

Universidade do Minho

Escola de Engenharia

José Luís Cardoso da Silva

Rapid Prototyping of Ubiquitous Computing Environments

Tese de Doutoramento em Informática

Trabalho efetuado sob a orientação de:

Professor Doutor José Francisco Creissac Freitas de Campos

Professor Doutor Michael Douglas Harrison

Março de 2012

ii

iii

É AUTORIZADA A REPRODUÇÃO INTEGRAL DESTA TESE APENAS PARA EFEI-

TOS DE INVESTIGAÇÃO, MEDIANTE DECLARAÇÃO ESCRITA DO INTERESSADO,

QUE A TAL SE COMPROMETE;

Universidade do Minho, / /

Assinatura:

iv

v

Acknowledgments

Many people contributed to this thesis. First of all, I would like to thank my supervisors José

Creissac Campos and Michael Harrison for their expert guidance, strong support and con-

tinuous encouragement and whose human side I highly appreciated. Sincerely, I feel so lucky

to have you as supervisors! This period was an experience which has helped me grow up not

only professionally but also as a person and resulted in this thesis that would have not been

possible without both of you.

During these last four years, I had the pleasure of collaborating with many people. I

would like to thank all Newcastle University members that made my stay in Newcastle more

pleasant. I also want to thank friends who I have made in Newcastle, in particular, Sergio

Moya, Zhao Ran, Chu Chien, Yousef Abushnak, Abdulrahman, Fahren Bukhari, Paulo and

members of The Globe which I had the pleasure to meet and which contributed for a agree-

able period of my life. Finally, a cherished thank you to Mary Holland for all help and pa-

tience.

Many thanks are due to the members of the Creativity Machine Environment Lab, Aware

Home Research Initiative Group and Ubiquitous Computing Research Group of the Georgia

Technology Institute (USA) for their feedback and suggestions. I would like to specially

thank Mario Romero for having provided the Google Sketchup model of the Aware Home and

Gregory Abowd for having hosted me.

Parts of my thesis were published in conferences. I would like to thank my co-authors, all

the anonymous reviewers and all people who provided important remarks, comments and

suggestions. Also thank you for all members and participants of the APEX project for their

contributions.

I would like to thank the Fundação para a Ciência e Tecnologia for their financial sup-

port.

All my colleagues and friends, especially João Carlos, Helder and Rafael and, my cousins

José Manuel and César who are so important in my life, thank you!

My last words go to my family who always support me, in particular, Susana for her en-

couragement and for being always available to help me. My parents sacrificed a lot to make

sure that I had a better life. To them a few words in Portuguese: Meus queridos pais, do fundo

do coração, muito obrigado por tudo...

vi

My brother is my model! A very special thank you to João Carlos for being my biggest

friend...

Rodrigo is the happiness of my family! Children are a sun in this world...

Finally, a very special thank you to Elisabete for all her continuous encouragement, af-

fectionate support and love which were so precious to accomplish this thesis...

vii

This work is funded by the ERDF through the Programme COMPETE and by the Portu-

guese Government through FCT - Foundation for Science and Technology, project ref.

FCOMP-01-0124-FEDER-015095 and by FCT, under the grant with reference

SFRH/BD/41179/2007.

viii

ix

Rapid Prototyping of Ubiquitous Computing

Environments

Abstract

Ubiquitous computing raises new usability challenges that cut across design and develop-

ment. We are particularly interested in environments enhanced with sensors, public displays

and personal devices. How can prototypes be used to explore the users' mobility and interac-

tion, both explicitly and implicitly, to access services within these environments? Because of

the potential cost of development and design failure, these systems must be explored using

early assessment techniques and versions of the systems that could disrupt if deployed in the

target environment. These techniques are required to evaluate alternative solutions before

making the decision to deploy the system on location. This is crucial for a successful devel-

opment, that anticipates potential user problems, and reduces the cost of redesign.

This thesis reports on the development of a framework for the rapid prototyping and

analysis of ubiquitous computing environments that facilitates the evaluation of design alter-

natives. It describes APEX, a framework that brings together an existing 3D Application

Server with a modelling tool. APEX-based prototypes enable users to navigate a virtual world

simulation of the envisaged ubiquitous environment. By this means users can experience

many of the features of the proposed design. Prototypes and their simulations are generated in

the framework to help the developer understand how the user might experience the system.

These are supported through three different layers: a simulation layer (using a 3D Application

Server); a modelling layer (using a modelling tool) and a physical layer (using external de-

vices and real users). APEX allows the developer to move between these layers to evaluate

different features. It supports exploration of user experience through observation of how us-

ers might behave with the system as well as enabling exhaustive analysis based on models.

The models support checking of properties based on patterns. These patterns are based on

ones that have been used successfully in interactive system analysis in other contexts. They

help the analyst to generate and verify relevant properties. Where these properties fail then

scenarios suggested by the failure provide an important aid to redesign.

x

Keywords:

Ubiquitous and Context-Aware Computing, Analysis, Modelling, Prototyping, 3D Virtual

Environments, User Experience

xi

Prototipagem Rápida de Ambientes de Computação

Ubíqua

Resumo

A computação ubíqua levanta novos desafios de usabilidade transversais ao seu desenvolvi-

mento e design. Estamos particularmente interessados em ambientes enriquecidos com senso-

res, ecrãs públicos e dispositivos pessoais e em saber como podem ser utilizados protótipos

na exploração da mobilidade e interação, implícita e explicita, dos utilizadores de forma a

acederem a serviços desses ambientes. Devido às potenciais falhas do design proposto e aos

elevados custos associados ao seu desenvolvimento, as características destes sistemas devem

ser exploradas utilizando versões preliminares dos mesmos dado que estes podem vir a falhar

quando implementados no destino, tornando a sua utilização inaceitável. Essas técnicas são

necessárias por forma a avaliar soluções alternativas antes de decidir implementar o sistema

fisicamente. Isto é crucial para um desenvolvimento com sucesso que antecipe potencias pro-

blemas do utilizador e reduza os custos de redesign.

Esta tese descreve o desenvolvimento de uma ferramenta para a prototipagem rápida e

análise de ambientes de computação ubíqua como suporte à avaliação de designs alternativos.

É apresentado a APEX, uma plataforma que junta um servidor de aplicações 3D com uma

ferramenta de modelação. Os protótipos baseados na APEX permitem aos seus utilizadores

finais navegarem numa simulação 3D do ambiente ubíquo projetado. Desta forma muitas das

características do design proposto podem ser experienciadas pelos utilizadores. Os protótipos

e respetivas simulações são gerados na plataforma para ajudar os designers/developers a

entender como é que os utilizadores podem experienciar o sistema. Os protótipos são supor-

tadas através de três camadas: a camada de simulação (utilizando um servidor de aplicações

3D); a camada de modelação (utilizando uma ferramenta de modelação) e uma camada física

(utilizando dispositivos externos e utilizadores reais). A plataforma possibilita aos designers/

developers moverem-se entre estas camadas de forma a avaliar diferentes características do

sistema, desde a experiencia do utilizador até ao seu comportamento através de uma analise

exaustiva do sistema ubíquo baseada em modelos. Os modelos suportam a verificação de

propriedades baseadas em padrões. Estes padrões são baseados em padrões existentes e já

xii

utilizados com sucesso, noutros contextos, na análise de sistemas interativos. Eles auxiliam a

geração e verificação de propriedades relevantes. O local onde estas propriedade falham

sugere um cenário de falha que fornece uma ajuda importante no redesign do sistema.

Palavras-chave:

Computação Ubíqua e Ciente do Contexto, Análise, Modelação, Prototipagem, Ambientes

Virtuais 3D, Experiência do Utilizador

xiii

Author's declaration

The work described in this thesis resulted in the publication and presentation of papers in

national and international peer-reviewed conferences:

1. J. L. Silva, J. C. Campos, and M. D. Harrison, “An infrastructure for experience

centered agile prototyping of ambient intelligence,” in Proceedings of the 1st

ACM SIGCHI symposium on Engineering interactive computing systems, 2009,

pages 79–84. [1]

2. J. L. Silva, Ó. Ribeiro, J. Fernandes, J. Campos, and M. Harrison, “The APEX

framework: prototyping of ubiquitous environments based on Petri nets,” in Hu-

man-Centred Software Engineering. Lecture Notes in Computer Science.

Springer, 2010, vol. 6409, pages 6–21. [2]

3. J. L. Silva, Ó. R. Ribeiro, J. M. Fernandes, J. C. Campos, and M. D. Harrison,

“Prototipagem rápida de ambientes ubíquos, ”in 4a. Conferência Nacional em

Interacção Humano-Computador (Interacção 2010), O. Mealha, J. Madeira, D.

Tércio and B.S. Santos editors. 2010, pages 121--128, GPCG. [3]

4. J. L. Silva, J. C. Campos, and M. D. Harrison, "Formal analysis of Ubiquitous

Computing environments through the APEX framework," in Proceedings of the

4th ACM SIGCHI symposium on Engineering interactive computing systems,

2012. (Accepted)

In all cases, I have presented only those aspects of the work which are directly attributed

to me.

xiv

xv

Contents

1 Introduction ... 27

1.1 Motivation .. 27

1.2 Objectives .. 30

1.3 Research Questions .. 30

1.4 Thesis Overview .. 31

2 Background ... 33

2.1 Prototyping Approaches... 33

2.2 Modelling Approaches ... 37

2.2.1 Modelling approaches comparison .. 38

2.2.2 Coloured Petri nets (CPNs or CP-nets) ... 47

2.3 Virtual Worlds' Simulation .. 50

2.3.1 3D application servers ... 51

2.3.2 3D game engines ... 54

2.4 Analysis.. 55

2.5 Conclusions .. 57

3 The Proposed Approach ... 59

3.1 APEX Framework .. 59

3.1.1 Architecture ... 59

3.1.2 Multi-layer approach ... 67

3.1.3 Support for design ... 68

3.2 Alternative Modelling Approaches .. 70

3.2.1 User-centred approach... 73

3.2.2 Sensor-centred approach ... 79

3.3 Conclusions .. 81

4 The Modelling Approach ... 83

4.1 Using CPN to generate a simulation .. 83

xvi

4.2 The CPN Base Model .. 84

4.2.1 The model ... 84

4.2.2 Modeller's tasks ... 89

4.2.3 Modelling environment's devices .. 90

4.3 Modelling and Use of Programmed Avatars ... 91

4.4 Conclusions .. 92

5 Prototyping Experience Alternatives .. 95

5.1 Alternative User's Experiences .. 96

5.1.1 Second Life viewer ... 96

5.1.2 Support for importing virtual objects .. 97

5.1.3 Supporting 3D visualization .. 99

5.1.4 Supporting multi displays systems .. 100

5.2 Virtual Environment Creation.. 102

5.3 Conclusions .. 103

6 Ubiquitous Environments Analysis ... 105

6.1 Approach .. 106

6.1.1 Tool support .. 107

6.1.2 Patterns .. 108

6.2 Setting Up the Analysis ... 109

6.2.1 Model conversion .. 109

6.2.2 APEXi tool - scenario selection and small colour sets initialization ... 112

6.2.3 Reachability graph and analysis .. 120

6.3 Property Specification Patterns for Ubicomp Environments 127

6.3.1 The consistency pattern ... 128

6.3.2 The feedback pattern ... 129

6.3.3 The reachability pattern ... 131

6.3.4 The precedence pattern.. 132

6.3.5 The completeness pattern .. 133

6.3.6 The reversibility pattern .. 134

6.3.7 The possibility pattern ... 136

xvii

6.3.8 The universality pattern ... 136

6.3.9 The eventually pattern ... 137

6.4 Alternative Analysis... 138

6.5 Programmed Avatars ... 139

6.6 Conclusions .. 140

7 Examples .. 143

7.1 Smart Library ... 143

7.1.1 The model ... 144

7.1.2 Instantiating property templates .. 147

7.1.3 Checking the model using the SS tool ... 149

7.1.4 The prototype .. 154

7.2 Aware Home .. 155

7.2.1 The model ... 156

7.2.2 Instantiating property templates .. 159

7.2.3 Checking the model using the SS tool ... 160

7.2.4 Checking non-functional properties .. 164

7.2.5 The prototype .. 166

7.3 Serious Games Development ... 167

7.4 Conclusions .. 169

8 Evaluation of the Prototyping Approach.. 173

8.1 Example ... 173

8.2 Relevant User Study Techniques ... 174

8.3 Process and Questionnaire ... 176

8.4 Results .. 177

8.5 Conclusions .. 178

9 Conclusions .. 179

9.1 Answers to Research Questions ... 179

9.2 Summary of Contributions ... 180

xviii

9.3 Discussion .. 182

9.4 Threats and limitations ... 183

9.5 Future Work ... 183

Bibliography ... 185

Appendix A: CPN Base Model ... 193

Appendix B: CPN Analysis Model ... 197

Appendix C: Evaluation Questionnaire .. 199

Appendix D: Exercises Proposed During the Evaluation .. 201

Appendix E: APEX Brief User Guide ... 203

xix

List of Abbreviations

2D Two-Dimensional

3D Three-Dimensional

APEX rApid/Agile Prototyping for user EXperience

API Application Programming Interface

CAVE Cave Automatic Virtual Environment

CPN Coloured Petri Nets

CSP Communicating Sequential Processes

CTL Computational Tree Logic

DLL Dynamic-Link Library

FCT Fundação para a Ciência e a Tecnologia (Foundation for Science and Technology)

ICO Interactive Cooperative Objects

GPS Global Positioning System

GUI Graphics User Interface

HCI Human-Computer Interaction

HyNets Hybrid high-level Nets

LAN Local Area Network

LSL Linden Scripting Language

OSG OpenSceneGraph

OSMP Open Source Metaverse Project

PDA Personal Digital Assistant

RFID Radio-Frequency IDentification

UBICOMP UBIquitous COMPuting

UML Unified Modelling Language

UX User eXperience

xx

VE Virtual Environment

VR Virtual Reality

WIMP Windows, Icons, Menus, Pointer

http://en.wikipedia.org/wiki/Window_(computing)
http://en.wikipedia.org/wiki/Computer_icon
http://en.wikipedia.org/wiki/Menu_(computing)
http://en.wikipedia.org/wiki/Cursor_(computers)#Mouse_cursor

