represent basically a

objects flow graph with all possible objects’s navigation. This view allows

to specify which objects are made available to users. Contrary todialogue

models, the user interface response is not represented;

• And, finally, Platform modelsdefine the physical devices that are intended

26CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

to host the application and how they interact with each other.

This thesis will focus in generating dialogue models. On the one hand they are

one of the more useful type of models to design or analyse the behaviour ofthe

system. On the other hand, they are one of type of models that is closest to the

implementation, thus reducing the gap to be filled by reverse engineering.

2.5 GUI Representations

Different type of notations are being used to model graphical user interfaces be-

haviour. The next Sections describes some of these notations.

2.5.1 Grammars

A grammar defines precisely a formal language by a set of rules which canbe used

to generate all possible strings in the language [Shn82a]. Grammars are used to

analyse if an input string is a member of the language. A grammar can be defined

by a quad-tuple(N ,T ,P ,S), where:

• N is a non-empty finite set of non-terminals;

• T is a finite set of terminal symbols, disjoint fromN ;

• P is a finite set of production rules;

• S is the start symbol (a non-terminal fromN).

One of the first formalisms used to model user interfaces has been formal gram-

mars [Jac83, HT90, PP98]. They provide a intuitive way to describe the dialogue

control of an interactive system, and were a natural choice when user interface were

2.5. GUI REPRESENTATIONS 27

predominantly command based [Tau90, JBS78]. Several grammars have been used

to model user interface aspects. The VEG (Visual Event Grammar) is an example

of a grammar based approach for modelling GUIs. The language is suported by a

visual editor called Dialog Control Editor [CMP04].Multiparty Grammarsis an-

other example [Shn82b]. Considering the human-computer dialogue, this grammar

describes both the user and computer sub-languages. Each grammar non-terminal

is associated with a label. Non-terminals describing the user interaction are labeled

with H , nonterminals related to the computer are labeled withC . Therefore, this

methodology enables specifying, with a single grammar, both user and computer

languages and their relationship.

To illustrate the use of a grammar applied to user interface modelling, an ex-

ample is specified here for a login user interface. The login prompts the userto

enter its name. If the name is not valid, then the system asks the user to re-enter

it, until he enters a valid name. Then, the system requests a password and ifthe

password entered is incorrect, the user gets one more try to enter a correct one and

continue.

A grammar defining this user interface interaction is described [Jac83]. The

grammar in Figure 2.2 was extracted from this paper. The grammar is composedby

10 rules (e.g.getu, getpw, bappw, getsl, etc). Lower case names denote nonterminal

symbols, which are subsequently defined in terms of terminal symbols. Uppercase

names are terminal symbols. Some definition rules are also annotated with boolean

conditions (cond), system responses (resp), or actions (act), all placed in braces. If

a rule contains a condition, that condition must be true for the rule to be matched.

When a rule is matched, the system will display the response and perform the

28CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

actions, if any are given.

start: LOGIN
resp: "Enter name" -> getu
getu: USER
cond: not EXISTS_USER($USER)
resp: "Incorrect user name--reenter it" -> getu
getu: USER
cond: EXISTS_USER($USER)
resp: "Enter password" -> getpw
getpw: PASSWORD
cond: $PASSWORD=GETPASSWD_USER($USER)
resp: "Enter security level" -> getsl
getpw: PASSWORD
cond: $PASSWORD=GETPASSWD_USER($USER)
resp: "Incorrect password--reenter it" -> badpw
badpw: PASSWORD
cond: $PASSWORD=GETPASSWD_USER($USER)
resp: "Enter security level" -> getsl
badpw: PASSWORD
cond: $PASSWORD=GETPASSWD_USER($USER)
resp: "Incorrect password--start again" -> start
getsl: SECLEVEL
cond: $SECLEVEL>GETCLEARANCE_USER($USER)
resp: "Security level too high--reenter it" -> getsl
getsl: SECLEVEL
cond: $SECLEVEL$GETCLEARANCE_USER($USER)
act: CREATE_SESSION($USER,$PASSWORD,$SECLEVEL) -> end
getsl: ANY
resp: "Your security level is Unclassified"
act: CREATE_SESSION($USER,$PASSWORD,Unclassified) -> end

Figure 2.2: A grammar for a login user interface, from [Jac83]

As mentioned above, grammars are more oriented towards textual user inter-

faces than GUIs. Grammar based techniques are difficult to use for describing a

number of GUI aspects, for example concurrency. Grammar based specifications

also become difficult to use as user interfaces become more complex. In particular

when describing complex graphical user interfaces, such as windowedinterfaces.

2.5. GUI REPRESENTATIONS 29

This was particularly the case for direct user interfaces manipulation. In this

context, finite state machines, which were also being explored, quickly become a

popular alternative for expressing the control logic of user interfaces[Jac83].

2.5.2 Finite State Machines

Finite state machines (FSM) are widely used in modelling system behaviour, in

particular, interactive systems behaviour [SS97]. A finite state machine is com-

posed of states, actions and transitions, and can be represented using astate di-

agram [Jac83]. There are two kinds of state machines: deterministic finite state

automaton, i.e. from a state and an input symbol there is only one target state,and

nondeterministic finite state automaton, i.e. there are several possible target states

from a state and an input symbol [Was85]. Finite state machines are definedas a

tuple(I ,E ,S ,X ,Y ,T), where:

• I defines the initial state;

• E defines end states;

• S is a finite set of possible states;

• X is a finite set of inputs;

• Y is a finite set of outputs;

• T defines all transitions from a state to another through an input and output.

When modelling a GUI through a state machine, each transition is triggered by

a user input. In response to the user input, the system performs an action that can

change the state and produces outputs to the user.

30CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

As an example, in [Har80] statecharts are used to describe interactive systems.

VFSM (Variable Finite State Machine) is an extension to finite state machines for

interactive systems modelling. This approach reduces model complexity and focus

the attention on more relevant aspects of the states [SS97].

To illustrate the use of a finite state machines applied to user interface mod-

elling, an example is specified in Figure 2.3. This example is retrieved from Ja-

cob’s paper [Jac83] and models the behaviour of a login window as described in

the previous Section.

The notation follows the usual conventions. Each state is represented by a

circle. The start state is represented by astart named circle. The end state is

represented by aendnamed circle. Transitions between states are defined through

arcs. Each arc provides also the name of the input, in capital letters, and, insome

cases, a footnote containing boolean conditions, system responses, and actions.

A state transition will occur if the input is received and the condition is satisfied.

When the transition occurs, the system displays the response and performs the

action.

2.5.3 Other Models

GUI models that are based on other formal mathematical notations can also be

found in the literature (cf. [TH90]). One advantage of mathematical approaches is

that they enable the thorough verification of the validity of the properties/system

under scrutiny. One of their drawbacks is the difficulty in incorporating human

considerations in the analysis process.

A number of different formal approaches have been applied in the specifica-

2.5. GUI REPRESENTATIONS 31

Figure 2.3: Finite state machine specification of a login user interface, from [Jac83]

32CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

tion of user interfaces. As an example, a window interface has been specified by

Clement in [Cle98]. In this work Clement makes use of the VDM-SL language

[Pre98] to abstract graphical user interface aspects.

Another set of notations is used to describe graphical user interface behaviour.

Examples of these notations are Petri nets and temporal logic. A Petri net is com-

posed by places and transitions. Each place can contain a set of tokens.Transitions

move tokens from source places to target places. A transition can only occur if

its source places contain all needed tokens, and they can be accepted in the tar-

get places. Several works about user interfaces modelling with Petri nets have

been published. In [Pal94], Palanque presents an formalism based on Petri nets for

modelling event-driven interfaces. In [SRF+10] they are used to model ubiquitous

environments.

Looking at models from another perspective there are temporal models [BC96].

These models use temporal operators to describe what should or not happen in the

system. Another approach is modal action logic (MAL). MAL is a domain specific

language for describing interactive systems [CH01]. It uses the notion of interac-

tors as a mechanism for structuring the use of standard specification techniques in

the context of interactive systems specification [DH93, RFM91]. MAL is used to

specify the behavioural parts of the models.

In recent years, several flavors of extensions to UML have been proposed for

user interface modelling. UMLi is basically an extension to UML and adds sup-

port for representations commonly occurring in user interfaces [dS02]. DiaMODL

allows to model the data flow as well as the behaviour of interaction objects, by

combining a data flow oriented language with UML state charts [MT06].

2.5. GUI REPRESENTATIONS 33

A growing trend in GUI modelling is the use of markup languages. These are

typically used in the context of model-based development approaches. Anexample

of one such language is UsiXML (USer Interface eXtensible Markup Language).

UsiXML is a XML-compliant markup language that describes a user interface in-

dependently of a particular programming language, computing platform and work-

ing environment [LVM+04]. UsiXML allows for user interfaces to be modelled at

several levels of abstraction, enabling analysts, designers, programmers and end-

users, to use it during the development life cycle. The language is inspiredby the

Cameleon framework (Context Aware Modelling for Enabling and Leveraging Ef-

fective interactiON), which defines development stages for interactive applications

with multiple contexts [CCT+03].

2.5.4 Models for Quality Evaluation

In the Human-Computer Interaction area, quality of the GUI is typically addressed

by the use of empirical methods that involve testing (a prototype of) the system.

These methods work by placing users in front of a system in order to empirically

assess its usability. Analytic methods have also been proposed as a means ofreduc-

ing the effort of the analysis. These approaches work by inspection ofthe system

and range from less structured approaches such as Heuristic Evaluation [NM90]

to more structured ones such as Cognitive Walkthroughs [LPWR90]. In all cases,

these approaches are geared towards the analysis of the design of the interactive

system, and in particular aspects related to its usability.

In Software Engineering concerns are more oriented towards testing the quality

of the produced code (absence of bugs) and its correctness vis-a-vis the system’s

34CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

specification. Testing of user interface implementations has also attracted attention.

Testing typically progresses by having the program execute pre-defined test cases,

comparing the results of the execution with the results of some test oracle. In the

case of interactive systems, models of the user interface are needed bothto help the

generation of the test cases, and for the test oracle. In this area, the use of reverse

engineering approaches has been explored in order to derive such models directly

from the existing interactive systems.

A typical approach is to run the interactive system and automatically record

its states and events. Memon et al. [MBN03] describe a tool which automatically

analyses a user interface in order to extract information about its widgets,prop-

erties and values. Chen et al. [CS01] propose a specification-based technique to

test user interfaces. Users graphically manipulate test specifications represented by

finite state machines which are obtained from running the system. Systa studied

and analysed the run-time behaviour ofJavasoftware trough a reverse engineer-

ing process [Sys01]. Running the target software under a debuggerallows for the

generation of state diagrams. Then, the state diagrams can be used to examinethe

overall behaviour of a component such as a class, an object, or a method.

2.6 GUI Reverse Engineering

From the programmers perspective, as user interfaces grow in size andcomplexity,

they become a tangle of object and listener methods, usually all having access to

a common global state [Mye91]. Considering that the user interface layer of inter-

active systems is typically the one most prone to suffer changes, due to changing

requirements and request for additional features, maintenance can become a time

2.6. GUI REVERSE ENGINEERING 35

consuming and error prone task. Integrated development environments (IDEs),

while helpful in enabling the graphical definition of the interface, are limited when

it comes to the correctness of the behaviour of the interface. In this case areverse

engineering process is helpful. This Section describes methodologies andtools

to reverse engineer interactive systems both through dynamic analysis andstatic

analysis.

2.6.1 Dynamic Analysis

A typical approach using dynamic analysis is to run the interactive system and au-

tomatically record its state and events. Several works are described in the literature.

As already mentioned in Section 2.5.4, Chen et al. [CS01] propose a tool to test

user interfaces. The solution provides a visual environment for manipulating test

specifications of GUI-based applications inJava. This visual environment uses

dynamic analysis techniques to obtain information about the GUI under test in

order to generate concrete test cases. Users can then graphically manipulate these

test specifications. The prototype runs with conditions and limitations, i.e. GUI

components must be visible, initialized and defined as public variables, theJava

version should be 1.1 or higher and all GUI objects must be serializable.

Systa studies the run-time behaviour ofJavasoftware trough a reverse engi-

neering process [Sys01]. Systa’s paper discusses an experimentalenvironment that

has been built to reverse engineerJavasoftware. The static information is extracted

from the byte code and it is then analysed (see Section 2.6.2 for a discussion on

static analysis). The dynamic event trace information is generated automaticallyas

a result of running the target system against predefined execution scenarios under

36CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

a debugger. Running the target software under a debugger allows forthe genera-

tion of state diagrams. These state diagrams can be used to examine the overall

behaviour of a component such as a an object, or a single method, disconnected

from the rest of the system.

Paiva et al. [PFM07] proposes a tool to reverse engineer structuraland be-

havioural formal models of a GUI application, again by means of a dynamic tech-

nique. The application under test is automatically explored through its GUI to dis-

cover as much as possible of the GUI behaviour and to generate a corresponding

GUI model. The tool provides a front-end for automatic and manual exploration.

Manual exploration mode is used to overcome situations when the automatic ex-

ploration process cannot progress because of dependencies that itcannot discover

or because of functionalities that might be unaccessible (e.g. because they are

protected by a password). The model, automatically generated by the reverse en-

gineering process, has to be validated and completed manually so that it can be

used as a test oracle in a model-based testing setting. From this revised model,ab-

stract test cases are generated and executed over the GUI to check theconformity

between the model and the implementation with the help of the Spec Explorer tool

[VCG+08].

2.6.2 Static Analysis

As an alternative to the dynamic analysis, some researches apply statical analysis.

The reverse engineering process is based on analysis of the application’s source

code, instead of its execution. One such approach is the work by d’Ausbourg et al.

[dDR96] in reverse engineering UIL code (User Interface Language – a language to

2.7. CONCLUSIONS 37

describe user interfaces for the X11 Windowing System, see [HF94]). In this case,

models are created at the level of the events that can happen in the components

of the user interface (e.g., pressing a button). The work consists of generating

and analysing models of behaviour from the UIL specification of the system.The

specification is produced by a designer using generator tools. The objective is to

design and implement a model builder in order to analyse and verify the derived

model. This model is used also to generate test cases in order to test the application

against its specification.

Moore [Moo96] describes another technique to partially automate reverseen-

gineering character based user interfaces of legacy applications. Theresult of this

process is a model for user interface understanding and migration. The work shows

that a language-independent set of rules can be used to detect interactive compo-

nents. The first implemented step is to identify the User Interface Subset (UIS).

Essentially, the UIS includes all routines and data structures that are affected by

the user interface. The next step enables the identification of data structures that

are related to input/output. Finally, rules are used to identify statically user in-

terface components from legacy code. Following these rules and procedures, the

approach helps in detecting the functionality of the existing user interface.

2.7 Conclusions

This Chapter introduced Reverse Engineering, a technique which is useful in sev-

eral software engineering tasks like documentation, maintenance and reengineer-

ing. Two kinds of reverse engineering processes were described: static and dy-

namic analysis. Several approaches exist, each aiming at particular systems and

38CHAPTER 2. REVERSE ENGINEERING APPLIED TO GUI MODELLING

objectives. One common trend, however, is that the approaches are notretargetable,

i.e. in all cases it is not possible to apply the approach to a different language than

that it was developed for. Considering the plethora of technological solutions cur-

rently available to the development of GUIs, retargetability is an helpful/important

feature. As a solution, this research proposes that static analysis can beused to

develop a retargetable tool for GUI analysis from source code.

Several models may be considered for user interface modelling.Task models

describe the tasks that an end user can performs.Dialogue modelsrepresent all

possible dialogues between users and the user interface.Domain modelsdefine

the objects that a user can view, access and manipulate through the user interface.

Presentation modelsrepresent the application appearance.Platform modelsdefine

the physical system used to host the application. The goal of the approach will be

the generation ofdialogue models.

As described in this Chapter, grammars were very common to specify command-

based user interfaces. However they are so not well adapted to model concurrency

of the modern windowed systems. A grammar-based specification does not rep-

resent state explicitly. Without an explicit representation of state, it is hard to

represent the state viewed by the user. State machines are another used interface

models. State-based specifications are better adapted to model GUIs application.

With the above in mind, this thesis is about the development of tools to auto-

matically extract models from the user interface layer of interactive computingsys-

tems source code. To make the project manageable the thesis will focus on event-

based programming toolkits for graphical user interfaces development (Java/Swing

being a typical example).

Chapter 3

An Approach to GUI Reverse
Engineering

This thesis presents work on interactive systems analysis through reverse engineer-

ing of GUI (see [SCS06a, SCS06c, SCS06b, SCS09, SCS, SCS10a, SCS10b]). The

goal is to produce a fully functional reverse engineering prototype tool. The tool

must be able to derive user interface models of interactive applications. Therefore,

the research revolves around the three following identified areas:

1. GUI reverse engineering;

2. GUI modelling;

3. Model-based GUI reasoning.

This Chapter describes an approach to GUI reverse engineering. Theapproach

makes use of static analysis as in [Moo96]. When compared to their work, thecur-

rent reverse engineering approach aims to be retargetable to differentprogramming

languages and not to be limited to a particular implementation technology.

39

40 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Figure 3.1: A GUI application

Section 3.1 describes an example of an interactive application to be analysed.

Section 3.2 describes an approach for GUI abstraction. Section 3.3 provides details

about a methodology for GUI extraction from source code. Section 3.4 presents

a methodology for a retargetable process. The behavioural models’ generation

approach is defined in Section 3.5. Finally, the last Section presents some conclu-

sions.

3.1 An Interactive Application as Running Example

Throughout this document we will make use of interactive applications as running

examples. The first application, namedAgenda, models an agenda of contacts: it

allows users to perform the usual actions of adding, removing and editing contacts.

Furthermore, it also allows users to find a contact by giving its name. The applica-

tion consists of four windows, namedLogin, MainForm, Find andContacEditor,

as shown in Figure 3.1.

We will use this example to present our approach to GUI reverse engineering.

3.1. AN INTERACTIVE APPLICATION AS RUNNING EXAMPLE 41

Let us discuss it in detail. The initialLogin window (Figure 3.1, top left window)

is used to control users’ access to the agenda. Thus, a login and password have

to be introduced by the user. If the user introduces a valid login/passwordpair

and presses theOk button, then the login window closes and the main window of

the application is displayed. On the contrary, if the user introduces an invalid lo-

gin/password pair, then the input fields are cleared, a warning message isproduced,

and the login window continues to be displayed. By pressing theCancelbutton in

theLoginwindow, the user exits the application.

Authorized users, can use the main window (Figure 3.1, top right window) to

find and edit contacts (Find andEdit buttons). By pressing theFind button in the

main window, the user opens theFind window (Figure 3.1, bottom left window).

This window is used to search and obtain a particular contact’s data given itsname.

By pressing theEdit button in the main window, the user opens theContactEditor

window (Figure 3.1, bottom right window). This last window allows the edition

of all contact data, such as name, nickname, e-mails, etc. TheAdd andRemove

buttons enable edition of the list of e-mail addresses of the contact. If thereare no

e-mails in the list then theRemovebutton is automatically disabled.

Until now, the structure and behaviour of this interactive application has been

informally described. Such descriptions, however, can be ambiguous and often

lead to different interpretations of what the application should do. In order to un-

ambiguously and rigorously define an application, a model may be used. Moreover,

by using a model to define the interactive application, techniques can be usedto

refactor, manipulate and test such applications. Figure 3.2 shows a possible model

to specify the behaviour of the running example: a finite state machine as presented

42 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

in Section 2.5.2. In this machine, states represent the GUI idle periods, i.e. when

there are no relevant events or actions being executed (filled boxes such as state1,

state2, etc), and the transitions between states are defined by the events associ-

ated with the GUI objects. These are modeled in figure 3.2 by arrows (e.g. the

labeled arrowPress “Ok” button and valid user/pass). Moreover, the GUI actions

executed when a specific event occurs are represented using white boxes (e.g. the

Open “MainForm” windowbox).

This model is less verbose than our initial informal description and easier to

understand. For example, it can be seen that the action performed when the Ok

button is pressed defines a transition in the machine to the same state if the user-

name/password pair is not valid, or into a different state, otherwise.

Considering the case where a valid pair username/password was given,then

the transition labeled withPress “Ok” button and valid user/passmoves the sys-

tem to a different state (state2 of theMainForm window) and two GUI actions

are executed: the close of theLogin window, and the opening of theMainForm

window.

As an illustration, the GUI model in Figure 3.2 (apart from some beautifying)

was automatically generated from the source code of theAgendaapplication by the

tool developed in this thesis.

Well-known techniques can be used to detect properties of the interface.For

example, graph-based algorithms may be applied to compute if all states are ac-

cessible from the initial one, in order to detect whether a particular window of the

application will ever be displayed or not. Valid or invalidsentencesof the language

may be also defined by the machine to be used as test cases. These test cases can

3.1. AN INTERACTIVE APPLICATION AS RUNNING EXAMPLE 43

Figure 3.2: Agenda’s GUI behavioural model automatically produced from its
source code

44 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

be used to prove more advanced properties of the interface, as will be discussed in

Chapter 5.

3.2 GUI Reverse Engineering Approach

In order to extract a behavioural model (for example, the one described in Figure

3.2) from source code, we follow the reverse engineering approach inFigure 3.3.

The goal is to be able to extract a range of models from the source code of

interactive systems, focusing on models that represent the behaviour ofthe GUI.

That is, models defining which are the graphical components of a GUI and their

relationship, when can a particular GUI event occurs, which are the related condi-

tions, which system actions are executed, and which GUI state is generatednext.

This type of models has been choosen to enable reasoning about GUI models in

order to analyse aspects of the original application’s behaviour.

To define such GUI models, a small set of abstractions is used for the inter-

actions between the user and the system. To illustrate this set of abstractions,the

source code of theLogin window of theAgendaapplication described in Section

3.1, will be used. Figure 3.4 contains theJavasource code of theLogin window.

This is essentially the same code already described in Section 1.1 (see Figure1.2).

As explained, this code was written in theJavaprogramming language mak-

ing use of the Swing class library which allow programmers to easily develop the

graphical user interface. A detailed description of the code has alreadybeen pro-

vided. In brief, constructors are used to create widgets, methods are used to set

attribute values, and event listeners are attached to widget events. Eventlisteners

are the methods that implement the behaviour of the user interface.

