
TreeCycle: a Sonar plugin for design quality
assessment of Java programs

João Miguel Veiga and Maria João Frade

jmrqveiga@gmail.com, mjf@di.uminho.pt

Techn. Report CROSS-10.07-1
2010, July

CROSS
An Infrastructure for Certification and Re-engineering of Open Source

Software
(Project PTDC/EIA-CCO/108995/2008)

Centro de Ciências e Tecnologias de Computação (CCTC)
Departamento de Informática da Universidade do Minho

Campus de Gualtar — Braga — Portugal



CROSS-10.07-1
TreeCycle: a Sonar plugin for design quality assessment of Java
programs by João Miguel Veiga and Maria João Frade

Abstract

Software quality assessment is a crucial process in software development.
To evaluate source code quality it is essential to use tools that help to
analyse the code in its different aspects. Sonar is an open source tool used
to analyse and manage source code quality.

In this paper we present a Sonar plugin (the TreeCycle) for design
quality assessment of Java programs. The TreeCycle plugin represents
the dependencies between packages in a tree graph highlighting it’s de-
pendency cycles. Moreover, for each package it represents in a graphical
way the results of a suite of metrics for object-oriented design. This plugin
provides an overall picture of the design quality of Java projects.

We make a concise presentation of the Sonar platform. We also briefly
describe the ISO/IEC 9126 model for software product quality and the
main suites of object-oriented design metrics that are use in the plugin.



1 Introduction

Software quality assessment is on the agenda due to several factors among
which include the development of increasingly complex software, the use
of libraries developed by third parties, the use of open source, as well as
the integration of pieces of code from various sources. Software engineer-
ing remains a people-intensive process and several software development
methodologies are used in order to reduce costs and enhance the quality
of the final product. Software quality assessment is a crucial process in
the software development, focusing in the certification of the quality of
the code in its various aspects (functionality, reliability, maintainability,
portability, etc.) It contributes to the undeniable reduction in product
costs and helps to increase the quality of final software.

But what is meant by software quality? The concept of software qual-
ity is ambiguous. Some software engineers relate software quality to the
lack of bugs and testing, others relate it to the customer satisfaction, or
the level of conformity with the requirements established [6,18]. Therefore
it all depends very much on the point of view of each person.

Quality is a complex and multifaceted concept. In [10] David Garvin
presented a study on different perspectives of quality in various areas (phi-
losophy, economics, marketing, and operations management) and identi-
fied five major perspectives to the definition of quality. In the transcen-
dent perspective quality is something that can not be defined and can
only be identified through gained experience. In the product-based per-
spective quality is something that can be evaluated or measured by the
characteristics and attributes inherent to a product. In the user-based
perspective the quality of a product is evaluated or measured through
consumer satisfaction and consumer demand. The manufacturing-based
perspective relates quality with the level of conformance of the product
with its requirements. And in the value-based perspective the quality of
a product is evaluated through its manufacturing cost and final price: no
matter how good a product is, its quality does not matter if it is too
expensive and no one buys it.

Our focus will be on the product-based perspective of software quality.
In this view, software quality can be described by a hierarchy of quality
factors inherent to the software product and all its components (source
code, documentation, specifications, etc).

Over the years many software quality models have been proposed.
These models define, in general, a set of characteristics (quality factors)
that influence the software product quality. Those characteristics are then



divided into attributes (quality sub-factors) that can be measured using
software metrics. These models are important because they allow for a
hierarchical view of the relationship between the characteristics that de-
termine the quality of a product and the means for measuring them, thus
providing an operational definition of quality.

One of the first predecessors of modern quality models was proposed
by Jim McCall [26,9] in 1977 for the US military. This model intended
to bridge the gap between users and developers by concentrating on a
number of software characteristics mapping the users’s view with the
developer’s view. These quality factors are organized in three major per-
spectives: product revision (ability to change), product transition (adapt-
ability to new environments), and product operations (basic operational
characteristics). McCall’s quality model has 11 quality factors each linked
to several quality criteria (23 total). The quality metrics capture these
quality criteria, giving a way of performing the quality assessment of the
software.