xxi

List of Figures

FIGURE 2.1: INFORMAL PROPOSED APPROACH .. 37

FIGURE 2.2: ASUR++ MODEL (USER ARRIVING AT AN ENTRY GATE) .. 39

FIGURE 2.3: HYNETS MODEL (USER ARRIVING AT AN ENTRY GATE) .. 41

FIGURE 2.4: FLOWNETS MODEL (USER ARRIVING AT AN ENTRY GATE) .. 42

FIGURE 2.5: CPN GRAPHICAL SYNTAX ... 48

FIGURE 2.6: CPN SIMULATION .. 50

FIGURE 3.1: APEX ARCHITECTURE ... 60

FIGURE 3.2: PHYSICAL ARCHITECTURE OF THE APEX FRAMEWORK .. 64

FIGURE 3.3: BLUETOOTH APPLICATION CLIENT INSTALLED IN A SMART PHONE .. 64

FIGURE 3.4: OBJECT' IDENTIFIER ACCESSIBLE IN THE VIEWER PANEL ... 66

FIGURE 3.5: OBJECT MOVEMENT LSL SCRIPT .. 69

FIGURE 3.6: THE PROCESS .. 70

FIGURE 3.7: ON/OFF DEVICE ALTERNATIVE MODELS. 1- ALL SEMANTIC IN THE TOKENS, 2 - ALL SEMANTIC IN THE

STRUCTURE .. 71

FIGURE 3.8: USER-CENTRED SMART LIBRARY MODULE .. 74

FIGURE 3.9: USER-CENTRED SCREEN MODULE .. 74

FIGURE 3.10: GENERAL EARLY INITIALIZATION MODULE .. 75

FIGURE 3.11: MODULE FOR AN ENTRY GATE .. 76

FIGURE 3.12: ISARRIVINGTOGATEAREA FUNCTION ... 76

FIGURE 3.13: GENERIC MODULE FOR ACQUIRING USERS’ DATA .. 78

FIGURE 3.14: PRIORITIES OVER TRANSITIONS.. 78

FIGURE 3.15: APEX SENSOR-BASED MODELLING APPROACH. PARTS: A) PRESENCE SENSOR MODEL B) LIGHT

SENSOR MODEL C) MODELS DEPENDING OF SENSOR'S VALUES .. 80

FIGURE 4.1: GENERAL EARLY INITIALIZATION MODULE .. 84

FIGURE 4.2: GATE MODULE .. 86

FIGURE 4.3: BOOK'S LIGHT MODULE ... 87

FIGURE 4.4: COLOUR SET DECLARATION (LIBRARY EXAMPLE) .. 90

FIGURE 4.5: PROGRAMMED AVATAR'S MODULE .. 93

FIGURE 5.1: SECOND LIFE VIEWER ... 97

xxii

FIGURE 5.2: RENDERING OF MESHES WITH MESH PROJECT VIEWER .. 98

FIGURE 5.3: RENDERING OF MESHES WITH A VIEWER WHICH DOES NOT SUPPORT MESHES (THE OBJECTS PRESENT

ARE NOT MESHES) ... 98

FIGURE 5.4: DALE'S SL VIEWER IN ANAGLYPH STEREO MODE ... 100

FIGURE 5.5: ACTIVE STEREO - SHUTTER GLASSES BEHAVIOUR ... 100

FIGURE 5.6: A CAVE .. 101

FIGURE 5.7: DATA AND DISPLAY SYNCHRONIZATION WITH CAVESL ... 101

FIGURE 5.8: CAVESL WITH 3 CLIENTS RUNNING AT THE SAME TIME (ADAPTED FROM [82]) 102

FIGURE 5.9: LINKAGE OF THE ELEMENTS COMPOSING A CHAIR ... 102

FIGURE 5.10: SMART LIBRARY PROTOTYPE CREATED IN THE OPENSIMULATOR SERVER 103

FIGURE 5.11: MESH UPLOAD THROUGH THE PROJECT MESH VIEWER .. 104

FIGURE 6.1: REACHABILITY GRAPH ... 107

FIGURE 6.2: DATATYPEREADING NON-DETERMINISTIC MODULE ... 111

FIGURE 6.3: DATATYPEREADING DETERMINISTIC MODULE .. 111

FIGURE 6.4: APEXI TOOL CONNECTION TO THE APEX BEHAVIOURAL COMPONENT 113

FIGURE 6.5: APEXI INTERFACE .. 115

FIGURE 6.6: APEXI AND CPN MODEL CONNECTION MODULE .. 119

FIGURE 6.7: MODULE WHICH INITIALIZE SOME SMALL COLOUR SETS (E.G. USERSIDS, OBJIDS) 119

FIGURE 6.8: REACHABILITY GRAPH ... 121

FIGURE 6.9: APEXI SELECTED VALUES ... 121

FIGURE 6.10: REACHABILITY GRAPH NODE CONSULTATION .. 122

FIGURE 6.11: CPN LIGHT MODULE .. 123

FIGURE 6.12: SPECIFICATION OF ELEMENTS IN THE APEXI INTERFACE: A) ONE USER; B) ONE LIGHT; C) ONE

PRESENCE SENSOR; D) USER MOVEMENT SIMULATION; E) ONE TIME SENSOR 124

FIGURE 6.13: LIGHTS' ON QUERY ... 125

FIGURE 6.14: LIST OF NODES WHERE THE LIGHT IS ON .. 125

FIGURE 6.15: LIGHT TURNS OFF PROPERTY ... 125

FIGURE 6.16: INSERTING TWO PRESENCE SENSORS IN THE APEXI INTERFACE .. 126

FIGURE 6.17: CONSISTENCY/FEEDBACK PROPERTY ALGORITHM SKELETON .. 130

FIGURE 6.18: REACHABILITY PROPERTY ALGORITHM SKELETON .. 132

xxiii

FIGURE 6.19: PRECEDENCE PROPERTY ALGORITHM SKELETON .. 133

FIGURE 6.20: COMPLETENESS ALGORITHM SKELETON .. 134

FIGURE 6.21: ALGORITHM SKELETON FOR THE IDENTIFICATION OF THE NODES BEFORE AND AFTER Q 135

FIGURE 6.22: FUNCTION TO PROVIDE ALL NODES OF THE REACHABILITY GRAPH 136

FIGURE 6.23: UNIVERSALITY PROPERTY ALGORITHM SKELETON .. 137

FIGURE 6.24: EVENTUALLY PROPERTY ALGORITHM SKELETON .. 138

FIGURE 7.1: USER'S PDA BOOK DIRECTION MODULE ... 146

FIGURE 7.2: APEXI - SELECTED VALUES ... 150

FIGURE 7.3: BOOK'S LIGHT BEHAVIOUR PROPERTY (CONCRETE FEEDBACK ALGORITHM INSTANTIATION) 151

FIGURE 7.4: NOTIFICATION PROPERTY (CONCRETE REACHABILITY ALGORITHM INSTANTIATION) 153

FIGURE 7.5: BOOK'S LIGHTS SYSTEM ... 154

FIGURE 7.6: PEOPLE'S READING VIEW ... 155

FIGURE 7.7: AWARE HOME FLOOR PLAN (WITHOUT FURNITURE) WITH INSERTED SENSORS (ONE PRESENCE

SENSOR AND ONE ENVIRONMENT SENSOR PRESENT IN EACH NUMBER) ... 156

FIGURE 7.8: AWARE HOME 3D ENVIRONMENT .. 157

FIGURE 7.9: PARENTS’ ALERT SYSTEM BEHAVIOURAL MODEL ... 158

FIGURE 7.10: AIR QUALITY ALERT SYSTEM .. 158

FIGURE 7.11: PARENTS ALERTED PROPERTY (FEEDBACK) ... 162

FIGURE 7.12: PARENTS ALERTED PROPERTY (REACHABILITY) .. 163

FIGURE 7.13: PHYSICAL PROPERTY (PRESENCE SENSOR DISTANCE) .. 165

FIGURE 7.14: AWARE HOME ALERT SYSTEM USER EXPERIENCE ... 166

FIGURE 7.15: ASTHMA TRIGGER PARENT'S ALERT VIA THEIR PDA ... 167

FIGURE 7.16: TRIGGERHUNTER GAME SNAPSHOT (ADAPTED FROM [95]) .. 168

FIGURE 7.17: TRIGGERHUNTER GAME ASTHMA TRIGGER MANAGEMENT ... 169

FIGURE 7.18: GAME MODULE ... 170

FIGURE 7.19: TRIGGER HUNTER GAME USING APEX - ASTHMA TRIGGER DISCOVERED 171

FIGURE 7.20: APEX - ITERATIVE CYCLE OF PROTOTYPING (DESIGN, TEST AND ANALYSIS) 172

FIGURE 9.1: APEX FIELDS .. 181

FIGURE A.0.1: CPN BASE INITIALIZATION MODULE .. 193

FIGURE A.0.2: CPN BASE DATA TYPE READING MODULE ... 194

xxiv

FIGURE A.0.3: CPN BASE UPDATE MOVEMENT SENSORS MODULE .. 194

FIGURE A.0.4: CPN BASE UPDATE PRESENCE SENSORS MODULE ... 195

FIGURE B.0.1: CPN ANALYSIS DYNAMIC OBJECTS UPDATE MODULE .. 197

FIGURE B.0.2: CPN ANALYSIS LIGHT SENSORS UPDATE MODULE ... 198

FIGURE B.0.3: CPN ANALYSIS TIME SENSORS UPDATE MODULE .. 198

FIGURE C.0.1: APEX QUESTIONNAIRE - FIRST PART ... 199

FIGURE C.0.2: APEX QUESTIONNAIRE - SECOND PART ... 200

FIGURE E.0.1: INSTALLATION STEPS DIAGRAM .. 204

FIGURE E.0.2: SENSOR'S ATTRIBUTES .. 206

FIGURE E.0.3: DYNAMIC OBJECT SCRIPT ASSOCIATION ... 207

FIGURE E.0.4: EXECUTION OF COMMANDS IN THE VIEWER .. 208

xxv

List of Tables

TABLE 2.1: PROTOTYPING APPROACHES COMPARISON .. 36

TABLE 2.2: MODELLING APPROACHES COMPARISON .. 45

TABLE 2.3: 3D APPLICATION SERVERS ... 54

xxvi

27

Chapter 1

Introduction

1 Introduction
Ubiquitous computing (ubicomp) was defined in 1988 by Mark Weiser as “machines that fit

the human environment instead of forcing humans to enter theirs” [4]. Ubicomp is an evolu-

tion of the desktop paradigm of human-computer interaction (HCI). In ubicomp environ-

ments, computing is inserted into our environments. This means that these environments pos-

sibly do not require active attention because the information is transmitted automatically.

These environments pose new challenges for designers and developers mainly because of the

wide range of computer science fields involved: distributed computing, sensor networks, mo-

bile computing, HCI and artificial intelligence. In recent years ubicomp systems have become

more widespread. Partly as a consequence of device availability the reality of a ubicomp

world is becoming more imminent. Ubicomp technologies include smart phones that incorpo-

rate many types of sensors, RFID tags and GPS, as well as interactive whiteboards which are

used to populate ubicomp environments. This thesis is concerned with the rapid prototyping

of ubicomp environments.

The research questions identified during the initial phase of this thesis, and the proposed

solutions, led to the proposal of a project
1
 which was funded by the FCT (Fundação para a

Ciência e Tecnologia).

1.1 Motivation

This thesis focuses on ubicomp designed to enhance physical environments by using “spaces”

augmented with sensors, dynamic objects including public displays, and personal devices.

Dynamic objects react to interactions and to context changes as well as providing services to

1
 APEX project: http://ivy.di.uminho.pt/apex (last accessed: 9 February 2012).

1.1. Motivation

28

users in the environment. Of particular interest in these systems is the way that the user inter-

acts with the environment, as a result of both explicit interaction with the system and implicit

interactions that arise through changes of context. Here, context could include location, or the

steps that have to be taken by a user to achieve some goal (for example check-in, baggage

screening, passport control, boarding card scanning).

The experience of checking into an airport can be improved by providing information to

travellers when and where they need it. Frustrating delays can be removed through the appro-

priate use of personalised information. The experience of using a library can be improved by

providing personal and clear information about the location of the shelf in a large library

where the required book is located. Experience is difficult to specify as a clear and precise

requirement that can be demonstrated of a system. It is difficult to measure and to obtain

early feedback about whether a design will have the required effect to produce a given ex-

perience.

Technologically enhanced environments have the potential to transform sterile built envi-

ronments into places in which people can be in harmony with the environment and its pur-

pose if appropriately designed. Ubiquitous computing poses new challenges for designers and

developers of interactive systems. Early prototyping and simulation of ubicomp environments

is likely to result in reducing development cost by allowing the assessment of alternatives

before expensive development. Because these systems immerse their users, the effect they

have on the users' experience is an important element contributing to the success of a design.

Experience becomes an important characteristic in addition to more traditional notions of

usability.

Testing ubicomp systems in real environments suggests the quality issues in ubicomp en-

vironments include more than just usability [5]. Essential also is the concern of UX (user ex-

perience) [6]. Being able to evaluate and analyse ubiquitous environments as well as provid-

ing user experience early, before deployment, is the topic of concern here. The work is based

on the presumption that prototypes can be used to explore the impact of a design on users as

they move and interact, accessing services within these environments. Prototypes are also

used to analyse ubiquitous environment behaviours. To avoid unnecessary development cost,

early designs and solutions are explored in this proposal through model-based prototypes

explored within a virtual environment. A prototyping framework (APEX) that uses formal

Chapter 1. Introduction

29

models and binds them to a 3D simulation is the subject of this thesis. The APEX framework

supports prototyping and simulation by providing:

 rigorous models of the system behaviour including sensors, dynamic objects and mo-

bile display devices;

 a 3D simulation of the environment created in a virtual world;

 the animation of the 3D simulation based on behavioural models that are also devel-

oped within the framework;

 a means of connecting external (physical) devices to the virtual world via Bluetooth.

Users can interact either by manipulating physical handheld devices or by controlling

avatars located in the virtual world;

 analysis support through the models.

Currently there are no techniques that can be used to analyse specifications against dif-

ferent notions of experience (for a discussion, see [7]). The facets of APEX provide three

layers of behavioural representation moving from the abstract to the concrete:

 a modelling layer expressed in terms of formal models;

 a simulation layer programmed or encoded in the 3D simulation;

 a physical layer where external devices are connected to the simulation.

Each layer supports a specific type of evaluation:

 analysis of the model i.e., systematic exploration of the environments behaviour,

through analysis of the models (in the modelling layer);

 observation of virtual objects' behaviour, and user reaction to them, within a virtual

world (in the simulation layer);

 observation of real objects (for example, actual smart phones) connected to the virtual

world, and users’ reaction to them (in the physical layer).

Each layer captures a different view on users. Evaluation can be carried out by observing

actual behaviour of users within the environment, interacting with the simulation at the

physical layer. Alternatively, users can be represented and simulated by avatars that are user

representations in the 3D simulation. Finally, user behaviour can also be captured abstractly

as tokens within the model. A goal of using a formal model is that a formal analysis of the

design can be used to complement the exploration of the design via actual users. While the

latter provides valuable feedback about user experience, it is not exhaustive in terms of all the

1.2. Objectives

30

possible interactions between the numerous components of the ubicomp environment. Hence

an exhaustive analysis of the environment’s alternative behaviours is desirable.

1.2 Objectives

APEX is designed to satisfy three goals. The first is that it should enable the rapid develop-

ment of prototypes. A software tool is required that facilitates the development of prototypes,

while simultaneously providing the hooks for the target system. The second goal is that a 3D

environment can be used to construct simulations that can be explored realistically by users.

3D Application Servers, such as Second Life™
2
, Open Wonderland

3
 or OpenSimulator

4
, pro-

vide a fast track to developing virtual worlds. An alternative would be game engines (e.g.

OpenScenceGraph
5
). The third goal is an approach to modelling ubicomp environments aim-

ing to create some of the texture of the environment for evaluation purposes. We are inter-

ested in creating prototypes of ubiquitous environments from models of envisaged systems. A

benefit of this approach is the integration of the modelling approach with analytical ap-

proaches, to provide leverage relating to properties of ubiquitous environments that are rele-

vant to their use. The satisfaction of these goals will be demonstrated throughout this thesis.

The development of a framework that assists developers and designers in the efficient

development of ubicomp environments is the main objective of this work. The costs involved

in the development of these systems for them to be ready for user testing can be very high,

consequently there is an opportunity to create a framework which will reduce these costs

while providing a way of experiencing the system before physical deployment. Being able to

guarantee specific properties of the system and providing analysis and reasoning methods are

also features which help developers in the rapid and effective prototyping of these systems.

1.3 Research Questions

The overarching goal therefore is to investigate whether:

2
 Second Life: http://secondlife.com/ (last accessed: 15 November 2011)

3
 Open Wonderland: http://openwonderland.org/ (last accessed: 15 November 2011)

4
 Opensimulator: http://opensimulator.org/ (last accessed: 15 November 2011)

5
 OpenSceneGraph: http://www.openscenegraph.org (last accessed: 15 November 2011)

Chapter 1. Introduction

31

The ubicomp environment development process can be made easier thereby reducing

costs, providing early experience and automated analysis support.

This goal raises a number of consequent issues that needs to be addressed. Firstly an ade-

quate ubicomp environment representation model should be identified which facilitates de-

velopment. Secondly, these environments should provide experience during the early phases

of development. Thirdly, they should be able to be analysed through automated mechanisms

enabling the verification of properties. Having this in mind the following primary research

questions needs to be answered:

Question 1: can a formal model represent ubicomp environments?

Question 2: can ubicomp environments prototypes address features with the potential to

assess user experience without physical deployment?

Question 3: can ubicomp environment be analysed in the early phase of development

providing evaluation results at different levels?

They will be addressed throughout the thesis.