3.2. GUI REVERSE ENGINEERING APPROACH 45

Figure 3.3: The reverse engineering process

JButton Ok = new JButton();
JButton Cancel = new JButton();
Ok.setText("Ok");
Cancel.setText("Cancel");
JTextField login = new JTextField();
JTextField password = new JTextField();
Ok.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
if (validLogin(login.getText(), password.getText()))
{ new MainForm().setVisible(true);
this.dispose();

}
else showMessageDialog(this,"not valid","Login",0);
}});

Figure 3.4: TheAgenda’s Loginwindow source code

46 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Now, a set of abstractions will be defined over the above code relating it tothe

four types of interactions between the user and the system, as follows:

• User input: Any data inserted by the user.

In this particular case, abstractions must be defined for values introduced by

users through textfields. Considering the code fragment, this can be done

by extracting the instructions related to textfield input (the methodgetText()

returns the textfield content):

JTextField login = new JTextField();
login.getText();

and

JTextField password = new JTextField();
password.getText();

• User selection: Any choice that the user can make between different options,

such as buttons instructions.

JButton Ok = new JButton();
JButton Cancel = new JButton();

• User action: Any GUI action that is performed as the result of user input or

user selection, such as the listener related to theOkbutton in the example.

public void actionPerformed(ActionEvent evt) {
if (validLogin(login.getText(), password.getText()))
{ new MainForm().setVisible(true);

this.dispose();
}
else showMessageDialog(this,"not valid","Login",0);
...
}});

3.2. GUI REVERSE ENGINEERING APPROACH 47

In this case, the code contains two GUI actions that are executed when users

press theOk button. First, theLogin window is closed and, then, a new

window form is opened when the pair username/password is valid:

new MainForm().setVisible(true);
this.dispose();

and if the pair is not valid, a message dialog is displayed:

showMessageDialog(this,"not valid","Login",0);

• Output to User: Any communication from the application to the user, such

as a user dialogue. As an example, if the user does not provide a valid login

and password then a message dialog is displayed.

showMessageDialog(this,"not valid","Login",0);

• GUI control flow: The control structure needs also to be identified, i.e. user

input, user selection, user action, or user output may be related to particular

conditions. As an example, the actions performed when the user presses the

Okbutton are only executed if the following condition is true:

validLogin(login.getText(), password.getText())

From the user interface source code of an interactive system, and this set of ab-

stractions, our research aims to generate its GUI behavioural models. The method-

ology explained in this Section helps to identify models for an interactive appli-

cation. This includes identifying data entities and actions that are involved in the

graphical user interface, as well as relationships between user interface compo-

nents.

48 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

3.3 GUI Source Code Extraction

The GUI source code extraction process starts by defining/reusing a front-end for

the programming language of the interactive application’s source code. Modern

parser generators automatically produce a parser and the construction of the Ab-

stract Syntax Tree (AST) given the context-free grammar defining the program-

ming language of the source code. Using this front-end, an AST is obtainedfrom

the source code of the system for which the user interface related code isto be

analysed. Then, the process needs to identify all fragments in the AST thatare

members of the GUI layer. To achieve this the set of abstractions describedin the

previous Section is used.

In order to extract user interface relevant data from the AST, a slicing function

is proposed [Tip95, Luc01] which isolates the GUI sub-program from the entire

program. The straightforward approach would be to define a explicit recursive

function that traverses the AST of the program and returns the GUI sub-trees.

However, a typical grammar/AST for a real programming language (likeJava)

has more than one hundred of non-terminal symbols and productions [AV05]. As

a result, writing a function to traverse the AST forces the programmer to havefull

knowledge of the grammar and to write a complex and long mutually recursive

function.

We propose the use of an alternative approach by using the strategic program-

ming. In this style of programming, there is a pre-defined set of (strategic) generic

traversal functions that traverse any AST using different strategies.Thus, the pro-

grammer is able to focus in the nodes of interest only. In fact, the programmer

3.4. RETARGETABLE METHODOLOGY 49

does not need to have a deep knowledge of the entire grammar/AST, but only of

those parts he is interested in (the GUI sub-language in this case). The goal for

strategic programming is to be reused across different programming languages and

paradigms. Generic techniques can be used to work withanyAST and not with a

particular one only.

Thus, for our reverse engineering approach, we heavily rely on two language-

independent techniques, namely code slicing [Tip95] and strategic programming

[Vis03a, VS04].

3.4 Retargetable Methodology Through Generic Program-
ming

Generic programming aims at the definition of algorithms and data structures at an

abstract or generic level [DJ05]. Code slicing and strategic programmingare two

forms of generic programming and are both based on program dependency graphs.

This Section describes these techniques in more detail.

3.4.1 Program Dependency Graph

A program dependency graph for a programP is a mathematical abstraction,

namely a graph, and consists of a set of vertices, and a set of edges. Each edge con-

nects two vertices in the graph [HR92]. In other words, a graph is a pair(V ,E),

whereV is a finite set andE is a binary relation onV . V is called a vertex

set whose elements are called vertices.E is a collection of edges, where an edge

is a pair(u, v) with u,v in V . Graphs are directed or undirected. In a directed

graph, edges are ordered pairs, connecting a source vertex to a target vertex. In an

50 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

undirected graph edges are unordered pairs of two vertices.

A program dependency graph is a directed graphG whose vertices represent

the assignment statements and predicates ofP . In addition,G includes a special

entry vertex which is the source of the dependency graph. The edges of the graph

represent control and data dependence. The intuitive meaning of a dependence

edge from verticeu to verticev is the following:

• if the program component represented by verticeu is evaluated/validated

during program execution, then, assuming that the program terminates nor-

mally, the component represented byv will eventually execute;

• if the verticeu is not evaluated/validated, then the component represented

by v will never execute.

Figure 3.5 contains the program dependency graph of theLogin source code

shown in Figure 3.4. For example, the statementnew MainForm().setVisible(true);

will be executed only if expressionvalidLogin(login.getText(), password .getText())

is valid. Furthermore, this last statement will be executed only if the following

statements have been previously executed:JTextFieldlogin = newJTextField();

JTextFieldpassword = newJTextField(); andOk .addActionListener . These

dependencies can be identified in the graph.

Program dependency graphs are the basis for code slicing which is discussed

in the next Section.

3.4. RETARGETABLE METHODOLOGY 51

Figure 3.5:Loginwindow’s program dependency graph

52 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

3.4.2 Code Slicing

Code slicing is a form of generic programming. Basically, a slicing process dis-

cards those parts of the program which can be determined to have no effect upon

the semantics of interest. Hence, a slice is a subset of program statements that pre-

serves a predefined subset of the original behaviour of the program.Applications

of program slicing include software testing, program debugging, measurement, re-

verse engineering, program restructuring, etc. Most of the applications for slicing

are related to software testing and debugging, and to software maintenance tasks

[Tip95, Luc01].

In practical terms, the objective of program slicing is to remove statements

from a program that do not affect the values of variables at a point ofinterest.

Hence, the first step in code slicing is to identify the point of interest (i.e. a state-

ment in the program to be sliced) and a set of variables of interest. This is called

the slicing criterion. A program slice is then executed by discarding statements

that can not affect (or can not be affected by, depending on the typeof slicing) the

values of the specified variables at the given point of interest.

There are two main types of code slicing, backward and forward slicing [HR92].

Backward slicing is executed by traversing backwards the code from thepoint of

interest finding all statements that are related to the specified variables at thepoint

of interest and removing the other statements. Conversely, forward slicingis exe-

cuted forward from the point of interest finding all statements that can be affected

by changes to the specified variables at the point of interest.

Figure 3.6(a) highlights in bold the fragments of the login source code that

3.4. RETARGETABLE METHODOLOGY 53

Figure 3.6: Example of code slicing (backward (a) and forward (b) slicing)

are in the backward slice with respect to the statement:Ok .addActionListener().

And Figure 3.6(b) highlights in bold the fragments of the same program that are in

the forward slice with respect to statement:JButtonOk = newJButton().

3.4.3 Strategic Programming

In the two previous sections we have discussed two software engineeringtech-

niques that will help us to automatically extract the GUI model from the source

code of an application. Now, we present a generic technique to traverseanyAST

representing the source code expressed inanyprogramming language.

Strategic programming is another form of generic programming and is useful

for program construction, allowing a high level of composability and traversal con-

trol through strategic functions [VS04]. For example, strategic programming can

be used to manipulate large heterogeneous data structures like an AST representing

a Javaprogram [Vis03b, Vis03a]. Strategic programming has been defined in dif-

ferent programming paradigms [LV03], and can work on different datatypes (e.g.,

lists, binary trees, ASTs) providing the right setting to express generic traversal

54 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

functions.

Strategic programming follows two programming concepts:dynamic type-

case, andone-step traversal:

• Dynamic type-caseallows for the computation of both generic behaviour

and type-specific behaviour: depending on the type of input data, eitherthe

type-specific behaviour is executed, or the generic default behaviouris;

• One-step traversalmakes generic traversals through the use of combinators.

To implement the above two concepts in strategic programming, several com-

binators are offered. The mathematical representation of some of the basics com-

binators proposed by strategic programming are:

• id - return input term unchanged;

• sequence(f,g)- applyf to the input term, andg to the result of that;

• all(f) - applyf to all immediate subterms of the input term;

• fail - react to any input term with failure;

• choice(f,g)- dynamic type-case combinator used to applyf to the input term.

If it fails, apply g instead;

• one(f)- applyf to a single immediate subterm of the input term;

• adhoc(f,g)- dynamic type-case combinator used to applyg to the input term

if its type matches, otherwisef is applied;

• apply(f,t)- apply strategyf to input termt .

3.4. RETARGETABLE METHODOLOGY 55

Making use of these combinators, strategic programming enables the definition

of different types of generic traversals. Examples of generic traversals are:

• bottomup(f) = sequence(all(bottomup(f)),f)

• topdown(f) = sequence(f,all(topdown(f)))

The composed combinatorsbottomupand topdownmodel full bottom-up, or

top-down, recursive traversal schemes, respectively. They applytheir argument

strategy at the root of the incoming data, and at all its immediate and non-immediate

components.

These combinators can be used to traverse particular structures passingas pa-

rameter a working function. For example, theadhoccombinator can be used to

create thenodeActionworking function, and pass it as argument to thebottomup

combinator:

• nodeAction = adhoc(id , λ x · .x > 0)

• searchPositives = bottomup(nodeAction)

The nodeActionfunction can be executed with a float number as parameter,

returning the true boolean value if the parameter is positive and false otherwise.

When applied to any other input term, the function returns the input term un-

changed. Thus, the traversalsearchPositivesworks on input terms of any type.

This composed combinator follows a bottom-up traversal scheme and, through the

nodeActionworking function, transform numerical values into boolean values, i.e.

true value if positive and false value otherwise.

56 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

The above example serves to illustrate dynamic type-case and one step traversal

concrete concepts. In this particular case, the type-case concept is specified through

theadhoccombinator, and the one step traversal concept is defined with the use of

theall andsequencecombinators.

Strategic programming can be easily used with the object-oriented or func-

tional programming paradigms. Two example of application of strategic program-

ming within these programs paradigms are theTOM [Mac10] orStrafunskilibraries

[LV03], respectively.TOM is a framework for programming rule-based systems,

allowing the manipulation of any structure.TOM incarnates the strategic paradigm

through an extension to theJavaprogramming language. All strategies defined in

this Section are implemented inTOM. Strafunskiis a functional software bundle

that also aims to provide generic programming and language processing capabili-

ties, in this case for theHaskellprogramming language.

3.4.4 Case Study: Regular Expressions Processing withTOM

As an illustrative case study the implementation, usingTOM, of an interpreter to

process and normalize regular expressions will now be described.

Regular Expressions are used in the recognition of character patterns and are

composed by the following constructors:

• Sequence of expressions:ab, abc;

• Alternative combinator (i.e.|), which defines the occurence of one of two

expressions:a|bc, ab|c;

• Optional combinator (i.e.?), which defines the occurrence of the expression

3.4. RETARGETABLE METHODOLOGY 57

between zero or one times:a?, (abc)?;

• Star combinator (i.e.*) defining that there are zero or more occurrences of

an expression:a*, a|b*, (abc)*;

• Plus combinator (i.e.+) defining that there are one or more occurrences of

an expression:a+, a(bc)+;

• Terminal symbols:(,), *, +, ?, |, ’a’, ’b’, ’c’, ... , ’z’ andǫ.

Examples of regular expressions are: a?b+c*, (abc)?(def)*g+, (aaa)*b+c*, etc.

To normalize a regular expression, all occurrences of optional combinatorsa? must

be transposed to the expressiona |ǫ, whereǫ is the empty expression.

To implement an interpreter for regular expressions processing and normaliza-

tion in TOM, a data type must be defined for the language to be used. Figure 3.7

provides a data type defined inTOM for regular expressions. The list of construc-

tors from the above definition of regular expressions is transposed in thesame order

to the data type list in Figure 3.7. For example, the optional and star combinators

are implemented with theOpt andStar data types.

RegExp =
Seq(s1:RegExp , s2:RegExp)

| Alt(a1:RegExp , a2:RegExp)
| Opt(o:RegExp)
| Star(s:RegExp)
| Plus(p:RegExp)
| Literal(c:String)
| Empty()

Figure 3.7: Regular expression data type inTOM, adapted from [Mac10]

58 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Finally, TOM strategies can be used to implement a solution for regular ex-

pression processing and normalization. To normalize any regular expressions, the

solution needs to consider all occurrence of optional combinator (Opt) replacing

them by an (Alt). Thus, a full traversal is needed. Figure 3.8 provides a possi-

ble solution. This solution transposes all occurrences of theOpt(o)combinator to

Alt(Empty(),o). This is done through the following instruction:

visit RegExp {Opt(o) -> {return ‘Alt(Empty(),o)}};

A full traversal bottom-up approach making use of theBottomUpstrategy, ap-

pliesvisit to all nodes in the expression:

‘BottomUp(Norm()).visit(rg);

However, the top-down scheme can also be applied, because both provide a full

traverse over regular expressions specification.

%strategy Norm() {
visit RegExp{
Opt(o) -> {return ‘Alt(Empty(),o); }

}
}
‘BottomUp(Norm()).visit(rg);

Figure 3.8: TOM strategy that normalizes a regular expression, adapted from
[Mac10]

3.4.5 Retargetable Methodology

In this thesis we investigate the use of the presented (generic) programming method-

ologies in order to reason about interactive applications implemented in different

programming languages (i.e,Java, GWT, andHaskell). This approach proposes to

3.5. BEHAVIOURAL MODELS GENERATION 59

make use of generic programming and to apply it to different programming lan-

guages, i.e.Java (Swingor GWT toolkit) and Haskell programming languages

[LEW+02, JHA+99, HT07]. The methodology will enable us to extract graphi-

cal user interface AST fragments through code slicing and strategic programming.

Following a retargetable methodology, we will able to extract GUI fragments from

any AST, i.e.Java/Swing, WxHaskell, C#, etc. This will allows us to identify all of

the program fragments that interacts with the graphical user interface.

Strategic programming and code slicing are techniques easily retargetable to

different programming languages. The next Chapter, the application of code slicing

and strategic programming processes will be described in more detail.

3.5 Behavioural Models Generation

After defining a methodology to extract GUI related data, it is important to generate

behavioural models. The approach proposes the generation of several kinds of

models. In this Section, different models are enumerated. A detailed description

of the different models, with examples of their application is provided in Chapter

4, where the GUISURFERtool will be discussed.

First, by using theHaskellprogramming language, the approach aims to model

GUI behaviour through a specification which maps events and related conditions

to a list of GUI actions references. This list of actions needs also to containother

relevant information, such as the window name and initial state, the window close

and end application actions references, as well as new windows action references.

Another notation used for describing interactive systems is the language of

MAL interactors. It is a domain specific language and includes the notion of inter-

60 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

actors as a mechanism for structuring the use of standard specification techniques

in the context of interactive systems specification [DH93].

For a visual experience and easier reasoning, event-flow graphs and finite state

machines will be used. Event-flow graph will enable the abstraction of all theinter-

face widgets and their relationships, and the definition of all possible interactions

by specifying the events in a GUI system [MBN03]. For every evente, an event

flow graph identifies all the events that can follows evente. Finite state machine

may be used to model GUI behaviour considering GUI events, related conditions,

system actions execution, etc. This type of model has been choosed in order to be

able to reason about, and test, the dialogue supported by a given GUI implementa-

tion.

3.6 Conclusions

This Chapter described the main building blocks of our retargetable approach to

graphical user interface reverse engineering. Behavioural models may be gener-

ated which capture graphical user interface behaviour by detecting components in

the user interface through source code analysis. These components include user

interface objects, events, actions and respective control flow. The technique ex-

plained will help in identifying graphical user interface abstractions from source

code.

The contributions related to this Chapter were described in the following papers

presented at international and national conferences:

• Combining Formal Methods and Functional Strategies Regarding the Re-

verse Engineering of Interactive Applications, J.C.Silva, J.C. Campos, J.

3.6. CONCLUSIONS 61

Saraiva, presented at the XIII International Workshop on Design, Specifi-

cation and Verification of Interactive System (DS-VIS 2006), Dublin, Irland,

2006;

• Models for the Reverse Engineering of Java/Swing Applications, J.C.Silva,

J.C. Campos, J. Saraiva, presented at the 3rd International Workshop on

Metamodels, Schemas, Grammars and Ontologies for Reverse Engineering

(ATEM 2006), Genova, Italy, 2006;

• Engenharia Reversa de Sistemas Interactivos Desenvolvidos em Java/Swing,

J.C.Silva, J.C. Campos, J. Saraiva, presented at the “Segunda Conferência

Nacional em Interacç̃ao Pessoa-Ḿaquina” Universidade do Minho (Interacção

2006), Braga, Portugal, 2006.

62 CHAPTER 3. AN APPROACH TO GUI REVERSE ENGINEERING

Chapter 4

GUISURFER: A Reverse
Engineering Tool

This Chapter describes GUISURFER, a tool developed as a testbed for the reverse

engineering approach proposed in the previous Chapter. The tool automatically

extracts GUI behavioural models from the applications source code, andautomates

some of the activities involved in the analisys of these models.

This Chapter is organized as follows: Section 4.1 describes the architecture

of the GUISURFER tool. Section 4.2 provides details about its implementation.

Section 4.3 presents models used within the tool for GUI reverse engineering. A

description about the retargetability of the tool is provided in Section 4.4. Finally,

Section 4.5 presents some conclusions.

4.1 The Architecture of GUISURFER

One of GUISURFER’s development objectives is making it as easily retargetable as

possible to new implementation languages. This is achieved by dividing the pro-

cess in two phases: a language dependent phase and a language independent phase,

63

64 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

as shown in Figure 4.1. Hence, if there is the need of retargeting GUISURFERinto

another language, ideally only the language dependent phase should beaffected.

Figure 4.1: GUISURFERarchitecture and retargetability

To support these two phases process, the GUISURFERarchitecture is composed

of four modules:

• FileParser, which enables parsing the source code;

• AstAnalyser, which performs code slicing;

• Graph, which support GUI behavioural modelling;

• GUIAnalysis, which also support also GUI behavioural modelling;

TheFileParserandAstAnalysermodules are implementation language depen-

dent. They are the front-end of the system. TheGraphandGUIAnalysismodules

are independent of the implementation language.

4.1. THE ARCHITECTURE OFGUISURFER 65

4.1.1 Source Code Slicing

The first step GUISURFER performs is the parsing of the source code. This is

achieved by executing a parser and generating an abstract syntax tree. An AST

is a formal representation of the abstract syntactical structure of the source code.

Moreover, the AST represents the entire code of the application. However, the

tool’s objective is to process the GUI layer of interactive systems, not the entire

source code. To this end, GUISURFERwas built using two generic techniques (see

Chapter 3): strategic programming and code slicing. On the one hand, the use

of strategic programming enables transversing heterogeneous data structures while

aggregating uniform and type specific behaviours. On the other hand, code slicing

allows extraction of relevant information from a program source code, based on

the program dependency graph and a slicing criteria.

4.1.2 GUI Behavioural Modelling

Once the AST has been created and the GUI layer has been extracted, GUI be-

havioural modelling can be processed. It consists in generating the userinterface

behaviour. The relevant abstractions are user inputs, user selections, user actions

and output to user. In this phase, behavioural GUI models are created.Therefore,

a GUI intermediate representation is created in this phase (see Section 4.3.1).

4.1.3 GUI Reasoning

It is important to perform reasoning over the generated models. For example,

GUISURFERmodels can be tested by using theHaskell QuickChecktool [CH00],

a tool that testsHaskellprograms automatically. Thereby, the programmer defines

66 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

certain properties functions, and afterwards tests those properties through the gen-

eration of random values.

GUISURFERis also capable of creating event-flow graph models. Models that

abstract all the interface widgets and their relationships. Moreover, it also features

the automatic generation of finite state machine models of the interface. These

models are illustrated through state diagrams in order to make them visually ap-

pealing. The different diagrams GUISURFERproduces are a form of representation

of dialog models.

GUISURFERs graphical models are created through the usage ofGraphViz, an

open source set of tools that allows the visualization and manipulation of abstract

graphs [EGK+01]. GUI reasoning is also performed through the use ofGraph-

Tool1 for the manipulation and statistical analysis of graphs. In this particular case

an analogy is considered between state machines and graphs.

4.2 TheGUISURFERImplementation

The four architectural modules/components identifed in Section 4.1 (see Figure

4.1), give rise to GUISURFER’s four software components (cf. filled boxes in

Figure 4.1). GUISURFER’s executables areFileParser, AstAnalyser, GuiAnalysis

andGraph.

In this Section, we use theLogin’s Agendawindow example (cf. Figure 4.2)

to outlines some of the more important features of each executable. Appendix

B contains the complete script to generate and analyse all available behavioural

models for theAgendaapplication. The behavioural model on the right side of

1see, http://projects.skewed.de/graph-tool/, last accessed 27 November, 2010

4.2. THEGUISURFERIMPLEMENTATION 67

Figure 4.2 is one result obtained through the execution of GUISURFER, giving the

source code shown in Figure 1.3 as input.