Another predecessor of modern quality models was proposed in 1978
by Barry W. Boehm [4,3] and uses the same hierarchical approach. At
the highest level of Boehm’s quality model there are three primary uses
representing high-level requirements, which are: as-is utility (ease of use,
reliability and efficiency), maintainability (ease to understand, modify
and retest) and portability (ease to adapt to new environments). These
primary uses breakdown in 7 quality factors representing the qualities ex-
pected from a software system, namely: portability, reliability, efficiency,
usability, testability, understandability and flexibility. These quality fac-
tors are further subdivided in primitive constructs that can be measured
and that provide the foundation for defining quality metrics.

There are many other quality models. However McCall’s and Boehm’s
models were the basis for the ISO/IEC 9126 [13,14], a standard that aims
to define a quality model for software and a set of guidelines for measuring
the quality factors associated with it, and that is probably one of the most
widespread quality standards. We will talk about this standard in the next
section.

To evaluate source code quality it is essential to use tools that help to
analyse the code in its different aspects. Sonar1 is an open source tool used
to analyse and manage source code quality. Sonar follows the ISO/IEC
9126 to assess the quality of the projects under evaluation and provides
as core functionality code analysers, defects hunting tools, reporting tools
and a time machine. It enables to manage multiple quality profiles and

1 http://www.sonarsource.org/



also has a plugin mechanism giving the opportunity to extend the func-
tionality to the community. Sonar is a very recent tool (it appeared in
2009), but it has already more than forty plugins available. However only
four plugins are devoted to visualisation and report of results.

In this paper we present a Sonar plugin (the TreeCycle2) for design
quality assessment of Java programs. Java [2] is an object-oriented lan-
guage that is currently one of the most popular programming languages
with a large community support. The TreeCycle plugin helps in the anal-
ysis of design quality by representing the dependencies between packages
in a tree graph highlighting it’s dependency cycles. Moreover, for each
package it represents in a graphical way the results of a suite of met-
rics for object-oriented design. The use of this plugin provides an overall
picture of the design quality of a Java project.

The rest of the paper is organised as follows. Section 2 gives an
overview of ISO/IEC 9126 standard for software product quality. Section
3 is devoted to software metrics with special emphasis on object-oriented
design metrics. In Section 4 we briefly describe the Sonar platform. In
Section 5 we focus on the TreeCycle plugin, describing how it works and
giving an example of its use. In Section 6 we comment on some related
work and in Section 7 we conclude and map some directions for further
exploration.

2 ISO/IEC 9126: Software Product Quality Standard

The International Organization for Standardization (ISO) presented in
1991 the first international standard on software product evaluation:
ISO/IEC 9126: Software Product Evaluation - Quality Characteristics and
Guidelines for Their Use [13]. This standard intended to define a quality
model for software and the guidelines for measuring the characteristics
associated with it. The standard was further developed during 2001 to
2004 period and is now published by the ISO in four parts: the quality
model [14], external metrics [15], internal metrics [16] and quality in use
metrics [17].

ISO/IEC 9126 is considered one of the most widespread quality stan-
dards. The new release of this standard recognises three views of software
quality:

– External quality : covers characteristics of the software that can be
observed during its execution.

2 http://wiki.di.uminho.pt/twiki/bin/view/Research/CROSS/Tools



– Internal quality : covers the characteristics of the software that can be
evaluated without executing it.

– Quality in use: covers the characteristics of the software from the
user’s view, when it is used in different contexts.

The quality model in ISO/IEC 9126 comprises two sub-models: the
internal and external quality model, and the quality in use model.

The internal and external quality model was inspired from McCall’s
and Boehm’s models. Figure 1 illustrates this model. The model is divided
in 6 characteristics (quality factors): functionality, reliability, usability,
efficiency, maintainability, and portability; which are further subdivided
into 27 sub-characteristics (also called attributes or quality sub-factors).
The standard also provides more than a hundred metrics that can be used
to measure these characteristics. However those metrics are not exhaus-
tive, and other metrics can also be used.

Fig. 1. ISO/IEC 9216 internal and external quality model

The quality in use is modelled in a different way. It breaks-down in four
quality factors: security, satisfaction, productivity and efficiency. These
quality factors are not subdivided further.

Sonar follows the ISO/IEC 9126 to assess the quality of the projects
under evaluation. Concretely, the internal metrics norm in which concerns
to reliability (the probability of failure), usability (effort to understand,
learn the software and also its attractiveness), efficiency (efficient use of
computer resources), maintainability (effort necessary to correct, improve
or adapt the software to changes), and portability (effort of transferring
the software from an environment to another).