1.4 Thesis Overview

As stated the main contribution of this thesis is to provide an approach for the rapid prototyp-

ing of ubicomp environments. A framework has been developed, providing early experience

of the prototyped environment as well as analysis support. The approach will be presented

and described via some examples. Finally the results of an evaluation of the tool with poten-

tial developers will be outlined. The dissertation document is structured as follows:

 Chapter 2 - Background: examines the current state of the art and identifies current

needs regarding rapid ubicomp prototyping with a particular emphasis on prototyping,

modelling and simulation approaches;

 Chapter 3 - The Proposed Approach: presents the approach used for the rapid proto-

typing of ubicomp environments. The architecture and features of the developed

framework are presented. Additionally, two alternative approaches for modelling are

outlined. A more thorough description is provided in Chapter 4;

 Chapter 4 - The Modelling Approach: presents the selected modelling approach and

guidelines to be followed in the modelling of new ubicomp environments. Addition-

ally, the modelling and use of programmed avatars is described;

1.4. Thesis Overview

32

 Chapter 5 - Prototyping Experience Alternatives: presents alternative solutions that

are used to provide a more complete and immersive experience to users. Being an es-

sential component of the experience provided, the virtual environment creation proc-

ess is also presented;

 Chapter 6 - Ubiquitous Environments Analysis: introduces the process to accomplish

analysis of ubicomp environments prototypes through APEX. The process is based on

the use of property patterns that are described. The use of programmed avatars and

other alternative analysis approaches are also presented;

 Chapter 7 - Examples: describes analysis and experience results provided by the de-

veloped framework through its application to three concrete example;

 Chapter 8 - Evaluation of the Prototyping Approach: presents relevant alternative user

study techniques and shows the results of the evaluation of APEX by developers us-

ing a combination of two of the stated user study techniques;

 Chapter 9 - Conclusions: presents a summary of the contributions of the thesis and

discusses some of the results obtained. Finally, directions for future work are pointed

out.

33

Chapter 2

Background

2 Background
This chapter is divided into five sections. The first introduces alternative approaches found in

the literature for the prototyping of ubicomp environments. The second section focuses on the

description of possible modelling approaches for these environments. The third section de-

scribes alternative simulation tools and the forth describes approaches for the analysis of ubi-

comp environments. The state of the art of prototyping ubicomp environments and related

topics (e.g. modelling and simulation) is summarised in the last section.

2.1 Prototyping Approaches

As stated in Chapter 1 the development of ubicomp environments is a complex task that can

lead to common problems involving design, cost and the physical space in which they are

situated. Fielding such systems for testing purposes is, in many cases, not feasible (consider a

hospital or an airport). The acquisition of adequate resources (e.g. physical devices, sensors),

the deployment to its target location, and subsequent experimentation, all have expensive

associated costs. Design decisions, once committed to, can be difficult to reverse [8]. There is

a real problem with identifying and resolving subtle design issues at an early stage in the de-

sign process before too many resources have been invested and too much time elapsed. Sev-

eral approaches found in the literature are concerned with this problem as well as providing

and suggesting solutions for it. Any method that allows a system to be explored or analysed

at an early stage may indeed make a strong contribution to the field. Some of the proposed

approaches concern ubicomp prototyping. Prototypes provide designers with a way of check-

ing proposed solutions with low investment. However there is a tension between the quality

of the results provided by prototypes and the quality of the results provided by the physical

2.1. Prototyping Approaches

34

implementation of the final systems. Prototypes should provide results reflecting adequately

the aspects of the physical implementation of the system in location.

Prototyping ubiquitous systems (see [9] for a good overview) is mostly concerned with

the development of prototypes of isolated devices e.g. UbiWise [10], UbiREAL [11], d.tools

[12] or Topiary [13]. The systems are typically to be explored outside the context of the fully

integrated system in its proposed setting, see Abowd et al.’s paper in [14] for a useful discus-

sion of this contrast. For example d.tools is used to prototype isolated devices through inte-

grated design, test and analysis. The tool provides the capability to connect physical devices

(e.g. sensors, actuators) to the developed models enabling the behaviour analysis of the

physical devices through their respective model specifications. The framework supports the

whole cycle of prototyping of isolated devices. Topiary enables users to explore prototypes of

a context aware application in a real world setting. These prototypes often use Wizard of Oz

techniques to avoid the need for physical sensors and actual physical. These systems miss the

crucial interplay between device and environment to aid understanding of the prototyped en-

vironment [15]. Displays, devices and sensors form an integrated whole that, together with

physical characteristics of the environment, contributes to the texture of the resulting system.

In the context of healthcare applications, within which one of our examples fits, Kang et al.

[16] propose a systematic design tool for context aware systems in a smart home. The context

aware framework developed using their tool works as a middleware between sensors and

service entities. Their focus is not the prototyping of ubiquitous environments but rather the

prototyping of middleware to solve the interoperability problem among sensor makers and

healthcare service providers.

3DSim [17], UbiWorld [18], the work of O’Neill et al. [19, 20], and VARU [21] develop

simulations of actual environments. While 3DSim and UbiWorld use programming languages

to build prototypes, the benefit of the work of O'Neill et al. is that modelling can be combined

with simulations. They combine models with a 3D simulation to prototype ubiquitous envi-

ronments. Vanacken et al. [22] also adopt a model based approach. However their focus is on

the detail of the interaction within the 3D virtual environment and not in the development of

ubicomp environments. In VARU a prototype of a tangible space, combining virtual and

augmented reality, can be used to explore ubiquitous computing. A rendering game engine

based on OpenSceneGraph
6
 is used to achieve this.

6
 OpenSceneGraph: http://www.openscenegraph.org (last accessed: 15 November 2011)

Chapter 2. Background

35

Activity Studio [23] is a tool for prototyping and in-situ testing of ubicomp application

prototypes. It provides support for testing low-cost ubicomp prototypes in experimentally

relevant environments over extended periods. Several users can explore the prototype over

time and information, either from real sensors or reported by users can be provided to the

prototype. The analysis is produced as a result of monitoring user activities. The approach

lowers the cost of in-situ testing and deploying of ubicomp prototypes. The work of Sohn et

al. (ICap [24]) is also relevant here, it assists developers in the informal prototyping and test-

ing of context-aware applications by providing a tool that allow users to quickly define input

and output devices and involves rule based conditions prior to the development of an execu-

table system. Momento [25] is a tool for early-stage prototyping and situated experimentation

and evaluation of ubicomp applications but does not provide exhaustive analysis support. It is

focussed on ubicomp applications experimentation by experience sampling or other qualita-

tive data rather than using a virtual environment.

A further approach, the work of Pushpendra Singh et al., involves the rapid prototyping

and evaluation of intelligent environments using immersive video [26]. The approach pro-

vides some advantages by removing the need to develop (virtual) environments. However

important features that will provide an adequate infrastructure for prototyping are currently

listed as future work. The major omission is that it does not provide users with capabilities to

interact with the environment. Unfortunately, publications that demonstrate achievement of

these plans cannot be found in the literature.

Different types of prototyping are possible, for example:

1. a single device isolated from its context of use;

2. an application/device and it context of use;

3. the environment as enriched by devices.

While several approaches, aiming at ubiquitous computing prototyping, were identified

above, they are mostly focused on helping ubiquitous system designers to identify unwanted

behaviour in their system, and to support informed decision making in an iterative design

cycle. Some of these approaches focus on ubicomp prototyping applications or isolated de-

vices and not on the prototyping of ubicomp environments as a whole. Some provide a notion

of experience but not of the whole ubicomp environment. The work of O'Neill combines 3D

simulation with models but their focus is to identify occurrences of unwanted system behav-

iours. They do not provide exhaustive analysis support. Other approaches, for example

VARU, also provide user experience but do not support analysis. Table 2.1 summarizes the

2.1. Prototyping Approaches

36

key features of the main solutions presented. Some of the stated solutions are not listed in the

table because they share common features of presented solutions. For example the UbiWise

solution is not listed because it has common main features with d.tools.

 UbiREAL d.tools Topiary 3DSim UbiWorld VARU Activity

Studio

Momento

Applications/isolated

devices prototyping

yes yes yes yes yes yes yes yes

Unwanted behaviour

identification

yes yes yes yes yes yes yes yes

Ubicomp environ-

ments prototyping

no no no yes yes yes no no

Provide user experi-

ence

no yes yes yes yes yes yes no

Formal exhaustive

analysis support

no no no no no no no no

Whole cycle of proto-

typing support

no yes yes no no no no no

Table 2.1: Prototyping approaches comparison

There is an absence of an approach that focuses on the experience that users will have of

the design of the whole ubicomp environment, and which supports a formal and exhaustive

analysis. An approach satisfying these requirements will provide a distinct advance over the

state of the art. To convincingly demonstrate its utility, when compared with the existing

frameworks, the desired approach should provide:

 support for the design of the ubicomp environment and to explore alternatives, with a

particular emphasis on how users will experience it (including first view experience);

 support for analysis either by simulation (similar to program execution) or by more

formal analysis;

 a multilayered development approach similar to d.tools and VARU approaches;

 support for the whole cycle of prototyping (design, experience, test and analysis)

similar to the d.tools approach;

 multi-user support and collaborative features (e.g. speaking, chatting) enabling inter-

action between users.

Chapter 2. Background

37

A possible approach, satisfying these requirements, should combine a simulation which

will provide users with a way of experiencing a proposed design with a formal modelling

approach to enable systematic and exhaustive analysis.

Computer simulation has become a fundamental component in areas such as mathemat-

ics, physics, biology, economics and engineering. Simulations are used to estimate and ana-

lyse the behaviour of complex systems [27]. They are also used in the development processes

of many types of products (e.g. architecture, automotive industry). In particular 3D simula-

tions are used to validate a design before physical deployment on location. 3D provides a

representation that contains more features of the real world than non-3D simulations. In the

specific case of ubicomp it should be rich enough to provide users with the impression of

being in the deployed physical environment. On the one hand a 3D simulation seems a good

candidate to provide users with experience of ubicomp environments. On the other hand the

modelling approach should enable the modelling of ubicomp environments, allowing reason-

ing and providing analysis support both in the modelling and prototyping phases of the de-

velopment. The abstract idea of the proposed approach is presented in Figure 2.1.

Figure 2.1: Informal proposed approach

In the next two sections several alternatives relating to modelling and 3D simulation are

addressed. Comparisons between existing alternatives are presented. Both modelling and

simulation approaches which best satisfy the stated requirements are selected.

2.2 Modelling Approaches

Ubicomp environments involve several types of interaction and potentially provide many

services to users. Modelling techniques can capture interactions and be used to reason about

environment behaviours. We are unaware of a modelling approach specifically developed to

deal with ubicomp environments. However the ASUR++ [28, 29] modelling approach was

2.2. Modelling Approaches

38

developed for mobile mixed systems that share some aspects with ubicomp environments. In

developing APEX several approaches were considered regarding the modelling of these envi-

ronments. This section presents a number of candidate modelling approaches found in the

literature. These include:

 ASUR++;

 Hybrid high-level Nets (HyNets) [30];

 Flownets [31];

 Interactive Cooperative Objects (ICO) [32, 33];

 Coloured Petri nets (CPN) [34];

 Communicating Sequential Processes (CSP) [35];

 Statecharts [36].

Virtual reality modelling languages such as VRIXML [37] or Web3D languages such as

VRML [38] or X3D
7
 have not been considered. The goal is not the modelling of virtual real-

ity environments, but to drive ubiquitous environments from models and use the mathemati-

cal properties of the model for analysis. For a description of modelling approaches for the

virtual reality domain and associated challenges see the work of De Troyer et al. [39].

2.2.1 Modelling approaches comparison

The above modelling approaches are considered and compared in this section. However the

goal is not to describe the notations in detail, as that would be tedious, but to compare their

main features in relation to the goal of modelling ubicomp environments. The main criteria

for assessment are: the presence of a editor, the animation of models and the possibility of

hierarchical description, automatic verification of properties and separation of continuous and

discrete parts. The next section provides a more detailed description of the notation that better

satisfies the requirements.

ASUR++

The ASUR++ notation is an extension of the existing notation ASUR [40]. ASUR was de-

signed to help in the reasoning of Mixed Systems [41]. Mixed Systems are interactive sys-

7
 X3D toolkit: http://artis.imag.fr/Software/X3D/ (last accessed: 30 January 2012)

Chapter 2. Background

39

tems that combine the characteristics of physical and digital worlds. ASUR++ was developed

to design mobile mixed systems including features such as spatial relationships between ele-

ments [29].

This notation works at a high level of abstraction rather than focussing on a functional

behaviour description of system components. ASUR++ characterizes the components and

relations of the system. It includes features described as interaction groups that enable de-

signers to express spatial relationships between users and entities [29]. An interaction group

represents a set of entities and channels of the system having common properties that are im-

portant for a particular design issue. Many interaction groups can be identified for a particu-

lar interaction design. Some are applicable to any design and others can be applied depending

on the tasks and context. Entities and channels can be grouped based on coherence among

properties to generate a coherent effect such as perceptual continuity (e.g. sound and visual)

[40]. ASUR++ possesses an editor that enables an architectural view. However the editor

does not enable the animation of the models and does not provide support for a hierarchical

description and exhaustive analysis. Figure 2.2 shows an ASUR++ model of a user arriving at

an entry gate. The gate opens if the user has permission to enter and the screen shows rele-

vant information. The user triggers (==>) an Input Adapter (RFID sensor) that exchanges

information (→) with the system. Consequently the system exchanges information with two

elements, a gate and a screen that are physically associated (==). Finally the gate opens or

remains closed and the screen provides relevant information to the user (→).

ASUR++ is appropriate to identify design issues, studying the entities and relations in-

volved and, to think about the transfer of information.

Figure 2.2: ASUR++ model (user arriving at an entry gate)

2.2. Modelling Approaches

40

HyNets

The Petri net notation (also known as place/transition net or P/T net) is a mathematical mod-

elling language and is the base for most of the modelling approaches being considered (e.g.

HyNets, Flownets, ICO), see Table 2.2. Petri nets formalism is used to describe distributed

systems and to model concurrent computation applied to areas such as software design, work-

flow management, process modelling, simulation, etc. Several tools are provided to support

the development of modelling approaches based on the Petri net formalism (e.g. GreatSPN
8
).

Petri nets are strongly focused on the analysis of functional properties.

Hybrid high-level Nets (HyNets) provide a methodology for modelling and simulation of

hybrid systems. Hynets combine three modelling approaches:

 a graphical notation to define discrete and continuous parallel behaviour;

 object orientation;

 differential and algebraic equations.

The continuous part of the methodology is used to represent behaviours involving vari-

ables whose values vary continuously (e.g. usually associated with physical measurements),

otherwise the discrete part is used (e.g. number of users). The object oriented concept enables

more expressiveness and improves the management of the information in relation to non ob-

ject oriented modelling approaches. In order to accommodate the description of processes in

which behaviour evolves in time in a continuous way the modelling approach uses differen-

tial equations. In HyNets models, continuous behaviour means changing the value of objects

according to the equations of transitions. Transitions represent the actions that the system can

make. Differential equations change object values and algebraic equations assign values to

objects [30]. Figure 2.3 illustrates the modelling of the example of the previous section (user

arriving close to an entry gate). The RFID_detector class has an infinite capacity (OMEGA)

that means that an infinite number of RFID sensors can be present in the model. This class

contains the information provided by RFID detectors. The Screen class has the method proj

that updates the information on the screen. The idea of continuous transitions is to change the

values of objects present in places continuously. In this example, the information of the

screen is updated continuously (scr' = proj(R.getInfo())) with information provided by the

RFID detector (R.getInfo). The getInfo method gives relevant information to be displayed on

8
 GreatSPN: http://www.di.unito.it/~greatspn/index.html (last accessed: 23 February 2012)

Chapter 2. Background

41

the screen. Only when the RFID detector detects the proximity of an RFID sensor (R.detect =

1) the transition t1 is fired. A detailed description of HyNets can be found in [30].

Figure 2.3: HyNets model (user arriving at an entry gate)

Techniques developed for modelling hybrid systems can be used to represent virtual en-

vironment interaction, as demonstrated in [42]. Hynets provides hierarchical description sup-

port and the separation between continuous and discrete parts but do not possess an editor

and do not provide support for exhaustive analysis.

Flownets

Flownets
9
 are based on the Petri nets formalism and capture and combine the continuous and

discrete parts of user and interactive system interactions in virtual environments. In order to

give a general idea of the Flownets formalism, Figure 2.4 illustrates the use of this specifica-

tion to model the previous example. A clear separation of continuous and discrete parts of the

interactive system interaction is made. For instance, the component RFID detector receives

data continuously (continuous flow:). Depending on whether an RFID sensor is or is not

detected different behaviour is enabled. This separation is made in a discrete manner (states:

Detect = 1 and Detect = 0). With Flownets the states of the interaction and the events that

cause the transition states are highlighted, as can be seen in the figure. When the user is de-

tected, the sensor (detect RFID) enables the transition from state Detect = 0 to state Detect =

9
 Do not confuse with Flow Nets for hybrid process modelling and control [104]

2.2. Modelling Approaches

42

1. When the system is in state Detect = 1 the screen is updated (continuous flow). Next the

system comes back to state Detect = 0, ready to detect another user.