(a) A Loginwindow (b) Login’s behaviour model

Figure 4.2: GUISURFERapplied to aLoginwindow

4.2.1 Parsing the Source Code

TheFileParsermodule is used to parse source code. This tool is language depen-

dent. To implement this first tool, a parser for the programming language being

considered is used.

GUISURFER has been used to reverse engineerJava and Haskell programs

written using the (Java) Swing, GWT, and (Haskell) WxHaskellGUI toolkits. For

the Java/SwingandGWT toolkits, the SGLR parser has been applied whose im-

plementation can be accessible via the Strafunski tool [LV03]. For theWxHaskell

68 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

toolkit the Haskell parser that is included on theHaskell standard libraries was

used.

4.2.2 Extracting the GUI Layer

TheAstAnalysercomponent implements a GUI code slicing process using strategic

programming. This module is used to extract the GUI layer from the AST produced

by the compiler. TheAstAnalyseris a language dependent tool used to slice an

AST, considering only it graphical user interface layer. Part of this tool is easily

retargetable, however most of the tool needs to be rewritten to consider another

particular programming language. This happens because programming languages

follows different programming paradigms.

TheAstAnalysertool is composed of a slicing library, containing a generic set

of traversal functions that traverse any AST. This library is composed by the files

SlicingX.hsandGuiX.hs.

• SlicingX.hscontains the generic slicing functions (which are language inde-

pendent). For example, a function to slice an AST to find all elements that

match a specific constructor given as a parameter;

• GuiX.hsuses the general slicing functions fromSlicingX.hsand contains

more specific language dependent slicing functions.

This tool must be used with three arguments, i.e. the AST, the entry point in

the source code (e.g., the main method forJavasource code), and a list with all

widgets to consider during the GUI slicing process.

As an illustrative example, the following function call enables us to extract the

4.2. THEGUISURFERIMPLEMENTATION 69

GUI layer fromLogin.java’s AST (Login.java.astfile), starting the slice process at

themainmethod, extractingJButtonrelated data (Java/Swingconstructor for but-

ton creation), and four otherJava/Swinginstructions:exit, showMessageDialog,

dispose, andsetEnabled.

>AstAnalyser
"Login.java.ast"
"main"
"JButton,setEnabled,exit,showMessageDialog,dispose"

By executing this command, the function generates two filesinitState.guiand

eventsFromInitState.guiwhich contain the GUI’s initial state and all possible GUI

events from the initial state, respectively.

GUISURFER has been implemented in theHaskell programming language.

The followingHaskellprototype function is one of the main functions of theGUI

code slicinglibrary:

slice : :AST → Const → InitPos → SliceType →

(Const ×AST × InitAST × EndAST)∗ (4.1)

This function extracts a list of fragments in a particular AST. Theslice function is

a generic function which is configured with the AST and the constructor pattern to

be extracted. Basically, theslicefunction receives four parameters:

• AST: the abstract syntax tree;

• Const: the AST constructor to be used to extract fragments by pattern match-

ing;

• InitPos: the initial position in the AST for the code slicing process;

70 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

• SliceType: the slice type which can be1 or 2. The type 1 code slicing extracts

the first pattern matching. Type 2 slicing continues within extracted sub

trees.

Theslice function returns all fragments in the AST that match the giving con-

structor.

As an example, to extract all buttons’s definitions from aJava/Swingsource

code’s AST, the following instruction could be executed:

slice javaAST ‘‘JButton’’ 1 1

For aWxHaskellsource code’s AST, the same action could be executed as:

slice wxHaskellAST ‘‘button’’ 1 1

whereJButtonandbuttonare constructors which create buttons in theJavaand

Haskellprogramming languages, respectively.

At this point, a set of AST fragments can be obtained that just consists of

instructions that affect the user interface as seen above. Anchor points for these

fragments are detected by syntactic pattern matching.

To explain the developed GUI code slicing module in more detail, let us con-

sider theJava/Swing Loginclass fragment described in Figure 4.3, which defines a

new button through theJButtonclass:

Figure 4.4 describes the fragment of the AST obtained after parsing theLogin

source code.

The AST described in Figure 4.4 uses several constructors. For example, the

ClassDecEconstructor is used to declare theLogin class. TheStatemconstructor

is used to define a statement. Methods are specified through theDmthconstructor.

4.2. THEGUISURFERIMPLEMENTATION 71

public class Login extends javax.swing.JFrame {

public Login() {
initComponents();
}

private void initComponents() {
add = new JButton();
...
}
...
}

Figure 4.3:Java/Swing Loginclass

Figure 4.4: Fragment of theLogin’s AST

72 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

In this case, the use of theDmthconstructor is used to define theinitComponents

method.

The knowledge of this particular fragment of theJavaAST, enables us to define

a function that, given the complete AST, extracts allJButtonobject assignments:

• First, we need to collect the list of assignments in the source code. This

function is defined inHaskellmaking use of theslicefunction (cf. definition

4.1) in order to traverse the AST. Next, the slicing parameter to be used

while traversing the AST needs to be defined. This parameter identifies the

tree nodes where work has to be done. In the completeJavaAST the nodes

of interest correspond to the constructorEassign (see AST in Figure 4.4).

Thus, our slice function simply returns a singleton list with the left-hand side

of the assignment and the respective expression.

This function, namedstatementsAssignment, looks as follows:

statementsAssignment ast = slice ast "Eassign" 1 1

• Having collected the list of assignments the process can now filter that list

again in order to produce the list containing allJButtonsassignments in the

Java/Swingcode. The function to extractJButtonassigments becomes:

statementsButtons subast = slice subast "JButton" 1 1

As result, the fragment of the AST, provided in Figure 4.5, is obtained which

contain theJButtonobject assignment. This fragment correspond to the fol-

lowing Javacodeadd = newJButton();

4.2. THEGUISURFERIMPLEMENTATION 73

Figure 4.5:JButtonfragment of theLogin’s AST

Another important task is the extraction of the list of instructions executed from

a particular source code anchor point. In others words, to implement this reverse

engineering process from source code the tool must extract the sequence of instruc-

tions executed when a particular event occurs. This information is obtainedthrough

code slicing within a particular instructions block and considering all external in-

vocations. With this particularJavaparser, external invocations are identified with

the Emthconstructor. Hence,Javaexternal invocations are extracted by pattern

matching against theEmthconstructor. The function implemented to extract all

external invocations from aJavaAST is:

statementsExternalMethod ast = slice ast "Emth" 1 2

The GUISURFERtool uses these fragments to produce GUI models, like be-

74 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

havioural user interface descriptions. The fragments relevant to the GUI reverse

engineering are widget related instructions, control flow information and methods

invocation. Thus, the problem of understanding the interface has been reduced to

the problem of understanding the slice done with respect to certain user interface

components.

GUISURFERconsiders also GUI applications with several windows each con-

taining widgets which, in turn, may invoke one or more windows. To obtain a list

of all GUI windows that can be invoked from a GUI windoww , the tool queries

each ofw ’s widgets. The GUISURFERprocedure performs a search of the GUI

tree rooted at GUI windoww , creating a listl of the widgets inw , and searches the

list of widgets for those which invoke other GUI windows.

4.2.3 Generating of GUI Behavioural Models

TheGraphmodule implements theGUI abstractionstep described in Figure 4.1.

The Graph tool is language independent and receives five arguments: theinit-

State.guiandeventsFromInitState.guifiles (both generated by theAstAnalysermod-

ule), the names of windows in the application, the name of the window to be

analised, and finally the project’s name. An example ofGraph tool invocation

can be:

Graph eventsFromInitState.gui initState.gui
"ContactEditor,Find,Login,MainForm"
"Login" "ClientDBjava"

This invocation generates behavioural models of the login window. The project

(ClientDBjava) contains three others windows, namelyContactEditor, Find, and

MainForm.

4.3. MODELS FOR GUI REVERSE ENGINEERING 75

As a result of the invocation, theGraph toolgenerates GUI-related metadata

files with events, conditions, actions, and states. Each of these types of data are

related to a particular fragment from the AST. Results are stored in filesactions.txt,

events.txt, andconds.txt.

Another important output generated by theGraph tool are theGuiModel.hs

and GuiModelFull.hsfiles. These are GUI specifications written in theHaskell

programming language [JHA+99]. These specifications define the GUI layer by

mapping pairs of event/condition to actions.

The GuiAnalysistool supports the generation of visual models, such as state

machines and event flow graphs through theGraphViztool [EGK+01].

4.2.4 Evaluating GUI Behavioural Models

Finally, external tools are used to enables reasoning over the graphicaluser inter-

face models produced in the previous step. To implement this task,QuickCheck,

Graph-Tooland graph theory are used. GUI reasoning is discussed in Chapter 5.

4.3 Models for GUI Reverse Engineering

GUISURFERextracts different kinds of models. These are described in the follow-

ing Sections.

4.3.1 GUI Meta-Model

One GUI representation obtained with the reverse engineering process isdefined by

a meta-model (guimodel) which represents the behaviour of the GUI’s windows as

a mapping of events and related conditions to a list of GUI actions references. The

76 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

guimodelmeta-data is defined in theHaskellprogramming language as follows2:

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

Window = WindowName

NewWindow = Map ExpRef WindowName

Theguimodelmodels a window at a particular timet in terms of the widgets

within the window, the events enabled by the widgets, and the conditions associated

to events. The model describes also the window’s initial state (Pres type), end

application actions references (End type), close window actions references (Close

type), and finally open window actions references (NewWindow type). In this

model, each data is related to a particular sub tree of the AST. So, it is always

possible to access concrete source code fragments.

As an example, and considering theAgenda’s login source code (cf. Section

3.1), the respectiveguimodelspecification is3:

guimodel :: GuiModel

guimodel = fromList

[(("Cancel","cond1"),[1]),

(("Ok","cond2"),[2,3]),

(("Ok","cond3"),[4]),

(("init","condInit1"),[5,6,7,8,9])]

pres :: Pres

pres = fromList

[(8,("Cancel",True)),

(9,("Ok",True))]

2see Appendix A for complete definition
3see Appendix A for theAgenda’s windows specifications

4.3. MODELS FOR GUI REVERSE ENGINEERING 77

end :: End

end = [1]

newWindow :: NewWindow

newWindow = fromList

[(2,"MainForm"),

(5,"Login")]

close :: Close

close = [3]

This specification represents user events with associated conditions and se-

quences of GUI actions. Therefore, an event is only performed whenthe related

condition is verified. In this case, the associated sequence of actions is then exe-

cuted.

This model enables analysis of the dialogue supported by each window. Al-

though this is a very simple example, several conclusions can be reached from the

analysis of this particular source code abstraction.

For instance, the expression((”Ok”,”cond2”),[2,3]) means that theOk event

has a condition, which GUISURFER automatically named ascond2, and if the

condition is verified executes the actions referenced by the number,2 and3. The

AST slices that corresponds to conditioncond2, and actions2 and3 are available

in theconds.txtandactions.txtfiles, respectively. In this particular case, theJava

source code forcond2 condition is:

valid(login.getText(), password .getText())

TheJavasource code related to action reference2 is:

newMainForm().setVisible(true);

78 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

TheJavasource code related to action reference3 is:

this.dispose();

Therefore, all the visual information available in right side of Figure 4.2 originates

from the textual meta-model representation defined in thisGuiModel.hsfile.

This model gives also access to data related with the initial state of theLogin

window:

pres :: Pres

pres = fromList

[(8,("Cancel",True)),

(9,("Ok",True))]

Boolean values indicate whether events are initially enabled or not. In this case

both CancelandOk events are initially enabled. Identifiers are assigned to each

event. In this caseCancelandOk events are identified through reference8 and9,

respectively.

Another important aspect regards actions references which end the application

or close the window. These actions are specified throughend andclose functions:

end :: End

end = [1]

close :: Close

close = [3]

In this case numerical values refer to GUI actions in the source code (fragment

of the AST) which enable ending the application (i.e. identifier1 in endfunction)

and closing theLoginwindow (i.e. identifier3 in closefunction). These actions are

executed by((”Cancel”,”cond1”),[1]) and((”Ok”,”cond2”),[2,3]) events respec-

tively. So the first event (Cancelevent verifyingcond1condition) terminates the

4.3. MODELS FOR GUI REVERSE ENGINEERING 79

Agendaapplication, and the last one (Ok event verifyingcond2condition) closes

theLoginwindow.

Finally, thenewWindow function, specifies all actions references which en-

able opening new windows:

newWindow :: NewWindow

newWindow = fromList

[(2,"MainForm"),

(5,"Login")]

This function maps actions references to the appropriate window identifiers.

These are action references2 and5, enabling the oppening of theMainFormand

Loginwindows respectively.

As can be seen in the source code in Section 3.1, theLogin window enables

the opening of theMainForm window and the closing of itself. This knowledge

is captured in the((”Ok”,”cond2”),[2,3]) guimodel expression. In this case, if

the user presses theOk button, and the relatedcond2 condition is true then action

reference2 opens theMainForm window, and action reference3 closes theLogin

window.

Let us consider another example and present also theguimodel extracted from

theMainForm Agenda’s window:

guimodel :: GuiModel

guimodel = fromList

[(("Exit","cond1"),[1]),

(("Edit","cond2"),[2]),

(("Edit","cond3"),[3]),

(("Find","cond4"),[4]),

(("Find","cond5"),[5]),

(("init","condInit1"),[6,7,8,9,10,11,12,13,14,15])]

pres :: Pres

pres = fromList

80 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

[(10,("Exit",True)),

(11,("Edit",True)),

(12,("Find",True))]

end :: End

end = [1]

newWindow :: NewWindow

newWindow = fromList

[(2,"ContactEditor"),

(4,"Find"),

(6,"MainForm")]

close :: Close

close = []

In this model, the window behaviour includes three events (Exit , Edit and

Find). All of them are enabled at the initial state window (cf. true values assigned

to each event in thepres function).

ThenewWindowfunction defines three action references which open different

windows. These are action references 2, 4 an 6 which open windowsContactE-

ditor, Find andMainForm, respectively. Hence, from theMainForm window, it

is possible to open theContactEditor andFind windows (action references2

and3 respectively) through the code associated with eventsEdit andFind (cf.

((”Edit”,”cond2”),[2]) and ((”Find”,”cond4”),[4]) expressions in theguimodel

function), which execute new window actions2 and4 (cf. functionnewWindow).

However to access these windowscond2 andcond4 must be valid, respectively.

Finally to close the application the source code related to action reference1 must be

executed (cf.end function), which is triggered within the((”Exit”,”cond1”),[1])

event.

4.3. MODELS FOR GUI REVERSE ENGINEERING 81

Besides theguiModel Haskellspecification, other meta-models have been de-

fined to express other kinds of knowledge (see Appendix D and E). All of them are

also automatically generated. The following model relates pairs of states with all

possible event/condition pairs representing transitions between them, in theAgenda

Login window:

statesLogin :: (Map (StateRef,EventRef,CondRef,[ExpRef])

StateRef, Map StateRef State)

statesLogin = (fromList [

(("state0","init","condInit1",[5,6,7,8,9]),"state1"),

(("state1","Cancel","cond1",[1]),"state0"),

(("state1","Ok","cond2",[2,3]),"state0"),

(("state1","Ok","cond3",[4]),"state1")],

fromList [("state0",fromList []),

("state1",fromList [("Cancel",True),("Ok",True)])])

The next model, specifies all possible sequences of events for theLogin win-

dow from it initialization. As an example, if we consider an event sequence length

lower than 3, then 7 different sequences of events are obtained:

waysLogin :: [N]

waysLogin = [N (["condInit1"],["init"]),

N (["condInit1","cond1"],["init","Cancel"]),

N (["condInit1","cond2"],["init","Ok"]),

N (["condInit1","cond3"],["init","Ok"]),

N (["condInit1","cond3","cond1"],["init","Ok","Cancel"]),

N (["condInit1","cond3","cond2"],["init","Ok","Ok"]),

N (["condInit1","cond3","cond3"],["init","Ok","Ok"])]

It can be seen that[”init”,”Ok”,”Cancel”] is one possible sequence of events.

To execute this sequence, the conditionscondInit1, cond3, andcond1 must be

verified. Each reference corresponds to a particular event conditionwithin the

sequence of events.

82 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

4.3.2 MAL Interactors

Another notation for describing interactive systems is the language of MAL inter-

actors [CH01]. It is a domain specific language and includes the notion of inter-

actors as a mechanism for structuring the use of standard specification techniques

in the context of interactive systems specification [DH93]. Modal Action Logic

[RFM91] is used to specify the behavioural parts of the models.

The definition of a MAL interactor contains a state, actions, axioms and presen-

tation information. This language allows to abstract both static and dynamic per-

spectives of interactive systems. The static perspective is achieved with attributes

and actions abstractions which aggregate the state and all visible componentsin a

particular instant. The axioms abstraction formalizes the dynamic perspectivefrom

an interactive state to another.

Figure 4.6:JBanksystem

Now to describe an example of MAL interactors, let us consider another in-

teractive application: theJBank transfers system. Basically, theJBanksystem

is a simpleJava/Swingexample allowing for account transfers (see Figure 4.6).

4.3. MODELS FOR GUI REVERSE ENGINEERING 83

Through a single window composed of several widgets, users have access to five

buttons, allowing the creation of new accounts, consulting the data for eachac-

count, execution of transfers from one account to another one, and finally to clear

all input widget’s values.

Figure 4.7: Interactor’s attributes abstraction

Applied to the code of theJBankapplication, GUISURFERautomatically gen-

erates an interactor specification including the initial application state and dynamic

actions. This interactor contains a set of attributes (cf. Figure 4.7) - one for each

information input widget, and one for each button’s enabled status.

Figure 4.8: Interactor’s actions abstraction

84 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

The interactor also contains a set of actions (cf. Figure 4.8) - one for each

button, and one for each input widget (representing user input). Finally, it also

contains a set of MAL axioms like the presented bellow which define the effect of

thenewbutton in the interface. In this particular case, the effect of thenewbutton

is to enable theconsultbutton. All others widgets status remains unchanged.

[New]
newEnabled’=newEnabled & consultEnabled’=true &
transferEnabled’=transferEnabled &
clearEnabled’=clearEnabled & exitEnabled’=exitEnabled &
accountId’=accountId & holderName’=holderName &
transferTo’=transferTo & balance’=balance &
transferValue’=transferValue

Similar axioms are generated for all other actions.

4.3.3 Event Flow Graphs

At all times during interaction with a GUI, the user interacts through events. Inthe

literature a GUI component’s flow of events may be represented as an event flow

graph [MBN03].

An event flow graph defines all possible interactions by specifying the events

in a GUI system. For every evente, an event flow graph identify all the events that

can followe.

Formally, an event-flow graph is a 4-tuple (V, E, B, I) where:

1. V is a set of vertices representing all the events in the component;

2. E = V ×V is a set of directed edges between vertices. Eventej follows ei

if ej may be performed immediately afterei . An edge(vx , vy) ∈ E if the

event represented byvy follows the event represented byvx ;

4.3. MODELS FOR GUI REVERSE ENGINEERING 85

3. B ⊆ V is a set of vertices representing those events ofC that are available

to the user when the component is first invoked;

4. I ⊆ V is the set of events that explicitly terminates the application.

This Section shows the extraction of an event flow graph from another small

example: theJClassapplication. Basically, theJClasssystem is aJava/Swingex-

ample allowing for student marks management (see Figure 4.9). Users can add

student’s data (Addbutton), i.e. student’s number, name and two marks. The sys-

tem enables also finding (Consultbutton) and removing (Removebutton) students.

TheClearbutton empties all system’s widgets.

Figure 4.9:JClasssystem

In this particular case, GUISURFER enables the extraction of an event-flow

graph which allows the analysis of the code’s quality from a software engineering

perspective. Figure 4.10 provides the obtained event-flow graph. As with other

models, the graph is generated by theGraph module. All widgets and their re-

lationship are abstracted to this graph and arrows specify methods calls fromone

widget to another. As an example, nodes with three internal fields specifyJButtons

abstractions.

86 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

Figure 4.10:JClasssystem’s partial GUI event-flow graph

4.3.4 Finite State Machines

As has been discussed in Section 2.5.2, finite state machine may be used to model

GUI behaviour. This type of model has been choosen in order to support reasoning

about and testing the dialogue supported by a given GUI implementation.

An interactive system can be represented as a FSM considering that user events

are mapped into arcs, and GUI states are mapped into vertices. When the user

4.3. MODELS FOR GUI REVERSE ENGINEERING 87

performs an event, the current stateA is changed to the next stateB where there is

an arc fromA toB labeled with that event.

GUISURFERautomatically generates a finite state machine model of the in-

terface. Next, an example of FSM generation will be presented, considering the

Agendainteractive system (cf. Figure 3.1).

The state machine in Figure 4.11 is obtained from theAgenda’s source code.

Arrows specify a user interface event changing from one state to another. In this

particular case each arrow abstracts a particular button press action (event). For

each action there is a associated condition (cond) which must be validated to move

from one state to the next. Conditions are extracted directly from conditionalin-

structions in the source code. For example anif condition then action1 else action2

conditional instruction is abstracted to two different transitions. A first one, with

actions1’s graphical user interface instructions, that occurs when the conditionis

true, and a second one withaction2’s graphical user interface instruction.

This model is composed by four finite state machine, one for eachAgenda’s

window. As can be see, some events allow opening a new window, so these are

related to other finite state machine.

4.3.5 Others Models

In this Section, a further model is presented. The model is useful to visualize

an application’s behaviour in terms of active windows (see. Figure 4.12).Each

state of this model contains all the open windows in a particular period of time.

Transitions between states correspond to events that open or close windows. Each

transition refers the source window’s name, it state status, the event and respec-

88 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

Figure 4.11:Agenda’s finite state machine

4.4. A LANGUAGE INDEPENDENT TOOL 89

tive condition. In this case, one can reason about which windows can beopened

along a session, which are the related events and conditions. At the top leftcor-

ner, this model specifies theLogin window as an entry point for the application.

