
Automated Test Generation Survey

Rui Gonçalo

pg18378@alunos.uminho.pt

Techn. Report CROSS-12.12-1
2012, Dezember

CROSS
An Infrastructure for Certification and Re-engineering of Open Source Software

(Project PTDC/EIA-CCO/108995/2008 / FCOMP-01-0124-FEDER-010049)

Centro de Ciências e Tecnologias de Computação (CCTC)
Departamento de Informática da Universidade do Minho

Campus de Gualtar — Braga — Portugal



CROSS-12.12-1
Automated Test Generation Survey by Rui Gonçalo

Abstract

This work presents a bibliographic study of the work published in the area of automated test
generation and reports on experiments with the available tools and to produce proofs of concept
of how they can be used for generating test cases with high coverage.



1 Introduction
At first, it’s important to understand the concept of a software test case. A test is an assignment
to the input variables of a program, which allows the tester to verify the behavior of the source
code regarding program bugs. When a program is said to be hard tested, means that the program
was executed quite often with a collection of values that were assigned to the input variables.
It’s a fact that the testing phase in software development is a very important process to the final
product and entails great cost and time consuming. Despite the testing process is automated in
modern development environments, the assignment previously mentioned remains a largely man-
ual process. Safety critical software demands high levels of test coverage, thus an automated test
generator able to address this issue becomes mandatory.

Considering the control flow graph of a certain program, there might be branch points guarded
by predicates, i. e. in C language, for instance, the if-then-else statement creates a branch
point in a control flow graph, yielding two branches, when the condition is true and false. A test
case results from the assignment of an input that drives execution of the program along a certain
path in its control flow graph. Conjoining the predicates of the path we get the condition that
the desired test input must satisfy. This process can be effectively performed by model checkers.
Model checking is the technique that allows to verify if a given specification holds on a given
model. This model represents the behavior of a certain system or program and the specification
is formally written, usually, in temporal logic. In test generation, the temporal logic formula used
is, commonly, "always not p", where p is the property we want to verify.

There are several model checking algorithms that suits different goals of test generation and
programs’ characteristics. Explicit model checking uses an explicit representation for states and
enumerates the set of reachable states by forward exploration until either if finds a violation of
the assertion or it reaches a fixed point. To explore the reachable states, two techniques can
be applied: depth-first search and breadth-first search. The former uses less memory and finds
counterexamples quickly. The later requires more memory and takes longer, but usually finds the
shortest counterexample. Explicit mode checking is useless to test generation using depth-first
search, because the counterexample produced are often quite long. And, through breadth-first
search is only useful until the number of states to be explored reaches a few million.

Symbolic model checking represents sets of states, functions and relations as propositional formu-
las, known as binary decision diagrams. The performance of symbolic model checkers is sensitive
to the size and complexity of the transition relation and to the size of the total state-space, but
is less sensitive to the number of reachable states. For test case generation, the performance is
usually good, but when the number of binary decision diagram variables is more than few hundred
and when the transition relation is large, symbolic model checkers are unattractive.

Bounded model checkers are specialized to generation of counterexamples. They use a depth
bound k and search for a counterexample up to that depth by casting it as a constraint satisfac-
tion problem, applied to SAT solvers that can handle problems with many thousands of variables
and constraints. The experiments of [4] confirm the effectiveness of bounded model checkers for
test generation.

Rushby, in [7], describes particular cases where other model checking techniques should be adopted.
For instance, when the program is not finite state it’s recommended to use infinite state bounded
model checkers, that use decision procedure for satisfiability modulo theories (SMT) rather than
a Boolean SAT solver.

This report is structured as follows: at first, important concepts about test generation and model
checking are presented, in the first section. Section 2 states relevant definitions about coverage,
particularly, modified condition/decision coverage. A practical example is presented, as well. The
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following section describes the use of the CBMC tool to automated test generation. Section 4
presents a different approach concerning test generation through model checking, briefly introduc-
ing the SAL platform. Concolic testing is another approach to the subject, and is presented in
section 5. Finally, some experimental results are showed, followed by the conclusions.