The plugin we developed for Sonar is devoted to the visualisation of
metrics related to the maintainability, portability, and re-usability. So we
will focus on these characteristics. The re-usability is defined by McCall et
al. [26] as the cost of transferring a module or program to another appli-
cation and although ISO/IEC 9126 does not contemplate it, re-usability
can be seen as a special case of usability [22].

3 Software Metrics

Metrics are defined as “the process by which numbers or symbols are as-
signed to attributes of entities in the real world in such way as to describe
them according to clearly defined rules” [8]. In software engineering met-
rics can be used to determine the cost and effort of a software project,
staff productivity, and the quality of a software product [8,28].

3.1 Some Traditional Metrics

Next we briefly present two of the first, best-known and most used soft-
ware product metrics.

Lines of code (LOC) [27,28] is one of the most well-known metrics, and
is used to determine the size of a software product. However even this
apparently simple metric can be difficult to define because the meaning
of “lines of code” can include comments, non-executable statements and
even blank lines. This metric is considered one of the best all-around error
predictors [27].

Cyclomatic complexity (CC) metric was developed by Thomas McCabe
[25,27] in 1976 and measures the number of linearly independent paths
through a program using its control flow graph. This metric measures
the level of complexity. The higher the cyclomatic complexity value, the
harder it is to understand the source code and test the program. Therefore
high cyclomatic complexity leads to loss of software quality.

3.2 Object Oriented Design Metrics

The object-oriented paradigm brought a new way of viewing and de-
veloping software systems. This can be seen as a group of objects that
interact with each other through message passing to solve a problem. An
object-oriented programming language has to provide support for object-
oriented concepts like objects, classes, encapsulation, inheritance, data
abstraction and message passing.



There are metrics especially designed to measure distinct aspects of
the object-oriented approach. Some sets of object-oriented design met-
rics have been proposed and there are authors who have tried to relate
these metrics to the quality factors that form the ISO/IEC 9126 quality
model [22]. Next we present two of the most used sets of object-oriented
design metrics and their relation with the quality factors described in
Section 2. Almost all metrics from these sets of metrics are used by the
TreeCycle plugin.

C&K Metrics Suite In 1994 Shyam R. Chidamber and Chris F. Ke-
merer proposed a metrics suite for object-oriented design [5,29]. This suite
consists of six metrics.

Weighted methods per class (WMC) metric is equal to the sum of all
methods complexities in a class. A method complexity can be measured
by the cyclomatic complexity, however a definition of complexity was not
proposed by Chidamber and Kemerer in order to allow for general ap-
plications of this metric. If methods complexities are considered to be
unity, the WMC metric turns in to the number of methods in a class.
The WMC gives an idea of the effort required to develop and maintain
the class. Since the children of a class inherit all its methods, the number
of methods in a class have potential impact on its children. Classes with
many methods are probably more application specific. High WMC val-
ues negatively influences maintainability and portability, because complex
classes are harder to analyse, test, replace or modify. It also negatively
influences re-usability since it is harder to understand and learn how to
integrate complex classes.

Depth of inheritance tree (DIT) metric determines the number of an-
cestors of a class in the hierarchy of classes. Deep inheritance trees make
the design complex. This metric negatively influences maintainability and
portability because classes with high DIT potentially inherit more meth-
ods, and so it is more complex to predict their behaviour. However re-
usability benefits from classes with high DIT because those classes po-
tentially have more inherit methods for reuse.

Number of children (NOC) metric is equal to the number of immediate
subclasses subordinated to a class. NOC gives an idea of the potential
influence a class has on the design. If a class has a large NOC, it may
justify more tests. If NOC is too high, it can indicate that the subclass
structuring is not well designed. Re-usability benefits from classes with



high NOC since inheritance is a form of reuse. NOC affects portability
and maintainability, because classes with subclasses that depend on it are
harder to replace or change.

Coupling between object classes (CBO) metric represents the total num-
ber of other classes a class is coupled to. A class is coupled to another
class if methods of one uses methods or instance variables from the other.
Excessive coupling is bad for modular design. It makes classes complex
and difficult to reuse. It also makes testing a more difficult task and
makes software very sensitive to changes. CBO is so highly connected to
portability, maintainability and re-usability.

Lack of cohesion in methods (LCOM) metric determines the difference
between the number of pairs of methods of a class that do not share
instance variables and the number of pairs of methods that share instance
variables. This metric helps to identify flaws in the design of classes.
For instance, high lack of cohesion in methods may indicate that the
class would be better divided into two or more subclasses. Low cohesion
increases complexity. So, classes with high LCOM values are harder to
understand and test. Therefore, LCOM influences maintainability and
re-usability.

