
HSMTLib
Interacting with SMT Solvers in Haskell

Nuno Laranjo, Rogério Pontes, and Maria João Frade

HASLab/INESC TEC & Universidade do Minho

Introduction. Satisfiability Modulo Theories (SMT) is the problem of deciding the
satisfiability of logical formulas over one or more first-order theories. SMT has appli-
cations in diverse domains and is the subject of very active research. The progress
achieved by SMT solvers in the last decade has enabled its effective use in many
applications and made them pervasive in the context of software verification, includ-
ing deductive program verification, static program analysis, run-time analysis, type
inference, as well as model-based tools, test-case generation, and proof assistants.
One should refer the normative effort of the SMT-LIB initiative associated with the
competition SMT-COMP, to provide a common input and output format and bench-
marking framework for the evaluation and comparison of SMT solvers. The SMT-LIB
2.0 format is the current standard interface for SMT solvers.

We have developed a Haskell library (HSMTLib) for easy interaction with multiple
SMT solvers. Usually SMT solvers provide a native API, most commonly, for C,
and there are some wrappers for other programming languages. That is not very
convenient when one wants to deal with multiple solvers, for instance to use the
solver that performs better with a specific problem/logic. The few existing Haskell
libraries that do provide solver interaction (such as yices-painless and Z3 bindings)
are solver specific. Some other packages only provide an AST for creating SMT-LIB
commands and expressions, as for instance smtLib.

The HSMTLib library provides an API which can be used to work across all
supported solvers. The library supports online interaction, allowing interactive com-
munication with a solver, so that multiple queries to the solver can share common
state. We think the HSMTLib library is useful to the Haskell community. Examples
of Haskell programs that can benefit of its use include the SBV package, the Liquid-
Haskell project or the Cryptol implementation.

HSMTLib description. HSMTLIb interacts with multiple SMT-LIB 2.0 compliant
solvers and provides a common API which conforms to the SMT-LIB 2.0 standard.
The solvers currently supported are CVC4, MathSAT and Z3, but we plan to add
support for Yices, Boolector and Alt-Ergo within a short time.

The code in development is hosted at Github1 and the last stable version can
be downloaded from Hackage2 or installed via Cabal. The library also has Haddock
documentation available at Hackage and some additional tutorials are available in the
Github Wiki3.

The library provides two modes of interaction with the solvers, online mode and
script mode. In online mode a solver is kept running and communication is done
via pipes. In script mode commands are written to a script, when needed a solver
is initialized with the script, and then the library awaits until the solver ends and
returns the result.

1 https://github.com/MfesGA/Hsmtlib
2 https://hackage.haskell.org/package/Hsmtlib
3 https://github.com/MfesGA/Hsmtlib/wiki

https://github.com/MfesGA/Hsmtlib
https://hackage.haskell.org/package/Hsmtlib
https://github.com/MfesGA/Hsmtlib/wiki

2 Nuno Laranjo, Rogério Pontes, and Maria João Frade

The library is divided in four parts: API layer,
solver layer, communication layer and response
layer. The API layer provides commands and
most data types a developer must use to inter-
act with the solvers. The solver layer is the core
since it binds all the other layers: it implements
the commands defined in the API layer by us-
ing the functions provided in the communication
layer (depending on the solver in use), forwards
the results to the response layer and finally re-
turns the result obtained. The communication
layer contains the functions to communicate with
each solver. The response layer simply parses the
results from the solver and turns it into a Haskell
data type. The aim of this architecture is to facilitate the addition of new solvers.

For each solver supported there is a standard configuration that can be easily tuned
when the solver is initialized. Let us give a very small example of a program which is
using Z3 with the QF IDL logic in online mode with the standard configuration:

main :: IO Result

main = do

solver <- startSolver Z3 Online QF_IDL Nothing Nothing

produceModels solver

mapDeclConst solver ["x", "y"] tInt

assert solver $ (ct "x" ‘nAdd‘ ct "y") === lit 0

assert solver $ (ct "x" ‘nSub‘ ct "y") === lit 6

sat <- checkSat solver

case sat of

CCS Sat -> getValue solver [ct "x", ct "y"] >>= print

CCS Unsat -> print "The constraint is unsatisfiable"

ComError error -> print error

exit solver

The option to produce models is activated. Then the integer constants x and y are
declared, and the constraints x + y = 0 and x − y = 6 are asserted. Afterwards a
satisfiability check is done and the answer from the solver is analyzed. If the constraints
are satisfiable the command getValue is used to retrieve an interpretation given to x
and y. Note that to change the SMT solver, for instance to CVC4, we just need to
write CVC4 instead of Z3 in the first line.

The library was tested using two methods: by writing unit tests using HUnit; and
by generating Haskell programs that run in online mode the benchmarks provided by
SMT-LIB. More details about the library can be found in the technical report hosted
at Github.

Future work. Using the HSMTLib we have stablished connection with several SMT
solvers which claim to be SMT-LIB 2.0 compliant. Despite we found no problems
in sending the requests to the solvers, we actually had some problems with some
solvers because the answers given to some commands were not completely following
the standard (or the standard is underspecified in some points). This is the reason
currently the library only supports CVC4, MatSAT and Z3. However, we keep on
improving the response layer in order to support more solvers. Moreover, for the next
version of the library we plan to allow running multiple solvers concurrently.

HSMTLib Interacting with SMT Solvers in Haskell 3

Acknowledgment. This work is funded by ERDF - European Regional Development
Fund through the COMPETE Programme (operational programme for competitive-
ness) and by National Funds through the FCT - Fundação para a Ciência e a Tecnolo-
gia (Portuguese Foundation for Science and Technology) within projects FCOMP-
01-0124-FEDER-020486 and FCOMP-01-0124-FEDER-037281 .

	HSMTLib Interacting with SMT Solvers in Haskell