Then, from theLogin window there is one transition toMainFormwindow. This

transition happens fromstate1 in reaction of theOk event if conditioncond2 is

verified. FromMainForm ’s state1, it is possible to open theContactEditor win-

dow through theEdit event if conditioncond2 holds. The referred transition is:

MainForm state1 Edit cond2

The model in Figure 4.12 was generated from theAgenda’s source code consid-

ering non-modalMainForm, ContactEditorandFind windows. Thus, anAgenda

session may be composed by several instances of the same windows as represented

in this model.

4.4 A Language Independent Tool

A particular emphasis has been placed on developing tools that are, as muchas pos-

sible, language independent. AlthoughJava/Swingwas used as the target language

during initial development, through the use of generic programming techniques,

the developed tool aims at being retargetable to different user interface toolkits,

and different programming languages. Indeed, the GUISURFERtool has already

been extended to enableGWTandWxHaskellbased applications analysis.

Google Web Toolkit (GWT) is a Google technology [HT07]. GWT provides a

Java-based environment which allows for the development ofJavaScriptapplica-

tions using theJavaprogramming language.GWTenables the user to create rich

Internet applications. The fact that applications are developed in theJavalanguage

90 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

Figure 4.12:Agendaapplication’s windows states

4.4. A LANGUAGE INDEPENDENT TOOL 91

allowsGWTto bring all ofJava’s benefits to web applications development.GWT

provides a set of user interface widgets that can be used to create new applications.

SinceGWTproduced aJavaScriptapplication, it does not require browser plug-ins

additions.

WxHaskellis a portable and native GUI library forHaskell. The library is used

to develop a GUI application in a functional programming setting.

4.4.1 Retargetability

In this Section the applicability of GUISURFER to GWTandWxHaskellcode is

discussed. Our retargets toGWTandWxHaskellhighlight successes and problems

with the initial approach. The size of the adaptations and the time it took to code

them are distinct. They were also carried out under different conditions. The latter

was performed by the author, the former was performed by another researcher

under the author’s guidance [Sil10].

The adaptation toGWTwas easier because it reuses the sameJavaparser. The

adaptation toWxHaskellwas more complex as the programming paradigm is dif-

ferent, i.e.Haskellis a lazy functional programming language.

The application of GUISURFERto WxHaskellhas been implemented by defin-

ing the slicing step for functional programming, more specifically for theWx-

Haskellsyntax. This task was made complex by the fact that theWxHaskelltoolkit

has a different structure to define GUI components like windows, event actions,

etc. The first GUISURFER’s phase,FileParser, needed to be defined to consider

another programming language. Although a parser for theHaskellprogramming

language has been reused to generate abstract syntax trees, we needed to imple-

92 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

ment the program dependency graph. Finally theAstAnalyserimport file named

GuiXcontains several changes, making use of theWxHaskellspecific constructors.

Considering the applicability of GUISURFERto GWT, asGWTis written in the

Javaprogramming language, the first GUISURFER’s phase,FileParser, remained

unchanged. The slicing was the same but applied to the set of GUI components

from GWT, which are different from those of Swing. During the adaptation to

GWTsome aspects of the slicing function that were relying on Swing specificities

were identified and generalised. For example, Swing’saddActionListenermethod

was being used to identify actions. InGWTthe corresponding method is theadd-

ClickHandlermethod.

Table 4.4.1 (from [Sil10]) shows the total number of language dependentlines

of code for the five GUISURFERmodules. The columnJava/Swingcontains the

number of lines ofHaskell code eachJava/Swingmodule has. AsJava/Swing

was the first approach made with GUISURFER, the other languages were made by

re-targeting this initial approach. Hence, other columns, specifically,WxHaskell

andGWT, besides containing the number of lines each GUISURFERmodule has,

also indicate (between parentheses) information regarding how many lines were

changed4.

As an example,FileParsermade forJava/Swinghas 54 source lines of code.

Fileparser forWxHaskellhas 26 lines, and 41 lines from theJava/Swingsource

code were changed.GWT’s FileParser has 54 lines where no line was changed,

thus it is identical to theJava/Swingfile.

4Lines changed include code lines erased and source code lines changed. The visual file compar-
ison tool named ExamDiff was used to compare files.

4.4. A LANGUAGE INDEPENDENT TOOL 93

GUISURFER as a retargetable tool incurred in few source code updates for

the new programming languages. Focusing on the approach toGWT, just a few

line codes were changed. Moreover, changes performed to extend GUISURFER

to a new programming language, specificallyGWTor WxHaskell, did not reflect

on architectural changes. Hence, GUISURFER’s objective of being a retargetable

tool was accomplished. It should be stressed that changes made to theGuiX.hs,

SlicingX.hs, andGraph.hsfiles represent improvements to for the modules which

are backwards compatibles.

Module/Toolkit Java/Swing WxHaskell GWT

FileParser.hs 54 26(41) 54(0)
AstAnalyser.hs 88 85(5) 87(9)

GuiX.hs 218 140(179) 219(5)
SlicingX.hs 135 135(0) 135(0)

Graph.hs 665 467(245) 669(9)

Table 4.1: Total language dependent lines of code [Sil10]

4.4.2 WxHaskellexample

Throughout this Section anotherAgendainteractive application implementation is

used to illustrate the applicability of the tool to different languages (cf. Figure

4.13).

The newAgendawas implemented inWxHaskellwith the same functionalities

of theJava/Swingimplementation. Users can perform the usual actions of adding,

removing, finding and editing contacts.

Figure 4.14 provides theWxHaskellsource code of theLogin implementation

(window at the top left corner of the bottom half of Figure 4.13). As can beseen,

94 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

Figure 4.13: TwoAgendaapplications -Java/Swing(top) andWxHaskell(bottom)

widget constructors are specific to theWxHaskelllanguage. These arestaticText,

textEntryand button to define labels, text boxes and buttons, respectively. The

constructoron commandis used to define the behaviour when a button is clicked.

For example the instruction:

quit = button pn [text := "Quit", on command := close fr]

creates theQuitbutton which closes the login window when clicked (on command : =

close fr).

From the source code of this new implementation, theGUIsurfertool has gen-

erated the same kind of behavioural models as those obtained from theJava/Swing

implementation. Figure 4.15 provides the behavioural state machine for theLo-

gin WxHaskellimplementation. As can be seen, the extracted model reflects the

behaviour of the implemented source code.

4.4. A LANGUAGE INDEPENDENT TOOL 95

login :: IO ()

login =

fr = frame [text := "Login"]

pn = panel fr []

lb1 = staticText pn [text := "Username"]

tb1 = textEntry pn [enabled := True,

wrap := WrapNone]

lb2 = staticText pn [text := "Password"]

tb2 = textEntry pn [enabled := True,

wrap := WrapNone]

ok = button pn [text := "Ok",

on command := {close fr;

start mainForm}]

quit = button pn [text := "Quit",

on command := close fr]

Figure 4.14:Login WxHaskellpartial source code implementation

Figure 4.15:Loginbehavioural state machine (WxHaskellimplementation)

96 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

4.4.3 GWTexample

FlexTable is an example of aGWTapplication. The application5 simulates a dy-

namic table as presented in Figure 4.16. It starts, as shown on the left side of the

image with an empty table, and a single button visible, the buttonNew Row. After

the buttonNew Rowis pressed, the table has a new row, and the application enables

two others buttons:New CellandClear. The buttonNew Celladds a new cell in

the last created row. Moreover each cells has the values of its respective coordinate

on the table. Finally, the buttonClear, clears the table, removing all created cells.

Applying GUISURFERinto the source code of the application, it produced the

finite state machine depicted on Figure 4.17.

Figure 4.16:GWTFlexTable application

The FSM from Figure 4.17 is composed of three states, the initial state (state0),

the state with a single button, namely the buttonNew Row(state1) and the state

with the three buttons visible (state2).

Because the application always has either one or three buttons, GUISURFER

has correctly identified two states. Moreover, GUISURFERproperly defined two

different events after pressing the buttonNew Row(eventdownButtonin the state

machine model), if the table is empty, it will perform a transition to the following

5cf. http://examples.roughian.com/index.htm#WidgetsFlexTablefor available source code, last
accessed November 22, 2010

4.4. A LANGUAGE INDEPENDENT TOOL 97

Figure 4.17:GWTFlexTable’s FSM behavioural model

state,state2. Otherwise it will remain in the same state. The example shows that

GUISURFERwas able to correctly deduce the behaviour of theNew Rowbutton.

Creating two transitions to model it. This is relevant because the handler associated

to the event has no conditional guards. The decision to create the two transitions

was not based on the code alone, but on an inference about the state ofthe inter-

face, and the fact that the button will always make theClear andNew Cellbuttons

visible. Figure 4.17 also shows that there is no final states, that is, there are noclose

or cancelstates. This is because the FlexTable application does not end (WEB ap-

plications can always end by navigating to a different web page) and there is just a

single window in that application.

98 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

4.5 Conclusions

In this Chapter a reverse engineering tool was described. The GUISURFER tool

enables extraction of different behavioural models from application’s source code.

The tool is flexible, indeed the same techniques has already been applied to extract

similar models from different programming paradigm.

The GUISURFERarchitecture was presented and important parameters for each

GUISURFER’s executable file were outlined. A particular emphasis was placed on

developing a tool that is, as much as possible, language independent.

A technique was presented to help identifying a graphical user interface ab-

straction from legacy code. Then different kinds of GUI models extracted by the

tool were described. These areHaskellGUI behavioural specification, MAL in-

teractors, event flow graphs, finite state machines, GUI internal states and GUI’s

windows states. For each model, a particular example was presented.

This work will not only be useful to enable the analysis of existing interactive

applications, but can also be helpful in a re-engineering process whenan existing

application must be ported or simply updated [Mel96]. In this case, being ableto

reason at a higher level of abstraction than that of code, will help in guaranteeing

that the new/updated user interface has the same characteristics of the previous one.

The contributions related with this Chapter were described in the following

papers presented at international conferences:

• A Generic Library for GUI Reasoning and Testing, J.C.Silva, J.C. Campos,

J. Saraiva, presented at the 24th Annual ACM Symposium on Applied Com-

puting (SAC 2009), USA, 2009;

4.5. CONCLUSIONS 99

• TheGUISURFERtool: towards a language independent approach to reverse

engineering GUI code, J.C.Silva, C. Silva, J.C. Campos, J. Saraiva, in pro-

ceedings of the 2nd ACM SIGCHI symposium on Engineering interactive

computing systems (EICS 2010), pages 181-186. ACM, Berlin, Germany,

2010.

100 CHAPTER 4. GUISURFER: A REVERSE ENGINEERING TOOL

Chapter 5

GUI Reasoning from Reverse
Engineering

The term GUI reasoning refers to the process of validating and verifyingif interac-

tive applications behave as expected [Ber01, dSGD98, Cam99]. Verification is the

process of checking whether an application is correct, i.e. if it meets its specifica-

tion. Validation is the process of checking if an application meets the requirements

of its users [BA95]. Hence, a verification and validation process is usedto evalu-

ate the quality of an application. For example, to check if a given requirementis

implemented (Validation), or to detect the presence of bugs (Verification) [Bel01].

GUI quality is a multifaceted problem. Two main aspects can be identified.

For the Human-Computer Interaction (HCI) practitioner the focus of analysis is

on Usability, how the system supports users in achieving their goals. For the

Software Engineer, the focus of analysis is on the quality of the implementation.

Clearly, there is an interplay between these two dimensions. Usability will be a

(non-functional) requirement to take into consideration during development, and

problems with the implementation will create problems to the user.

101

102 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

In a survey of usability evaluation methods, Ivory and Hearst [IH01] identified

132 methods for usability evaluation, classifying them into five different classes:

(User) Testing; Inspection; Inquiry; Analytical Modelling; and Simulation.They

concluded that automation of the evaluation process is greatly unexplored.Au-

tomating evaluation is a relevant issue since it will help reduce analysis costs by

enabling a more systematic approach.

Another possible division of evaluation methods is between those that require

users to use the system, and those that rely on models or simulations of the system

for the analysis. In the first case, the costs remain high due to the need fortesting

sessions with real users of the system to be carried out. Moreover, andgiven the

high costs of user testing, the analysis will not be exhaustive in terms of all the

possible interactions between the users and the system. This means that problems

with the implementation might remain unnoticed during the analysis. In the second

case, an assumption is being made that the implementation will be faithful to the

model. This begs the question of how to evaluate the implementation (ideally,

without resorting to human users).

The reverse engineering approach described in this thesis allows for theex-

traction of GUI behavioural models from source code. This Chapter describes

an approach to GUI reasoning from these models. To this end, theQuickCheck

Haskelllibrary [CH00], graph theory, and theGraph-Tool1 are used.

A description about the techniques implemented for GUI reasoning is provided

in the following Sections. Section 5.1 illustrates an approach for GUI reasoning

making use of theQuickChecktool. Section 5.2 describes others approaches mak-

1see, http://projects.skewed.de/graph-tool/, last accessed 27 November, 2010.

5.1. TESTING WITH THEQUICKCHECKTOOL 103

ing use of graph theory and theGraph-Tool. Finally, Section 5.3 presents conclu-

sions.

5.1 Testing with theQuickCheckTool

This Section illustrates an approach, based on theQuickChecktool, that enables

the automatic generation and validation of test cases. This approach uses the be-

havioural model of the interactive application under test.

QuickCheckis a tool for testingHaskellprograms automatically. The program-

mer provides a specification of the program, in the form of properties that functions

in the program should satisfy, andQuickCheckthen tests that the properties hold

in a large number of randomly generated test cases. Specifications are expressed

in Haskell, using combinators defined in theQuickChecklibrary. QuickCheckpro-

vides combinators to define properties, observe the distribution of test data, and

define test data generators.

UsingQuickCheck, test cases may be generated automatically from a model of

the GUI. This Section present methodologies to perform model-based GUI reason-

ing by generating, executing and verifying GUI test cases [Bel01, Bum96,Pat95].

Theguimodelspecification described in Section 4.3.1 is used as the basis for the

approach.

To illustrate the approach, theAgendaapplication’sguimodel(cf. Figure 3.1)

will be considered. The goal will be to test if the application satisfies the following

rule: users can only access the following windowsLogin, MainForm, Find, and

ContactEditor. The objective is to test whether there is any hidden code in the

application, providing access to extraneous windows. This would be useful, for

104 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

example, in the maintenance or migration of large and complex interactive systems.

The rule is specified in theHaskelllanguage on top of theguimodeltest cases.

From theguimodelspecification,QuickCheckautomatically generates random test

cases. Then the rule can be tested on them. Each randomly generated test case is a

sequence of valid events associated with their conditions (which will be true,since

the event is valid), system actions and target windows. The followingHaskellcode

express a particular test case for theAgenda guimodel.

[("Login","Ok","cond2",[2,3]),
("MainForm","Find","cond3",[3]),
("Find","Search","cond1",[]),
("Find","Cancel","cond2",[1]),
("MainForm","Exit","cond1",[1])]

The above expression contains a sequence of events that can be executed within

theAgendaapplication. This is a list of tuples(w , e, c, la) wherew is the window

name,e express the event executed,c is the related condition and finallyla contains

a list of GUI actions references.

In this particular sentence, the user starts by pressing theOkbutton in theLogin

window with a valid username/password (”Login”,”Ok”,”cond2”,[2,3]). Condi-

tion referencecond2represent the invocation of theisValid boolean function, cf.

Section 1.1. Associated actions references 2 and 3 represents respectively Login

window closing andMainFormwindow opening. Then, from theMainFormwin-

dow, the user presses theFind button, (”MainForm”,”Find”,”cond3”,[3]). Condi-

tion referencecond3test if there are contacts in the agenda. In theMainFormwin-

dow action reference 3 correspond to theFind window opening action. Next, from

theFind window, the user makes a search (”Find”,”Search”,”cond1”,[]), and then

cancels the window, (”Find”,”Cancel”,”cond2”,[1]). Finally with the last action,

5.1. TESTING WITH THEQUICKCHECKTOOL 105

the user exits the application pressing theExit button from theMainFormwindow

(”MainForm”,”Exit”,”cond1”,[1]).

Now, consideringvtca valid test case, the rule can be specified inHaskellas:

rule :: [(Window, Event, Condition, Actions)] → Bool

rule vtc =

all (’elem’ ["Login","MainForm","Find","ContactEditor"]) wl

wl = map (λ(w,_,_,_) → w) vtc

where

• ′elem ′ returns true if a list contains a particular item;

• all returns True if all items in a list fulfill a condition.

This rule receives a test case as parameter (list of tuples) and verifies (through

the all function) if each of the events gives access to one, and only one, of the

following windows:Login, MainForm, Find or ContactEditor.

Testing the application’sguimodelwith this rule throughQuickCheck, and

making use of 10000 randomly generated test cases, the following results are ob-

tained:

*GuiModelAnalysis> deepCheck rule1
OK, passed 10000 tests.
87% events sequence length: 5.
10% events sequence length: 4.
1% events sequence length: 3.
0% events sequence length: 2.
0% events sequence length: 1.

The rule hold in 10000 randomly generated test cases with up to 5 events

length. All of test cases satisfies the rule. This approach is non-exhaustive but

could be applied to test a GUI model with a wider range of test cases.

106 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

5.2 GUI Inspection Through Graph Theory

This Section describes additional behavioural analysis performed through graph

theory. To illustrate the approach, theAgendaapplication’s behavioural model will

be considered (cf. Figure 5.1).Graph-Toolwill be used to manipulate and analyse

the graph.

5.2.1 Agenda’s Behavioural Graph

Until now, several behavioural models of the interactive application havebeen de-

scribed. Such models unambiguously and rigorously define the behaviourof an

application. Moreover, by using models to define the interactive application,sev-

eral techniques can be used to implement GUI reasoning.

One particular modeling approach that has been considered to enable GUIrea-

soning from GUI models is the use of finite state machine model. In this Section,

graph theory is used to explore these models.

Within this approach, an analogy will be considered between state machines

and graphs. State machines states will be represented as vertives, and transitions

as edges. For example, Figure 5.1 shows a graphs expressing the behaviour of the

Agendaapplication. Now GUI reasoning will be executed through this representa-

tion.

5.2.2 Graph Events Count

A first useful model that can be automatically extracted from Figure 5.1 is related

to GUI events counts between states (i.e. edges count between vertices).This

model helps to visualize the behavioural complexity of a particular window. The

5.2. GUI INSPECTION THROUGH GRAPH THEORY 107

Figure 5.1:Agenda’s behaviour graph

108 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

total number of events from each state to another one can be visualized (cf. Figure

5.2). This model can be used to measure aspects related to the distribution of events

considering the overall application behaviour.

Figure 5.2:Agendaapplication’s events Count

5.2.3 Operations on Graphs

Graphs may be easily manipulated through intersection, union, and difference op-

erators. This operations allow us to compare, for example, the GUI model of two

versions of an interactive application. This is particularly relevant in presence of

evolving applications.

An example of such a result is shown in Figure 5.3. The Figure correspond to

the union of two graphs, generated by GUISURFER, using two distinct versions of

theAgendaapplication (one version make use of aFind windows to search contacts

while the other does not).

As indicated in the legend, bold edges correspond to events from the firstver-

sion of the application only, filled edges correspond to events from the second

5.2. GUI INSPECTION THROUGH GRAPH THEORY 109

version, and dotted edges are events that can be executed on both versions. As it

can be seen, the first version enables access to theContactEditorwindow, while

the second edition does not. In fact, as demonstrated by the absence of filled edges,

the second version implements a subset of the first version’s behaviour only.

This approach is helpful to reason about different versions of an application.

These can be versions implemented in the same programming language or not.

GUISURFERfunctionalities also include graph intersection and difference.

Figure 5.3: ComparingAgendaapplication’s windows states

5.2.4 GUI Metrics

The analysis of source code can provide a means to guide the developmentof the

application and to certify software. Software metrics aim to address software qual-

ity by measuring software aspects, such as lines of code, functions’ invocations,

etc. For that purpose, adequate metrics must be specified and calculated.Metrics

can be divided into two groups: internal and external [ISO99].

110 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

External metrics are defined in relation to running software. In what concerns

GUIs, external metrics can be used as usability indicators. They are oftenassoci-

ated with the following attributes [Nie93]:

• Easy to learn: The user can carry out the desired tasks easily without previ-

ous knowledge;

• Efficient to use: The user reaches a high level of productivity;

• Easy to remember: The re-utilization of the system is possible without a high

level of effort;

• Few errors: The system prevents users from making errors, and recovery

from them when they happen;

• Pleasant to use: The users are satisfied with the use of the system.

However, the values for these metrics are not obtainable from source code analysis,

rather through users’ feedback.

In contrast, internal metrics are obtained from the source code, and provide

information to improve software development. A number of authors have looked

at the relation between internal metrics and GUI quality.

Stamelos et al. [SAOB02] used the Logiscope2 tool to calculate values of se-

lected metrics in order to study the quality of open source code. Ten different met-

rics were used. The results enable evaluation of each function against four basic

criteria: testability, simplicity, readability and self-descriptiveness. While the GUI

2http://www-01.ibm.com/software/awdtools/logiscope/, last accessed November 22, 2010

5.2. GUI INSPECTION THROUGH GRAPH THEORY 111

layer was not specifically targeted in the analysis, the results indicated a negative

correlation between component size and user satisfaction with the software.

Yoon and Yoon [YY07] developed quantitative metrics to support decision

making during the GUI design process. Their goal was to quantify the usability

attributes of interaction design. Three internal metrics were proposed anddefined

as numerical values: complexity, inefficiency and incongruity. The authors expect

that these metrics can be used to reduce the development costs of user interaction.

While the above approaches focus on calculating metrics over the code, Thim-

bleby and Gow [TG08] calculate them over a model capturing the behaviourof the

application. Using graph theory they analyse metrics related to the user’s ability

to use the interface (e.g., strong connectedness ensure no part of the interface ever

becomes unreachable), the cost of erroneous actions (e.g., calculatingthe cost of

undoing an action), or the knowledge needed to use the system. In a sense, by

calculating the metrics over a model capturing GUI relevant information instead

of over the code, the knowledge gained becomes closer to the type of knowledge

obtained from external metrics.