Response for a class (RFC) metric represents the number of methods,
including methods from other classes, that can be executed in response
to messages received by objects from the class. RFC is an indicator of
class complexity and of the test effort required. Classes with high RFC
are harder to test and debug, since they are harder to understand. These
reason also make classes with high RFC more difficult to reuse and less
adaptable to changes. Hence RFC negatively influence maintainability,
re-usability and portability.

R.C. Martin Metrics Suite Robert C. Martin proposed in 1994 a set
of metrics for measuring the quality of an object-oriented design in terms
of the interdependence between packages [24,23]. This suite consists of
the following metrics.

Afferent couplings (CA) metric measures the total number of classes out-
side a package that depend upon classes within that package. This metric
is highly related with portability, because packages with higher CA are
harder to be replaced since they have a lot of other packages that depend
upon them.



Efferent couplings (CE) metric measures the total number of classes in-
side a package that depend upon classes outside this package. High CE
value will negatively influence package re-usability, since it is harder to
understand and isolate all the components necessary to reuse the pack-
age. CE negatively influences package maintainability since packages with
high CE are prone to changes from the packages it depends on. It also
negatively influences portability since packages with high CE are hard to
be adapted because they are hard to understand.

Instability (I) metric measures the ratio between CE and CE+CA. Basi-
cally, packages with many efferent couplings are more unstable, because
they are prone to changes from other packages. So, instability negatively
influences re-usability, maintainability and portability. On the other hand,
packages with many afferent couplings are responsible for many other
packages, making them harder to change and therefore more stable.

Abstractness (A) metric measures the ratio between the number of ab-
stract classes or interfaces and the total number of classes inside a pack-
age. Stable packages have to be abstract so that they can be extended
without being changed. On the other hand, highly unstable packages must
be concrete, because its classes have to implement the interfaces inherited
from stable packages.

Distance from the main sequence (D) metric measures the perpendicular
distance of a package from the main sequence. Because not all packages
can be totally abstract and stable or totally concrete and unstable, these
packages have to balance the number of concrete and abstract classes in
proportion to there efferent and afferent couplings. The main sequence
is a line segment that joins points (0,1) (representing total abstractness)
and (1,0) (representing total instability). This line represents all the pack-
ages whose abstractness and stability are balanced. So it is desirable that
packages are the closest to the main sequence as possible.

3.3 Metrics Thresholds

When working with software metrics one has to know how to evaluate
the obtained results, in order to make decisions based on them. Reference
values are needed to determine whether the metrics results are too high,
too low, or normal – these reference values are known as software metrics
thresholds [21].



Over time many authors proposed software metric thresholds based
on their experience. However, since these thresholds rely on experience,
it is difficult to reproduce or generalize these results [1]. There are some
authors who propose methodologies based on empirical studies for deter-
mining software metrics thresholds.

Erni et al. [7] propose a simple methodology based on the use of well-
known statistical methods to determine software metrics thresholds. The
lower (Tmin) and the higher (Tmax) thresholds are calculated using the
following formulas Tmin = µ− s and Tmax = µ+ s, being µ the average of
a software metric values in a project and s the standard deviation. The
lower and the higher thresholds work as lower and upper limit for the
metric values.

Shatnawi et al. [30] propose a methodology based on the use of Receiver-
Operating Characteristic (ROC) curves to determine software metrics
thresholds capable of predicting the existence of different categories of
errors. This methodology was experimented in three different releases of
Eclipse and using the C&K metrics.

Alves et al. [1] propose a novel methodology for deriving software met-
ric threshold values from measurement data collected from a benchmark
of software systems. It is a repeatable, transparent and straightforward
method that extracts and aggregates metric values for each entity (pack-
ages, classes or methods) from all software systems in the benchmark.
Metric thresholds are then derived by choosing the percentage of the
overall code one wants to represent.

4 Sonar – a Tool for Software Quality Management

Nowadays, we can easily find tools capable of measuring all the software
metrics mentioned previously. These tools range from simple command
line tools that only output numerical results, to more complete tools with
graphical user interfaces that display the results using graphs, in order to
facilitate the visualisation of results. Within this type of tools there are
also those that are only capable of calculating one or two simple metrics
and tools capable of measuring tens of software metrics.