2 Coverage
This section describes the several notions related to coverage, according to [9], to enhance the
relevance of Modified Condition/Decision Coverage (MC/DC) stated in DO-178B . By coverage
we understand a measure to evaluate the level of goals achievement. Test coverage in software
measures the amount of source code points a testing process reaches. Within test coverage, two
specific measures are distinguish: requirements coverage and structural coverage. Requirements
coverage binds software requirements and test cases, while structural coverage binds the code
structure and test cases [5]. The following subsections present the types of structural coverage,
where MC/DC is included.

2.1 Statement Coverage
In statement coverage, every statement in the program has been invoked at least once. This
criteria is considered the weakest one, because is insensitive to come control structures.

1 i f ( ( x > 1) && (y == 0) )
2 z = z / x ;
3
4 i f ( ( z == 2) | | ( y > 1) )
5 z = z +1;

Listing 1: Control structure

In Listing 1, assigning (x = 2, y = 0, z = 4) as input values, every statement is executed at least
once. However, if the and operator in the first if-statement gets replaced by an or operator, the
test case will not notice. That’s why statement coverage is insensitive to some control structures
and generally considered useless.

2.2 Decision Coverage
In decision coverage, every point of entry and exit in the program has been invoked at least once
and every decision in the program has taken all possible outcomes at least once.

1 i f ( ( x == 2) | | ( y > 1) )
2 x = x +1;

Listing 2: Decision with two conditions

In Listing 2, taking (x = 2, y = 1) as input values in the first test case, and (x = 1, y = 1) in the
second test case, the result of the decision will be True and False, ensuring all possible outcomes.
However, the effect of the second condition (y > 1) is not tested. The result depends only on the
first condition (x == 2).

2.3 Condition Coverage
In condition coverage, every point of entry and exit in the program has been invoked at least once
and every condition in a decision in the program has taken all possible outcomes at least once.
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Using the example in Listing 2, if the input values are (x = 2, y = 1) for the first test case, and (x
= 1, y = 2) for the second, all possible condition outcomes are tested, (True or False) and (False
or True) However, the result of the decision is True in both test cases and all possible decision
outcomes are not tested.

2.4 Condition/Decision Coverage
The obvious answer to the weaknesses of condition coverage and decision coverage is to add both
in a condition/decision coverage, where every point of entry and exit in the program has been
invoked at least once, every decision in the program has taken all possible outcomes at least once
and every condition in a decision in the program has taken all possible outcomes at least once.

Once again, using the code in Listing 2, the following input values are assigned: (x = 2, y = 2)
and (x = 1, y = 1), deriving in (True or True) and (False or False). The decision for the test
cases will result in True and False respectively. However, the decision result is the same as if it
was a single decision composed by the first condition (x == 2) or by the second condition (y >
1) or replacing the or operator by the and operator.

2.5 Modified Condition/Decision Coverage
Finally, ensuring that every point of entry and exit in the program has been invoked at least once,
every decision in the program has taken all possible outcomes at least once and every condition in
a decision in the program has taken all possible outcomes at least once, is not enough, so also every
condition in a decision must be shown to independently affect that decision’s outcome. Generally,
to get MC/DC, a minimum of n+1 test cases for a decision with n inputs is required.

Considering the same example in Listing 2, the following test cases were needed: (x = 2, y = 1),
(x = 1, y = 2) and (x = 1, y = 1), deriving in (True or False), (False or True) and (False or
False), resulting in True, True and False, respectively.

2.6 Practical example
Applying the concepts of code coverage described above to a practical case is the best way of
understanding. So, consider the source code in Listing 3.