While Thimbleby and Gow manually develop their models from inspections of

the running software/devices, an analogous approach can be carriedout analysing

the models generated by GUISURFER. Indeed, by calculating metrics over the be-

havioural models produced by GUISURFER, relevant knowledge may be acquired

about the dialogue induced by the interface, and, as a consequence, about how

users might react to it.

112 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

5.2.5 Graph-Tool

Graph-Toolis an efficient python module for manipulation and statistical analysis

of graphs3. It allows for the easy creation and manipulation of both directed or

undirected graphs. Arbitrary information can be associated with the vertices, edges

or even the graph itself, by means of property maps.

Furthermore,Graph-Toolimplements all sorts of algorithms, statistics and met-

rics over graphs, such as shortest distance, isomorphism, connected components,

and centrality measures.

Figure 5.4:Agenda’s behaviour graph (numbered)

3see, http://projects.skewed.de/graph-tool/, last accessed 27 November, 2010.

5.2. GUI INSPECTION THROUGH GRAPH THEORY 113

Now, for brevity, the graph described in Figure 5.4 (automatically obtained

from model of Figure 5.1) will be considered. All vertices and edges arelabeled

with unique identifiers.

To illustrate the analysis performed withGraph-Tool, three metrics will be con-

sidered: Shortest distance between vertices, Pagerank and Betweenness. Appendix

F contains the completePythonscript for generating the results of these metrics.

Shortest Distance

Graph-Toolenables the calculation of the shortest path between two vertices. A

path is a sequence of edges in a graph such that the target vertex of each edge is the

source vertex of the next edge in the sequence. If there is a path startingat vertex

u and ending at vertexv thenv is reachable fromu.

For example, the followingPythoncommand calculate the shortest path be-

tween vertices 11 and 6 (i.e. between theLoginwindow and a particularContactE-

ditor window state), cf. Figure 5.4.

vlist, elist = shortest_path(g, g.vertex(11), g.vertex(6))
print "shortest path vertices", [str(v) for v in vlist]
print "shortest path edges", [str(e) for e in elist]

The results for the shortest path between vertices 11 and 6 are:

shortest path vertices:
[’11’,’10’,’13’,’8’,’7’,’5’,’4’,’6’]

shortest path edges:
[’(11,10)’,’(10,13)’,’(13,8)’,’(8,7)’,
’(7,5)’,’(5,4)’,’(4,6)’
]

Two representations of the path are provided, one focusing on vertices, the

another on edges. This is useful to calculate the number of steps a user needs to

114 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

perform in order a particular task.

Now let us consider another inspection. The next result gives the shortest dis-

tance (minimum number of edges) from theLoginwindow (vertice 11) to all other

vertices. ThePythoncommand is defined as follows:

dist = shortest_distance(g, source=g.vertex(11))
print "shortest_distance from Login"
print dist.get_array()

The obtained result is a sequence of values:

shortest distance from Login
[6 5 7 6 6 5 7 4 3 5 1 0 2 2]

Each value gives the distance from vertice 11 to a particular target vertice.

The index of the value in the sequence corresponds to the vertice’s identifier. For

example the first value is the shortest distance from vertice 11 to vertice 0, which

is 6 edges long.

Another similar example makes use ofMainFormwindow (vertice 7) as start-

ing point:

dist = shortest_distance(g, source=g.vertex(7))
print "shortest_distance from MainForm"
print dist.get_array()

The result list may contains negative values: they indicate that there are no

paths from Mainform to those vertices.

shortest distance from MainForm
[2 1 3 2 2 1 3 0 -1 1 -1 -1 -1 -1]

This second kind of metric is useful to analyse the complexity of an inter-

active application’s user interface. Higher values represent complex tasks while

5.2. GUI INSPECTION THROUGH GRAPH THEORY 115

lower values express behaviour composed by more simple tasks. This example

also shows that its possible to detect parts of the interface that can become unavail-

able. In this case, there is no way to go back to the login window once the Main

window is displayed (the value at indexs 10-13 are equal to -1).

This metric can also be used to calculate the center of a graph. The center

of a graph is the set of all vertices where the greatest distance to other vertices is

minimal. The vertices in the center are called central points. Thus vertices in the

center minimize the maximal distance from other points in the graph.

Finding the center of a graph is useful in GUI applications where the goal isto

minimize the steps to execute tasks (i.e. edges between two points). For example,

placing the main window of an interactive system at a central point reducesthe

number of steps a user has to execute to accomplish tasks.

Pagerank

Pagerank is a distribution used to represent the probability that a person randomly

clicking on links will arrive at any particular page [Ber05]. That probability is

expressed as a numeric value between 0 and 1. A 0.5 probability is commonly

expressed as a ”50% chance” of something happening.

Pagerank is a link analysis algorithm, used by the Google Internet search en-

gine, that assigns a numerical weighting to each element of a hyperlinked set of

documents. The main objective is to measure their relative importance.

This same algorithm can be applied to our GUI’s behavioural graphs. Figure

5.5 provides thePythoncommand when applying this algorithm to theAgenda’

graph model.

116 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

pr = pagerank(g)
graph_draw(g, size=(70,70),

layout="dot",
vsize = pr,
vcolor="gray",
ecolor="black",
output="graphTool-Pagerank.pdf",
vprops=dict([(’label’, "")]),
eprops=dict([(’label’, ""),

(’arrowsize’,2.0),
(’arrowhead’,"empty")]))

Figure 5.5:Pythoncommand for Pagerank algorithm

Figure 5.6 shows the result of the Pagerank algorithm giving theAgenda’s

model/graph as input. The size of a vertex corresponds to its importance within

the overall application behaviour. This metric is useful, for example, to analyse

whether complexity is well distributed along the application behaviour. In this

case, the Main window is clearly a central point in the interaction (cf. Figurein 5.1

to see vertices and edges description).

Betweenness

Betweenness is a centrality measure of a vertex or an edge within a graph [Sea09].

Vertices that occur on many shortest paths between other vertices have higher be-

tweenness than those that do not. Similar to vertices betweenness centrality, edge

betweenness centrality is related to shortest path between two vertices. Edges that

occur on many shortest paths between vertices have higher edge betweenness.

Figure 5.7 provides thePythoncommand for applying this algorithm to the

Agenda’ graph model. Figure 5.8 displays the result. Betweenness values for

vertices and edges are expressed visually. Highest betweenness edges values are

5.2. GUI INSPECTION THROUGH GRAPH THEORY 117

Figure 5.6:Agenda’s pagerank results

bv, be = betweenness(g)
be1 = be
be1.get_array()[:] = be1.get_array()[:]*120+1
graph_draw(g, size=(70,70),

layout="dot",
vcolor="white",
ecolor="gray",
output="graphTool-Betweenness.pdf",
vprops=dict([(’label’, bv)]),
eprops=dict([(’label’, be),

(’arrowsize’,1.2),
(’arrowhead’,"normal"),
(’penwidth’,be1)]))

Figure 5.7:Pythoncommand for Betweenness algorithm

118 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

Figure 5.8:Agenda’s betweenness values

5.2. GUI INSPECTION THROUGH GRAPH THEORY 119

represented with thicker edges. The Main window has the highest (verticesand

edges values) betweenness, meaning it acts as a hub from where different parts of

the interface can be reached. Clearly it will be a central point in the interaction.

Cyclomatic Complexity

Another important metric is cyclomatic complexity which aims to measures the

total number of decision points in an application [Tho76]. It is used to give the

number of tests for software and to keep software reliable, testable, and manage-

able. Cyclomatic complexity is based entirely on the structure of software’s control

flow graph and is defined asM = E -V +2P (considering a single exit statement)

whereE is the number of edges,V is the number of vertices andP is the number

of connected components.

Considering Figure 5.6 where edges represent decision logic in theAgenda

GUI layer, the GUI’s overall cyclomatic complexity is 18 and eachAgenda’s win-

dow has a cyclomatic complexity less or equal than 10. In applications there are

many good reasons to limit cyclomatic complexity. Complex structures are more

prone to error, are harder to analyse, to test, and to maintain. The same reasons

could be applied to user interfaces. McCabe proposed a limit of 10 for functions’s

code, but limits as high as 15 have been used successfully as well [Tho76]. Mc-

Cabe suggest limits greater than 10 for projects that have operational advantages

over typical projects, for example formal design. User interfaces can apply the

same limits of complexity, i.e. each window behaviour complexity could be limited

to a particular cyclomatic complexity. Defining appropriate values is an interesting

topic for further research, but one that is out of the scope of the present thesis.

120 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

5.2.6 GUI Test Cases Generation

Test case generation is very important since it enables the evaluation of a system by

manual or automatic means, and the verification that it satisfies specified properties

or identification of differences between expected and actual results.

Section 5.1 has already presented an approach to test case generation and

execution usingQuickCheck. This Section use the graph models generated by

GUISURFERin an approach to GUI test cases generation.

Coverage Criteria

Ideally test cases should contain event sequences to test the totality of an appli-

cation. Typically this is not possible due the applications’ size. Coverage criteria

help to determine if a GUI has been sufficiently tested. These coverage criteria

use events sequences to specify a measure of test adequacy. More code coverage

means higher testing quality. Since the total number of permutations of event and

condition sequences in any GUI is extremely large, the GUI’s data will be exploited

to identify the important event sequences to be tested.

Usually, testers make thousands of paths to cover the most likely user opera-

tions. However simulating user behaviour is not enough to prove that the model-

based testing process covers all user actions. Considering test casesgeneration,

some user behaviour will be more likely than other. Consequently, if test cases are

generated randomly then there is no guarantee thatinterestingbehaviours will be

tested.

Because our GUI’s model representation can be viewed as a graph, theMemon

approach to coverage criteria for GUI reasoning has been applied [MSP01]. This

5.2. GUI INSPECTION THROUGH GRAPH THEORY 121

Section defines several coverage criteria following Memon’s approach. First an

event sequence is formally defined, which is used to describe all the coverage cri-

teria.

An event-sequence is a tuple< el , e2, e3, ..., en > whereei is a particular

event which can be executed after eventei-1, 2 ≤ i ≤ n.

Next three coverage criterion are presented. These are applied to GUIbe-

haviour graph-based models.

• Event Coverage: The event coverage criterion enables to capture a set of

event-sequences considering all possible events. The event coverage crite-

rion is satisfied if and only if for any evente, there is at least one event

sequencees such thates containse;

• State Coverage: State coverage requires that each state is reached at least

once, i.e. for any states there is at least one event-sequencees such that

states is reached ines;

• Length-n-Event-sequence Coverage: Within GUI systems, the behaviour of

events may change when executed in different contexts. The length-n-event-

sequence coverage criterion defines the set of event-sequences which con-

tains all event-sequences of length equal ton. For example the length-n-

event-sequence coverage criterion applied to theAgenda’s behavioural model

in Figure 5.1 returns the number of test cases provided in the following table:

The result of this last criterion shows that the total number of event sequences

grows with increasing length. The large number of event sequences makes it diffi-

cult to test a GUI for all possible event sequences.

122 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

Length-n Event-sequences total number
1 1
2 3
3 4
4 10
5 40
6 190
7 940
8 4690
9 23440
10 117190

Table 5.1:Agenda’s total number of event-sequences forn event-sequence length

Consequently, Memon proposes to assign priorities to each event-sequence and

first test event-sequences with higher priorities. For example, event-sequences re-

lated with the main window could have a higher priority since they may be used

more times.

The considerations in this Section enable construction of test suites. A test suite

is a set of event sequences starting from the initial vertice of the graph. Intuitively,

if a test suite satisfies event coverage, it also satisfy state coverage. Inother hand

event coverage and state coverage are special cases of length-n-event-sequence

coverage.

Moreover, in some cases it could be interesting to consider the overall be-

haviour of the GUI. This perspective can be achieved trough a unique path reach-

ing all possible states (or all possible events) between a start state and a final state.

These particular test cases are generated through the Chinese Postman Tour and

Travelling Salesman Problem algorithms, described next.

5.2. GUI INSPECTION THROUGH GRAPH THEORY 123

Chinese Postman Tour

The background of the Chinese Postman Problem is about a Chinese postman who

wishes to travel along every road in a city in order to deliver letters, while traveling

the least possible distance. Solving the problem corresponds to finding theshortest

route in a graph in which each edge is traversed at least once [Thi03, PC05, Ski90].

The Chinese postman problem was defined by a Chinese mathematician, Meigu

Guan. If the path must get back to the starting point, the problem is said to be

closed. If it does not need to go back, it is called an open problem.

The algorithm to solve the open problem is used to generate minimal sequences

of user actions between pairs of states, each sequence including all possible users

actions in the interface. These sequences are used as test cases for testing the

interface against defined properties.

The length of the optimal path for the closed problem acts as a measure of

the user interface’s complexity [Thi03]. Considering weighted graphs, and assign

weights to the transitions that correspond to the time users are expected to take

performing the corresponding actions, the optimal path for closed problemis used

to calculate how long a user takes to explore an entire application.

In order to optimize our model-based reasoning approach, we apply the Chi-

nese postman algorithm to generate a test case that uses all possible events /condi-

tions and states.

Travelling Salesman Problem

The Travelling Salesman Problem (TSP) considers a salesman whose task isto find

a shortest possible tour that visits each city in a region exactly once.

124 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

While in the Chinese Postman Problem the goal is to traverse every edge at

least once, in the Travelling Salesman Problem the goal is to visit every node.

There is no need to use all edges in the graph. Paths produced as a solution to this

problem specify that all window states will be visited by the user, while keeping

user actions to a minimum.

Both algorithms are implemented and used in GUISURFER. These algorithms

generate test cases which are used to explore an entire application considering all

possible events and states.

Related Work

Several alternatives to generate test cases are proposed in the literature. Finite state

machines can be used to model system and to generate test cases [SL89, Ura92].

Memon’s approach to coverage criteria for GUI testing makes use of an event

flow graph for GUI’s behavioural representation [MSP01]. His workpresents a

methodology for generating test cases from GUI behaviour graph-based specifica-

tions. Coverage criteria is presented to help determine whether a GUI has been

adequately tested.

Ping Li describes another approach to testing GUI systems in [LHRM07]. In

the proposed approach, GUI systems are divided into two abstract tiers:the com-

ponent tier and the system tier. On the component tier, a flow graph is created for

each GUI component, describing relationships between the pre-conditions, event

sequences and post-conditions. On the system tier, the components are integrated

resulting in a view of the entire system. Finally, tests on the system tier analyse the

interactions between the components.

5.3. CONCLUSIONS 125

5.3 Conclusions

In this Chapter a GUISURFERbased GUI analysis process has been illustrated.

The process uses GUISURFER’s reverse engineering capabilities to enable a range

of model-based analysis being carried out. Different analysis methodologies are

described. The methodologies automate the activities involved in GUI reasoning,

such as, test case generation, or verification. GUI behavioural metricsare also

described as a way to analyse GUI quality.

The contributions related with this Chapter were described in the following

papers presented at international and national conferences:

• GUI Behaviour from Source Code Analysis, J.C.Silva, J.C. Campos, J. Saraiva,

presented at the 4thConfer̂encia Nacional Interacç̃ao Humano-Computador

(Interacç̃ao 2010)Universidade de Aveiro, Aveiro, Portugal, 2010;

• GUI Inspection from Source Code Analysis, J. C. Silva, J. C. Campos, J.

Saraiva. In proceedings of the Fourth International Workshop on Foun-

dations and Techniques for Open Source Software Certification (OpenCert

2010). Electronic Communications of the EASST, Pisa, Italy, 2010.

126 CHAPTER 5. GUI REASONING FROM REVERSE ENGINEERING

Chapter 6

HMS Case Study: A Larger
Interactive System

In previous Chapters, we have presented the GUISURFERtool and all the differ-

ent techniques involved in the analysis an the reasoning of interactive applications.

We have used several simple/small examples in order to motivate and explain our

approach. In this Chapter, we present the application of GUISURFER to a com-

plex/large real interactive system: a Healthcare management system available from

Planet-source-code. The goal of this Chapter is twofold: Firstly, it is a proof of

concept for the GUISURFER. Secondly, we wish to analyse the interactive parts of

a real application.

The choosen interactive system is related to a Healthcare Management System

(HMS), and can be downloaded fromPlanet-source-codewebsite1. Planet-source-

codeis one of the largest public source code database on the Internet.

The HMS system is implemented inJava/Swingand supports patients, doc-

tors and bills management. The implementation contains 66 classes, 29 windows

1http://www.planet-source-code.com/vb/scripts/ShowCode.asp?txtCodeId=6401&lngWId=2,
last accessed November 22, 2010

127

128 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

forms (message box included) and 3588 lines of code. The following Subsections

provide a description of the mainHMSwindows and the results generated by the

application of GUISURFERto its source code.

6.1 Login Window

The window in Figure 6.1 is the firstHMS window that appears to users. This

window gives authorized users access to the system, and theHMS main form by

introducing a username and password. This window is very similar to theAgenda’s

login window we have presented in the thesis (see Section 3.1). It is composed of

two text box (i.e. username and password input) and two buttons (i.e.Login and

Exit buttons).

If the user introduces a valid username/password and presses theLoginbutton,

then the window closes and the main window of the application is displayed. On

the contrary, if the user introduces invalid data, then a warning message is produced

and the login window continues to be displayed. By pressing theExit button, the

user exits the application.

Figure 6.1:HMS: Login window

Applying the GUISURFERto the source code of the application, and focusing

6.1. LOGIN WINDOW 129

on the login window, enables the generation of several models. Figure 6.2,for ex-

ample, shows the state machine generated to capture the login window’s behaviour.

Figure 6.2:HMS: Login state machine

Analysing this model, one can infer that there is a pair event/condition (edge

loginBtn/cond1with action list [1,2,3]) which closes the window (cf. edge mov-

ing to closenode) and subsequently opens another window (identified asstartApp

through action reference 2). Furthermore, one can also infer that there are two

event/condition pairs (edgeexitBtn/cond4with action list [6] and edgeloginBtn/cond2

with to action list [4]) which exit the system. These events can be executed by

clicking theExit or Loginbuttons, respectively.

The informal description of login window behaviour provided at the start of the

Section did not included the possibility of exiting the system by pressing theLogin

button. The extracted state machine however defines that possibility, which can

130 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

occur if conditioncond2is verified (cf. pairloginBtn/cond2with action list [4])).

Analysing conditioncond2(source.equals(exitBtn)), dead code was encountered.

The source code executed when pressing theLoginbutton is the following:

public void actionPerformed(ActionEvent event)
{ Object source = event.getSource();
if (source.equals(loginBtn))
{ String loginname,loginpass;
loginname = userTxt.getText().trim();
loginpass = passwordTxt.getText().trim();
if(valid(loginname, loginpass))
{ new start();

setVisible(false);
frame.dispose();

}
else showMessageDialog("Invalid User name and password");

}
else if(source.equals(exitBtn))

{ System.exit(0);
}

}

This code uses a condition to test whether the clicked button is theLogin but-

ton or not. This is done through the boolean expressionsource.equals(loginBtn).

However, the above action source code is only performed when pressing theLogin

button. Thus, the condition will always be verified and the followingelsecompo-

nent of the conditional statement will never be executed.

else if(source.equals(exitBtn))
{ System.exit(0);
}

Summarizing the results obtained for the login window, one can say that the

generated state machine contains an event/condition/actions representation which

can not be executed despite being defined on the behavioural model. Thisexample

demonstrates how comparing expected application behaviour against the models

6.2. MAIN WINDOW 131

generated by GUISURFERcan help to understand and detect dead code in applica-

tions.

6.2 Main Window

The window displayed byHMSsystem after login is presented in Figure 6.3. From

this window, users can have access to four other windows through buttons Patient,

Doctor, Billing andReport. Users can also exit the applications through theEXIT

button, and finally theBACKbutton ends the session and the system goes back to

the login window.

Figure 6.3:HMS: Main window

Figure 6.4 shows the state machine generated forHMS’s main window. As

expected, GUISURFERinferred six events, one for each button. Five events close

the main window when executed (edges moving to theclosenode). These events

are identified as the followingbback, bbill, bdoc, bpat, andbreport. At the top

132 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

of the Figure 6.4, the first line defines action references to open others windows

(New window actions). These are1, 3, 5, 8 and10 which open windowspatStart,

docStart, Billing, mainAppand Report, respectively. Thus, eventsbback, bbill,

bdoc, bpatandbreport open windowsmainApp, Billing, docStart, patStart, and

Report, respectively. Finally, thebexitevent ends the application (edge moving to

theendnode).

Figure 6.4:HMS: Main window state machine

6.3 Patient Management

In this Section, Figures 6.5 and 6.7 present two forms related to the patient man-

agement. The first Figure contains the patient’s main form. Through four buttons,

users can open forms to add new patient information (clicking on buttonAdd Data),

to modify patient information (clicking on buttonModify Data) or to view patient

information (clicking on buttonView Data). Finally theBACK button takes the

interface back to the previous form (cf. Main window in Figure 6.3). Clicking on

each of these buttons will also close the patient’s main form.

6.3. PATIENT MANAGEMENT 133

The second Figure (6.7) provides the form that users can access when clicking

on buttonView Datafrom the patient’s main form (see Figure 6.5). Basically, this

form enables viewing information regarding a particular patient identified through

the patient’s number. This form is composed of several text and list boxes. Three

buttons are also present allowing to search of new patient information by clicking

on buttonSEARCH, the clearing of all widget data is done by clicking on button

CLEAR, and going back to the patient’s main form is done by clicking on button

BACK.

Figure 6.5:HMS: Main patient form

Applying GUISURFERto the source code of these two forms (cf. Figure 6.5

and 6.7) enables the generation of two states machines. The state machine in Figure

134 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.6:HMS: Main patient state machine

Figure 6.7:HMS: View patient information form

6.3. PATIENT MANAGEMENT 135

Figure 6.8:HSM: View patient information state machine

6.6 represents the first form’s behaviour. From statepatStartstate1, there are four

possible pairs of event/condition. As described above, users can add,modify, view

patient information or go back to the previous form (i.e. to thestartAppform). This

state machine patient’s information also shows that each pair of event/condition

when executed will close the patient’s information form (each pair moves to the

closenode).