4.1 The Sonar platform

Sonar [11] is an open source tool used to analyse and manage source code
quality in Java projects. It evaluates code quality through seven differ-
ent approaches: architecture & design, complexity, duplications, coding

http://www.sonarsource.org/


rules, potential bugs, unit tests and comments. Sonar groups a set of
well-known code analysers such as Cobertura, PMD, FindBugs, Check-
Style and Clover, wich allows it to present features like:

– listing of all evaluated projects and its results;
– drill down to see the results at package, class and source code level;
– coding rules violation report (Sonar provides over 600 coding rules);
– classical and object oriented design metrics measurement;
– unit tests results and code coverage;
– a time machine that shows the evolution of different quality metrics

through out time;
– a dependency structure matrix (DSM) that represents dependencies

between components (Maven modules, packages or files) in a compact
way;

– a plugin mechanism that enables users to extend the functionalities
of Sonar.

Sonar runs as a server and uses a database to persist the results
from projects analysis and global configuration. It comes with an inter-
nal database (Apache Derby), however it can be configured to use other
databases, such as MySQL, Oracle, PostgreSQL, or Microsoft SQL. Sonar
uses Maven, a software tool for building and managing Java projects.
Analysis is done through a Sonar Maven plugin that executes a set of
code analysers and stores the results in the database. Although Sonar
uses Maven it also can analyse non-Maven projects. This Maven plugin
uses PMD and Checkstyle to find violations of coding rules like design
problems, duplicate code and dead code. It uses FindBugs to detect po-
tential bugs. Measurement of code coverage by unit tests is done with
Cobertura and Clover. Sonar also has its own costume made code anal-
yser named Squid that, among other things, generates the C&K and some
of the R.C. Martin object-oriented design metrics and signals dependency
cycles between packages.

Sonar uses the ISO/IEC 9126 quality model to divide the coding rules
in 5 quality factors: maintainability, usability, efficiency, portability and
reliability. It is also possible to define and manage multiple quality profiles
adapted to different projects. These profiles consists of:

– activate/deactivate and weight coding rules;
– define metrics thresholds, enabling automatic alert;
– define projects associated to each profile.

http://cobertura.sourceforge.net/
http://pmd.sourceforge.net/
http://findbugs.sourceforge.net/index.html
http://checkstyle.sourceforge.net/
http://checkstyle.sourceforge.net/
http://www.atlassian.com/software/clover/
http://maven.apache.org/


Sonar is a web-based application. Quality profiles settings can be con-
figured on-line. It provides a dashboard, as seen in Figure 2, that gives
us an idea of a project overall quality. It is also possible to drill down to
visualize the software project’s code quality at different levels (packages,
classes, source code).

Sonar can be used for audits, however all its potential is reached when
used as a shared central repository for quality management enabling to
improve code quality in a continuous and supported manner. With Sonar,
stakeholders have facilitated access to information that enables them to
manage risks, reduce maintenance costs and improve agility, during a
project’s development life cycle.

Fig. 2. Example of a dashboard of a project in Sonar

5 The TreeCycle plugin

We all have heard the phrase “A picture is worth a thousand words”.
This maxim can be also applied to software engineering especially in the
domains of software maintenance, reverse engineering, and re-engineering
where it is necessary to understand large amounts of complex data. Soft-
ware visualisation can be seen as “the mapping from software artefacts,
including programs, to graphical representations” [19]. Studies [19] show

http://en.wikipedia.org/wiki/A_picture_is_worth_a_thousand_words


that maintenance programmers spend 50% of their time just figuring out
the software to be changed. However, many researchers believe software
visualisation may be one of the solutions to minimize this problem. There
are several projects that attempt to combine software visualisation and
software metrics [12,20,31].

Sonar gathers much information in its database from various well-
known code analysers. And with version 2.0 of Sonar, source code quality
started to be also evaluated trough its design and architecture with the
introduction of object-oriented design metrics and report of dependency
cycles.

Sonar plugins forge is currently hosting more than 40 plugins. How-
ever, only 4 are devoted to visualisation and report of results. We think
that Sonar could evolve further in this area and we have built a plugin for
visualisation of information that concerns to the design quality of Java
projects.

Our plugin represents dependencies between packages in tree graphs
highlighting it’s dependency cycles (this is why we name it TreeCycle).
Moreover, the plugin represents in a graphical way the results of the C&K
metrics for the classes of each package. We think these features give an
overall image of the design quality of a project and make TreeCycle a
good complement to the Sonar DSM.