1 int func ( int x , int y ) {
2 int a = 0 ;
3 i f ( x > 3 | | y == 1 )
4 a = x + y ;
5 else
6 i f ( x == y )
7 a = x ;
8 a++;
9 return a ;

10 }

Listing 3: Practical example

Figure 1 presents the correspondent control flow graph. The graph is composed by a set of state-
ments Sfunc = {S0,S1,S2,S3} and a set of branches Bfunc = {B0,B1,B2,B3,B4}. It is possible to
trace a path predicate along the execution of the program, depending on the input. For instance,
if the input is (x = 0, y = 0), the path will be {S0,B4,S2,S3} and the path constraint or the path
predicate will be (x ≤ 3 ∨ y 6= 1) ∧ (x = y).
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Figure 1: Control flow graph

To fulfil the modified condition/decision coverage, a set of tests T = {T0,...,Tn} must contain all
elements of the set of statements and the set of branches. Given

T0 = (x = 4, y = 0)
T1 = (x = 4, y = 1)

the following statements and branches are covered:

ST0 = {S0,S1,S3} and BT0 = {B2}
ST1 = {S0,S1,S3} and BT1 = {B0}

Adding

T2 = (x = 3, y = 1)
T3 = (x = 3, y = 0)
T4 = (x = 3, y = 3)

the following statements and branches are covered:

ST2 = {S0,S1,S3} and BT2 = {B1}
ST3 = {S0,S2,S3} and BT3 = {B3}
ST4 = {S0,S2,S3} and BT4 = {B4}

Conjoining the sets we get all elements of Sfunc and Bfunc

ST = {S0,S1,S2,S3}
BT = {B0,B1,B2,B3,B4}

which means that to achieve the MC/DC, we have to execute five test cases, at least.
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3 Bounded Model Checking for C programs
The goal of Bounded Model Checking is to verify if a given program satisfies a given property,
within a given bound. This property is the predicate we want to test. Basically, the program
and the property are translated into a Boolean formula in Conjunctive Normal Form (CNF) and
are passed to a SAT solver. If the solver determines that the formula is unsatisfiable then the
property holds (for the given bound), otherwise the property doesn’t hold and a counterexample
is produced. The set of counterexamples is the set of desired tests.

In order to apply Bounded Model Checking to software verification, the SAT solver must receive the
program code in Conjunctive Normal Form. The translation from C code into CNF is accomplished
by taking the following steps:

1. Each function call is replaced by its body. Consider the C program in Listing 4;

2. Each loop is unwound, i.e. while statements and for statements are replaced by if-then-else
statements, k times (bound). In Listing 5 the bound is 1, thus the loop is unwound one time,
transforming the while statement into one if-then-else statement, keeping the same de-
cision (i < max);

3. The program and the property are rewritten into an equivalent program in Single Static
Assignment (SSA) form, where each variable is assigned only once. To achieve this goal, the
variables are unfolded into several variables. For instance, given x = 0 as the first assignment
to the variable x, and further in the program there is an assignment x = x + 1. The SSA
form requires the variable x to be assigned only once, thus it must be unfolded into new
variables xi, 0 ≤ i ≤ number of times that x is assigned. In Listing 6 the variables with
replaced values during the program’s execution keep the value from the first assignment and
new variables are created that will keep the new values from the new assignments.

1 int func ( int a ) {
2 int r = 0 , i = 0 ;
3 while ( i < max)
4 {
5 a++;
6 a s s e r t ( a != 0 ) ;
7 r = max + r / a ;
8 }
9 r = r ∗ 2 ;

10 return r ;
11 }

Listing 4: C program

1 int func ( int a ) {
2 int r = 0 , i = 0 ;
3 i f ( i < max)
4 {
5 a++;
6 a s s e r t ( a != 0 ) ;
7 r = max + r / a ;
8 }
9 r = r ∗ 2 ;

10 return r ;
11 }

Listing 5: Loop unwounded, k = 1

1 C := r0 = 0 ∧
2 i 0 = 0 ∧
3 a1 = a0 + 1 ∧
4 r1 = max0 + r 0 / a1 ∧
5 r2 = i 0 < max ? r1 : r0 ∧
6 r3 = r2 ∗ 2 ∧
7 P := a1 != 0

Listing 6: SSA form

3.1 CBMC Approach
Minding the importance of bounded model checking, a robust tool called CBMC1 - Bounded
Model Checker for ANSI-C has been built. This tool is supported by an assertion generator called

1http://www.cprover.org/cbmc/ (Nov 2012)
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goto-instrument that produces assertions to determine program locations that potentially contain
bugs. These assertions verify the following properties: buffer overflows, pointer safety, division
by zero, not-a-number, unitialized local variables and data race. The user is able to perform its
own assertions, too. Thus, CBMC is a useful tool to perform test generation, reducing the efforts
associated to the testing process.