Figure 2.4: Flownets model (user arriving at an entry gate)

Willans [43] proposed an event-based notation to deal with non-WIMP interaction tech-

niques using the Marigold tool. Marigold provides toolset support for the translation from a

Flownets design of virtual environment behaviour to an implementation prototype. Using

Marigold it is possible to prototype and analyze designs of virtual environments before they

are fully implemented. In order to support these approaches, Marigold gives support to auto-

matically check properties and refine designs to a prototype. With Flownets we can define the

behaviour of systems and reason about them.

Flownets are supported by an editor that enables a hierarchical description, to animate

models and to verify properties. Flownets are appropriate for the design of virtual environ-

ment behaviour.

ICO - Interactive Cooperative Objects

This formalism is used to describe interactive systems. Its aim is to provide a precise way of

describing, analyzing and reasoning about interactive systems prior to their implementation.

Object oriented concepts are used to describe the static parts of the system and high level

Chapter 2. Background

43

Petri nets to describe the behaviour of the dynamic parts The state of an ICO model is defined

by the value and distribution of tokens on the places. This follows the state concept used in

Petri nets.

The ICO formalism was extended to address new challenges of different application do-

mains. For example, it was extended to support virtual reality applications and multimodal

interactive systems. Navarre et al. [32] describe its use to model virtual environment behav-

iour and multimodal systems including the fusion of several inputs, complex rendering out-

puts and 3D scenes. These systems possess several inputs and outputs leading to a wide vari-

ety of interactions.

ICO is supported by an editor that enables the animation of models and the verification of

properties. The formalism does not support the separation between continuous and discrete

parts. ICO is appropriate to model interaction techniques and adequate to reason in behaviour

and structural levels.

CPN - Coloured Petri nets

CPN is a language used to model concurrent systems enabling the verification of properties

on them. It is associated with a functional programming language used to define the data

types of the tokens that compose the models and to specify functions and conditions. CPN

models enable the verification of properties and simulation (similar to program execution).

State space analysis can be used to check standard properties, such as reachability, bounded-

ness, liveness and fairness, as well as specific properties defined using the associated lan-

guage. The simulation makes it possible to see the behaviour of a model rapidly without de-

tailed human interaction. CPN modelling and analysis is supported by CPN Tools [44, 45].

These tools enable a hierarchical description of the models but without separation between

continuous and discrete parts. CPN is explained in more detail in the next section. For a brief

description of some of the main CPN qualities see the Coloured Petri net website
10

.

CPN is appropriate to model systems that consist of several processes that communicate

and synchronize.

10

 CPN qualities: http://www.daimi.au.dk/CPnets/intro/why_cpn.html (last accessed: 30 January

2012).

2.2. Modelling Approaches

44

CSP - Communicating Sequential Processes

Formalisms such as process algebra have been introduced for the same purpose as Petri nets.

CSP is a modelling technique, a process algebra using discrete event systems to understand

and analyse the dynamics of concurrent systems. By verifying general properties of this for-

mal model, several conceptual difficulties can be revealed at the early stages of the design

process, improving the development process. CSP is used to describe patterns of interaction

in concurrent systems [35].

Schooten [46] described a modelling technique based on CSP used to model interaction

in virtual environments and showed how a prototypes can be generated from the system

specification.

CSP is supported by an editor that enables the animation of the models and to verify

properties on them. This modelling technique enables a hierarchical description but does not

enable the separation between continuous and discrete parts.

CSP is appropriate for reasoning about systems that exhibit parallelism or distribution

and consist of multiple components that communicate to exchange information or synchro-

nize (concurrent systems).

Statecharts

Statecharts were introduced by Harel in 1987. They are used to model reactive systems and

represent a state machine using graphs: nodes denote states and connectors denote transitions.

There are currently three main variants of the formalism:

 UML Statecharts;

 Rhapsody Statecharts;

 Classical Statecharts.

There are some differences between these formalisms. In terms of semantics Rhapsody is

closer to UML Statecharts than to the Classical Statecharts. UML and Rhapsody do not sup-

port simultaneous events or actions [47]. See the work of Crane and Dingel for a detailed

comparison [48].

Both Statecharts and Petri nets are generalisations of finite state machines and uses tran-

sitions that can enter and leave states. A transition is enabled when all sources are active si-

multaneously. When the transition is executed all targets became active simultaneously [49].

Chapter 2. Background

45

State is distributed since it depends on the value and state of the nodes which compose the

model.

Statecharts are supported by editors that enable the animation of the models. Models can

be described hierarchically but there is no separation between the discrete and continuous

parts. The automatic verification of properties is also possible.

Statecharts have been widely used to model reactive systems, even in simulation envi-

ronments where a variant of Rhapsody Statecharts has been proposed [50]. The tools based

on Statecharts (e.g. Statemate [51], Stateflow [52]) are more oriented to the software design

process and offer for example the capacity to generate code from models [49].

Comparison

Table 2.2 presents a comparison between the different modelling approaches. Note that the

classification presented in the table refers to extended versions of Flownets, ICO and Hynets

to deal with virtual environments.

 ASUR

++

HyNets Flownets ICO CPN CSP Statecharts

Formalism - Petri Nets Petri Nets Petri Nets Petri Nets Process

Algebra

Statecharts

Editor Yes No Yes Yes Yes Yes Yes

Dynamic models No No Yes Yes Yes Yes Possible

[53]

Hierarchical

description

No Yes Yes Yes Yes Yes Yes

Automatic verifi-

cation of proper-

ties

No No Yes Yes Yes Yes Possible

[54]

Separation of

continuous and

discrete parts

No Yes Yes No No No No

Table 2.2: Modelling approaches comparison

2.2. Modelling Approaches

46

ASUR++ does not provide a means to model the behaviour of the objects present in the

system. This is a weakness for our purpose because we need to be able to model the behav-

iour of components to drive the interaction. ASUR++ is more appropriate for reasoning at an

architectural level.

HyNets is a low level modelling approach. With low-level models we need to specify a

model with several details that are close to a low level program. We want to use models at a

reasonable level of abstraction that enables us to think about and specify virtual environments

without having to worry about specific implementation details. Additionally, HyNets has

some disadvantages compared with the other approaches. The main ones are the absence of

an editor and a tool that allows for the automatic verification of properties.

Flownets modelling has been successfully used to model the behaviour of a variety of in-

teraction techniques and world objects within virtual environments. However the tool support

that is available is less complete when compared with the other approaches (e.g. CPN).

Flownets makes a separation between continuous and discrete parts. As we are interested in

using models for ubicomp environments, and these are fundamentally hybrid systems, it is

important to consider the modelling of both parts.

The ICO modelling approach is dedicated to the specification of interactive systems and

is more appropriate to modelling the relation of physical objects present in the system. ICO

describes structural and behavioural aspects and the possible interactions that users can have

with the application. CPN is mainly appropriate for concurrent systems. This is the case of

ubiquitous environments. Both ICO and CPN models can be executed and properties can be

verified through the tool support provided.

The thesis of Basten [55] focuses on describing and comparing the Petri net and Process

Algebra formalisms. He proposed a method supporting compositional design, combining

Petri nets and process algebra. In several aspects these formalisms are complementary. Both

formalisms have a mathematical definition and are designed to reason about concurrent sys-

tems. Apart from these two common features the formalisms are totally different [55]. Petri

nets have a graphical representation in order to make them easier to use and understand for

non-experts. Process algebras are a textual formalism. This difference is quite important for

our purpose. One of the research questions of the thesis is (Section 1.3) "can a formal model

represent ubicomp environments". We want modellers to be able to model ubiquitous envi-

ronments as quickly and easily as possible. In this context the Petri net based formalism is

more effective for non-experts than a textual formalism [55]. Since ubicomp environments

Chapter 2. Background

47

are considered to be concurrent systems and both formalisms are designed for these kinds of

systems, both formalism can be used for ubicomp environment modelling. See the work of

Basten for a detailed comparison [55].

Statecharts and Petri nets formalisms share common concepts having consequently simi-

larities but also differences. The work of Eshuis presents a detailed comparison between the

formalisms [49]. This work proposes an algorithm to translate Petri nets into equivalent

Statecharts.

In the development of APEX several possibilities were considered regarding the model-

ling of ubiquitous environments. In the end the choice was made to use CPN because of the

substantial set of tools that are available, making it easier to do our own development. Addi-

tionally, the simplicity to use and understand by a non-expert provided other benefits. While

the language lacks the features of, for example, Flownets or ASUR++ (e.g. continuous and

discrete modelling and user’s information perception modelling), we believe it provides

enough expressive power to suit our purposes and the tools available provides a rich enough

modelling, simulation and analysis environment. The continuous behaviour is dealt with via

abstractions which also makes it less expensive to analyse.

The ICO modelling approach also provides tools for the simulation and analysis of the

model. We believe that this approach can be used successfully as an alternative modelling

approach. Statecharts and standard Petri nets are less adequate for the modelling we are aim-

ing at since their scalability is less direct. Adding or removing elements of the environment

can be simply reflected in CPN by adding or removing tokens.

2.2.2 Coloured Petri nets (CPNs or CP-nets)

A more detailed description of CPNs will be provided in this section. CPNs extend standard

Petri nets by enabling tokens to have a value (in standard Petri nets all tokens are equivalent)

which can be manipulated by a programming language CPN ML based on Standard ML

(SML) [56]. CPN ML is part of the CPN notation. CPN provides a hierarchy that enables

modelling at different levels of abstraction.

CPN Tools is a computer based tool developed to support the graphical representation

and use of standard Petri nets, timed Petri nets and CP-nets. Simulation, state space analysis,

and invariant analysis are supported by the tool. Simulation is used to animate the models.

2.2. Modelling Approaches

48

State space analysis is used to check standard properties and specific properties defined by

analysts.

Models developed using this tool can also use time to evaluate the performance of the

systems. CPNs were developed for systems where synchronisation, communication and re-

source sharing are important features of the modelled system.

“A CPN model consists of a set of modules which each contains a network of places,

arcs and transitions. The modules interact with each other through a set of well-defined inter-

faces, in a similar way as known from many modern programming languages” [57]. Each

place can contain tokens that carry data values, called token colours. The type of these values

can vary in complexity (e.g. a String, a product, a record, etc.) and are specified in the same

way as types are specified in programming languages. Each place can only carry tokens of a

specified type. This is called the colour set of the place. The CPN components (places, arcs

and transitions) can have inscriptions associated with them (CPN ML constructs that affect

the behaviour of a net). See CPN Tools website
11

 for more information. Figure 2.5 represents

the graphical representation of the CPN components and elements. See, for example, the Ac-

tion element. The sendOpenGate function in it is described in CPN ML within the CPN

Tools.

Figure 2.5: CPN graphical syntax

11

 CPN inscriptions: http://cpntools.org/documentation/concepts/colors/inscriptions/start (last ac-

cessed: 28 January 2012)

Chapter 2. Background

49

To enable the modelling of hierarchy in these nets two mechanisms are included: Substi-

tution Transitions and Fusion places [34]. In general, a simplified top level module gives an

overview of the system, and other modules connected to it via Substitution Transitions and/or

Fusion places give more detailed information. Substitution Transitions make it possible for a

more detailed module to be specified at lower levels while providing a clear module abstrac-

tion at the top level. These transitions that represent modules are expressed graphically using

a box with a double line. This provides a simplified view of a more detailed module and pro-

vides the capacity to have multiple layers of detail. The CPN hierarchy also supports places

called Fusion places that define a set of functionally identical places. The places of a Fusion

place set can be used in different modules but they are functionally unique. So anything that

is happening within a Fusion place set also happens to all other places in the set. The graphi-

cal representation of these places is illustrated by the place users in Figure 2.5.

After the creation of a model it can be executed. Figure 2.6 shows executions of a simple

model that simply enables the movement of tokens with values equal to 7 or 8 from place A

to place B. The colour sets type of the places are Integers (INT). This means that the places

can hold integers as tokens. Initially, places can hold tokens where their initial value is de-

termined by evaluating the associated initialization expression. The expression

1`7++1`8++1`9 in Figure 2.6 represents an initialization expression. In this case, place A is

initialized with three tokens (integers of the colour set INT) with values 7, 8 and 9. The num-

ber before the symbol ‘`’ represents the number of tokens with the value which follows (only

one token of each value in this case, 1 token with value 7, 1 token with value 8 and 1 token

with value 9). The symbol ‘++’ is the syntax used to separate the different tokens, represent-

ing each element in the set. In Figure 2.6, the boxes near to the places represent the token’s

values that are currently held in each place, the number inside the circle indicates the number

of tokens held in the place (the number 3 in situation a, indicates the presence of 3 tokens in

place A). Transitions can have a Boolean expression called a guard that enables the execution

of the transition when the guard is satisfied. The expression [i=7 orelse i=8] in the Figure

2.6 represents a guard on transition T. This means that the transition T is enabled only when

the variable i is equal to 7 or 8.

The CPN simulation binds the tokens to variables of corresponding types. This is done

automatically by CPN Tools in a non-deterministic way, i.e. tokens are selected to satisfy the

guards, or manually by the analyst. Figure 2.6 shows different states of a simulation. In situa-

tion a, the variable i can be bound to two different values (7 and 8) both satisfying the guard.

2.3. Virtual Worlds' Simulation

50

In situation b the variable i was bound to the value 7 and subsequently the token 7 was moved

from place A to place B. In situation c only token 8 (the only token present in place A which

satisfies the guard) can be bound to the variable i in order to enable the transition.

Figure 2.6: CPN simulation

During a simulation many transitions can be enabled at the same time. In these cases only

one transition is chosen and executed in each iteration. This selection is automatically done

by the CPN Tools. The selection uses a fair algorithm taking into consideration previous se-

lections. However, more recent versions of CPN Tools make it possible to associate priorities

to transitions. Consequently the modeller can specify which transition will fire first when

there is more than one transition enabled at same time. For a complete description of CPN

and CPN Tools see [34, 58, 59].

2.3 Virtual Worlds' Simulation

Simulations enable the exploration of ubicomp environments’ usage. Developers and users

can navigate and interact within the virtual ubicomp environment getting feedback from it.

3D simulations provide features that immerse users in environments that are intended to pro-

vide an experience that is close to the proposed target system. These simulations need to be

Chapter 2. Background

51

sufficiently rich and textured to address usability requirements that depend on the target envi-

ronment, and to produce an impression of what it will be like to use the final systems once

fielded.

This section presents and compares several alternative 3D simulation platforms for vir-

tual worlds. The main criteria for assessment are: the ability to manipulate the virtual world, a

sense of occupying space, and the ability to create static/dynamic objects. 3D application

servers and 3D game engines will be focused on in particular.

Interactive 3D virtual environments, also called virtual worlds, are computer-based simu-

lated environments. They are widely used in entertainment (e.g. games) but are not limited to

them. Many other application domains such as social, medical, commerce, education are ex-

amples. Lester and King did experiments which compared face-to-face against 3D virtual

worlds results in visual communication classes. The results show that face-to-face students'

results are just slightly higher [60]. For instance, many universities, such as open universities,

use virtual worlds as an alternative approach to provide education (e.g. virtual classrooms)

[61]. In the 3rd quarter of 2010 over 1 billion people worldwide were registered in virtual

worlds [62]. Game engines and 3D application servers are existing alternatives to create vir-

tual worlds.

The veracity of evaluations in virtual environments (ecological validity) has been ad-

dressed in many contexts. For example, Scott addresses it in the medical context [63] and

claims that virtual reality has promising ecological validity. Orland et al. [64] considered vir-

tual worlds as representations of landscape realities and as tools for landscape planning sug-

gesting their ecological validity.

2.3.1 3D application servers

3D application servers, which can be accessed through a variety of clients that interact with

each other and with the world, are an option to create virtual worlds. Three characteristics are

handled by 3D application servers: avatars, regions, and a centralized grid. These worlds are

inhabited by avatars which are usually three dimensional representations of humans con-

nected to the environment via the web. A region is a virtual physical place where avatars

move and interact. It can be composed of land, water, buildings and/or mountains. These can

be created by the avatars within the environment. The grid holds the information about re-

2.3. Virtual Worlds' Simulation

52

gions which compose the world using processes which can be in different machines. 3D ap-

plication servers provide a fast track to developing virtual worlds in the sense that the fea-

tures of these applications enable their rapid creation.