5.1 How it Works

A Sonar plugin allows us to define new extensions like new metrics to be
calculated and collected, new Ruby on Rails widgets to display the new
metrics results in the dashboard, and sensors and decorators to gather
and process all the new defined metrics.

A sensor collects and analyses data but has no access to other plugins
collected data. A decorator, in addition to collect and analyse data, is
allowed to cross reference data collected from other plugins. It is also
possible to define Google Web Toolkit (GWT) web pages that allows to
add more complex features to Sonar, as is the case of the TreeCycle plugin
that displays a full page tree graph with all the dependencies between
packages of a project.

TreeCycle starts by soliciting Sonar web server the data relative to all
project’s packages and its dependencies. This data will be used to create
a tree graph where the nodes represent packages and the edges represent
the dependencies between packages.

http://rubyonrails.org
http://code.google.com/webtoolkit


Why a tree graph? We chose to display package dependencies using graph
trees because these type of graphs are useful for the display of hierarchi-
cal structures like inheritance or dependency between entities (packages,
classes, methods). Nodes represent entities, while the edges between the
nodes represent hierarchical relationships. The advantage of this type of
graphs is that they are able to render a complex system in a very sim-
ple way. However, tree graphs of big systems tend to be very large and
sometimes do not even fit on one single screen.

TreeCycle uses organizational charts provided by Google Chart Tools
(a.k.a. Visualisation) 1.1 library, for GWT, to generate dependency tree
graphs.

Reading a tree. We use the source code of the TreeCycle plugin as an
example. The tree graphs generated for our source code consists of a
main tree containing 35 nodes, and 2 smaller trees, containing 1 and
15 nodes. In Figure 3 it can be seen the main tree that has node 0
(Veigh.TreeCycle.page.client) as its root. The dependencies in a tree graph
are read from top to bottom, i.e., a node depends (directly and indirectly)
on all the nodes standing bellow it. For instance, node 0 depends on all
of the 34 nodes in the tree.

Fig. 3. TreeCycle: package dependencies tree graph

Choosing the tree root. Initially, all packages are candidates to be the
roots of the tree graphs that will be generated. What we do to narrow
this list is a test run, where for each candidate package is calculated the



number of nodes that it’s tree will contain. The list of packages (root
candidates) is then ordered from the package with the highest count to
the package with the lowest count. Next we begin to build the tree graphs
for the package with the highest count, till the list of root candidates is
empty. Meanwhile, all packages that were used as nodes to determine
the result of another package X, will be excluded from the list of root
candidates, because their trees will appear as a subtree of the dependency
tree generated for X. This algorithm makes it possible to generate the
minimum possible number of trees.

Identifying dependency cycles. Package structures with many cycles are
in general more difficult to understand and to maintain [24], because these
tend to generate spaghetti code. An important feature of our plugin is the
highlighting of dependency cycles between packages in the tree graphs.
In Figure 3 it can be seen some leafs highlighted with different colors.
Each color identifies a different cycle, which is represented on the tree as
a path that ends in the highlighted leaf and begins in the node that is
identified on same leaf. Note that a depencency cycle can be reflected in a
tree several times. To isolate cycles we identify each cycle with a different
color (for instance, the tree in Figure 3 captures three different cycles
corresponding to the three colors that appear in its nodes). Alternatively,
it is possible to see a list of all dependency cycles in the design and also
the information about witch packages are involved in each cycle. This can
be done by selecting the Cycle List tab, as can be seen in Figure 4.

Fig. 4. TreeCycle: list of dependency cycles

Isolating components. Besides giving an overall image of the package
structure of a project and detecting dependency cycles, the TreeCycle plu-
gin can be used to identify components that can be reused. For example,
we know that in order to reuse package com.google.gwt.visualization.client
(node 2) we have to include all the nodes standing bellow it (nodes 6, 7,



8, 15, 16, 17, 18, 19, 28 and 29). Actually this sub-tree represents the
Google Chart Tools 1.1 library used by the TreeCycle plugin.