Finally, the state machine in Figure 6.8 describes the behaviour model extracted

from the form shown in Figure 6.7. As expected, the obtained results showthat

users can execute several searches from the same form state (statePatientInfoView-

state1and pairs of event/conditionbclr/cond1, bsub/cond2, bsub/cond3). Users

can also exit the form and go back to the main patient’s form (patStart) through the

bback/cond4event/condition pair. This pair is associated with action reference1

which opens the main patient’s form (see at the top of the Figure 6.8,New window

136 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

actions: 1, patStart) wherepatStartspecifies the main patient form described in

Figure 6.5).

6.4 Doctors Management

More results are listed in this Section considering doctor’s information manage-

ment forms. Figure 6.9 contains a form (namely,DoctorInfoAdd) which can be

used to insert new doctor’s data in the system. The form uses the usual widgets,

i.e. textfields, labels, list boxes, buttons, etc. As with previous forms GUISURFER

automatically generates a state machine specifying its behaviour. This state ma-

chine is shown in Figure 6.10. The generated state machine specifies several

event/condition pairs manipulatingDoctorInfoAddform’s stateDoctorInfoAddstate1.

Furthermore, there is only one pair event/condition to close the form, i.e. pair

bback/cond1/[5,6]moving to theclosenode, where action reference5 opens the

docStartform.

6.5 Bills Management

This Section presents results obtained when working with the billing form provided

in Figure 6.11. Using this form, users can search bills (by clicking on theSEARCH

button), clear all widget’s assigned values (by clicking on theCLEARbutton) or

go back to the previous form (i.e.startAppform provided in Figure 6.3). Figure

6.12 presents the generated state machine. There is only one way to close theform

Billing. Users must select thebbackevent, verifying thecond9condition (cf. pair

bback/cond9/[1,2]). This event enables moving to theclosenode, thus closing the

Billing form, and opening thestartAppform through action reference1.

6.6. OVERALL BEHAVIOUR 137

Figure 6.9:HSM: Add doctor form

6.6 Overall Behaviour

GUISURFERextracts the overall behavioural model of an interactive system con-

sidering its windows. Figures 6.13, 6.14 and 6.15 provides three fragmentsof a

same model that constitutes the behavioural model: left, right and center parts of

a state machine where each node specifies a window. Edges between nodes define

tuples ofstate/ event/ condition/ actionsshowing whicheventallows opening a

new window from a particularstateof the source window. Each of these transi-

tions between nodes opens a new window and closes the initial one. For example,

in Figure 6.14, from the internal state of thestartAppwindow state1, users have

access to thepatStartwindow through thebpat event if cond1 is verified. This

information is specified by an edge with the labelstartApp state1 bpat cond1,

138 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.10:HSM: Add doctor behavioural state machine

6.6. OVERALL BEHAVIOUR 139

Figure 6.11:HSM: Billing form

Figure 6.12:HSM: Billing form behaviour state machine

140 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

from thestartAppnode topatStartnode

Figure 6.13:HSM: The overall behaviour (left part)

6.7 GUI Reasonning

Section 5.2 described GUI analysis performed on theAgendaapplication’s be-

havioural graph (cf. Figure 5.1), using theGraph-Toolfor the manipulation and

statistical analysis of graphs.

In this Section, two metrics will be applied in order to illustrate the same kind

of analysis: Pagerank and Betweenness.

Figure 6.16 provides a graph with the overall behaviour of the HMS system.

This model can be seen in more detail in the electronic version of this thesis. Ba-

sically, this model aggregates the state machines of all HMS forms. The right top

corner node specifies the HMS entry point, i.e. themainAppstate0creation state

from the login’s state machine (cf. Figure 6.2).

Pagerank is a link analysis algorithm, that assigns a numerical weighting to

6.7. GUI REASONNING 141

Figure 6.14:HSM: The overall behaviour (center part)

Figure 6.15:HSM: The overall behaviour (right part)

142 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.16:HSM: The overall behaviour

6.7. GUI REASONNING 143

each node. The main objective is to measure the relative importance of the states.

Larger nodes specifies window internal states with higher importance within the

overall application behaviour.

Figure 6.17 provides the result obtained when applying the pagerank algorithm

to graph of Figure 6.16. This metric can have several applications, for example,

to analyse whether complexity is well distributed along the application behaviour.

In this case, there are several points with higher importance. The interaction com-

plexity is well distributed considering the overall application.

Betweenness is a centrality measure of a vertex or an edge within a graph.

Vertices that occur on many shortest paths between other vertices have higher be-

tweenness than those that do not. Similar to vertices betweenness centrality, edge

betweenness centrality is related to shortest path between two vertices. Edges that

occur on many shortest paths between vertices have higher edge betweenness. Fig-

ure 6.18 provides the obtained result when applying the betweenness algorithm (c.f

Section 5.2.4). Betweenness values are expressed numerically for eachvertices and

edges. Highest betweenness edges values are represented by larger edges. Some

states and edges have the highest betweenness, meaning they act as a hub from

where different parts of the interface can be reached. Clearly they represent a cen-

tral axis in the interaction between users and the system. In a top down order, this

axis traverses the following statespatStartstate0, patStartstate1, startAppstate0,

startAppstate1, docStartstate0anddocStartstate1. StatesstartAppstate0andstar-

tAppstate1are the main states of thestartAppwindow’s state machine (cf. Figure

6.3 and Figure 6.4). StatespatStartstate0, patStartstate1are the main states of the

patStartwindow’s state machine (cf. Figure 6.5 and Figure 6.6). Finally,docStart-

144 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.17:HSM’s pagerank results

6.8. CONCLUSIONS 145

state0anddocStartstate1belong todocStartwindow’s state machine (docStartis

the main doctor window).

As another perspective, the event/condition/actions tuples present in this cen-

tral axis are:

• bback/cond4/[7,8]: This tuple specifies apatStartform’s event opening the

startAppwindow frompatStartstate1state. See Figures 6.5 and 6.6 provid-

ing patStartform andpatStart’s state machine;

• bdoc/cond2/[3,4]: This tuple defines astartAppform’s event openingdoc-

Startwindow fromstartAppstate1state. See Figures 6.3 and 6.4 providing

startAppform andstartApp’s state machine;

• bpat/cond1/[1,2]: This tuple defines astartAppform’s event openingpat-

Startwindow fromstartAppstate1state. See Figures 6.3 and 6.4 providing

startAppform andstartApp’s state machine;

• bback/cond4/[7,8]: This tuple defines adocStartwindow event. This is the

bbackevent which opens thestarAppwindow fromdocStartstate1state.

It is expectable that the dialogue between users andHMSsystem is essentially

around these events, states and windows.

6.8 Conclusions

This Chapter described the results obtained with GUISURFERwhen applying it to

a larger interactive system. The choosen interactive system case study isrelated

to a healthcare management system (HMS). The HMS system is implemented in

146 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Figure 6.18:HSM’s betweenness values

6.8. CONCLUSIONS 147

Java/Swingprogramming language and implement operations to allow for patients,

doctors and bills management. A description of mainHMSwindows has been pro-

vided, andGUIsurfer results have been described. The GUISURFERtool enabled

the extraction of different behavioural models. Methodologies have been also ap-

plied automating the activities involved in GUI model-based reasoning, such as,

pagerank and betweenness algorithms. GUI behavioural metrics have been used

as a way to analyse GUI quality. This case study demonstrated that GUISURFER

enables the analysis of real interactive applications written by third parties.

148 CHAPTER 6. HMS CASE STUDY: A LARGER INTERACTIVE SYSTEM

Chapter 7

Conclusions and Future Work

This thesis presented an approach to GUI reasoning using reverse engineering tech-

niques. This document concludes with a review of the work developed. The re-

sulting research contributions are presented and directions for future work are sug-

gested.

The first Section presents the answers to research questions defined inthe first

Chapter. The second Section describes the contributions of the thesis. A discussion

about GUISURFER limitations is provided in Section 3. Finally, the last Section

presents some future work.

7.1 Answers to Research Questions

In the beginning of this Phd project several aspects of interactive applications have

been identified. In order to guide our study three research questions have been

raised. These are defined in the introduction of this document and will answered

in this Section.

The research goal for this thesis was to demonstrate that:

Interactive application’s source code can be used for automatic generation of

149

150 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

GUI behavioural models and subsequent GUI behavioural reasoning through a

retargetable approach.

The three research questions raised by the research goal provided guidance for

the research. The findings related both directly and indirectly to answeringeach

question have been discussed in depth along appropriate Chapters. Issues related

to answering Question One about inferring realistic behavioural models ofa GUI

from its application’s source code are discussed in Chapter 3 (Sections 3.2, 3.3 and

3.5) and Chapter 4 (Section 4.3). Results related to Question Two, about language

independent techniques for GUI modelling and reasoning are discussedin Chapter

3 (Section 3.4) and Chapter 4 (Section 4.4). The third research question isdirected

at re-using well-known algorithms and metrics for GUI reasoning through GUI

behavioural models. Results related to this question are discussed along Chapter

5 (Sections 5.1 and 5.2). The following Sections summarize these discussionsand

reflect more widely on relevant issues.

• Question One: Can we infer realistic behavioural models of a GUI from

its application’s source code?This research has demonstrated that the be-

haviour of a GUI can be automatically extracted considering the software’s

windows, their widgets, properties, values and control flow. The approach

follows a reverse engineering methodology and starts by making use of a

parser to generate an AST. Therefore, traversals of the AST may be exe-

cuted enabling extraction of the GUI layer. The execution model of the user

interface is obtained by using a classification of its events. The approach

has proven very flexible. From application’s source code the developed tool

is able to derive both interactor based models, event flow graphs and state

7.1. ANSWERS TO RESEARCH QUESTIONS 151

machines. In the first case the models capture a user oriented view of the

interface. In other cases models capture the internal behaviour of the ap-

plication. Several examples of case studies have been described, showing

realistic behavioural models automatically extracted from source code.

• Question Two: Can we define a language independent technique for GUI

modelling and reasoning?Our study demonstrated that strategic program-

ming and slicing techniques can be combined to reverse engineer user inter-

faces from the source code of its application written in different languages

(cf. Section 4.4). A first prototype has been developed allowing analysis

of Java/Swingsource code. Afterwards, the prototype was extended to con-

sider other programming languages, namelyGWTandWxHaskell. Hence,

the work has proven the retargetability of the proposed techniques and the

developed prototype.

• Question Three: Can we use well-known algorithms and metrics to reason

about GUI behavioural models?This research has demonstrated that GUI

reasoning can be done making use of GUI behavioural models. Two tools

have been applied. The first one enables generation and validation of test

cases from a model of the GUI usingQuickCheck, a tool for testingHaskell

programs automatically.Graph-Toolis another tool used for manipulation

and statistical analysis of graphs. The tool implements all sorts of algo-

rithms, statistics and metrics over graphs, such as shortest distance, isomor-

phism, and centrality measures. UsingGraph-Tooland an analogy between

state machines and graphs, several algorithms and metrics have been usedto

152 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

reason about GUI behavioural models.

7.2 Summary of Contributions

The major contribution of this work is the development of the GUISURFERproto-

type, an approach for improving GUI analysis through reverse engineering. This

research has demonstrated how user interface layer can be extracted from different

source codes, identifying a set of widgets (graphical objects) that canbe modeled,

and identifying also a set of user interface actions. Finally this thesis has presented

a methodology to generate behavioural user interface models from the extracted

information and to reason about it.

The approach is very flexible, indeed the same techniques have been applied to

extract similar models fromJava/Swing, GWTandWxHaskellinteractive applica-

tions.

In what concerns user interface development, two perspectives on quality can

be considered. Users, on one hand, are typically interested on what can be called

external quality: the quality of the interaction between users and system. Program-

mers, on the other hand, are typically more focused on the quality attributes ofthe

code being produced.

This work is an approach to bridging the gap between users and program-

mers by allowing the reasoning about GUI models from source code. This the-

sis described GUI models extracted automatically from the code, and presented a

methodology to reason about the user interface model. A number of metrics over

the graphs representing the user interface were investigated. Some initial thoughts

on testing the graph against desirable properties of the interface were also put for-

7.3. DISCUSSION 153

ward. We believe this style of approach can feel a gap between the analysis of code

quality via the use of metrics or other techniques, and usability analysis performed

on a running system with actual users.

This thesis has shown that reasoning from models provides an easy way to

implement interactive systems analysis. Models provide a tool to explore GUI

properties. This thesis provides a variety of models and discuss their importance to

GUI analysis. These models have been from different case studies, demonstrating

how the approach enables to reason about GUI models.

7.3 Discussion

Using GUISURFER, programmers are able to reason about the interaction between

users and a given system at a higher level of abstraction than that of code. The

generated models are amenable to analysis via model checking (c.f. [CH09]). In

this work, alternative lighter weight approaches have been explored .

Considering that the models generated by the reverse engineering process are

representations of the interaction between users and system, this research explored

how metrics defined over those models can be used to obtain relevant information

about the interaction. This means that the approach enable to analyse the quality of

the user interface, from the users perspective, without having to resort to external

metrics which would imply testing the system with real users, with all the costs

that the process carries.

It must be noted that, while the approach enables to analyse aspects of user

interface quality without resorting to human test subjects, the goal is not to replace

user testing. Ultimately, only user testing will provide factual evidence of the us-

154 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

ability of a user interface. The possibility of performing the type of analysis will

help in gaining a deeper understanding of a given user interface. This will promote

the identification of potential problems in the interface, and support the comparison

of different interfaces, complementing and minimizing the need to resort to costly

user testing.

Results show the reverse engineering approach adopted is useful butthere are

still some limitations. One relates to the focus on event listeners for discrete events.

This means the approach is not able to deal with continuous media and synchro-

nization/timing constraints among objects. Another limitation has to due with lay-

out management issues. GUISURFER cannot extract, for example, information

about overlapping windows since this must be determined at run time. Thus, itcan

not be find out in a static way whether important information for the user might

be obscured by other parts of the interface. A third issue relates to the fact that

generated models reflect what was programmed as opposed to what was designed.

Hence, if the source code does the wrong thing, static analysis alone is unlikely to

help because it is unable to know what the intended outcome was. For example, if

an action is intended to insert a result into a text box, but input is sent to another

instead. However, if the design model is available, GUISURFERcan be used to

extract a model of the implemented system, and a comparison between the two can

be carried out.

A number of others issues still needs addressing. In the examples used through-

out the thesis, only one windows could be active at any given time (i.e., windows

were modal). When non-modal windows are considered (i.e., when usersare able

to freely move between open application windows), nodes in the graph come to

7.4. FUTURE WORK 155

represents sets of open windows instead of a single active window. This creates

problems with the interpretation of metrics that need further consideration. The

problem is exacerbated when multiple windows of a given type are allowed (e.g.,

multiple editing windows).

7.4 Future Work

The work developed in this thesis open a new set of interesting problems thatneed

research. This Section provides some pointers for future work.

7.4.1 GUISURFERExtension

In the future, the implementation can be extended to handle more complex widgets.

Others programming languages/toolkits can be considered, in order to make the

approach as generic as possible.

GUISURFERmay be also extended to other kinds of interactive applications.

There are categories of user interfaces that cannot be modeled in GUISURFER, for

example, system incorporating continuous media or synchronization/timing con-

straints among objects. Thus, the identification of the problems that GUISURFER

may present when modelling these user interfaces would be the first step towards

a version of GUISURFERsuitable for use with other kinds of interactive applica-

tions. Finally, the tool and the approach must be validated externally. Although

the approach has already been applied by another researcher, it is fundamental to

apply this methodology with designers and programmers. Empirical studies need

also to be executed to compare the GUI models users would define by hand with

the automatic one produced by GUISURFER.

156 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

7.4.2 GUI Reengineering

As another area of future work, techniques can be explored for restructuring GUI

source code in order to make it more reusable, reliable and maintainable. The

GUISURFER tool is capable of deriving GUI models of applications written in

different programming paradigms. Now, the goal is to go one step further and re-

engineer GUI applications, extending the existing approach, exploring model trans-

formation and analysis, and applying the approach to large scale industrialsystems.

Figure 7.1 models the proposed re-engineering process of interactive applications

from source code. The approach is basically a process of reverse engineering fol-

lowed by a forward engineering process in order to change a system. Hence, the

re-engineering process involves moving to a higher abstraction level, enabling to

create GUI specifications, adding new functionality to this specification and devel-

oping a new implementation by using forward engineering techniques. The higher

GUI abstraction level could be used as the basis for a transformation/refactoring

process. Then, through forward engineering, a new source code for the GUI could

be generated.

7.4.3 Patterns for GUI transformation

Patterns may be used to obtain better systems through the re-engineering of GUI

source code across paradigms and architectures. The architect Christopher Alexan-

der has introduced design patterns in early 1970. He defines a pattern asa relation

between a context, a problem, and a solution. Each pattern describes a recurrent

problem, and then describes the solution to that problem. Design patterns gained

popularity in computer science, cf. [GHJV95]. In software engineering, a design

7.4. FUTURE WORK 157

Figure 7.1: Re-engineering of interactive applications from source code

158 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

pattern is a general reusable solution to a commonly occurring problem in soft-

ware design. Patterns are used in different areas including software architecture,

requirements and analysis. The human computer interaction (HCI) community has

also adopted patterns as a user interface design tool. In the HCI community, pat-

terns are used to create solutions which help user interfaces designers toresolve

GUI development problems. Patterns have been used in two different contexts:

[SJBG08] proposes usability supporting software architectural patterns (USAPs)

that provide developers with useful guidance for producing a software architecture

design that supports usability (called these architectural patterns). Tidwell [Tid05]

uses patterns from a user interface design perspective, defining solutions to com-

mon user interface design problems, without explicit consideration of the software

architecture (called these interaction patterns). Harrison makes use of interaction

styles to describe design and architectural patterns to characterize the properties of

user interfaces [GH04]. In any case these patterns have typically beenused in a

forward engineering context.

The use of re-engineering approaches has been explored by several authors

in order to derive new interactive systems. The re-engineering approach includes

three phases: reverse engineering, transformation and forward engineering.

Application of patterns-based re-engineering techniques could be usedto im-

plement the interactive systems adaptation process. One of the most important

features of patterns, which justifies its use here, is that they are platform and im-

plementation independent solutions. Pattern-based approach may support user in-

terface plasticity [CC08] and generally help the maintenance and migration of GUI

code.

7.4. FUTURE WORK 159

The main goal could be to develop patterns-based techniques and tools to

demonstrate that source code may be automatically transformed, in a processof re-

structuring interactive systems, to make it more reusable, reliable and maintainable

[Sut95]. The use of patterns may be an interesting technique for re-engineering be-

cause the same pattern can be implemented in several platforms.

160 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

Bibliography

[ABD+89] G. Abowd, J. Bowen, A. Dix, M. Harrison, and R. Took. User in-

terface languages: a survey of existing methods. Technical report,

Programming Research Group, Oxford University, 1989.

[ACRPM07] Jõao C. P. Faria Ana C. R. Paiva and Pedro M. C. Mendes. Reverse

engineered formal models for GUI testing.12th International Work-

shop on Formal Methods for Industrial Critical Systems (FMICS

2007), July 2007.

[ASD04] O. Al-Shara and A. Dix. Graphical user interface development en-

hancer (guide). 2004.

[AV05] Tiago Alves and Joost Visser. Metrication of sdf grammars. Tech-

nical Report DI-PURe-05.05.01, Departamento de Informática, Uni-

versidade do Minho, 2005.

[BA95] Peter Bumbulis and P.S C. Alencar. A framework for prototyping

and mechaniacally verifying a class of user interfaces.IEEE, 1995.

[BC96] R.J. Butterworth and D.J. Cooke. Using temporal logic in the spec-

ification of reactive and interactive systems. InProceedings of the

161

162 BIBLIOGRAPHY

BCS-FACS WorkShop on Formal Aspects of the Human Computer

Interface, Sheffield Hallam University, September 1996.

[Bel01] Fevzi Belli. Finite state testing and analysis of graphical user in-

terfaces. InProceedings.of the 12th International Symposium on

Software Reliability Engineering, ISSRE 2001, pages 34–42. IEEE,

November 2001.

[Ber01] B. Berard. Systems and Software Verification. Springer edition,

2001.

[Ber05] Pavel Berkhin. A survey on pagerank computing.Internet Mathe-

matics, 2:73–120, 2005.

[Bum96] Peter Bumbulis.Combining Formal Techniques and Prototyping in

User Interface Construction and Verification. PhD thesis, University

of Waterloo, 1996.

[BY93] Ann E. Blandford and Richard M. Young. Developing runnableuser

models: Separating the problem solving techniques from the domain

knowledge. In J. Alty, D. Diaper, and S. Guest, editors,People and

Computers VIII — Proceedings of HCI’93, pages 111–122, Cam-

bridge, 1993. Cambridge University Press.

[Cam99] J. C. Campos.Automated Deduction and Usability Reasoning. PhD

thesis, Department of Computer Science, University of York, 1999.

[Cam04] Jośe C. Campos. The modelling gap between software engineering

and human-computer interaction. In Rick Kazman, Len Bass, and

BIBLIOGRAPHY 163

Bonnie John, editors,ICSE 2004 Workshop: Bridging the Gaps II,

pages 54–61. The IEE, 2004.

[CC08] Jöelle Coutaz and Gäelle Calvary. HCI and software engineering:

Designing for user interface plasticity. InThe Human Computer In-

teraction Handbook, chapter 56, pages 1107–1125. 2008.

[CCT+03] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, L. Bouillon, and

J. Vanderdonckt. A unifying reference framework for multi-target

user interfaces.Interacting with Computers, 15:289–308, 2003.

[CH00] Koen Claessen and John Hughes. Quickcheck: A lightweight tool

for random testing of haskell programs. InICFP, ACM SIGPLAN,

2000, 2000.

[CH01] Jośe C. Campos and Michael D. Harrison. Model checking interactor

specifications. Automated Software Engineering, 8(3-4):275–310,

August 2001.

[CH09] J. C. Campos and M. D. Harrison. Interaction engineering usingthe

IVY tool. In ACM Symposium on Engineering Interactive Comput-

ing Systems (EICS 2009), pages 35–44, New York, NY, USA, 2009.

ACM.

[Chi93] Elliot J. Chikofsky. Business reengineering and software mainte-

nance. InICSM, page 100, 1993.