Many 3D application servers can be used to develop virtual environments of which Sec-

ond Life™
12

, IMVU
13

, OpenSimulator
14

 and Open Wonderland
15

 are the most popular. How-

ever, there are other possible alternatives, for example Virtual MTV
16

, Kaneva
17

, Active

Worlds
18

, Lively
19

 and There
20

. For an extensive list of currently available 3D application

server see the joakaydia wiki
21

 or the work of Freitas [65] (which presents a comparison be-

tween alternatives). In some 3D application servers it is possible to own and develop land

(e.g. Active Worlds or OpenSimulator). In others it is necessary to pay to own land (e.g. Sec-

ond Life™). Most virtual worlds provide facilities to chat, walk or play online games. Some

of the means of simulating the real world include a market using virtual currency. Second

Life™ and IMVU are examples of such systems. Other applications are focused on education

and support learning objectives (e.g. Media Grid
22

 or project Wonderland
23

). Another differ-

ence between existing virtual worlds is the possibility of access to their source code. Open

Source Metaverse Project
24

 (OSMP), OpenSimulator and project Wonderland are examples

of open source virtual world applications. Second Life™ and There on the other hand do not

provide access to source code. One additional distinction that separates all these applications

is the capability of users to run their own server in a local network. This allows them to main-

tain their world and provide access to other users. OpenSimulator and OSMP are application

servers that offer this feature. Other relevant desirable features include modularity, flexibility

and extensibility (e.g. OSMP). These are very important because new functionalities can

12

 Second Life: http://secondlife.com (last accessed: 15 November 2011)
13

 IMVU: www.imvu.com (last accessed: 15 November 2011)
14

 OpenSimulator: http://opensimulator.org (last accessed: 15 November 2011)
15

 Open Wonderland: http://openwonderland.org (last accessed: 15 November 2011)
16

 Virtual MTV: http://virtual.mtv.com/homepage (last accessed: 15 November 2011)
17

 Kaneva: www.kaneva.com (last accessed: 15 November 2011)
18

 Active Worlds: www.activeworlds.com (last accessed: 15 November 2011)
19

 Lively: www.lively.com (last accessed: 15 November 2011)
20

 There: www.there.com (last accessed: 15 November 2011)
21

 3D application servers: http://wiki.jokaydia.com/page/Vws_list (last accessed: 15 November

2011)
22

 Media Grid: http://mediagrid.org (last accessed: 10 March 2012)
23

 Project Wonderland: //lg3d-wonderland.dev.java.net (last accessed: 10 March 2012)
24

 Open Source Metaverse Project: http://metaverse.sourceforge.net (last accessed: 10 March

2012)

http://metaverse.sourceforge.net/

Chapter 2. Background

53

thereby be attached easily by adding new modules. In summary the requirements desired to

create a simulation 3D of an ubicomp environment are the following:

 availability;

 building capabilities;

 provide collaborative support;

 provide source code access.

 modularity, flexibility and extensibility;

 possibility to run own server;

 provide dynamic objects.

Table 2.3 sums up the features of the presented application servers.

Not all existing 3D application servers are listed in this table. However the most signifi-

cant in terms of satisfying the requirements of prototyping ubicomp environments are listed.

Other alternatives not mentioned are either similar to the ones presented or less suitable for

the purpose.

At the end of the comparative analysis OpenSimulator seems to be the most adequate

platform because of its availability, support for creating objects, and the ability to attach be-

haviours. Its backend, which can be programmed, makes it highly configurable and extensi-

ble. These features are the most important to provide support for creating a virtual environ-

ment which can simulate ubicomp environments. Several OpenSimulator based projects were

and are being developed [66].

As is clear from Table 2.3 Open Wonderland, OSMP or Kaneva also have similar advan-

tages. However they were not selected for a number of reasons. In the case of Open Wonder-

land it only appeared in 2010 as did the Kaneva 3D app game developer program. The

Kaneva developer program allows the possibility of running our own server. The software is

modular, enabling developers to create modules to integrate with it. OSMP appeared in 2004

and has all the listed features of OpenSimulator. Unfortunately in 2008 the project was no

longer active. The selection of the appropriate platform dates back to 2008 and at that time

these three alternatives were not available. Consequently, it was a natural choice to select

OpenSimulator in the case of using a 3D application server. Even though they are/were not

available these alternatives are listed in the table to provide a complete description of compa-

rable platforms.

2.3. Virtual Worlds' Simulation

54

 Free

to use

Building

capabili-

ties

Collabora-

tive support

Open

Source

Modular,

flexible and

extensible

Run

own

server

Dynamic

objects

Period

Second Life™ Yes Yes Yes No No No Yes 2003-now

Active worlds Yes Yes Yes No No No Yes 1994-now

IMVU Yes Paying Yes No No No Yes 2004-now

Open Wonder-

land

Yes Yes Yes Yes Yes Yes Yes 2010-now

OSMP Yes Yes Yes Yes Yes Yes Yes 2004-

2008

OpenSimulator Yes Yes Yes Yes Yes Yes Yes 2007-now

There Yes Yes Yes No No No Yes 2003-

now*

(*broken)

Vivaty Yes Yes Yes No No No Yes 2008-

2010

Kaneva

*2010 - 3D app

game developer

program release

Yes Yes Yes Partially Yes* Yes* Yes* 2006-now

Google Lively Yes No Yes No No No No 2008-

2008

Table 2.3: 3D application servers

2.3.2 3D game engines

A different alternative to creating virtual worlds is the use of 3D game engines. A variety of

them are open source, freely available and with different features as a result of their different

Chapter 2. Background

55

purposes (e.g. Blender
25

). Others are proprietary and for commercial use only (e.g. S2 Engine

HD
26

) or freeware but without an open source license (e.g. Unity
27

). In this context Open-

ScenceGraph
28

 or OpenSimulator (also considered as a 3D game engine) seem adequate

choices, see [67] for a complete list.

Some 3D application servers can be used as game engines. However, the use of 3D ap-

plication servers has some advantages compared with game engines. Game engines tend to be

less oriented to collaborative features such as writing and speaking with other avatars con-

nected to the system. Another advantage of 3D application servers is that they tend to be cen-

tralized, while game engines tend to be more distributed. That is a more complex solution for

our purpose as it implies several deployments instead of one. They support the creation of

virtual environments in real time using world building tools provided by viewers used to con-

nect to them. Using a 3D application server means that a variety of clients, customizable in

appearance, can be accessed using multiple protocols. At the same time a virtual world can be

maintained in the developer's own server. A disadvantage of 3D application servers is that

they provide limited 3D modelling support. They provide basic tool support for ob-

ject/environment creation but lack advanced support such as provided by game engines.

However to compensate for this disadvantage the Mesh Project Viewer
29

 has been developed

to enable the upload of third party objects to the environment from online libraries (e.g. 3D

Google warehouse
30

). Objects created in game engines can be uploaded into 3D application

servers using this viewer, avoiding the need of object creation. OpenSimulator was the ap-

proach selected to be used in the virtual world exploration and creation process used in the

rapid prototyping of ubicomp environments.

2.4 Analysis

A number of techniques within HCI support the analysis of usability of an interactive system

from early in its design. These range from paper prototyping and Wizard of Oz techniques, to

25

 Blender: http://www.blender.org (last accessed: 15 November 2011)
26

 S2 Engine HD: http://www.profenix.com/eng/introHD.html (last accessed: 15 November 2011)
27

 Unity3D: http://unity3d.com (last accessed: 15 November 2011)
28

 OpenSceneGraph: http://www.openscenegraph.org (last accessed: 15 November 2011)
29

 Mesh Project Viewer: http://wiki.secondlife.com/wiki/Mesh_Project_Viewer (last accessed: 27

February 2012)
30

 Google 3D Warehouse: http://sketchup.google.com/3dwarehouse/ (last accessed: 27 February

2012)

2.4. Analysis

56

the development of versions of the systems that can be used during user testing. Other tech-

niques that do not require explicit user testing include the use of expert evaluation techniques

such as Heuristic Evaluation and Cognitive Walkthrough.

From a Human-Computer Interaction perspective Nielsen has developed general heuris-

tics for user interface design [68]. Usability evaluation based on heuristics is appropriate for

user interfaces (though there are issues, see for example Blandford et al. [69]). However ubi-

comp environments present challenging usability evaluation problems because they are situ-

ated in physical environments and as a result some aspects of the way people interact with

them are different from how they interact with more traditional systems [70]. Interaction

within the environment may be explicit and the devices used for interaction with the system

subject to standard usability heuristics for small devices, or it may be implicit and arise sim-

ply as a result of the user changing their context (for example moving in or out of a room). In

both cases each user’s context plays an important role. Similar problems happen with other

traditional HCI techniques when applied to ubicomp.

A number of evaluation techniques have been developed for dealing with implicit inter-

actions within ubicomp environments. Kim et al. [70], for example, have presented several

ubicomp case studies where evaluation has involved making use of physical space. Other

evaluation approaches have aimed to provide early evaluation of a partially functional system

by using Wizard-of-Oz techniques. Even these more limited approaches involve large re-

source investments: in one case it involves building physical space for the ubicomp system,

and in another developing the system to a partially working level. These costs could be re-

duced by the application of heuristics to a ubicomp application as explored by Mankoff et al.

[71] in the context of ambient displays.

Scholtz et al. [72, 73] have developed a framework for evaluating ubiquitous computing

applications. They developed a set of sample measures based on ubiquitous computing

evaluation areas to assess whether adequate design principles are satisfied and if the design

produces the desired user experience. This framework does not provide an exhaustive means

of analysing a developed prototype. Instead the focus is to identify key areas of evaluation

and to identify metrics and design guidelines to improve user experience in ubiquitous sys-

tems.

Scholtz et al. [74] argue the need to develop interdisciplinary evaluation techniques to

address ubicomp properties at early stages in the design. Assessment techniques are required

to evaluate alternative solutions before deploying the system. The complexity of a physical

Chapter 2. Background

57

environment where a number of devices are situated, and the added complexity of real world

activities, means that it is hard to assess which observations are representative of the use of

the system. Likewise it is difficult to assess informally whether characteristics of the system,

assessed against specific heuristics, hold across all possible usage scenarios.

The experience of exploring ubicomp environments depends on individual preferences.

However some characteristics of user experience can be expressed as properties of the envi-

ronment. These properties can complement an understanding of experience based on empiri-

cal evaluation of the use of a prototype and should be seen as part of a toolset for evaluating a

design. We argue that systematic and exhaustive techniques need to be part of an interdisci-

plinary approach. We follow Mankoff et al. [71] by developing property patterns from exist-

ing heuristics. Property patterns have two roles:

i. helping identify interesting properties;

ii. helping verify existing properties.

For example, a property of the system requires that there should be feedback for any user

of the environment who carries out a particular kind of transaction. This can be expressed as

a typical property that takes a standard form. This property pattern would provide the form

and would effectively complement evaluation techniques because it provides the option of

exhaustive analysis of whether a property is true. This would not be feasible by exploring all

possible user behaviours through observation.

2.5 Conclusions

Several approaches have been identified that can be used to prototype ubiquitous systems

using virtual environments but limitations were identified (e.g. formal analysis and/or user

experience support). Analysing the problem, and existing solutions, the lack of a framework

providing together user experience, exhaustive analysis, multi-user and multilayered support,

development of the whole cycle of prototyping and collaborative features was identified. Ad-

dressing these needs by considering the state of the art revealed several approaches regarding

modelling and 3D simulation that were considered to provide an approach satisfying the

stated requirements. At the end of the comparison between different modelling and simula-

tion approaches we decided to use a formal modelling approach together with a 3D applica-

tion server. The modelling and simulation approaches selected were:

2.5. Conclusions

58

 Coloured Petri nets (CPN) - selected mainly because of the tool support provided by

the CPN Tools for creation, simulation and analysis. The support to model concurrent

behaviour and modularity features were also relevant;

 OpenSimulator (Opensim) - selected mainly because of its extensibility, modularity

and the possibility of being able to run an own server. It also possesses a backend that

can be programmed.

The idea is to connect CPN with OpenSimulator, providing the benefits of both ap-

proaches. It is expected that this approach would satisfy the stated requirements for the rapid

prototyping of ubicomp environments. In particular the combination opens the possibility of

providing experience to users of the physical target environment and to verify useful proper-

ties on it. Support for a multi-user and multilayered prototyping approach covering all phases

from design to testing and analysis can also be realised.

Other work, for example Kindler et al. (PNVis), has developed prototype environments

combining low level Petri nets with 3D simulation [75]. They simply equip a Petri net with a

3D-visualization making it possible to see the behaviour of a Petri net model through the 3D

objects. As stated the proposed approach is much more than the 3D visualization of a Col-

oured Petri net. APEX aims to provide a first person experience of a ubicomp environment

and being able to formally analyse it.

59

Chapter 3

The Proposed Approach

3 The Proposed Approach
Early prototyping and simulation of ubiquitous computing environments can reduce devel-

opment cost by allowing assessment before deployment. This is a particular issue in physical

spaces augmented by sensors and dynamic objects including public displays and personal

devices. In these cases change as a result of evaluation may require physical reconfiguration

of the system. This chapter describes the proposed approach illustrated through two main

Sections (3.1 and 3.2). The first section presents the APEX architecture, its multiple layers

and the way it supports design. The second section presents two alternative modelling ap-

proaches and associated characteristics.

3.1 APEX Framework

APEX enables the flexible development of immersive prototypes based on a 3D Application

Server, OpenSimulator, and CPN based behavioural models. The APEX framework also in-

cludes a library of virtual sensors (e.g. presence sensors and light sensors) and dynamic ob-

jects (e.g. screens, gates, windows, lights) along with their associated CPN models. Elements

from the library can be used “off the shelf”. This eases the process of prototype development.

Details of the framework and decisions made about its structure are presented in this section.

3.1.1 Architecture

Considering the goals behind the development of APEX (see Section 1.2) and the resulting

requirements (see Section 2.1), an architecture with four components, each satisfying some

3.1. APEX Framework

60

requirements, was created. The whole architecture of the APEX framework was designed

aiming at the major goal to provide a framework for the rapid prototyping of ubiquitous envi-

ronments. The overall architectural view of the framework is presented in Figure 3.1. The

four main components are:

1. a behavioural component, responsible for managing the behaviour of the prototype,

including the description, analysis and validation of the virtual environment's behav-

iour;

2. a virtual environment component, responsible for managing the physical appearance

and layout of the prototype, including managing the 3D simulation and the construc-

tion of the virtual environment;

3. a physical component, responsible for supporting connections to physical external

devices, such as smart phones and sensors;

4. a communication/execution component, responsible for the data exchange among all

components and for the execution of the simulation.

Figure 3.1: APEX architecture

With these components APEX aims to satisfy the stated requirements (e.g. user experi-

ence and formal analysis support, see Section 2.1) and supports the whole cycle of prototyp-

ing. APEX uses CPN Tools to model the behaviour of the virtual environment. To create a

prototype, besides creating the virtual environment, the developer needs to extend a generic

Chapter 3. The Proposed Approach

61

CPN model. This generic model was developed to serve as a base for the modelling of ubi-

comp environments. Once the CPN model and the environment are created the communica-

tion/execution component of the framework (see Figure 3.1) binds them together. To achieve

this, CPN transitions link the behaviour described by the models to the respective objects in

the environment. Additionally, physical components can also be connected to the prototype

enabling information to be obtained and/or sent.

After these steps several users can be connected to the simulation using different view-

points onto the OpenSimulator server. Users can navigate and interact with other connected

users as well as the virtual world simulation of the envisaged ubiquitous environment, ena-

bling the evaluation of usability and experience issues with the proposed design.

A description of each component that comprises the APEX framework is now presented.

Behavioural component

This component is responsible for driving the simulation using the information from the

model, and for sending/receiving relevant data to/from the virtual environment. It comprises

CPN Tools that use CPN models to describe the behaviour of the virtual environment in re-

sponse to user actions and context changes.

To provide help when modelling, a generic CPN base model is provided from which vir-

tual environment models can be derived. The aim in developing this base model was to create

a generic style of CPN relevant to the modelling of virtual environments. The model consists

of modules that:

1. initialise the simulation, and establish the connection between the CPN model, as

represented by CPN Tools, and OpenSimulator;

2. receive data (for example sensor’s data) from OpenSimulator and use it to update

appropriate tokens;

3. describe the behaviour of each device in the system. Sensors and devices are rep-

resented separately using different fusion places. The sending of information to

OpenSimulator is accomplished using provided functions and can be invoked

from any module.