Drilling packages. The TreeCycle plugin not only serves to generate de-
pendency tree graphs. By clicking in a node it is possible to drill-down
into the package (represented by the node) where the C&K metrics results
will be displayed for all the classes that compose that package. These re-
sults are graphically represented in pie charts also provided by the Google
Chart Tools 1.1 library. For example, in Figure 5 it can be seen the met-
rics results for all the classes from package Veigh.TreeCycle.client.page,
represented in Figure 3 as node 0. The class that stands out in almost all
pie charts is the orgChart class. This is the class responsible for arranging
all data in a table that will be used for generating the dependency tree
graphs. The orgChart class is the one with the higher values for WMC,
RFC and CBO metrics. This values tells us that this class is potentially
hard to analyse, change and test. This class is the main responsible for the
maintainability, re-usability and portability rates of this project, affecting
its overall quality.

6 Related Work

In this section we comment on some works related with software visual-
isation whose ideas can be used or serve as inspiration for new features
that can be implemented in future versions of the TreeCycle plugin.

Holten et al. [12] propose a visualisation approach that uses tree-
maps to represent hierarchically organized components of a software sys-
tem. Software metrics are visualised by using different computer graphics
techniques like cushions, colors, textures and bump mapping.

Lanza et al. [20] propose a software visualisation technique comple-
mented with software metrics information named polymetric views. This
technique uses different layouts (trees, scatterplots, checkers and stapleds)
to represent the relation between entities of a software system. The most
interesting aspect of this technique is the representation of up to 5 dif-
ferent metrics on each node. The size of each node (width and height)
represent 2 different metrics, the position of the node (axis X and Y) also
represent 2 different metrics, while the color of the node represent a fifth
metric.

Wettel et al. [31] propose a 3D visualisation approach which repre-
sents object-oriented software systems as cities. Classes are represented
as buildings located in city districts which in turn represent packages. This



Fig. 5. TreeCycle: C&K metrics

approach represents metrics by the size (width and height) and color of
both buildings and districts.

7 Conclusions and Future Work

We have presented a Sonar plugin that provides an overall picture of the
design quality of Java projects. The TreeCycle plugin represents the de-
pendencies between packages in a tree graph highlighting it’s dependency
cycles. For each package it represents in a graphical way (using pie charts)
the results of a suite of metrics for object-oriented design (C&K metrics).

Our plugin adds to Sonar a different way of viewing results of projects
analysis through the use of software visualisation techniques. However,
despite all its features, the TreeCycle plugin is still under development.
In the near future we count on launching new versions of the plugin with
new features.



One of these features will be the option to define thresholds for each
metric in the TreeCycle plugin. Whenever a metric result exceeds a thresh-
old an alert will be issued in the dependency tree graph and/or in the pie
charts. These alerts can be represented by different colors (for example
green, yellow or red) depending on the degree of risk. Another interesting
feature would be to calculate all the missing R.C. Martin metrics (insta-
bility, abstractness and main sequence) for each package and present its
results in the dependency tree graph. Although these features are obvi-
ous, we do not have implemented it yet due to technical issues that we
count to solve in a very near future.

The features of the Sonar tool make it a good framework to implement
new ideas. For instance, an interesting idea for a different plugin for Sonar
would be to use the methodology proposed in [1] and using the Sonar
database for the benchmark.

Acknowledgments We thank Joost Visser for showing us the Sonar
platform. This work was supported by the Portuguese Foundation for
Science and Technology (FCT), in the context of the CROSS project,
under contract PTDC/EIA-CCO/108995/2008.

References

1. Tiago Alves, Christiaan Ypma, and Joost Visser. Deriving metric thresholds from
benchmark data. In proceedings of the 26th IEEE International Conference on
Software Maintenance (ICSM 2010), September 12-18, 2010, Timisoara, Romania.
IEEE Computer Society, 2010. To appear.

2. Ken Arnold, James Gosling, and David Holmes. Java(TM) Programming Lan-
guage, The (4th Edition). Prentice Hall, 2005.

3. Sebastian Barney and Claes Wohlin. Software product quality: Ensuring a common
goal. In ICSP ’09: Proceedings of the International Conference on Software Process,
pages 256–267, Berlin, Heidelberg, 2009. Springer-Verlag.

4. Barry Boehm, J.R. Brown, H. Kaspar, M. Lipow, G. McLeod, and M. Merritt.
Characteristics of Software Quality. North Holland, 1978.

5. S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design.
IEEE Trans. Softw. Eng., 20(6):476–493, 1994.

6. Marc Alexis Côté, Witold Suryn, and Elli Georgiadou. Software quality model
requirements for software quality engineering. In Software Quality Management -
International Conference, pages 31–50, 2006.