164 BIBLIOGRAPHY

[Cle98] T. Clement. The formal development of a windows interface. InPro-

ceeding of the 3rd BCS-FACS Northern Formal Methods Workshop,

1998.

[CMP04] A. Campi, E. Martinez, and P.S. Pietro. Experiences with a formal

method for design and automatic checking of user interfaces. In

Proceedings of the Position paper in IUI/CADUI’2004 Workshop on

Making Model-Based UI Design Practical: usable and open meth-

ods and tools, January 2004.

[CS01] J. Chen and S. Subramaniam. A GUI environment for testing gui-

based applications in Java.Proceedings of the 34th Hawaii Interna-

tional Conferences on System Sciences, january 2001.

[DBDM98] D.J. Duke, P.J. Barnard, D.A. Duce, and J. May. Syndetic modelling.

Human-Computer Interaction, 13(4):337–393, 1998.

[dDR96] Bruno d’Ausbourg, Guy Durrieu, and Pierre Roché. Deriving a for-

mal model of an interactive system from its UIL description in or-

der to verify and to test its behaviour. In F. Bodart and J. Vander-

donckt, editors,Design, Specification and Verification of Interactive

Systems ’96, Springer Computer Science, pages 105–122. Springer-

Verlag/Wien, June 1996.

[DFAB03] Alan Dix, Janet E. Finlay, Gregory D. Abowd, and Russell Beale.

Human-Computer Interaction (3rd Edition). Prentice-Hall, Inc., Up-

per Saddle River, NJ, USA, 2003.

BIBLIOGRAPHY 165

[DH93] David J. Duke and Michael D. Harrison. Abstract interaction objects.

Computer Graphics Forum, 12(3):25–36, 1993.

[DJ05] Gabriel Dos Reis and Jaakko Järvi. What is generic programming?

In Proceedings of the First International Workshop of Library-

Centric Software Design (LCSD ’05). An OOPSLA ’05 workshop,

October 2005.

[Doh98] Gavin John Doherty.A Pragmatic Approach to the Formal Specifi-

cation of Interactive Systems. PhD thesis, Department of Computer

Science, University of York, 1998.

[dS02] Paulo Pinheiro da Silva.Object Modelling of Interactive Systems:

The UMLi Approach. PhD thesis, Department of Computer Science,

University of Manchester, United Kingdom, 2002.

[dSGD98] Bruno d’Ausbourg, Christel Seguin, and Pierre Rochk Guy Durrieu.

Helping the automated validation process of user interfaces systems.

IEEE, 1998.

[EGK+01] John Ellson, Emden Gansner, Lefteris Koutsofios, Stephen North,

and Gordon Woodhull. Graphviz - an open source graph draw-

ing tools. InLecture Notes in Computer Science, pages 483–484.

Springer-Verlag, 2001.

[ESS03] P. Iglinski E. Stroulia, M. El-ramly and P. Sorenson. User interface

reverse engineering in support of interface migration to the web.Au-

tomated Software Engineering, 2003.

166 BIBLIOGRAPHY

[FMD97] Bob Fields, Nick Merriam, and Andy Dearden. DMVIS: Design,

modelling and validation of interactive systems. In M. D. Harrison

and J. C. Torres, editors,Design, Specification and Verification of

Interactive Systems ’97, Springer Computer Science, pages 29–44.

Springer-Verlag/Wien, June 1997.

[GH04] Stephen W. Gilroy and Michael D. Harrison. Using interaction style

to match the ubiquitous user interface to the device-to-hand. In

EHCI/DS-VIS, pages 325–345, 2004.

[GHJV95] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides.

Design Patterns: Elements of Reusable Object-Oriented Software.

Addison-Wesley, Reading, MA, 1995.

[Har80] D. Harel. Statecharts: a visual formalism for complex systems. In

Science of Computer Programming, vol. 8(Eds.), pages 231 – 274,

1980.

[HF94] Dan Heller and Paula M. Ferguson.Motif Programming Manual,

volume 6A ofX Window System Seris. O’Reilly & Associates, Inc.,

second edition, 1994.

[HR92] Susan Horwitz and Thomas Reps. The use of program dependence

graphs in software engineering. InProceedings of the 14th inter-

national conference on Software engineering, ICSE ’92, pages 392–

411, New York, NY, USA, 1992. ACM.

BIBLIOGRAPHY 167

[HT90] M. Harrison and H. Thimbleby, editors.Formal Methods in Human-

Computer Interaction. Cambridge Series on Human-Computer In-

teraction. Cambridge University Press, 1990.

[HT07] Robert Hanson and Adam Tacy.GWT in Action: Easy Ajax with

the Google Web Toolkit. Manning Publications Co., Greenwich, CT,

USA, 2007.

[IH01] Melody Y. Ivory and Marti A. Hearst. The state of the art in au-

tomating usability evaluation of user interfaces.ACM COMPUTING

SURVEYS, 33:470–516, 2001.

[ISO99] ISO/IEC. Software products evaluation, 1999. DIS 14598-1.

[Jac83] Robert J. K. Jacob. Using formal specifications in the design

of a human-computer interface.Communications of the ACM,

26(4):259–264, 1983.

[JBS78] Harold W. Lawson Jr., Miquel Bertran, and Javier Sanagustin. The

formal definition of human/machine communications.Softw., Pract.

Exper., 8(1):51–58, 1978.

[JHA+99] S. P. Jones, J. Hughes, L. Augustsson, et al. Report on the pro-

gramming language haskell 98. Technical report, Yale University,

February 1999.

[JNeC03] Joaquim A. Jorge, Nuno Jardim Nunes, and João Falc̃ao e Cunha,

editors.Interactive Systems. Design, Specification, and Verification,

168 BIBLIOGRAPHY

10th International Workshop, DSV-IS 2003, Funchal, Madeira Is-

land, Portugal, June 11-13, 2003, Revised Papers, volume 2844 of

Lecture Notes in Computer Science. Springer, 2003.

[LEW+02] Marc Loy, Robert Eckstein, Dave Wood, James Elliott, and Brian

Cole. Java Swing, 2nd Edition. O Reilly, 2002.

[LH05] K. Loer and M.D. Harrison. Analysing user confusion in context

aware mobile applications. In M.F. Constabile and F. Paternò, edi-

tors,PINTERACT 2005, volume 3585 ofLecture Notes in Computer

Science, pages 184–197, New York, NY, USA, 2005. Springer.

[LHRM07] Ping Li, Toan Huynh, Marek Reformat, and James Miller. A

practical approach to testing GUI systems.Empirical Softw. Eng.,

12(4):331–357, 2007.

[LPWR90] Clayton Lewis, Peter Polson, Cathleen Wharton, and John Rie-

man. Testing a walkthrough methodology for theory-based design

of walk-up-and-use interfaces. InCHI ’90 Proceedings, pages 235–

242, New York, April 1990. ACM Press.

[Luc01] Andrea De Lucia. Program slicing: Methods and applications.IEEE

workshop on Source Code Analysis and Manipulation (SCAM 2001),

2001.

[LV03] R. Lammel and J. Visser. ASTRAFUNSKI application letter. Tech-

nical report, CWI, Vrije Universiteit, Software Improvement Group,

Kruislaan, Amsterdam, 2003.

BIBLIOGRAPHY 169

[LVM +04] Quentin Limbourg, Jean Vanderdonckt, Benjamin Michotte, Laurent

Bouillon, Murielle Florins, and Daniela Trevisan. Usixml: A user

interface description language for context-sensitive user interfaces.

In Workshop Developing User Interfaces with XML: Advances on

User Interface Description Languages, Advanced Visual Interfaces

2004, Gallipolli, Italy, 2004.

[Mac10] Helder Nuno Ribeiro Macedo. A strategic-based weaver for aspect-

matlab design and implementation, 2010. Departamento de In-

formática, Universidade do Minho.

[MBN03] Atif Memon, Ishan Banerjee, and Adithya Nagarajan. GUI ripping:

Reverse engineering of graphical user interfaces for testing. Techni-

cal report, Department of Computer Science and Fraunhofer Center

for Experimental Software Engineering, Department of Computer

Science University of Maryland,USA, 2003.

[McM93] Kenneth L. McMillan.Symbolic Model Checking. Kluwer Academic

Publishers, 1993.

[Mel96] Moore Melody. A survey of representations for recovering user in-

terface specifications for reengineering. Technical report, Institute

of Technology, Atlanta GA 30332-0280, june 1996.

[Mem01] A. M. Memon. A Comprehensive Framework for Testing Graphi-

cal User Interfaces. PhD thesis, Department of Computer Science,

University of PittsBurgh, july 2001.

170 BIBLIOGRAPHY

[MGG+95] E. Merlo, P. Gagne, J. F. Girard, K. Kontogiannis, L.J. Hendren,

P. Panangaden, and R. Mori. Reengineering user interfaces.IEEE

Software, 12(1), 64-73, 1995.

[MJS+00] Hausi A. Müller, Jens H. Jahnke, Dennis B. Smith, Margaret-Anne

Storey, Scott R. Tilley, and Kenny Wong. Reverse engineering: a

roadmap. InICSE ’00: Proceedings of the Conference on The Future

of Software Engineering, pages 47–60, New York, NY, USA, 2000.

ACM.

[Moo96] M. M. Moore. Rule-based detection for reverse engineeringuser

interfaces.Proceedings of the Third Working Conference on Reverse

Engineering, pages 42-8, Monterey, CA, november 1996.

[MSP01] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage

criteria for GUI testing. InESEC/FSE-9: Proceedings of the 8th Eu-

ropean software engineering conference held jointly with 9th ACM

SIGSOFT international symposium on Foundations of software en-

gineering, pages 256–267, New York, NY, USA, 2001. ACM Press.

[MT06] Pedro J. Molina and Hallvard Traetteberg. An approach to refining

specifications towards implementation. InComputer-Aided Design

of User Interfaces IV, pages 211–222. Springer Netherlands, 2006.

[MTWH04] Steven P. Miller, Alan C. Tribble, Michael W. Whalen, and Mats P.E.

Heimdahl. Proving the shalls early validation of requirements

through formal methods. 2004.

BIBLIOGRAPHY 171

[Mye91] Brad A. Myers. Separating application code from toolkits: Eliminat-

ing the spaghetti of call-backs. 1991.

[Nie93] J. Nielsen.Usability Engineering. Academic Press, San Diego, CA,

1993.

[NM90] Jakob Nielsen and Rolf Molich. Heuristic evaluation of user inter-

faces. InCHI ’90 Proceedings, pages 249–256, New York, April

1990. ACM Press.

[Pal94] P. Palanque. Petri net design of user-driven interfaces using interac-

tive cooperative objects formalism. InProceeding of the Design,

Specification and Verification of Interactive Systems - DSV-IS’94,

1994.

[Pat95] Fabio D. Paterǹo. A Method for Formal Specification and Verifica-

tion of Interactive Systems. PhD thesis, Department of Computer

Science, University of York, 1995. Available as Technical Report

YCST 96/03.

[Pat00] Fabio Paterǹo. Model-Based Design and Evaluation of Interactive

Applications. Springer-Verlag, London, 2000.

[PC05] W. L. Pearn and W. C. Chiu. Approximate solutions for the

maximum benefit chinese postman problem.Intern. J. Syst. Sci.,

36(13):815–822, 2005.

[PFM07] Ana C. R. Paiva, João C. P. Faria, and Pedro M. C. Mendes, editors.

Reverse Engineered Formal Models for GUI Testing, 10th Interna-

172 BIBLIOGRAPHY

tional Workshop on Formal Methods for Industrial Critical Systems,

2007. Berlin, Germany.

[PP98] Philipe Palanque and Fabio Paternò, editors. Formal Methods in

Human-Computer Interaction. Formal Approaches to Computing

and Information Technology series. Springer-Verlag, London, 1998.

[Pre98] Cambridge University Press, editor.J. Fitzgerald and P.G. Larsen.

Modelling Systems: Practical Tools and Techniques in Software De-

velpment, 1998.

[RFM91] Mark Ryan, Jośe Fiadeiro, and Tom Maibaum. Sharing actions and

attributes in modal action logic. In T. Ito and A. R. Meyer, editors,

Theoretical Aspects of Computer Software, volume 526 ofLecture

Notes in Computer Science, pages 569–593. Springer-Verlag, 1991.

[SAOB02] Ioannis Stamelos, Lefteris Angelis, Apostolos Oikonomou, and

Georgios L. Bleris. Code quality analysis in open source software

development.Information Systems Journal, 12:43–60, 2002.

[SC494] ISO/TC159 Sub-Commitee SC4. Draft International ISO DIS

9241-11 Standard. International Organization for Standardization,

September 1994.

[SCS] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. The

GUISurfer tool: towards a language independent approach to reverse

engineering gui code.In Proceedings of the 2nd ACM SIGCHI sym-

posium on Engineering interactive computing systems, Berlin.

BIBLIOGRAPHY 173

[SCS06a] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. Com-

bining formal methods and functional strategies regarding the re-

verse engineering of interactive applications. InInteractive Systems,

Design, Specifications and Verification, Lecture Notes in Computer

Science. DSV-IS 2006, the XIII International Workshop on Design,

Specification and Verification of Interactive System, Dublin, Irland,

pages 137–150. Springer Berlin / Heidelberg, July 2006.

[SCS06b] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. Engen-

haria reversa de sistemas interactivos desenvolvidos em Java/Swing.

Interacç̃ao 2006, Segunda Conferência Nacional em Interacção

Pessoa-Ḿaquina, Universidade do Minho, October 2006.

[SCS06c] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. Mod-

els for the reverse engineering of Java/Swing applications.ATEM

2006, 3rd International Workshop on Metamodels, Schemas, Gram-

mars and Ontologies for Reverse Engineering, Genova, Italy, Octo-

ber 2006.

[SCS09] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. A

generic library for GUI reasoning and testing.24th Annual ACM

Symposium on Applied Computing, USA, March 2009.

[SCS10a] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. GUI

behavior from source code analysis.Interacç̃ao 2010, Quarta Con-

ferência Nacional em Interacção Humano-Computador, Universi-

dade de Aveiro, October 2010.

174 BIBLIOGRAPHY

[SCS10b] Jõao Carlos Silva, José Creissac Campos, and João Saraiva. GUI

inspection from source code analysis.OpenCert-2010, 4th Interna-

tional Workshop on Foundations and Techniques for Open Source

Software Certification, Pisa, Italy, September 2010.

[Sea09] Shu Yan Shan and et al. Fast centrality approximation in modular

networks, 2009.

[Shn82a] Ben Shneiderman. Multi-party grammars.IEEE Transactions on

Systems, Man, and Cybernetics, 1982.

[Shn82b] Ben Shneiderman. Multi-party grammars and related features for

defining interactive systems.IEEE Systems, Man, and Cybernetics

SMC-12, pages 148–154, 1982.

[Sil10] Carlos Eduardo Silva. Reverse engineering of rich internet applica-

tions, 2010. Master thesis, Universidade do Minho.

[SJBG08] Pia Stoll, Bonnie E. John, Len Bass, and Elspeth Golden. Preparing

usability supporting architectural patterns for industrial use, 2008.

Computer science, Datavetenskap, Malardalen University, School of

Innovation, Design and Engineering.

[Ski90] S. Skiena. Implementing discrete mathematics: Combinatorics and

graph theory with Mathematica.Addison-Wesley, 1990.

[SL89] Deepinder P. Sidhu and Ting-kau Leung. Formal methods for proto-

col testing: A detailed study.IEEE Trans. Softw. Eng., 15(4):413–

426, 1989.

BIBLIOGRAPHY 175

[SRF+10] J. L. Silva, O. R. Ribeiro, J. M. Fernandes, J. C. Campos, and M. D:

Harrison. The apex framework: prototyping of ubiquitous environ-

ments based on petri nets. In J. Gulliksen R. Bernhaupt, P. Forbrig

and M.K. Lárusd́ottir, editors,Human-Centred Software Engineer-

ing, volume 6409 ofLecture Notes in Computer Science, pages 6–21.

Springer, 2010.

[SS97] R.K. Shehady and D.P. Siewiorek. A method to automate user inter-

face testing using variable finite state machines. InProceeding of the

27th International Symposium on Fault-Tolerant Computing, 1997.

[Sut95] A. G. Sutcliffe.Human-Computer Interface Design. 1995. MacMil-

lan, 2nd edition.

[Sys01] T. Systa. Dynamic reverse engineering of Java software. Technical

report, University of Tampere, Finland, 2001.

[Tau90] M. J. Tauber. Etag : Extended task action grammar, a language for

the description of the user’s task language.3rd IFIP TC 13 Confer-

ence On Human-Computer Interaction Interact, 1990.

[TG08] Harold Thimbleby and Jeremy Gow. Applying graph theory to inter-

action design. pages 501–519, 2008.

[TH90] Harold. Thimbleby and M. D. Harrison.Formal methods in human-

computer interaction / edited by Michael Harrison and Harold Thim-

bleby. Cambridge University Press, Cambridge ; New York :, 1990.

176 BIBLIOGRAPHY

[Thi03] Harold Thimbleby. The directed chinese postman problem.In jour-

nal of Software - Practice and Experience, 2003.

[Tho76] J. McCabe Thomas. A complexity measure.Intern. J. Syst. Sci.,

2(4):308, 1976.

[Tid05] Jenifer Tidwell. Designing Interfaces: Patterns for Effective Inter-

action Design. 2005. O’Reilly Media, Inc.

[Tip95] Frank Tip. A survey of program slicing techniques.Journal of Pro-

gramming Languages, september 1995.

[Ura92] H. Ural. Formal methods for test sequence generation. InComputer

Comm., pages 311–325, 1992.

[VCG+08] Margus Veanes, Colin Campbell, Wolfgang Grieskamp, Wolfram

Schulte, Nikolai Tillmann, and Lev Nachmanson. Formal methods

and testing. chapter Model-based testing of object-oriented reactive

systems with spec explorer, pages 39–76. Springer-Verlag, Berlin,

Heidelberg, 2008.

[Vis03a] Eelco Visser. Program transformation with Stratego/XT: Rules,

strategies, tools, and systems in StrategoXT-0.9. In Lengauer et al.,

editors, Domain-Specific Program Generation, Lecture Notes in

Computer Science. Spinger-Verlag, November 2003. (Draft; Ac-

cepted for publication).

[Vis03b] Joost Visser.Generic Traversal over Typed Source Code Represen-

tations. PhD thesis, University of Amsterdam, February 2003.

BIBLIOGRAPHY 177

[VS04] Joost Visser and João Saraiva. Tutorial on strategic programming

across programming paradigms. In8th Brazilian Symposium on Pro-

gramming Languages, Niteroi, Brazil, May 2004.

[Was85] Anthony I. Wasserman. Extending state transition diagrams for the

specification of human-computer interaction.IEEE Trans. Softw.

Eng., 11(8):699–713, 1985.

[YGS89] Richard M. Young, T. R. G. Green, and Tony Simon. Programmable

user models for predictive evaluation of interface designs. In K. Bice

and C. Lewis, editors,CHI’89 Proceedings, pages 15–19. ACM

Press, NY, May 1989.

[YY07] Young Sik Yoon and Wan Chul Yoon. Development of quantita-

tive metrics to support UI designer decision-making in the design

process. InHuman-Computer Interaction. Interaction Design and

Usability, pages 316–324. Springer Berlin / Heidelberg, 2007.

178 BIBLIOGRAPHY

Appendix A

GUISURFERGUI Meta-Model
Specification

This Appendix shows the completeguimodelabstract data type.

GuiTypes

Data.Map

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

Window = WindowName

NewWindow = Map ExpRef WindowName

State = Map EventRef Bool

StateRef = String

N = N ([CondRef],[EventRef])

(Eq,Show)

Type = String

AstList = [[String]]

InitPos = Int

EndPos = Int

SourcePosList = [(InitPos,EndPos)]

Exp = (Type,AstList,InitPos,EndPos,SourcePosList)

Exps = Map ExpRef Exp

Events = Map EventRef Exp

Conds = Map CondRef [Exp]

179

180 APPENDIX A. GUISURFERGUI META-MODEL SPECIFICATION

Appendix B

Agenda’s GUISURFERScript
Analysis

This appendix presents the script used to reverse engineer and reason theAgenda

application.

B.1 Meta-model, Interactor and State Machine Extrac-
tion

ghc --make FileParser.hs -o FileParser -fglasgow-exts
ghc --make AstAnalyser.hs -o AstAnalyser -fglasgow-exts
ghc --make Graph.hs -o Graph -fglasgow-exts

FileParser Login.java
AstAnalyser "Login.java.ast" "main" "JButton, setEnabled, exit,
showMessageDialog, dispose, ContactEditor, Find, Login, MainForm"
Graph eventsFromInitState.gui initState.gui 0 "ContactEditor,
Find, Login, MainForm" windowName.gui "Login" "ClientDBjava" 1
dot -Tpng graph.dot -o graphClientDBjavaLogin.png

FileParser ContactEditor.java
AstAnalyser "ContactEditor.java.ast" "main" "JButton,
setEnabled, exit, showMessageDialog, dispose, ContactEditor,
Find, Login, MainForm"
Graph eventsFromInitState.gui initState.gui 0 "ContactEditor,
Find, Login, MainForm" windowName.gui "Login" "ClientDBjava" 1
dot -Tpng graph.dot -o graphClientDBjavaContactEditor.png

181

182 APPENDIX B. AGENDA’S GUISURFERSCRIPT ANALYSIS

FileParser MainForm.java
AstAnalyser "MainForm.java.ast" "main" "JButton, setEnabled,
exit, showMessageDialog, dispose, ContactEditor, Find, Login,
MainForm"
Graph eventsFromInitState.gui initState.gui 0 "ContactEditor,
Find,Login,MainForm" windowName.gui "Login" "ClientDBjava" 1
dot -Tpng graph.dot -o graphClientDBjavaMainForm.png

FileParser Find.java
AstAnalyser "Find.java.ast" "main" "JButton, setEnabled,
exit, showMessageDialog, dispose, ContactEditor, Find,
Login, MainForm"
Graph eventsFromInitState.gui initState.gui 0 "ContactEditor,
Find,Login,MainForm" windowName.gui "Login" "ClientDBjava" 1
dot -Tpng graph.dot -o graphClientDBjavaFind.png

Appendix C

Agenda’s Windows Behaviour
Specification

The following specifications are generated automatically by GUISURFER from

script in appendix B. These are written inHaskell programming language and

define the behaviour of eachAgendaapplication’s window.