The methodology stated by [2] to generate test cases from C code, using CBMC, is the following:

1. Ensure that all functions called by the main function are completely defined. If the desired
entry point is other function, for instance, the function func, use the flag –function func;

2. To set the input values, use the non-deterministic choice functions CBMC provides, which
have the prefix nondet_;

3. Insert assertions - assert(0) - after each decision block of the control flow graph to ensure
the desired coverage;

4. CBMC should run as many times as the number of assertions, with the flag -D ASSERTION_i
to specify the exact assertion. Each run outputs a new test case;

5. Each assert(0) reached will stop the execution of CBMC. So, is necessary to implement
conditionals #ifdef;

6. Finally, the command line should be:
$ CBMC -D ASSERT_i file.c --unwind k --no-unwinding-assertions

The given bound k should be incremented until the desired coverage is achieved. Taking the
program in Listing 3 to generate test cases using CBMC, it should be instrumented as presented
in Listing 7.

3.2 Eliminating Redundant Tests
This approach allows CBMC to be used as a practical test generator, but not in an efficient way,
because a considerable amount of redundant tests may be created. By redundant tests we consider
tests that do not contribute to the coverage goals, i. e. several tests reach the same percentage
of code coverage instead of each test covers a different portion of the code. Redundant tests are
not easy to detect and imply additional costs during the testing phase. In order to overcome this
issue, an effective algorithm was proposed [1]. Considering the control flow graph of a program,
the algorithm selects a set of independent paths, i. e. a set of paths in which there is at least a
branch in a path that do not occur in any other path of the set.

Basically, the algorithm is composed by three functions - pathgenerator, genapath and atgviacbmc.
The pathgenerator function takes as input the control flow graph of the program under test
and outputs the set of independent paths. Listing 8 presents the algorithm. C is the control flow
graph, P is the set of paths and A is the set of branches in C not yet covered by any path in P. The
function update returns all the branches of C not yet covered by P. Thus, at first, A is updated
with all the branches of C. Each iteration of the loop adds a new path to P through the function
genapath, until all branches of C are covered by P.
The main algorithm to eliminate the redundancy is executed by genapath function, in Listing 10.
It takes as input one node from the control flow graph and the set of branches not yet covered. If
the input node is not the end node, ne, i. e. there is at least one branch from this node to another,
the algorithm considers the set of sequent nodes. Then, the node that has the greatest number
of sequent uncovered branches is chosen, and A is updated. When the end node is reached, the
algorithm stops and the path is constructed in a backtrack way, starting from the last node, ne,
including all the nodes explored by the algorithm.

5



1 int func ( int x , int y ) {
2 int a = 0 ;
3
4 i f ( x > 3 | | y == 1 )
5 {
6 #i f d e f ASSERTION_1
7 a s s e r t (0 )
8 #end i f
9 a = x + y ;

10 }
11 else
12 {
13 #i f d e f ASSERTION_2
14 a s s e r t (0 )
15 #end i f
16 i f ( x == y )
17 {
18 #i f d e f ASSERTION_3
19 a s s e r t (0 )
20 #end i f
21 a = x ;
22 }
23 }
24 #i f d e f ASSERTION_4
25 a s s e r t (0 )
26 #end i f
27 a++;
28 return a ;
29 }
30
31 int main ( ) {
32
33 int x = nondet_int ( ) ;
34 int y = nondet_int ( ) ;
35
36 return func (x , y ) ;
37 }

Listing 7: Instrumented code to generate test cases with CBMC

At last, the set of paths is applied as stated in Listing 10. The function takes as input the
set of paths, P, and the source code of the program, D, and outputs the set of generated tests,
represented by T. For each path, the program is properly instrumented. In Listing 7, an assert(0)
is added when a branch need to be covered. However, in order to cover the branch, CBMC chooses
which path has to follow. So, the program is instrumented with assume (expression = value)
statements in a certain point, to ensures that CBMC will take the desired path.

