
The role of comments on Program
Comprehension ?

José Lúıs Freitas, Daniela da Cruz, and Pedro Rangel Henriques

Informatics Department
Universidade do Minho

Braga, Portugal
freitas.jlf@gmail.com, danieladacruz@di.uminho.pt, prh@di.uminho.pt

Abstract. This paper presents Darius, a tool that aims at helping the
exploration of comments for Program Comprehension purposes. In par-
ticular, we present several experiments, using Darius, in order to study
the relationship between comments and the Problem and Program Do-
main. The following questions established the basis of the study: (1) what
is predominant in comments: Program Domain terms or Problem Do-
main terms?; (2) what is the relation between the type of domain terms
used (problem or program) and the type of comment (inline, block and
javadoc)?; (3) what is the relation between the type of domain terms
used (problem or program) and the type of source code entity (class,
method, statements, etc.) commented?

From the experiments conducted with Darius, we concluded that in the
studied Java projects there is a significant amount of (inline, block and
documentation) comments, and that terms of both Program and Problem
Domains appear frequently inside the comments. This will allow to create
the aimed bridge as a next step in this Program Comprehension project.

Keywords: program comprehension; source code analysis; comment anal-
ysis; problem domain; program domain; information retrieval

1 Introduction

Nowadays there are many methods/approaches that help software engineers and
programmers to develop their product with more accuracy and with less costs.
However, the maintenance of a system persists to spend too many resources.
According to [3], before the early 1990s, Software Maintenance has spent almost
half of the resources, and recently [4] showed that 80 to 95% of the budget given
to Information Systems is for maintenance activities. Most of the problems in
Software Maintenance, are due to the fact that half of the time is spent on
comprehending the given system or program [5].

? This work is funded by the ERDF through the Programme COMPETE and by
the Portuguese Government through FCT - Foundation for Science and Technology,
project ref. PTDC/EIA-CCO/108995/2008.

2 The role of comments on Program Comprehension

Nowadays there are areas of Software Engineering, such as Program Compre-
hension (PC) that are concerned with these problems; researchers on those areas
work on theories, techniques and tools that help programmers and engineers to
extract from a program the knowledge needed to understand it. However, most
of PC tools only extract from a program its structural information but they lack
the extraction of its meaning [7]. Although the structural information is impor-
tant, the richness of semantic information included on source code comments,
written in natural language, could give a bigger contribution for the understand-
ing process.

However, the information included on comments should contain Problem
Domain terms to attain a better understanding of the program. If comments only
include terms from the Program Domain, it becomes more difficult to establish
a relation between the code and its purpose.

In order to understand the nature of comments, we developed Darius1, a
tool that analyzes source code comments and provides information for Program
Comprehension purposes. Taking advantage of Darius, we developed several ex-
periments that investigated whether the terms used, when writing comments,
are Problem Domain or Program Domain oriented. We address this problem by
answering to the following research questions:

1. What is predominant in comments: Program Domain terms or Problem Do-
main terms?

2. What is the relation between the type of domain terms used (problem or
program) and the type of comment (inline, block and javadoc)?

3. What is the relation between the type of domain terms used (problem or
program) and the type of source code entity (class, method, statements,
etc.) commented?

1.1 Structure of the paper

After a careful search and deep analysis, we provide in Section 2 some informa-
tion regarding the work on comment analysis and its effect on Program Com-
prehension. In Section 3 we present our tool called Darius, describing in detail
each one of its components. Then in Section 4, we describe two experiments,
using Darius, in order to provide answers to the questions raised in this paper.
We conclude this paper in Section 5, describing the lessons learned carrying out
the development of Darius and the experiments; trends for future work are also
pointed out.

2 Related Work

Considering Program Comprehension, different authors [10, 2] have defended the
importance of Problem Domain knowledge on the understanding of a given pro-
gram. The Problem Domain of a program is defined as a part of the world about

1 Relative to King Darius I of Persia, the first known man to create the first bridge
between Europe and Asia, on the Bosphorus strait.

The role of comments on Program Comprehension 3

which the program is concerned with solving problems [9], and as a domain is
composed by a set of objects, the relations among them and the operators which
manipulate them [2]. The Problem Domain of a store management software will
include typical objects, such as product or receipt, and functions or operators
that change or manipulate them such as print the receipt or sell a product.

In Program Comprehension, two major theories of understanding are ac-
cepted: top-down and bottom-up. When programmers are familiar with the Prob-
lem Domain, they tend to use a top-down comprehension process [10]. When
using a top-down approach, the programmer tries to map Problem Domain con-
cepts to their implementation on code (Program Domain), process which was
called concept assignment by Biggerstaff et al. [1].