7. Karin Erni and Claus Lewerentz. Applying design-metrics to object-oriented
frameworks. In Proc. of the Third International Software Metrics Symposium,
pages 25–26. Society Press, 1996.

8. Norman E. Fenton and Shari L. Pfleeger. Software Metrics: A Rigorous and Prac-
tical Approach. PWS Publishing Co., Boston, MA, USA, 1998.

9. Ronan Fitzpatrick. Software quality: Definitions and strategic issues. Technical
report, Staffordshire University, School of Computing Report, 1996.



10. David A. Garvin. What does product quality really mean. MIT Sloan Management
Review, 26(1), fall 1984.

11. Olivier Gaudin and Freddy Mallet. Sonar. Methods & Tools, pages 40–46, Spring
2010.

12. Danny Holten, Roel Vliegen, and Jarke J. Van Wijk. Visual realism for the visual-
ization of software metrics. In In VISSOFT’05: Proceedings of 3rd IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analysis (2005),
IEEE CS, pages 27–32. Press, 2005.

13. ISO/IEC. ISO/IEC 9126: Software product evaluation - quality characteristics and
guidelines for their use. International Organization for Standardization, 1991.

14. ISO/IEC. ISO/IEC TR 9126-1: Software engineering - product quality - part 1:
Quality model. International Organization for Standardization, 2001.

15. ISO/IEC. ISO/IEC TR 9126-2: Software engineering - product quality - part 2:
External metrics. International Organization for Standardization, 2003.

16. ISO/IEC. ISO/IEC TR 9126-3: Software engineering - product quality - part 3:
Internal metrics. International Organization for Standardization, 2003.

17. ISO/IEC. ISO/IEC TR 9126-4: Software engineering - product quality - part 4:
Quality in use metrics. International Organization for Standardization, 2004.

18. Stephen H. Kan. Metrics and Models in Software Quality Engineering. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1994. Foreword By-
Thomas, Brian.

19. Rainer Koschke. Software visualization in software maintenance, reverse engi-
neering, and re-engineering: a research survey. Journal of Software Maintenance,
15(2):87–109, 2003.

20. Michele Lanza and Stéphane Ducasse. Polymetric views-a lightweight visual ap-
proach to reverse engineering. IEEE Trans. Softw. Eng., 29(9):782–795, 2003.

21. Michele Lanza, Radu Marinescu, and Stéphane Ducasse. Object-Oriented Metrics
in Practice. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2005.

22. Rudiger Lincke and Welf Lowe. Compendium of software quality standards and
metrics. http://www.arisa.se/compendium, 2007.

23. Robert Cecil Martin. Object oriented design quality metrics: An analysis of de-
pendencies. http://www.objectmentor.com/resources/articles/oodmetrc.pdf,
1994.

24. Robert Cecil Martin. Agile Software Development: Principles, Patterns, and Prac-
tices. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2003.

25. Inc McCabe Software. Using code quality metrics in management of outsourced
development and maintenance, 2009.

26. Jim A. McCall, Paul K. Richards, and Gene F. Walters. Factors in software quality.
volume i. Concepts and definitions of software quality. Technical report, General
Electric CO Sunnyvale CA, 1977.

27. Tim Menzies, Justin S. Di Stefano, Mike Chapman, and Ken McGill. Metrics that
matter. In SEW ’02: Proceedings of the 27th Annual NASA Goddard Software
Engineering Workshop (SEW-27’02), page 51, Washington, DC, USA, 2002. IEEE
Computer Society.

28. Everald E. Mills, Everald E. Mills, and Karl H. Shingler. Software metrics - sei
curriculum module sei-cm-12-1.1, 1988.

29. Linda H. Rosenberg and Lawrence E. Hyatt. Software Quality Metrics for Object-
Oriented Environments. In Proceedings of National Conference on Challenges &
Opportunities in Information Technology (COIT-2007), March 2007.

http://www.arisa.se/compendium
http://www.objectmentor.com/resources/articles/oodmetrc.pdf


30. Raed Shatnawi, Wei Li, James Swain, and Tim Newman. Finding software metrics
threshold values using roc curves. J. Softw. Maint. Evol., 22(1):1–16, 2010.

31. Richard Wettel and Michele Lanza. Visualizing software systems as cities. In In
Proc. of the 4th IEEE International Workshop on Visualizing Software for Under-
standing and Analysis, pages 92–99. Society Press, 2007.