C.1 LoginWindow

-- Generated automatically by GuiSurfer
GuiModel

Data.Map

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

NewWindow = Map ExpRef WindowName

guimodel :: GuiModel

guimodel = fromList

[(("Cancel","cond1"),[1]),

(("Ok","cond2"),[2,3]),

(("Ok","cond3"),[4]),

183

184 APPENDIX C. AGENDA’S WINDOWS BEHAVIOUR SPECIFICATION

(("init","condInit1"),[5,6,7,8,9])]

pres :: Pres

pres = fromList

[(8,("Cancel",True)),

(9,("Ok",True))]

end :: End

end = [1]

newWindow :: NewWindow

newWindow = fromList

[(2,"MainForm"),

(5,"Login")]

close :: Close

close = [3]

C.2 MainFormWindow

-- Generated automatically by GuiSurfer
GuiModel

Data.Map

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

NewWindow = Map ExpRef WindowName

guimodel :: GuiModel

guimodel = fromList

[(("Exit","cond1"),[1]),

(("Edit","cond2"),[2]),

(("Edit","cond3"),[3]),

(("Find","cond4"),[4]),

(("Find","cond5"),[5]),

(("init","condInit1"),[6,7,8,9,10,11,12,13,14,15])]

C.3. FIND WINDOW 185

pres :: Pres

pres = fromList

[(10,("Exit",True)),

(11,("Edit",True)),

(12,("Find",True))]

end :: End

end = [1]

newWindow :: NewWindow

newWindow = fromList

[(2,"ContactEditor"),

(4,"Find"),

(6,"MainForm")]

close :: Close

close = []

C.3 Find Window

-- Generated automatically by GuiSurfer
GuiModel

Data.Map

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

NewWindow = Map ExpRef WindowName

guimodel :: GuiModel

guimodel = fromList

[(("Search","cond1"),[]),

(("Cancel","cond2"),[1]),

(("Show","cond3"),[]),

(("init","condInit1"),[2,3,4,5,6,7,8])]

pres :: Pres

pres = fromList

186 APPENDIX C. AGENDA’S WINDOWS BEHAVIOUR SPECIFICATION

[(6,("Search",True)),

(7,("Cancel",True)),

(8,("Show",True))]

end :: End

end = []

newWindow :: NewWindow

newWindow = fromList

[(2,"Find")]

close :: Close

close = [1]

C.4 ContactEditorWindow

-- Generated automatically by GuiSurfer
GuiModel

Data.Map

EventRef = String

CondRef = String

WindowName = String

ExpRef = Int

GuiModel = Map (EventRef,CondRef) [ExpRef]

Pres = Map ExpRef (EventRef,Bool)

End = [ExpRef]

Close = [ExpRef]

NewWindow = Map ExpRef WindowName

guimodel :: GuiModel

guimodel = fromList

[(("Add","cond1"),[1,2]),

(("Edit","cond2"),[]),

(("Remove","cond3"),[3,4]),

(("Remove","cond4"),[5,6]),

(("Cancel","cond5"),[7]),

(("Ok","cond6"),[8]),

(("init","condInit1"),[9,10,11,12,13,14,15,16,17]),

(("init","condInit2"),[18,19,11,12,13,14,15,16,17])]

pres :: Pres

pres = fromList

C.4. CONTACTEDITORWINDOW 187

[(1,("Edit",True)),

(2,("Remove",True)),

(5,("Edit",True)),

(6,("Remove",True)),

(9,("Edit",True)),

(10,("Remove",True)),

(17,("Add",True)),

(3,("Edit",False)),

(4,("Remove",False)),

(18,("Edit",False)),

(19,("Remove",False))]

end :: End

end = []

newWindow :: NewWindow

newWindow = fromList

[(11,"ContactEditor")]

close :: Close

close = [7,8]

188 APPENDIX C. AGENDA’S WINDOWS BEHAVIOUR SPECIFICATION

Appendix D

Agenda’s Windows States
Extraction

From script described in appendix B, the GUISURFER tool generates automati-

cally all windows states. This appendix presents for eachAgenda’s window the

generated states.

D.1 LoginWindow

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavaLogin

Data.Map

GuiTypes

statesLogin :: (Map (StateRef,EventRef,CondRef,[ExpRef])

StateRef, Map StateRef State)

statesLogin = (fromList [

(("state0","init","condInit1",[5,6,7,8,9]),"state1"),

(("state1","Cancel","cond1",[1]),"state0"),

(("state1","Ok","cond2",[2,3]),"state0"),

(("state1","Ok","cond3",[4]),"state1")],

fromList [("state0",fromList []),

("state1",fromList [("Cancel",True),("Ok",True)])])

189

190 APPENDIX D. AGENDA’S WINDOWS STATES EXTRACTION

D.2 MainFormWindow

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavaMainForm

Data.Map

GuiTypes

statesMainForm :: (Map (StateRef,EventRef,CondRef,[ExpRef])

StateRef, Map StateRef State)

statesMainForm = (fromList [

(("state0","init","condInit1",[6,7,8,9,10,11,12,13,14,15]),"state1"),

(("state1","Edit","cond2",[2]),"state1"),

(("state1","Edit","cond3",[3]),"state1"),

(("state1","Exit","cond1",[1]),"state0"),

(("state1","Find","cond4",[4]),"state1"),

(("state1","Find","cond5",[5]),"state1")],

fromList [("state0",fromList []),

("state1",fromList [("Edit",True),("Exit",True),("Find",True)])])

D.3 Find Window

-- Generated automatically by GuiSurfer
GuiModelStatesFind

Data.Map

GuiTypes

statesFind :: (Map (StateRef,EventRef,CondRef,[ExpRef])

StateRef, Map StateRef State)

statesFind = (fromList [

(("state0","init","condInit1",[2,3,4,5,6,7,8]),"state1"),

(("state1","Cancel","cond2",[1]),"state0"),

(("state1","Search","cond1",[]),"state1"),

(("state1","Show","cond3",[]),"state1")],

fromList [

("state0",fromList []),

("state1",fromList [("Cancel",True),("Search",True),

("Show",True)])])

D.4 ContactEditorWindow

-- Generated automatically by GuiSurfer
GuiModelStatesClientDBjavaContactEditor

Data.Map

D.4. CONTACTEDITORWINDOW 191

GuiTypes

statesContactEditor ::

(Map (StateRef,EventRef,CondRef,[ExpRef]) StateRef,

Map StateRef State)

statesContactEditor = (fromList [

(("state0","init","condInit1",

[9,10,11,12,13,14,15,16,17]),"state2"),

(("state0","init","condInit2",

[18,19,11,12,13,14,15,16,17]),"state1"),

(("state1","Add","cond1",[1,2]),"state2"),

(("state1","Cancel","cond5",[7]),"state0"),

(("state1","Ok","cond6",[8]),"state0"),

(("state2","Add","cond1",[1,2]),"state2"),

(("state2","Cancel","cond5",[7]),"state0"),

(("state2","Edit","cond2",[]),"state2"),

(("state2","Ok","cond6",[8]),"state0"),

(("state2","Remove","cond3",[3,4]),"state1"),

(("state2","Remove","cond4",[5,6]),"state2")],

fromList [("state0",fromList []),

("state1",fromList [("Add",True),("Cancel",True),("Edit",False),

("Ok",True),("Remove",False)]),

("state2",fromList [("Add",True),("Cancel",True),("Edit",True),

("Ok",True),("Remove",True)])])

192 APPENDIX D. AGENDA’S WINDOWS STATES EXTRACTION

Appendix E

Agenda’s Windows Events
Sequences Extraction

From script described in appendix B, the GUISURFERtool generates automatically

test cases. This Section presents for eachAgenda’s window the obtained results

(considering only sequences with one or two events).

E.1 LoginWindow

-- Generated automatically by GuiSurfer
GuiModelWaysLogin

GuiTypes

waysLogin :: [N]

waysLogin = [N (["condInit1"],["init"]),

N (["condInit1","cond1"],["init","Cancel"]),

N (["condInit1","cond2"],["init","Ok"]),

N (["condInit1","cond3"],["init","Ok"]),

N (["condInit1","cond3","cond1"],["init","Ok","Cancel"]),

N (["condInit1","cond3","cond2"],["init","Ok","Ok"]),

N (["condInit1","cond3","cond3"],["init","Ok","Ok"])]

E.2 MainFormWindow

-- Generated automatically by GuiSurfer
GuiModelWaysMainForm

193

194APPENDIX E. AGENDA’S WINDOWS EVENTS SEQUENCES EXTRACTION

GuiTypes

waysMainForm :: [N]

waysMainForm = [N (["condInit1"],["init"]),

N (["condInit1","cond2"],["init","Edit"]),

N (["condInit1","cond3"],["init","Edit"]),

N (["condInit1","cond2","cond2"],["init","Edit","Edit"]),

N (["condInit1","cond2","cond3"],["init","Edit","Edit"]),

N (["condInit1","cond2","cond1"],["init","Edit","Exit"]),

N (["condInit1","cond2","cond4"],["init","Edit","Find"]),

N (["condInit1","cond2","cond5"],["init","Edit","Find"]),

N (["condInit1","cond3","cond2"],["init","Edit","Edit"]),

N (["condInit1","cond3","cond3"],["init","Edit","Edit"]),

N (["condInit1","cond3","cond1"],["init","Edit","Exit"]),

N (["condInit1","cond3","cond4"],["init","Edit","Find"]),

N (["condInit1","cond3","cond5"],["init","Edit","Find"]),

N (["condInit1","cond1"],["init","Exit"]),

N (["condInit1","cond4"],["init","Find"]),

N (["condInit1","cond5"],["init","Find"]),

N (["condInit1","cond4","cond2"],["init","Find","Edit"]),

N (["condInit1","cond4","cond3"],["init","Find","Edit"]),

N (["condInit1","cond4","cond1"],["init","Find","Exit"]),

N (["condInit1","cond4","cond4"],["init","Find","Find"]),

N (["condInit1","cond4","cond5"],["init","Find","Find"]),

N (["condInit1","cond5","cond2"],["init","Find","Edit"]),

N (["condInit1","cond5","cond3"],["init","Find","Edit"]),

N (["condInit1","cond5","cond1"],["init","Find","Exit"]),

N (["condInit1","cond5","cond4"],["init","Find","Find"]),

N (["condInit1","cond5","cond5"],["init","Find","Find"])]

E.3 Find Window

-- Generated automatically by GuiSurfer
GuiModelWaysFind

GuiTypes

waysFind :: [N]

waysFind = [N (["condInit1"],["init"]),

N (["condInit1","cond2"],["init","Cancel"]),

N (["condInit1","cond1"],["init","Search"]),

N (["condInit1","cond1","cond2"],["init","Search","Cancel"]),

N (["condInit1","cond1","cond1"],["init","Search","Search"]),

N (["condInit1","cond1","cond3"],["init","Search","Show"]),

N (["condInit1","cond3"],["init","Show"]),

E.4. CONTACTEDITORWINDOW 195

N (["condInit1","cond3","cond2"],["init","Show","Cancel"]),

N (["condInit1","cond3","cond1"],["init","Show","Search"]),

N (["condInit1","cond3","cond3"],["init","Show","Show"])]

E.4 ContactEditorWindow

-- Generated automatically by GuiSurfer
GuiModelWaysContactEditor

GuiTypes

waysContactEditor :: [N]

waysContactEditor = [N (["condInit1"],["init"]),

N (["condInit2"],["init"]),

N (["condInit1","cond1"],["init","Add"]),

N (["condInit1","cond1","cond1"],["init","Add","Add"]),

N (["condInit1","cond1","cond5"],["init","Add","Cancel"]),

N (["condInit1","cond1","cond2"],["init","Add","Edit"]),

N (["condInit1","cond1","cond6"],["init","Add","Ok"]),

N (["condInit1","cond1","cond3"],["init","Add","Remove"]),

N (["condInit1","cond1","cond4"],["init","Add","Remove"]),

N (["condInit1","cond5"],["init","Cancel"]),

N (["condInit1","cond2"],["init","Edit"]),

N (["condInit1","cond2","cond1"],["init","Edit","Add"]),

N (["condInit1","cond2","cond5"],["init","Edit","Cancel"]),

N (["condInit1","cond2","cond2"],["init","Edit","Edit"]),

N (["condInit1","cond2","cond6"],["init","Edit","Ok"]),

N (["condInit1","cond2","cond3"],["init","Edit","Remove"]),

N (["condInit1","cond2","cond4"],["init","Edit","Remove"]),

N (["condInit1","cond6"],["init","Ok"]),

N (["condInit1","cond3"],["init","Remove"]),

N (["condInit1","cond4"],["init","Remove"]),

N (["condInit1","cond3","cond1"],["init","Remove","Add"]),

N (["condInit1","cond3","cond5"],["init","Remove","Cancel"]),

N (["condInit1","cond3","cond6"],["init","Remove","Ok"]),

N (["condInit1","cond4","cond1"],["init","Remove","Add"]),

N (["condInit1","cond4","cond5"],["init","Remove","Cancel"]),

N (["condInit1","cond4","cond2"],["init","Remove","Edit"]),

N (["condInit1","cond4","cond6"],["init","Remove","Ok"]),

N (["condInit1","cond4","cond3"],["init","Remove","Remove"]),

N (["condInit1","cond4","cond4"],["init","Remove","Remove"]),

N (["condInit2","cond1"],["init","Add"]),

N (["condInit2","cond1","cond1"],["init","Add","Add"]),

N (["condInit2","cond1","cond5"],["init","Add","Cancel"]),

N (["condInit2","cond1","cond2"],["init","Add","Edit"]),

196APPENDIX E. AGENDA’S WINDOWS EVENTS SEQUENCES EXTRACTION

N (["condInit2","cond1","cond6"],["init","Add","Ok"]),

N (["condInit2","cond1","cond3"],["init","Add","Remove"]),

N (["condInit2","cond1","cond4"],["init","Add","Remove"]),

N (["condInit2","cond5"],["init","Cancel"]),

N (["condInit2","cond6"],["init","Ok"])]

Appendix F

AgendaScript Reasoning through
Graph-Tool

This appendix contains the completePythonscript (Graph-Tool) which generates

several metrics results of theAgendaapplication.

#! /usr/bin/env python
import sys, os
from pylab import *
from graph_tool.all import *
g = Graph()
v_age = g.new_vertex_property("string")
e_age = g.new_edge_property("string")
Findstate1 = g.add_vertex()
v_age[Findstate1] = "Findstate1"
Findinit = g.add_vertex()
v_age[Findinit] = "Findstate0"
Findclose = g.add_vertex()
v_age[Findclose] = "Findclose"
e = g.add_edge(Findinit,Findstate1)
e_age[e] = "init/condInit1/[2,3,4,5,6,7,8]"
e = g.add_edge(Findstate1,Findclose)
e_age[e] = "Cancel/cond2/[1]"
e = g.add_edge(Findstate1,Findstate1)
e_age[e] = "Search/cond1/[]"
e = g.add_edge(Findstate1,Findstate1)
e_age[e] = "Show/cond3/[]"
ContactEditorstate1 = g.add_vertex()
v_age[ContactEditorstate1] = "ContactEditorstate1"

197

198APPENDIX F. AGENDASCRIPT REASONING THROUGHGRAPH-TOOL

ContactEditorstate2 = g.add_vertex()
v_age[ContactEditorstate2] = "ContactEditorstate2"
ContactEditorinit = g.add_vertex()
v_age[ContactEditorinit] = "ContactEditorstate0"
ContactEditorclose = g.add_vertex()
v_age[ContactEditorclose] = "ContactEditorclose"
e = g.add_edge(ContactEditorinit,ContactEditorstate2)
e_age[e] = "init/condInit1/[9,10,11,12,13,14,15,16,17]"
e = g.add_edge(ContactEditorinit,ContactEditorstate1)
e_age[e] = "init/condInit2/[18,19,11,12,13,14,15,16,17]"
e = g.add_edge(ContactEditorstate1,ContactEditorstate2)
e_age[e] = "Add/cond1/[1,2]"
e = g.add_edge(ContactEditorstate1,ContactEditorclose)
e_age[e] = "Cancel/cond5/[7]"
e = g.add_edge(ContactEditorstate1,ContactEditorclose)
e_age[e] = "Ok/cond6/[8]"
e = g.add_edge(ContactEditorstate2,ContactEditorstate2)
e_age[e] = "Add/cond1/[1,2]"
e = g.add_edge(ContactEditorstate2,ContactEditorclose)
e_age[e] = "Cancel/cond5/[7]"
e = g.add_edge(ContactEditorstate2,ContactEditorstate2)
e_age[e] = "Edit/cond2/[]"
e = g.add_edge(ContactEditorstate2,ContactEditorclose)
e_age[e] = "Ok/cond6/[8]"
e = g.add_edge(ContactEditorstate2,ContactEditorstate1)
e_age[e] = "Remove/cond3/[3,4]"
e = g.add_edge(ContactEditorstate2,ContactEditorstate2)
e_age[e] = "Remove/cond4/[5,6]"
MainFormstate1 = g.add_vertex()
v_age[MainFormstate1] = "MainFormstate1"
MainForminit = g.add_vertex()
v_age[MainForminit] = "MainFormstate0"
MainFormend = g.add_vertex()
v_age[MainFormend] = "MainFormend"
e = g.add_edge(MainForminit,MainFormstate1)
e_age[e] = "init/condInit1/[6,7,8,9,10,11,12,13,14,15]"
e = g.add_edge(MainFormstate1,MainFormstate1)
e_age[e] = "Edit/cond2/[2]"
e = g.add_edge(MainFormstate1,ContactEditorinit)
e_age[e] = "Open ContactEditor window"
e = g.add_edge(MainFormstate1,MainFormstate1)
e_age[e] = "Edit/cond3/[3]"
e = g.add_edge(MainFormstate1,MainFormend)
e_age[e] = "Exit/cond1/[1]"
e = g.add_edge(MainFormstate1,MainFormstate1)

199

e_age[e] = "Find/cond4/[4]"
e = g.add_edge(MainFormstate1,Findinit)
e_age[e] = "Open Find window"
e = g.add_edge(MainFormstate1,MainFormstate1)
e_age[e] = "Find/cond5/[5]"
Loginstate1 = g.add_vertex()
v_age[Loginstate1] = "Loginstate1"
Logininit = g.add_vertex()
v_age[Logininit] = "Loginstate0"
Loginend = g.add_vertex()
v_age[Loginend] = "Loginend"
Loginclose = g.add_vertex()
v_age[Loginclose] = "Loginclose"
e = g.add_edge(Logininit,Loginstate1)
e_age[e] = "init/condInit1/[5,6,7,8,9]"
e = g.add_edge(Loginstate1,Loginend)
e_age[e] = "Cancel/cond1/[1]"
e = g.add_edge(Loginstate1,Loginclose)
e_age[e] = "Ok/cond2/[2,3]"
e = g.add_edge(Loginclose,MainForminit)
e_age[e] = "Open MainForm window"
e = g.add_edge(Loginstate1,Loginstate1)
e_age[e] = "Ok/cond3/[4]"
e = g.add_edge(Findclose,MainFormstate1)
e_age[e] = "Close Find window"
e = g.add_edge(ContactEditorclose,MainFormstate1)
e_age[e] = "Close ContactEditor window"

graph_draw(g, size=(30,30), layout="dot", vcolor="white",
ecolor="black", output="graphTool-DBclientjava.pdf",
vprops=dict([(’label’, v_age)]),
eprops=dict([(’label’, e_age),
(’arrowsize’,2.0),(’arrowhead’,"empty")]))

graph_draw(g, size=(30,30), layout="dot",
vcolor="white", ecolor="black",
output="graphTool-DBclientjavaNumbered.pdf",
vprops=dict([(’label’, g.vertex_index)]),
eprops=dict([(’label’, g.edge_index),
(’arrowsize’,2.0),(’arrowhead’,"empty")]))

bv, be = betweenness(g)
be1 = be
be1.get_array()[:] = be1.get_array()[:]*120+1
graph_draw(g, size=(70,70), layout="dot",

200APPENDIX F. AGENDASCRIPT REASONING THROUGHGRAPH-TOOL

vcolor="white", ecolor="gray",
output="graphTool-Betweenness.pdf",
vprops=dict([(’label’, bv)]),
eprops=dict([(’label’, be),(’arrowsize’,1.2),
(’arrowhead’,"normal"),(’penwidth’,be1)]))

pr = pagerank(g)
graph_draw(g, size=(70,70), layout="dot",
vsize = pr, vcolor="gray", ecolor="black",
output="graphTool-Pagerank.pdf",
vprops=dict([(’label’, "")]),
eprops=dict([(’label’, ""),(’arrowsize’,2.0),
(’arrowhead’,"empty")]))

g.set_edge_filter(None)
bv, be = betweenness(g)
be.a *= 10
graph_draw(g, pin=True, size=(8,8),
vsize=0.07, vcolor=bv,
eprops={"penwidth":be},
output="GraphTool-nonfiltered-bt.pdf")

pr = pagerank(g)
print "pagerank", pr.a

vb, eb = betweenness(g)
print "betweenness", vb.a

vb, eb = betweenness(g)
print "central_point_dominance",
central_point_dominance(g, vb)

print "isomorphism", isomorphism(g, g)

tc = transitive_closure(g)
graph_draw(tc, size=(15,15), layout="dot",
output="graphTool-TransitiveClosure.pdf")

dist = shortest_distance(g, source=g.vertex(7))
print "shortest_distance from MainForm"
print dist.get_array()

dist = shortest_distance(g, source=g.vertex(11))
print "shortest_distance from Login"
print dist.get_array()

201

vlist, elist = shortest_path(g, g.vertex(11), g.vertex(6))
print "shortest path vertices", [str(v) for v in vlist]
print "shortest path edges", [str(e) for e in elist]

m = adjacency(g)
print m.todense()

for v in g.vertices():
print v, v_age[v]

for e in g.edges():
print e, e_age[e]