Some authors [8, 14] took advantage of Information Retrieval techniques for
concept assignment, using the identifiers and comments, to establish links be-
tween code and documentation.

In [6], the authors studied whether comments and identifiers included Prob-
lem Domain terms. They created a list of terms from the Problem Domain
underlying the program they were studying, and measure the frequency of terms
occurrences in identifiers and comments. The results showed that half of the
Problem Domain terms were included in the source code, mostly on comments.
The study reflected in this paper, will assume a similar methodology, described
on Section 4.

The effect of source code comments on the understanding of a program has
always been a subject of study for many researchers. In his theory of compre-
hension, Brooks described in [2] the value of comments on the construction of a
mental model of the program, specially if these include terms from the Problem
Domain.

Taking this, several experiments [12, 13] were conducted to verify whether the
comprehension of a program could be catalyzed by comments. To the subjects
of these experiments were given two versions of the same program: one with
comments and the other without. Then they had to answer a questionnaire
about the program they just had analyzed. The results showed that the subjects
which were given programs with comments were able to answer to more questions
correctly.

3 Darius

In the last section we highlighted the work described in [6] that studied the
existence of Problem Domain terms on comments and identifiers. However, the
performed studies did not calculate in detail the positioning of Problem Domain
information on different types of comments and on comments of different source
code entities, and lack the study of the existance of Program Domain terms. As
our goal is to use comment information to develop a Comment Analysis PC tool
in the future, this information can be important to explore. In order to perform
an initial step to fulfill this goal and to address the questions mentioned above,
we developed a tool called Darius that analyzes source code comments, providing

4 The role of comments on Program Comprehension

quantitative information. The structure of Darius is shown in Figure 1. As we
can see, Darius is composed by:

– a comment extractor that withdraws comments from source code files and a
code associator that associates each comment with the piece of code (classi-
fied according to the source code entity type: class, method, statement, and
so on) it is commenting;

– a statistics calculator that provides quantitative results regarding comments
in a software project;

– a comment words analyzer which computes the frequency of words on com-
ments, information that can be used to build a tag cloud or to identify the
domain of each word;

– and a web interface, a graphical interface which can be used to visualize all
the information provided by the other components.

Below, each one of these components is described in detail.

Fig. 1. Structure of Darius

3.1 Extracting and Locating Comments

The tool described in this section extracts comments from Java source code files.
In the Java programming language there are three types of comments:

– InLine comments, IC for short, (//...)
– Block comments, BC for short, (/* ... */)
– JavaDoc comments, JD for short, (/** ... */)

The role of comments on Program Comprehension 5

These three types of comments are extracted from the source code using reg-
ular expressions. The use of regular expressions in spite of a parser, is explained
by the fact that not all types of comments take part of the AST (javadoc only)
extracted by a parser. Although there are approaches [11] that try to associate
inline and block comments with syntactic nodes in the AST, by changing the
Java grammar rules, the extraction of comments in Darius pretends to be as
generic as possible for every Java source code file.

In order to discover and identigy what type of source code entity is associated
with the comment, the next line after the comment is extracted too. Consider-
ing the Java programming language, Darius associates comments with classes,
interfaces, methods, conditionals (if), loops (while and for) and switches.

One important detail of this procedure, is that the first comment of a given
file is removed due to the fact that the first comment contains almost always a
text related with the project’s license. We came up with this conclusion after
many observations.

3.2 Comment Statistics

With the information extracted as described above, Darius computes some com-
ment statistics from a project. These statistics include:

– Number of comments of a project (global and per type);
– Percentage of comment lines per lines of code for each file, and the average

from the projects;
– Average number of each type of source code entity which is commented;
– Type of comments most used (global and per source code entity).

3.3 Comment Words Analyzer

Darius has the ability of analyzing the comment individually, by analyzing the
words that form it. Using regular expressions, Darius breaks the comment into
words and associates them to the comment. All the words are analyzed by a
stemmer2, that reduces every word to its respective stem. Words are then stored
in a table that maps its frequency (on all comments). With this information,
Darius can create a tag cloud with the most frequent words, that can be visualized
by the Web Interface, which will be described in the next subsection.

Apart from the tag cloud, Darius can also analyze a list of words, provided by
the user and check the frequency in which the words appear in the comments,
calculating the following numbers:

– Percentage and frequency of words in the list found in comments;
– Frequency of each type of comment that contains words from the list;
– Frequency of each type of source code entity commented that contains words

from the list.