4 SAL Approach
The Symbolic Analysis Laboratory2 (SAL) created a language that describes transition systems
in terms of initialization and transition commands, and provides a tool suite for abstraction,
program analysis, theorem proving and model checking towards the calculation of properties of
those systems. At this time, the following tools are available: sal-wfc: well-formedness checker,
sal-smc: symbolic model checker, sal-deadlock-checker: deadlock checker, sal-bmc: bounded
model checker, sal-inf-bmc: infinite bounded model checker, sal-atg: automated test generator,
sal-sim: simulator, sal-wmc: witness model checker, sal-path-finder: random paths generator
and sal-emc: explicit state model checker.

2http://sal.csl.sri.com/ (Nov 2012)
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1 set_of_paths PATHGENERATOR(C)
2 P = {}
3 A = UPDATE(P,C) ;
4 while |A| 6= 0 do
5 P = P ∪ GENAPATH(n ,A) ;
6 return P;

Listing 8: Set of paths generator

1 path GENAPATH(n ,A)
2 i f n ={}= ne then return {n}
3 max = SUCC(n) . FIRST( ) ;
4 foreach s i ∈ SUCC(n) do
5 i f |A(max) | < |A( s i ) | then
6 max = s i

7 else i f |A(max) | ={}= |A( s i ) | then
8 i f E(n ,max) /∈ A then
9 max = s i

10 A = UPDATE(P,C) ;
11 return {n} ∪ GENAPATH(max ,A)

Listing 9: Generate paths

Concerning automated test generation, SAL presents a different approach that highlights the effi-
ciency and non-redundancy of test sets. Suppose that a reactive system is composed by four states
- A, B, C and D - and the transitions to−>d where o is the source state and d the destination state.
The transitions are executed always in the following order - tA−>B , tB−>C , tC−>D and tD−>A.
If we want to generate a test case that begins in the initial state A and exercises the transition
tD−>A, then this test case also exercises the remaining transitions, resulting in much redundancy.
SAL proposes an approach that extends existing test cases to reach uncovered goals, rather than
start each one again [3].

5 Concolic Testing Approach
Concolic testing combines random testing (concrete execution) and symbolic testing (symbolic
execution). Symbolic execution was proposed to automate software testing by generating test in-
puts. Along the program, the primitive variables are not replaced by values (concrete execution)
but by symbolic inputs, building a path constraint. Each time a conditional statement is executed,
the path constraint is updated. This process goes on until a desired program point is reached,
where the constraint is solved using a contraint solver. Since the 70s, when symbolic execution
was first proposed, that this technique is not widely used. In fact, just recently constraint solvers
are powerful enough to be applied in "real world" programs.

The combination of both techniques allows solving path conditions which contain expressions that
cannot be handled by constraint solvers, as non-linear constraints or floating-point variables. For
instance, let’s consider the non-linear condition (x * y < 100). Concrete execution will generate
random values to the input variables, in this case, suppose (x = 536, y = 156). The path taking
the false branch is executed. To cover the true branch, symbolic execution assigns a symbolic
variable y0, and x is replaced with a value, turning the condition into (536 * y < 100). What was
a non-linear condition becomes linear. Therefore, concolic testing assigns a value to y0 as zero or
negative, so that the path can take the true branch. The CUTE tool [8] was built based upon the
principles of concolic testing and follows a depth-first strategy.