This model aims to serve as a basis for the developer to model the behaviour of the de-

sired ubicomp environment. A detailed description of this model and how to extend it to cre-

ate a prototype of a new ubiquitous environment can be found in the next chapter. Models of

3.1. APEX Framework

62

each type of dynamic object/device in the environment (e.g., sensors, displays, personal de-

vices) need to be inserted into the CPN base model. Adequate models must either be avail-

able or must be created using CPN Tools. Section 4.2.3 will provide a more detailed descrip-

tion of how that can be done. Appendix A presents the whole CPN base model.

Virtual environment component

This component sends information about the simulation (e.g. avatar proximity detection) to

the behavioural component. The virtual environment component also reflects in the simula-

tion the decisions made by the behavioural component (e.g. open a gate). The virtual envi-

ronment is composed of the OpenSimulator server and a viewer for each client that is con-

nected to it.

OpenSimulator enables the interactive creation of virtual environments. It provides a tex-

ture that enables users to visualise the physical characteristics of the real system. The features

of the 3D simulation include location, the viewing aspect and the physics of each of the ob-

jects in the environment. Pre-defined environments and objects can be saved/loaded in/from

Opensim ARchive files (OAR). All the different entities (object, terrain, textures, etc.) are

packaged in these files in the format used by OpenSimulator to keep data within an archive.

A number of features are designed to support object/environment creation and to manipulate

objects via the viewer. These objects, together with features that support the insertion and

manipulation of textures, lighting, animation and sounds, enable the creation of a simulation

close to the real proposed system. Pre-defined environments and devices can be used in this

creation process. OpenSimulator enables the association of scripts to the world objects using

the Linden Scripting Language (LSL), enabling their animation.

The OpenSimulator server is responsible for maintaining the virtual environment infor-

mation available to viewers. The server enables the connection of several users, each perhaps

from a different location, to the same virtual environment via the web through appropriate

viewers.

Viewers have two roles. The first role is that they are used as a design tool, to define fea-

tures of the 3D simulation presented to users. The second role is that they are used as a navi-

gation (end user) tool allowing the user to navigate and interact with the simulated environ-

ment. Interaction is achieved both explicitly by a user using (virtual) devices, and implicitly

Chapter 3. The Proposed Approach

63

through changes of context. Adequate viewers include the Mesh Project Viewer
31

 or the Lin-

den Lab's Second Life™ viewer
32

. A number of alternative compatible viewers exist (see [76]

for a complete list). However, some of these alternative viewers currently only enable the

environment exploration without providing any 3D modelling tool. These alternative viewers

cannot be used to build new environments but only to explore existing ones.

Physical component

The APEX physical component (see Figure 3.1) allows the connection of external devices

such as PDAs and sensors to the framework. A virtual prototype can therefore be combined

with the real world, receiving real sensor data and sending information to real physical com-

ponents. The connection between external devices and the virtual part of the prototype is es-

tablished using Bluetooth by the communication/execution component. Physical devices are

used not only to receive information but also to send information to the other layers.

A Bluetooth client application is installed on mobile devices and a Bluetooth server ap-

plication is installed on the client machines (running in parallel with the viewer – see Figure

3.2). Clients communicate with OpenSimulator via TCP/IP and physical devices communi-

cate with the Bluetooth server. APEX automatically detects mobile devices and links them to

relevant avatars in the virtual environment using login information established when users

connect the mobile device (see Figure 3.3). For this to work the Bluetooth server must first be

selected and the user account corresponding to the desired avatar’s device be provided. After

a successful connection the mobile device is ready to exchange information with the other

components thus improving user immersion. Figure 3.3 shows the Bluetooth Application

Client installed on a smart phone running the Windows Mobile Operating System. The use of

phones running other operating systems (Windows Phone, iOS, Android, etc.) requires the

development of appropriate clients, which poses no particular difficulty.

31

 Mesh Project Viewer: http://wiki.secondlife.com/wiki/Mesh_Project_Viewer (last accessed: 27

February 2012)
32

 Second Life: http://secondlife.com (last accessed: 15 November 2011)

3.1. APEX Framework

64

Figure 3.2: Physical architecture of the APEX framework

Figure 3.3: Bluetooth Application Client installed in a smart phone

Users may be located in the physical layer interacting with physical objects, or in the

simulation and modelling layer or in a combination of physical/simulation and modelling

layers depending on available resources. The interaction with physical devices enables users

to experience physical aspects of the proposed target ubiquitous environment (in this case, the

actual interface via the smart phone). Results are obtained from user feedback, either im-

mersed in the prototype using a virtual environment on their desktop, or using real elements

such as smart phones. In practice mobile devices integrate many sensors (e.g. accelerometer,

light, orientation, position, temperature) and provide an easy and uniform solution to acquir-

ing real sensor data.

Chapter 3. The Proposed Approach

65

Communication/execution component

This component is a DLL (dynamic-link library) developed in C# responsible for loading the

simulated ubiquitous environment into the OpenSimulator server, and for using the CPN

models to drive it. The component is loaded into OpenSimulator at start up and is positioned

between the three other components managing the exchange of information between models,

the physical devices and the virtual environment. Data exchanged includes strings that give

indications to the receiver component about what happened in the sender component. This

information enables the update of the receiver component to reflect the changes in the sender

component. The information exchange occurs in both directions.

Communication in the CPN Tools is achieved through Comms/CPN [77], a CPN ML li-

brary for connecting between CPN Tools and external processes, provided with the CPN

Tools. The BRITNeY Suite [78] also enables the communication between CPN models and a

Java-based animation package. Comms/CPN is simpler to use than BRITNeY Suite for our

case. Unlike Comms/CPN the BRITNeY Suite is more general purpose, providing more fea-

tures besides the communication package, which make it more complex to use. In order to

use Comms/CPN a module must be loaded into the external process. Java and C modules are

available with the distribution. However, OpenSimulator modules (DLLs) are developed in

C#. No alternatives were found for communication with C# processes, so a new C#/CPN

communication module (DLL) was developed. With this development the communication of

the CPN models, using the Comms/CPN functions, and C# processes becomes possible.

Communication between the model and the communication/execution component is achieved

based on provided CPN Tools functions of the Comms/CPN library [77].

The developed DLL sends information to CPN Tools when changes in the environment

of the physical device happen, and is responsible for changing the environment in response to

data sent by CPN Tools. These changes are triggered explicitly through direct user action, or

implicitly by a sensor. Actions triggered by the behavioural component are thereby reflected

in the virtual environment and any physical devices (see Figure 3.6). Additionally, the DLL

handles the loading/saving of OpenSimulator objects/environments and the execution of

commands invoked by the user in the viewer. When located together with the OpenSimulator

server (see Figure 3.2), this DLL is loaded automatically by the server when started. After

establishing of communication between CPN model and the simulator, through invocation of

3.1. APEX Framework

66

a function in the CPN model (explained in next chapter), the APEX framework is ready to

use.

The consistency across uniquely identified multiple representations (e.g. dynamic ob-

jects) in the different layers is maintained through the communication/execution component.

The behaviour described in the behavioural component (CPN models) is linked to the virtual

environment component enabling the animation of the virtual environment. This link between

models and corresponding virtual objects is achieved using unique identifiers of the objects

present in the virtual environment that are represented by tokens in the CPN models. For in-

stance, to open a gate in the environment, the CPN gates module must indicate in its open

transition code the identifier (e.g. unique ID) of the gate that must open. Identifiers, object

types, positions and other relevant features of all dynamic objects and sensors present in the

environment, are automatically loaded into CPN models at the beginning of the APEX execu-

tion. The communication/execution component synchronizes the values of the dynamic ob-

jects and sensors in both components. In the behaviour component they are accessible in the

tokens values and, in the virtual environment component, through the properties panel pro-

vided by the viewer associated to each object (see Figure 3.4). For example a dynamic object

will contain a unique identifier in the simulation layer that is used to represent it in the mod-

elling layer, and the script linked to the dynamic object will respond to changes in the envi-

ronment consistent with the state of the CPN model. The illustration of this is presented in

this chapter in Section 3.1.3.

Figure 3.4: Object' identifier accessible in the viewer panel

Chapter 3. The Proposed Approach

67

3.1.2 Multi-layer approach

Prototypes and their simulations are generated using the framework to help the developer

understand how the user might experience the system. These prototypes are supported

through three different layers: a simulation layer (using the OpenSimulator); a modelling

layer (using CPN Tools) and a physical layer (using external devices and real users). APEX

allows the developer to move between these layers to evaluate different features, from user

experience of using a device, to exhaustive analysis of the ubiquitous environment behaviour.

In an environment that has been developed using APEX users interact with the prototype

either directly by manipulating handheld devices as would happen in the deployed system or

indirectly by controlling avatars located in the virtual world. Using model-based simulation it

is possible both to analyze the system rigorously using the model and to observe user reaction

to the system. As previously stated in Chapter 1, each layer supports a specific type of

evaluation:

 observation of virtual objects’ behaviour, and user reaction to them, within a vir-

tual world (in the simulation layer);

 analysis of the model (in the modelling layer);

 observation of real objects (for example, actual smart phones) connected to the

virtual world, and users reaction to them (in the physical layer).

There is also interaction between the layers. The behaviour of users interacting with the

simulation at the physical layer can be used to analyze underlying models. Observed behav-

iour can be represented and simulated by avatars in the simulation layer or captured abstractly

as “tokens” within the model. Feedback data from actual use may be collected and “mechani-

cally” analysed, for example by comparing it to expected behaviour [79], using the behav-

ioural model. Programmed avatars may also be developed and used to generate closed simu-

lations in situations where more than one user interacts in the environment. Expressing all the

elements and users of the environment at the modelling layer forces the system to be closed,

and enables it to be run independently of both the simulation and the physical layers. Hence

an exhaustive analysis of the environment’s possible behaviours is possible.

The stated multi layer benefits are made concrete, through examples, in Chapter 7.

3.1. APEX Framework

68

3.1.3 Support for design

APEX supports both the design and the analysis of ubicomp environments. To achieve this

the developer extends the CPN base model to respond to changes in the environment consis-

tent with the state of the CPN model. A typical runtime configuration of the framework (see

Figure 3.2) involves deploying the OpenSimulator server, CPN Tools, and the communica-

tion/execution component on a server. Once the CPN model is loaded, the server is ready to

allow free exploration and interaction with the virtual environment. Currently this is achieved

by means of viewers deployed on client machines.

In addition to exploring the environment, it is also possible to use the viewer to manipu-

late it, load objects into the environment and to save and clear the environment. This is

achieved in the viewer by writing commands in the provided chat box. Consult Appendix E

to see which commands are available and how to use APEX. The viewer features associated

with APEX commands aim to ease the creation and management of virtual environments.

Dynamic objects present in the environment (e.g. gates) are animated using LSL scripts.

Figure 3.5 shows an example of an LSL script responsible for moving an object. When exe-

cuted, this script moves the object it is attached to two units in the positive direction on the X

axis. At the second execution the object returns to the original position. The execution of the

scripts is triggered by the modelling layer. Scripts are responsible for the visual appearance

and behaviour of dynamic objects that arises from moving tokens of the modelling layer from

one state to another. The modelling layer is responsible for the logic of the environment de-

scribed by their state transitions.

Figure 3.6 illustrates the process that leads to the opening of a gate when an avatar comes

close to it. Initially the token that represents the gate is on the Gates Closed place because no

avatar is near the entry gate. Due to space constraints and to improve readability the model

presented in this figure is simpler than the real one that is presented in Chapter 7. The model

is responsible for specifying the behaviour of the gates. Then following the process (step 1)

by user interaction the avatar arrives close to the gate. At this moment the APEX communica-

tion/execution component detects it (step 2) through the presence sensor located near the gate.

This sensor gets the identity of the avatar that is near to it and then this information is sent to

the model (step 3). This information leads to a state change of the gate so the token moves to

the Gates Opened place by the Open Gate transition. When this transition is executed the

Chapter 3. The Proposed Approach

69

associated action (Action Open) is also executed. In the model this action is composed of a

function that sends to the APEX communication/execution component the identifier of the

gate to open and an indication to execute the script associated with it (step 4). Finally the

APEX component searches this object on the environment and when found orders the execu-

tion (step 5) of the associated script (see Figure 3.5). The script is executed leading to the

gate opening (step 6). The avatar is now able to enter the library.

This process is automatic, developers just have to extend the CPN base model with pro-

vided modules (when available to model the desired situation) and attach developed scripts to

the dynamic objects aiming at the desired behaviour.

Figure 3.5: Object movement LSL script

3.2. Alternative Modelling Approaches

70

Figure 3.6: The process

3.2 Alternative Modelling Approaches

A generic modelling approach has been developed and is now presented and illustrated

through a small example. The example is a smart library environment. This modelling ap-

proach enables easier behavioural specification of new ubicomp environment prototypes by

providing guidelines to developers. Several alternative approaches were possible. This sec-

tion shows two of them and the advantages of the selected one.

There are a number of styles of specification that can be achieved using CPN. These

styles vary according to the extent to which the semantics of the underlying objects are made

explicit in the structure of the CPN specification, or encoded in tokens. Two extremes are

possible:

1. All semantics may be placed in the tokens, by this means minimising the number of

places in the net;

2. Places may be used to characterize each different relevant situation (user action, con-

text change, etc.), thereby adding transitions that describe aspects of the semantics of

the objects explicitly.

Chapter 3. The Proposed Approach

71

A small example clarifies these two extremes. Consider a device that is defined to be in

two states (on and off). Two different models capture the characteristics of the device (see

Figure 3.7). The first model consists of only one place, and one transition from and to this

place. The place holds tokens with a semantics that can represent all the different states of the

device. The state of the device will be encoded as an attribute (a colour) of the token repre-

senting the device. The transition is responsible for changing the colour of the token thereby

reflecting the new state of the device. In this situation all meaning is in the value of the to-

kens (see Figure 3.7, tag 1).

The second model is represented by two places each representing a possible state of the

device, and by transitions between them (two in this case). No semantics are carried by the

token. All meaning is represented by the structure of the model. The state of the device is

known by looking to the position of the token, i.e., the place that holds the token (see Figure

3.7, tag 2).

Figure 3.7: On/Off device alternative models. 1- all semantic in the tokens, 2 - all seman-

tic in the structure

In APEX, a mixed approach is used where the states of the dynamic objects (e.g. open,

close, off, etc.) are modelled as places and user actions and context changes are modelled as

transitions. Each device (sensor or dynamic object) and user is represented in the CPN model

as a token in its respective place.

The users and device features (e.g. identifier, position) are modelled as attributes of the

tokens. These values are used by CPN ML functions together with instructions (e.g. open,

i

j
1`1

INT

OFF

UNITUNIT

ON

StateON/OFF

input (j);
output (i);
action
(if(j=0)
 then 1
 else 0
);

Turn OFF

Turn ON
()

() ()

()

1)

2)

3.2. Alternative Modelling Approaches

72

close) to indicate changes that must be reflected in OpenSimulator. Section 4.2 of next chap-

ter provides a description of how this is done. The guards on the transitions, as well as the

functions associated with transitions, are responsible for part of the behaviour of the system.

Both of these are modelled in the CPN ML language, so this behaviour is modelled function-

ally.

This combination gives more expressiveness to the ubiquitous systems modelling while

avoiding clutter in the CPN specification. In the process of developing the style of modelling

described here two alternatives were considered. A user-oriented approach was first devel-

oped where the actual coordinates of the users’ position in the virtual world are obtained from

the simulation (via the communication/execution component when the avatars move), and

then forwarded to the CPN models where decisions were made with these values. This ap-

proach differs from what happens in physical ubiquitous systems that are sensor-oriented. In

these systems the user position is inferred from the values provided by the sensors. This ap-

proach therefore is somewhat unrealistic, consequently the validity of some properties of the

system is limited. Another limitation of this first alternative is that other sensor information

needs to be carried in the user tokens making the approaches less flexible and less consistent.

A sensor-oriented approach was also considered.

In summary, the following main criteria were followed to select an adequate modelling

approach. The approach has to:

1. be generic;

2. scale;

3. be flexible/modular;

4. be realistic.

The satisfaction of these criteria aims to answer one of the identified research questions

(from Section 1.3). "Can a formal model represent ubicomp environments?". A modelling

approach, satisfying these criteria, would be a potential candidate to answer this question. In

the next sections, two alternative approaches to ubicomp environment modelling are de-

scribed: one approach centred on users, and one approach centred on sensors. The next chap-

ter presents in more detail the chosen approach and illustrates it through an example.