2 Snowball Stemmer by Martin Porter, http://snowball.tartarus.org/

6 The role of comments on Program Comprehension

3.4 Web Interface

Darius offers a Web Interface (as shown in Figure 2) to make the user interaction
easier and more appealing.

This interface allows to upload a Java software project, properly compressed.
After submitting a project, the user is able to visualize all the information that
the components, described above, provide.

The user can calculate and visualize information regarding the comment
statistics. The user can also create a tag cloud, according to his preferences. Dar-
ius gives the possibility of creating a tag cloud for all comments or just comments
associated with a particular type of source code entity; non-value words (English
stop-words, words related with licenses and keywords from JavaDoc) can also be
removed from the cloud. As each word is associated with the comments where it
appears, we can navigate through the tag cloud and click on a word to visualize
these comments (as shown in Figure 3), analyzing the context in which the word
is inserted. These comments are shown in a list, and the chosen word is properly
highlighted. Each listed comment contains also information about its type; the
source entity associated and the source code file where it appears.

Fig. 2. Screenshot of the Web Interface

4 Experiments with Darius

In this section, we describe two experiments performed with Darius in order to
compute actual information regarding the commenting practice.

The first experiment, will analyze the commenting practice in terms of quan-
tity, providing information that could describe the frequency and positioning in
which comments appear on source code.

The second experiment, will answer the questions raised in this paper, by
analyzing the words included on comments, studying their domain and relat-

The role of comments on Program Comprehension 7

Fig. 3. Navigation over the Tag Cloud

ing that with the type of comment used and the type of source code entity
commented.

4.1 Objects of Study

In order to perform the experiments, we have selected 10 software projects3

written in the Java programming language. This selection has not followed any
particular criteria, apart from the constraint that their Problem Domains should
be different. Needless to say that the source code of all projects is fully available.
The projects selected are described on Table 1.

Table 1. Description and size of each selected project

Project Description Files LoC Classes

iText PDF Library 480 145666 403

ganttproject Project Management Library 530 68945 394

gwt-dev Google’s Web Toolkit 987 192738 803

jEdit Text Editor 531 176006 404

vuze Peer-to-peer client 3284 785935 2463

junit Tests Framework 154 10926 130

jfreechart Chart Library 989 313231 876

antlr Grammar Framework 221 85867 212

jexcelapi Excel Library 461 98698 186

robocode Programming Game of Robots 571 81519 485

Total 8176 1959531 6356

3 These projects were retrieved from the SourceForge repository—http://

sourceforge.net—in December 2010.

8 The role of comments on Program Comprehension

4.2 Comment Statistics

In the first experiment, we used Darius to compute statistics about the comments
in the selected Java projects. This experiment had two main goals: to obtain a
slight idea of what is the practice of commenting on real-world projects; and to
check whether the quantity of comments is significant in order to perform more
advanced studies, such as a qualitative study of the comments.

Methodology The procedure followed for performing this study was rather
easy. We executed Darius in order to calculate statistics for each one of the
projects, individually, and then gathered all the projects in a “big project“ and
repeated the analysis over the global project.

Table 2. Comments Frequency in the projects (detailed analysis)

Type of Comments

Project Comments Comment Lines CommL / Comm Comm / LoC IC BC JD

iText 13343 35246 3.6 0.09 4930 3777 4636

ganttproject 4468 7544 2.99 0.06 2925 814 729

gwt-dev 12969 31648 4.25 0.07 7219 866 4884

jEdit 18986 37749 5.11 0.11 806 14421 3759

vuze 27723 64023 4.83 0.04 18245 2319 7159

junit 519 2281 4.99 0.05 2 77 440

jfreechart 22516 83934 4.86 0.07 6592 2530 13394

antlr 5292 11678 5.6 0.06 3903 1380 9

jexcelapi 8594 24735 3.58 0.09 2338 779 5477

robocode 5071 15657 6.39 0.06 3108 102 1861

Total 119481 314495 4.5 0.06 63758 13375 42348

Results Table 2 contains the basic results computed by Darius: the number of
comments (global and distributed by the three comment types); the number
of comment lines; the average of comment lines per comment; and the ratio
between comments and lines of code (LoC). One important detail is the fact that
the average number of comment lines per comment, is only relative to JavaDoc
and Block comments, because Inline comments contains, by their nature, only
one line. From Table 2 we can conclude that projects from real life incorporate
comments in a rate that rounds the 6% of comments per line of code. Most of
the comments, are block or Javadoc comments with an average size of 4,5 lines
per comment.