Consider the code in Listing 11. The function has a state that triggers an error. Instead of testing
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1 set_of_tests ATGviaCBMC(P,D)
2 T = {} ;
3 foreach p ∈ P do
4 D’ = INSTRUMENT(D, p) ;
5 T = T ∪ CBMCcall (D ’ ) ;
6 return T;

Listing 10: Generate paths

all possible inputs, which is infeasible and most of them result in the same execution path, concolic
testing automatically finds the inputs that generate different paths. Suppose the first test assigns
random input values (x = 3434, y = 2321). This execution enters in the first conditional, but
not in the second. While the test is executed, the condition predicates are recorded in the path
constraints. In this case, the path constraint is ¬(x = y) ∧ ¬(2 ∗ x = x + 10). To generate a new
input, some predicate is negated. The path constraint becomes ¬(x = y) ∧ (2 ∗ x = x + 10). A
possible solution to this constraint is (x = 10, y = 2321), leading to the error in the program. The
next input is a solution for (x == y) that might be (x = 10, y = 10). The collection of all path
constraints is finished, because all predicates have already been negated [10].

1 int aux ( int x ) {
2 return a ∗ 2 ;
3 }
4
5 int func ( int x , int y ) {
6 i f ( x != y )
7 i f ( aux (x ) == x + 10)
8 e r r o r ( ) ;
9

10 return 0 ;
11 }

Listing 11: Portion of a C program

6 Experimental Results
This section presents the results achieved in several researches [2] [1] [6]. To test the effectiveness
of CBMC in automatic test generation, the method explained in subsection 3.1 was experimented
on a subset of the modules of the European Train Control System (ETCS) of the European Rail
Traffic Management System (ERTMS) source code, an industrial system for the control of the
traffic railway, provided by Ansaldo STS3. The experiment should achieve the target 100% code
coverage, as required by CENELEC standards. It was found that CBMC, for each module, auto-
matically produced a number of test cases close to the double of the number of test cases manually
generated by Ansaldo STS. However, the time consumed to manually generate the tests was much
larger than the time required by CBMC and both methods reached the desired coverage. CBMC
generated 757 tests in less than 4h, while the tests manually generated were 385 in almost 100h.

The algorithm described in subsection 3.2 was applied in the software of Ansaldo STS, but in a
higher number of modules. In all cases, this strategy produced a lower number of test cases for
the same level of coverage (full coverage). Even comparing to the manual generation of tests of
Ansaldo STS, only 2 modules, in 20, exhibited a higher number of test cases. The time spent by
this method is, also, very low.

3http://www.ansaldo-sts.com/ (Nov 2012)
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Concerning the concolic approach for automated test generation, CUTE was run in several C "real
world" programs. The tool was applied in its default mode with no specified bound to unfolding
loops. The final results showed that CUTE was not able to test a considerable amount of func-
tions, because the test subject did not compile after CUTE’s instrumentation and due to some
source code issues as void pointers and data structure casts. The coverage reached was only of 50%.

In the SAL platform, the required assertions to produce counterexamples are specified over trap
properties. These properties are verified through state variables when the execution of the system
reaches a certain control point, takes a certain transition or exhibits some other behavior of
interest. The method was applied to three different model systems. The results were promising,
although the systems used were not critical components of real industry.

7 Conclusion and Related Work
The experimental results concerning the use of CBMC to automatic test generation crushed those
from manual generation, mainly, because of the time consumed. Although the naive method to
apply CBMC obtained a higher number of test cases than the manual method, the time difference
was considerable big. But the algorithm that cut redundant tests presented a lower size of test set
in the same time difference. That’s why the methodology proposed based on CBMC leads to a
dramatic increase in the productivity of the entire Software Development process by substantially
reducing the efforts associated to the testing phase.

The concolic approach embodied in the CUTE tool reveals that this method is not suitable for
test generation when high levels of coverage need to be reached. The researchers concluded that
a lot of challenges remain to be explored concerning automated test generation. Tools need to be
more robust to overcome issues as segmentation faults. Also, static and dynamic analysis must be
combined in order to tackle problems such as testing uninstrumented code, overcoming limitations
of constraint solvers and preventing flat fitness landscapes in dynamic testing.

The SAL approach reveals techniques to be exercised in models of systems, that need to be written
in Scheme Language. Using the suitably scriptable API of modern model checkers is possible to
search at each step for an extension from any known state to any uncovered goal, regarding the
desired coverage. The authors refer that the next step is to use their method in cases of industrial
scale and to reach MC/DC coverage.
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