Chapter 3. The Proposed Approach

73

3.2.1 User-centred approach

Creating large models can be a complex task. Using CPN the construction of large models

can be divided into smaller pieces by using substitution transitions. Models with these transi-

tions have multiple levels of detail. A global model can give a broad view of the system using

substitution transitions that abstract detailed models at a different level. Modules are inte-

grated into the global model using substitution transitions represented by double line boxes

(see Figure 3.8). See Section 2.2.2 for further information about substitution transitions.

The user-centred approach collects the user’s position from OpenSimulator (GetData

substitution transition, see Figure 3.8) and uses it to make decisions. The example of a smart

library is used where gates are opened when registered users approach them. Depending on

the user's position, different widget transitions can be enabled. Widget transitions provide

access to information while hiding details of sensing it. Once executed, these transitions,

which react to a user's action or change of context, affect the behaviour of the dynamic ob-

jects as represented by transitions 1, 2 and 3 in the module. For instance, when the user is

near the entry gate, the Widget1 transition is executed and consequently the Screen and Door

transitions take place to update the information of the screen and open the door. The object

behaviour transitions (e.g. Screen, Door and Book) describe the behaviour of the dynamic

objects present in the environment. Figure 3.9 presents the model of the Screen. This is ab-

stractly represented in Figure 3.8 (tag 1). The state of the screen and the information dis-

played change depending on the widget transition satisfied (user near or far from the entry

gate). At the end of the execution of this model a token is put on the and place and conse-

quently the Door module is executed (see Figure 3.8, tag 2).

The approach presented describes one possible way in which CPN can be used to model

ubiquitous environments in a way that makes possible the simulations that are of interest.

However, in terms of the scaling of dynamic objects and widget transitions there are limita-

tions. For example, to add another screen to the environment, a new screen module must be

added (a clone of the presented screen module, see Figure 3.9). To deal with additional situa-

tions not present in the current model (e.g. a different user's action or context change) new

widget modules must be added. For the modelling of ubiquitous environments, with many

devices, this limitation makes this approach impractical. Indeed, this approach does not scale

easily.

3.2. Alternative Modelling Approaches

74

Figure 3.8: User-centred smart library module

Figure 3.9: User-centred screen module

d

d

d

d

d

d d

noDetection

Widget2

farEntry

Screen

Screen

GetData

GetData

Waiting

Widget1

nearEntry

userDATA

userDATA

userDATA

Data1

1`{id = 0,posX=0,posY=0, state=0}

conected Init

1`() POLLING

userDATA

Data

userDATA
nearEntryGetData Screen

farEntry

1`()1`"1"

action1

action2 Door

DoorDoor

Widget3

NearBookNearBook

action3 Book

BookBook

and

d

d

d

action
acceptConnection("Conn 1",9002);

userDATA

STRING

d

d

d

d

d

d

d

d

(1)

(2)

(3)

d d

dd

ShowingDefaultInformation

ShowInfo

action2

In

action1

InIn

In

Defaulf Showing and

OutOut

sd

ScreenDATA ScreenDATA userDATA

userDATA

userDATA

1`{info=""}

1`{info=""}

1`{info="text"}

sd

input ();
output ();
action
(ConnManagementLayer.send(
 "Conn 1","show",stringEncode));

input ();
output ();
action
(ConnManagementLayer.send(
 "Conn 1","default",stringEncode));

Chapter 3. The Proposed Approach

75

Approach's improvements

Improvements were made to the previous approach to remove scaling problems. Each type of

element (e.g. gates, screens) is represented by a fusion place (see Section 2.2.2 for further

information about fusion places) that holds a token for each element (dynamic object or user)

of that type. For instance, the fusion place gates (Figure 3.10) holds a token for each gate

present in the environment. Every type of element present in the environment is added as a

place to the initialization module (Figure 3.10) and elements of each type as tokens in their

respective places.

Figure 3.10: General early initialization module

In comparison with the previous approach another significant improvement is that instead

of describing the behaviour of the dynamic objects with substitution transitions this is now

modelled using fusion places in a new module (see the users and gates fusion place of the

gate module in Figure 3.11). This reduces the modelling complexity, making it more flexible

and practical. For example, to add a new screen it is enough to add an additional screen token

to the model. This also has the potential to support the dynamic addition and removal of ob-

jects, users and sensors at runtime.

The module presented in Figure 3.11 expresses the behaviour of the gates (opening and

closing) using this new approach. The notion of widget transitions is now implicit in the

modules, see for example, the condition isArrivingToGateArea(u,g) in transitions show info

and open gate. This function determines when a user u approaching the gate g is considered

to have arrived in the gate area (in this case when the distance between the user and the gate

is lower than 2). The behaviour of this function described in the ML language is presented in

3.2. Alternative Modelling Approaches

76

Figure 3.12. This module leaves a gate open while at least one user is close to it and closes it

when no one is near to it.

Figure 3.11: Module for an entry gate

Figure 3.12: isArrivingToGateArea function

fun isArrivingToGateArea(u:USER,g:GATE) =

let val d = Math.sqrt(

Math.pow(Real.fromInt(getPosXGate(g)-getPosXUser(u)),2.0) +

Math.pow(Real.fromInt(getPosYGate(g)-getPosYUser(u)),2.0) +

Math.pow(Real.fromInt(getPosZGate(g)-getPosZUser(u)),2.0))

in (d <= 2.0)

end;

Chapter 3. The Proposed Approach

77

This model collects the user’s position directly from OpenSimulator. Figure 3.13 presents

the CPN module that collects the users' data. Transition read user id reads a user's identifier.

A token associated with the value of the user identifier is introduced in the place read user id.

This is used to read the new position by means of the transition read and update user posi-

tion, which also updates the relevant user token. The expression, isThisUser(u,uId) in the

guard of this transition, guarantees that the user token that is updated corresponds to the pre-

viously read identifier.

CPN modules for reading each user's position and describing the devices' behaviour exe-

cute concurrently. The concurrency issue associated with CPN is that more than one transi-

tion can, at the same time, be enabled to execute. Different transition execution orders can

lead to different results. These situations must be avoided. Therefore the precedence of some

transitions over others must be defined. Precedence of the devices' transitions over the data

acquisition transitions is guaranteed through the not (hadASignificantMovement(u)) guard on

the transition read and update user position in Figure 3.13. Movement of a user is significant

(for a device) when the new position is near the device. The importance of this precedence is

related to the fact that all device transitions must be executed before a new user data acquisi-

tion happens. Otherwise, transitions can be disabled according to the new acquired values

rather than executed with the past user values leading to the possibility of losing some behav-

iours. For example, the transition to open a gate can be enabled at a certain time because a

user is near to it. However, if no transition precedence is established in the model, a new user

position value can be acquired (before the open gate transition execution) which will disable

the transition to open the gate. In this situation the gate should open but it does not and there-

fore behaviour is lost. In the most recent version of the CPN Tools (since version 3.0) priori-

tized transitions are supported. This means that the precedence of a transition over the others

is now easily achievable by simply specifying its priority. Figure 3.14 show three transitions

with associated priorities. When both are enabled at same time transition T1 executes first

then transition T2 and finally transition T3. This is because transition T1 has the highest prior-

ity (P_HIGH) and transition T3 has the lowest priority (P_LOW). The transition T2 possesses

normal priority (normal priority is hidden by CPN Tools to improve a model's readability).

Other intermediate priorities can be specified.

In APEX, transition priorities are mainly used to guarantee that all enabled transitions

execute before the transition that is responsible for reading new information from the simula-

3.2. Alternative Modelling Approaches

78

tion component (OpenSimulator). To avoid this situation the reading of new values has lower

priority than the processing of values already read. Some of these situations are present in

modules of the CPN base model (Appendix A).

Figure 3.13: Generic module for acquiring users’ data

Figure 3.14: Priorities over transitions

Besides the improvements introduced as discussed above this approach has a remaining

major limitation that is related to the fact that it is user-centred i.e., it is based on the assump-

T3

T1

INT INT

T2A B

i

i

P_HIGH

P_LOW

i

i

i

i

Chapter 3. The Proposed Approach

79

tion that the user’s positions are always known every time and everywhere. This is not always

realistic in the sense that in a real implementation the user’s positions are not readily avail-

able. Sensors are needed. The position of a user is only known when “near” a presence sen-

sor. One implication in terms of modelling is that this new approach could be more flexible to

model context (sensor information, conditions, etc.). The context is currently mixed with the

dynamic object modules. This prototyping approach could therefore be more modular be-

cause when conditions or sensors change this implies changes in the dynamic object behav-

iour modules. The approach should separate the sensors’ data acquisition models and the dy-

namic object modules to achieve a more modular approach.

This approach does not entirely satisfy some of the enumerated criteria presented above

(e.g. realistic, flexible and modular). The second approach to modelling, presented in the next

section, better satisfies the enumerated criteria.

3.2.2 Sensor-centred approach

The approach that was eventually chosen avoids some of the limitations of the previous one,

focusing the model more on sensors and less on users. For example, the users’ positions are

now obtained from the positions of the sensors used to detect users (presence sensors). Figure

3.15 illustrates the approach. The revised models are simpler than the previous ones. They are

required to:

1. read sensor information from each sensor type;

2. create/delete/update respective tokens.

One model for each sensor type is required because each sensor type has different fea-

tures (e.g. movement sensor, light sensor). These models collect the information that comes

from the simulation, creating a token and updating their attributes (values). After that, the

token is placed in the fusion place of the respective sensor type. A fusion place for each sen-

sor type is present in the model.

As a result of this, the fusion places, holding sensor tokens (places PresenceSensors and

LightSensors in Figure 3.15 part a and b), can be used in the specification of the behaviour of

the environment (Figure 3.15 part c). For example, the model described at the bottom of the

Figure 3.15 (part c) executes an action depending on satisfaction of a condition condition(ps,

ls, obj) that depends on the token values present in the PresenceSensor, LightSensor and State

3.2. Alternative Modelling Approaches

80

A places. The presence sensor and light sensor simplified models of the figure represent the

models that collect the information coming from the simulation.

Figure 3.15: APEX sensor-based modelling approach. Parts: a) Presence Sensor Model b)

Light Sensor Model c) Models depending of sensor's values

The sensor models that acquire sensor information are a part of the CPN base model and

hold the information read in fusion places (e.g. PresenceSensor fusion place), see Figure 3.15.

The models describing the environment elements (e.g. gate) are added by developers and

linked to the base model, using the information collected by the sensor models, as shown in

part c of Figure 3.15.

This approach has advantages when compared with the previous one. It is more realistic

because it reflects more accurately the behaviour of ubiquitous environments. The approach

also separates the data acquisition modules for the sensors from the dynamic object modules.

This makes the model more modular and eases scaling. Both approaches are generic because

they can be instantiated to different situations. The sensor-centred modelling approach is

Chapter 3. The Proposed Approach

81

evaluated with different examples in Chapter 7 thus illustrating how generic it is. This model-

ling approach is the one that has been selected and is described in more detail in the next

chapter.

3.3 Conclusions

The aim of rapid prototyping frameworks should be to make complex system development

easier and more efficient. To achieve this, these frameworks should be flexible and extensi-

ble. The APEX framework focuses on the prototyping of ubiquitous computing environ-

ments. Its architecture supports different types of sensor and allows their introduction to be

achieved incrementally within different layers. APEX contains components that are responsi-

ble for separating prototyping aspects (behaviour, simulation and physical characteristics)

and a component responsible for the management and synchronization of the information

flowing between them.

The architecture provides layers in which a prototype design can be evaluated. Different

layers enable exploration of how the user would experience the proposed design in one layer

while enabling an exhaustive analysis of the design implications in another layer. The frame-

work also supports a development process in which virtual, physical or mixed elements are

explored depending on the availability of these components. The initial stages of develop-

ment can be achieved entirely in terms of CPN models. Further development can be moved

into the virtual world before moving wholly or partially into the physical world. This sup-

ports exploration of how different levels of abstraction can be accomplished and supported.

For example, supporting and enabling the migration of devices at the physical level via Blue-

tooth, at the virtual level as virtual devices in OpenSimulator, at the model level as CPN

models. In summary it is possible to explore the design from a variety of perspectives.

During the development of the framework, and according to its architecture, a new

C#/CPN communication package has been developed enabling the communication between

CPN models and C# processes.

The modelling issue, according to the requirements, is to support a combination of real-

ism and tractability. Two modelling approaches were presented, one user-centred, another

sensor-centred. The sensor-centred approach provides a more realistic simulation, closer to

what occurs in real ubiquitous environments. It is modular, scaling to different types of sen-

3.3. Conclusions

82

sors (presence, luminance, etc.) and providing an incremental style of prototyping. It is pre-

sented in more detail in the next chapter.

83

Chapter 4

The Modelling Approach

4 The Modelling Approach
This chapter describes the selected modelling approach. It starts by describing how to set up a

model simulation. Subsequently, the CPN base model that forms the basis of this modelling

approach is explained by presenting its structure, its logic and how it can be extended to dif-

ferent examples. The chapter continues by describing the modelling and use of programmed

avatars. Finally, conclusions are presented.

4.1 Using CPN to generate a simulation

The initial conditions of the simulation are defined in the CPN initialization module shown in

Figure 4.1. Firing the initialize animation transition sets the default configuration of the simu-

lation, and executes the associated CPN ML code. In this particular case the configuration

includes seven places (users, PDAs, dynamic objects and four types of sensors). The users

place holds USER tokens representing information about users in the virtual environments

(avatars). This particular place is mandatory, since whatever the model the handling of users

must be supported. The remaining places hold tokens representing devices and sensors. All

these places are environment dependent and will vary for each prototype. The colour (struc-

ture) of the tokens that these places can hold is defined in CPN Tools, and characterises the

information held in the model for each type of device. The initialization module uses two

places to control the initialization of the CPN model: init to limit execution of the transition

to one occurrence, and run to inform other modules that the simulation is running. Once all

desired places and modules are added to the model the simulation can start. The CPN Tools

provides support for model simulation (e.g. play, stop) that is similar to program execution.

4.2. The CPN Base Model

84

The detailed setup (modelling and prototyping) and use of APEX is explained in Appen-

dix E.

Figure 4.1: General early initialization module

4.2 The CPN Base Model

In this section the modules that form the CPN base model are described. The use of the base

model in modelling new situations is then described. The extension of the base model is pre-

sented in the following sections. The description shows:

1. how to setup of the CPN base model, presenting the environment's devices modules

and the connection between the model and the OpenSimulator server (sub-Section

4.2.1);

2. the modeller's tasks that must be carried out to use this modelling approach in new

situations (sub-Section 4.2.2);

3. the detailed modelling of the environment's device modules (sub-Section 4.2.3).

4.2.1 The model

The CPN base model as described in the previous chapter needs to be extended by developers

to respond to changes in the environment (user's actions or context changes) including for-

warding model state changes to the environment.

users

usersusers

runINI

runrun

presence_SENSOR

L_sensor

lightSensorlightSensor

T_sensor

timeSensortimeSensor
time_SENSOR

M_sensor

movementSensormovementSensor

()

initial_movement_SENSOR

P_sensors

presenceSensorspresenceSensors

1`()

UNIT

initial_USERS

PDAs

PDAsPDAs

initial_PDA

USER PDA OBJ

Dynamic Objects

objectsobjects

initial_OBJ

UNIT

initial_presence_SENSORS initial_light_SENSOR initial_time_SENSOR

movement_SENSORlight_SENSOR

(6)(4)

(3)(2)(1)

(5) (7)

initialize animation

action

acceptConnection(connName,9002);

init
()

Chapter 4. The Modelling Approach

85

Setup

The base model needs to be set up before being used in new situations. Many of the modules

of the CPN base model are generic and do not need any modification. The developer only

needs to develop a module for each type of device present in the ubiquitous environment, and

only if the desired module does not yet exist (previously developed modules can be reused),

and to add them to the base model. The connection is established by means of fusion places

(see Section 2.2.2).

Figure 4.1 describes the initialization module, presenting an overview of all possible

elements (dynamic objects, sensors and users) present in the simulation. This module is an

improvement of the early user-centred initialization module presented in Figure 3.10. This

sensor-centred module is responsible for initialising the elements with default values and for

establishing the connection to OpenSimulator. The connection is described later in this sub-

section.