To complete this first numeric evidence, Table 3 is useful to perceive the
policy of commenting in the Java programming language. As it is observed in
this table, the programmers of these projects usually comment classes, interfaces
and methods and tend to comment less the others low level source code entities.

The role of comments on Program Comprehension 9

Table 3. Percentage of Source Code Entities (SC) commented (#SC commented /
#SC) (average in all projects)

If For While Switch Class Interface Method

7 8 6 5 69 60 45

Table 4. Most used type of comment per type of source code entity (average in all
projects)

If For While Switch Class Interface Method

IC IC IC IC JD JD JD

Table 4 shows in detail the comments frequency, separated by type of source
code entity. JavaDoc comments is the most preferred type to comment classes,
interfaces and methods. On the other hand, inline comments are most used to
comment the others source code entities.

Roughly speaking, we can say that the number of comments embedded in
the source code justify that we proceed with this preliminary study; now it is
necessary to inspect the comments content, to decide whether they encapsulate
valuable information on Problem or Program Domains.

4.3 Domain Analyzer

The second experiment had the main goal of studying and analyzing the domains
to which the comment words belong. By performing this experiment, we might
be able to get a slight idea of the relation between commenting and the Problem
and Program Domains, and provide the answers to the questions raised in this
paper.

Methodology In order to perform this experiment, we created a list of Problem
Domain terms for each project and a list of Program Domain terms4, the same for
all projects (since all of them are written in the same programming language).
To create the lists of Problem Domain terms, we analyzed the websites and
manuals of every project, and selected the most relevant words, considering the
requirements. All the lists of Problem Domain terms included in average 50
terms. The list of Program Domain terms (75 terms), included Java Language
keywords and common words from the programming world, such as “class“,
“array“ or “increment“.

To perform the analysis after opening each project, we have submitted to the
Darius Domain Analyzer the respective list of Problem Domain terms and also
the list of Program Domain terms. In this way, the Domain Analyzer computed
and printed out the frequency in which terms occur in comments. It it also im-
portant to point out that non-valuable words (as described in 3.3) were removed
from the table of comment words, so they did not enter in this analysis.

4 All the list are available in http://www.di.uminho.pt/~gepl/DARIUS

10 The role of comments on Program Comprehension

Results As this second experiment, oriented towards the study of the com-
menting practices concerned with the occurrence of problem and program terms,
mainly relies upon the two lists of terms chosen to characterize both domains,
we started by assessing those lists. Table 5 shows the percentage of words in
each list that actually occur anywhere in the comments of every project.

Table 5. Percentage of domain words (DW) found (#DW Found / #DW)

Project Problem Domain Program Domain

iText 91.23 87.67

ganttproject 77.97 69.86

gwt-dev 58.11 93.15

jEdit 88.89 89.04

vuze 88.1 93.15

junit 84.0 67.12

jfreechart 93.75 91.78

antlr 93.02 87.67

jexcelapi 86.67 89.04

robocode 86.05 82.19

Total 83.05 85.07

The average percentage found for both domains is around 84%. This value
is actually bigger (near 90%) if we discard the 2 values clearly behind the aver-
age (ganttproject and gwt-dev).

Fig. 4. Frequency of words for each domain

The chart displayed on Figure 4 is crucial for this study. It shows the fre-
quency of Problem Domain terms and Program Domain terms per type of com-

The role of comments on Program Comprehension 11

ment, per type of source code entity and the total. There are several evident
conclusions that can be drawn. Comments extracted from the several chosen
projects include, indeed, Problem and Program Domain terms members of the
lists created to characterize each domain. Program Domain terms are more fre-
quent than Problem Domain terms, in a rate of 2:1. This shows that programmers
write actually comments concerning both domains, but they tend to use more
Program Domain concepts. Another interesting point, is the fact that 25% of
the terms used in comments are Program or Program Domain oriented, which
is a relevant result for Program Comprehension purposes. JavaDoc comment is
the richest type of comment in terms of Program and Problem Domain terms,
which can indicate that it is very useful for Program Comprehension purposes.
JavaDoc and Block comments follow the rate of two Program Domain terms to
one Problem Domain term, as mentioned above. However, as observed, Inline
Comments do not follow this rule, as Program Domain terms are even more fre-
quent. In general, the use of Problem Domain terms is more frequent in class and
interface comments. On the other hand, Java statement and method comments
include, in general, more Program Domain terms.

5 Conclusions and future work

In this paper we presented Darius, a tool that analyzes comments for Program
Comprehension purposes. Using Darius, we conducted two experiments in order
to study the role of comments on Program Comprehension, which answered a
set of research questions, stated in the Introduction.

The first experiment, which focused on the quantitative results of comments
in the studied Java software projects, showed that, in general, there is a higher
tendency to comment classes, interfaces and methods. This experiment also
showed a higher inclination for using JavaDoc comments to comment classes,
interfaces and methods. On the other hand, InLine comments are most used to
comment the other Java source code entities (statements such as if, while or for).

The second experiment was conducted in order to answer the questions enun-
ciated in this paper. It was focused on the analysis of the content of comments,
measuring the frequency of Problem or Program Domain terms for every selected
software project. The results of this experiment showed that, in the studied
projects, one in four comment words are Problem or Program Domain oriented.
However, the frequency of Program Domain terms is bigger than the frequency of
Problem Domain terms in a rate of 2:1. These results also showed that JavaDoc
comments contain the biggest percentage of words from both domains and that
InLine comments contain a bigger rate of Program Domain terms (3:1). As ex-
pected, the results showed also that class and interface comments contain the
biggest percentage of Problem Domain terms and the other Java source code
entities (methods and statements such as if, while or for) contain the biggest
percentage of Program Domain terms.

Considering these results we now have established the foundation to proceed
with our project aimed at the use of ontologies and comments to improve Pro-

12 The role of comments on Program Comprehension

gram Comprehension. The basic idea, that we intend to explore in the next step,
consists in the construction of ontologies to model the Problem Domain and the
Program Domain, and map their concepts into the program. We will take advan-
tage of comments to implement these connections (from each ontology into the
source code) precisely locating in the comments the ontology concepts (as we
did in the experiment two); using the association between comments and source
code entities, we create the bridge from each domain to the program.

References

1. Biggerstaff, T.J., Mitbander, B.G., Webster, D.: The concept assignment problem
in program understanding. In: Proceedings of the 15th international conference on
Software Engineering. pp. 482–498. ICSE ’93, IEEE Computer Society Press, Los
Alamitos, CA, USA (1993)

2. Brooks, R.: Using a behavioral theory of program comprehension in software engi-
neering. In: Proceedings of the 3rd international conference on Software engineer-
ing. pp. 196–201. ICSE ’78, IEEE Press, Piscataway, NJ, USA (1978)

3. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. Computer 27(8), 44–49 (Aug 1994)

4. Erlikh, L.: Leveraging legacy system dollars for e-business. IT Professional 2(3),
17–23 (2000)

5. Fjeldstad, R.K., Hamlen, W.T.: Application Program Maintenance Study: Report
to Our Respondents. In: Proceedings GUIDE 48 (April 1983)

6. Haiduc, S., Marcus, A.: On the use of domain terms in source code. In: Proceedings
of the 2008 The 16th IEEE International Conference on Program Comprehension.
pp. 113–122. ICPC ’08, IEEE Computer Society, Washington, DC, USA (2008)

7. Maletic, J., Marcus, A.: Supporting program comprehension using semantic and
structural information. In: Software Engineering, 2001. ICSE 2001. Proceedings of
the 23rd International Conference on. pp. 103–112 (May 2001)

8. Marcus, A.: Semantic-driven program analysis. Ph.D. thesis, Kent, OH, USA
(2003), aAI3100844

9. Rugaber, S.: The use of domain knowledge in program understanding. Ann. Softw.
Eng. 9, 143–192 (January 2000)

10. Shaft, T.M., Vessey, I.: Research report–the relevance of application domain knowl-
edge: The case of computer program comprehension. INFORMATION SYSTEMS
RESEARCH 6(3), 286–299 (1995)

11. Sommerlad, P., Zgraggen, G., Corbat, T., Felber, L.: Retaining comments when
refactoring code. In: Companion to the 23rd ACM SIGPLAN conference on Object-
oriented programming systems languages and applications. pp. 653–662. OOPSLA
Companion ’08, ACM, New York, NY, USA (2008)

12. Tenny, T.: Program readability: procedures versus comments. IEEE Transactions
on Software Engineering 14(9), 1271–1279 (Sep 1988)

13. Woodfield, S.N., Dunsmore, H.E., Shen, V.Y.: The effect of modularization and
comments on program comprehension. In: Proceedings of the 5th international
conference on Software engineering. pp. 215–223. ICSE ’81, IEEE Press, Piscat-
away, NJ, USA (1981)

14. Zhao, W., Zhang, L., Liu, Y., Sun, J., Yang, F.: Sniafl: Towards a static noninterac-
tive approach to feature location. ACM Trans. Softw. Eng. Methodol. 15, 195–226
(April 2006)