The fusion places in the top part of Figure 4.1 (annotated with the numbers 1, 2 and 3)

hold information about dynamic elements (users, PDAs and Dynamic Objects). The Dynamic

Object place (annotated with number 3) contains one token for each dynamic object (e.g.

gate, screen) present in the environment except for the mobile devices that are held in the

PDA place because these object can receive information from the users (e.g. text) being dealt

differently by the model. Additionally, the data type of the PDA place is different from the

Dynamic Object place. Each dynamic object token contains position, identifier and type

(whether the object is a book, a gate, etc.). Objects such as walls are considered to be static

objects and do not need any associated behaviour (they are just present in the virtual envi-

ronment component). The users place (number 1) holds a token for each user connected to the

simulation. These tokens hold information such as users’ identifier and users' information

(e.g. users’ requests). The fusion places at the bottom (annotated with the numbers 4, 5, 6 and

7) hold the sensor tokens. Each place holds the tokens of a specific sensor type (e.g. presence

sensor). Because they are fusion places their value is accessible anywhere in the model.

The model is automatically initialized with the elements that compose the environment,

however initial values can be defined modifying the initial variables (e.g. initial_PDA).

4.2. The CPN Base Model

86

Environment's devices modules

The environment's device modules are presented in the context of the smart library example.

The main feature of this library is to provide users with directions that they should follow to

reach desired books (describe in more detail in Section 7.1). Figure 4.2 and Figure 4.3 present

modules of two specific types of devices that are present in this example (gates and book

lights) used in extending the base model to obtain the expected behaviour of this ubiquitous

environment.

Figure 4.2: Gate module

Fusion places are the basis for the creation of these behavioural modules and enable to-

ken flow between them. They establish the link between the devices' modules, the initializa-

tion module (Figure 4.1) and all other relevant modules where the information is needed. For

example, the device module of Figure 4.2 is connected to the initialization module via the

users, objects and presenceSensors fusion places. The connection between the model and the

simulation is accomplished through functions associated to state transitions (e.g. sendClose-

Gate). Functions are also responsible for describing functional behaviour not structurally ex-

pressed by the net.

Dynamic Objects

objects

gates opened P_sensors

presenceSensors

users

usersusers presenceSensorsobjects
USERIDxOBJUSEROBJ

[is(obj,"gate") andalso objAfectedByPresenceSensor(ps, obj) andalso userNearPresenceSensor(ps,u)]

input (u,obj);
action
(sendOpenGate(#id obj));

presence_SENSOR

ps((#id u) , obj)uobj

obj (uId, obj) ps

input (uId,obj);
action

(sendCloseGate(#id obj));

open gate

close gate

[objAfectedByPresenceSensor(ps, obj) andalso nobodyNearPresenceSensor(ps)]

Chapter 4. The Modelling Approach

87

Figure 4.3: Book's light module

Figure 4.2 shows a module describing the behaviour of gates following the sensor-

centred approach. The behaviour of the gates is modelled making use of the values acquired

from the sensors. Gates can be in two states, opened or closed. The gates should open when a

user is near to the presence sensor associated with it and be closed when nobody is close to it.

The module holds the gates that are open in the gates opened place, and in the Dynamic Ob-

jects place the gates that are closed (see Figure 4.2). The open gate and close gate transitions

move tokens between states. Fusion places (objects, users and presenceSensors) are used in

the modelling, providing access to values required for the specification of conditions associ-

ated with the transitions (e.g. is, objAffectedByPresenceSensors) that outline the desired be-

haviour. These places provide access to the tokens that animate the module.

When devices are present in the environment for which a CPN module is not available, a

model of the behaviour of the device must be developed, following the same reasoning as

above. Figure 4.3 shows the book light module for the smart library that turns on and off the

book lights that users have requested when they approach/move away from them. Using the

user’s position, the position of the desired books and, the user's desired books list, the module

decides to turn on some books' lights. This information is then forwarded to the virtual envi-

ronment (sendTurnLightOn function of the turn light on transition). This information is inter-

turn light off

turn light on

P_sensors

presenceSensors

lighted
books

OBJ

users

usersusers presenceSensors

[is(obj,"book") andalso isLookingForBook(obj,u) andalso
 objAfectedByPresenceSensor(ps,obj) andalso userNearPresenceSensor(ps,u)]

[objAfectedByPresenceSensor(ps,obj) andalso

 presenceSensorTimeElapsed4user(ps,u)]

presence_SENSOR

Dynamic Objects

objectsobjects OBJ USER

obj ps

objuobj

obj u

remWantedBook(u,obj) input (obj);

action
(sendTurnLightOff(obj));

input (u,obj);

action

(sendTurnLightOn(obj));

ps

4.2. The CPN Base Model

88

preted by the APEX comunication/execution component and is provided to the books so the

avatars are aware that the light is turned on or off. When the avatar stops being detected by

the presence sensor responsible for the trigger of a book light (presenceSensorTimeE-

lapsed4user function of the turn light off transition) the light is turned off and the book re-

moved from the user's list (remWantedBook function).

The number of tokens present in the model may vary during the execution depending on

what is present in the environment. Users can connect and disconnect, devices/sensors can be

added, deleted or updated. These modules reflect the changes of the environment. The mod-

elling of devices is presented in more detail in Section 4.2.3.

Communication between the model and the 3D simulation

The connection and communication between the model and OpenSimulator is now described.

The execution of the initialize animation transition of the initialization module (Figure 4.1)

means that the connection between OpenSimulator and CPN Tools is successfully established

and devices are initialized with default variables’ values (e.g. initial_USERS). The default

variables present in this module hold the values with which the tokens representing the de-

vices must be initialized at the beginning of the simulation. Most times the devices are initial-

ized with empty values because they are then updated reflecting the environment state.

The binding between OpenSimulator and the model is accomplished by both the commu-

nication/execution component and the functions of the Comms/CPN library in the model. For

example, the acceptConnection function present in Figure 4.1 allows external processes to

connect to the CPN Tools. The identifier (connName) and the port (9002) of the connection

are provided as arguments and are the same as the ones used by the communication/execution

component. This component can be loaded by the OpenSimulator server as a DLL and con-

sequently can access all elements of the environment and being able to forward the acquired

information (from the model) to the environment.

Having described the connection between the CPN model and OpenSimulator, the ex-

change of information between the device modules and OpenSimulator is now addressed.

Part of the information exchange binding between the model and OpenSimulator is present in

the transition’s action parts of the model (see, Section 2.2.2) which are responsible for modi-

fications to environment objects and are triggered during a transition’s execution. This is also

illustrated in the device module present in the Figure 4.2. The action associated with the open

Chapter 4. The Modelling Approach

89

gate transition is the sendOpenGate function. This function is responsible for sending two

things to the communication/execution component, the id of the gate to open (#id obj) and an

indication to open it (information implicit in the sendOpenGate function). The code of the

functions used is described below. The argument of the function sendString is the string con-

taining the identifier of the gate to open (gId) and the indication to open it (exe). This infor-

mation is interpreted by the component and results in the update of the virtual environment

according to the information sent (this process has been described in Section 3.1.3). The

sendString function uses the send function from the Comms/CPN library to send information

to CPN Tools external processes (in this case the communication/ execution component proc-

esses) as illustrated.

fun sendOpenGate(gId:GATEID) = sendString(gId^"-"^"exe");

fun sendString(s: STRING) = ConnManagementLayer.send(connName,s,stringEncode);

4.2.2 Modeller's tasks

The tasks that the modeller carries out in the approach are now presented. The focus of this

section is to describe the tasks that precedes device modelling and that must be performed.

Firstly, all the types of dynamic objects that are needed (present in the environment being

prototyped) must be identified. In the illustrated example, books, screen and gates are the

dynamic objects needed (users, PDAs and sensors are not considered as dynamic objects).

For each object type the following steps must be developed:

1. Colour sets must be created by specifying their data structure (e.g. gate’s colour set:

colset GATE= record id: GATEID * position: Pos3D;), if they do not yet exist, as il-

lustrated in Figure 4.4;

2. Clones of the existing fusion places needed must be created (e.g. dynamic objects, us-

ers and sensors) that hold the tokens of the elements needed to specify the behaviour

of the device modules;

A module must be created which describes the behaviour of dynamic objects of the same

type (device module) if it does not yet exist. For that purpose fusion places together with

functions are used. The provided gate module (see Figure 4.2) is one of these device modules.

The next section focuses on the description of the modelling of device modules.

4.2. The CPN Base Model

90

Figure 4.4: Colour set declaration (library example)

4.2.3 Modelling environment's devices

Each type of dynamic object in the ubicomp environment simulation needs a corresponding

CPN module describing its behaviour (device module). A library of modules is available for

supported devices. When new (unsupported) devices are to be used, a new module must be

developed and added to the base model. This section explains the process of modelling these

devices using the gate in the library example (Figure 4.2).

The devices' behaviour is modelled through a combination of fusion places, normal

places, transitions, functions and conditions. The places of the gate module (users, Dynamic

Objects and P_Sensors) hold the tokens of the users, gates and presence sensors needed to

model the behaviour. The gate is equipped with a sensor to capture a user approaching it. The

open gate transition represents the actions relating to the gate, for example it opens the gate.

Function sendOpenGate is responsible for this action, sending relevant instructions to be re-

flected in the environment. This action occurs when the gate's sensor detects a registered user

arriving at the gate (modelled by userNearPresenceSensor(ps,u) evaluating to true) and this

Chapter 4. The Modelling Approach

91

sensor effects a transformation on the gate (objectAffectedByPresenceSensor(ps,obj) evaluat-

ing to true). When the gate is still open and another registered user enters the gate area the

transition open gate does not occur but the user can enter.

As already stated, each place holds an associated token type. In this case the type of the

gates opened place is USERIDsxOBJ. Each token is a product of a colour set of user identifi-

ers (USERIDs) and the gate (OBJ) which opened in response to a user. The type OBJ repre-

sents any dynamic object type. In this situation gates are held in the places of the OBJ type.

When the transition close gate is taken the gate is closed. For this transition to occur users

must have moved away from the gate.

The ML code of the userNearPresenceSensor and objAfectedByPresenceSensor func-

tions associated to the transition's conditions are listed below:

fun userNearPresenceSensor(ps:presence_SENSOR,u:USER) =

(mem (#values ps) (#id u));

fun objAfectedByPresenceSensor(ps:presence_SENSOR, obj:OBJ) =

mem (#objectIDs ps) (#id obj);

To determine that a user (u) is near a presence sensor (ps) the userNearPresenceSensor

function checks if the user identifier (#id u) is present (mem function) in the set of the pres-

ence sensor detected users (# values ps). Whenever a user gets near to a presence sensor its

set of identified users is automatically updated. This is accomplished by both the communica-

tion/execution component and modules of the base model developed for this purpose. See for

example the presenceSensorsUpdate module in the Appendix A.

The objAfectedByPresenceSensor function behaviour follows the same reasoning. In this

case the values consulted are the sets of object identifiers that this presence sensor transforms

(#objectIDs ps).

4.3 Modelling and Use of Programmed Avatars

In the example the avatar's behaviour is not modelled and, as already discussed, avatars are

controlled by real users through the viewer. This allows human users to experience the devel-

4.4. Conclusions

92

oped ubiquitous environment immersively. An alternative possibility is for an “out of the

box” view of the system to be achieved through the use of programmed avatars. A module is

developed that sends the avatar’s behaviour to the simulation as illustrated in Figure 4.5.

Some assumptions are made about programmed avatar's behaviour, only avatar movement is

considered. The modelling of programmed avatar interactions is currently not supported. For

each avatar a path is defined in the model. This path is represented by a list of positions (e.g.

[{x=126,y=126} ,{x=126,y=128}, {x=120,y=120}]). The Z coordinate is automatically ob-

tained from the environment based on X and Y coordinates. The programmed avatar module

is responsible for sending the positions that the avatar must reach. In the action part of the

send path to user transition the next position is sent to the simulation (sendUserPosition(u))

and then removed from the user’s list (remLastUserPosition(u)). In this module a time sensor

was used (fusion place timeSensor) to control the time that the avatar waits before moving to

another position. Each time an avatar moves, the time of the movement is saved in the history

place. The control of the instant to trigger a movement start is now possible with this addi-

tional information. The condition modeAUTO(u) andalso morePos(u) andalso elapsed-

Seconds(ts,ts1,10) restricts the transition execution (programmed avatar's module) to when

the avatar is in programmed mode (modeAUTO), there are more avatar's positions to read

(morePos) and the delay before the next transmission has occurred (elapsedSeconds), in this

case 10 seconds.

4.4 Conclusions

The focus of this chapter has been to describe the selected modelling approach. The CPN

base model was introduced including how to extend it to in order to create the desired behav-

iour was described. The connection between the model and the virtual environment was also

presented.

The base model consists of an initialization module and devices modules. In addition to

these, modules are provided that are responsible for information exchange between models

and the environment, ensuring mutual updating and synchronisation. None of these modules

(see, Appendix A) need modifications in the application of this approach to a new situation.

However, new modules are required for new devices (defined in dynamic objects) present in

the environment. They will be required to model different behaviour than the developed ones.

Chapter 4. The Modelling Approach

93

The work required to develop these modules is analogous to the gate module used as an illus-

tration. Fusion places representing users, sensors or dynamic objects within the environment

are used to model the desired behaviour. The definition of additional functions for specific

situations might also be needed.

Figure 4.5: Programmed avatar's module

The main sensor types were developed (presence, light, movement and time sensors) but

others may be required. Other useful sensor types can be easily developed and simulated in

the OpenSimulator (e.g. accelerometers, orientation sensors, etc.).

The development of programmed avatars, reducing the human resources cost to evaluate

an ubiquitous environment, was also presented. The improvement of programmed avatar's

interaction (beyond avatar's movement) is planned as future work (e.g. avatar taking objects).

A virtual environment to match the proposed model must also be developed. This is done

through the virtual world viewer and is described in the next chapter. Once both models and

virtual world simulations for all devices are in place, exploration of the envisaged ubicomp

environment can start.

ts

ts1 ts

u1

u

send path to User

T_sensor

timeSensor
time_SENSOR

history

time_SENSOR

users

users
USER

users

timeSensor

input (u);
output(uni,u1);

action

(sendUserPosition(u),
 remLastUserPosition(u));

1`{id="start", year=0, month=0, day=0, hour=0, min=0, sec=0, elapsed=0}

[modeAUTO(u) andalso morePos(u) andalso elapsedSeconds(ts,ts1,10)]

4.4. Conclusions

94

95

Chapter 5

Prototyping Experience Alternatives

5 Prototyping Experience Alternatives
The prototyping of ubicomp environments becomes more complete when, besides models

that specify behaviour, we prototype rich enough environments to give to users the sensation

of experiencing the final physical environment. This richness, combined with the connection

of physical devices, immerses users in the prototype. The social impact of design changes,

their usability implications and the effects on user experience, are more perceptible in rich

and immersive environments. The research question introduced in Chapter 1 "can ubicomp

environments prototypes address features with the potential to assess user experience without

physical deployment?" is explored in this chapter. Different user experiences are possible and

provided through the use of APEX.

User experience refers normally to the emotional response persons have when doing

something or being somewhere. User experience can be defined as “a person’s perceptions

and responses that result from the use and/or anticipated use of a product, system or service”

[80]. Emotional user characteristics such as mood, personality, disposition and motivation are

aspects that might influence user experience. In prototyping ubicomp environments APEX

provides user (virtual) experience to their users without physical deployment. Different types

of user experience acquirable and exploitable with APEX are presented in the next sections.

More information for understanding, scoping, and defining the concept of user experience

can be found in the work of Law at al. [81].

5.1. Alternative User's Experiences

96

5.1 Alternative User's Experiences

3D application servers offer several advantages over simple virtual environments. One par-

ticular advantage is the possibility of connection of several clients to the same virtual space.

OpenSimulator environments are accessible through a variety of different viewers. Besides

the Second Life viewer, a list of third party viewers can be used
33

. The main goal of these

viewers is to provide client access to the environment. However these viewers possess differ-

ent features that provide different experiences for users who use them. Some are developed

for specific users (e.g. SL Military), others to support specific visualizations (e.g. stereo-

scopic 3D visualization) or specific hardware configurations (e.g. multiple display usage).

Viewers that provide features intended to improve user experience are presented below. Oth-

ers, that only improve usability issues associated with the viewer or are concerned with

minimizing the performance requirements are not addressed.

5.1.1 Second Life viewer

Since Linden Lab, the company responsible for Second Life™ development, released the

code of their Second Life viewer a number of alternative solutions were developed to satisfy

different user needs (e.g. stereoscopic 3D visualization, multiple display usage). The Second

Life viewer provides all the most basic and important features to enable users to navigate and

interact with the virtual environment. With the Second Life viewer spaces can be explored,

walking around, meeting people, chatting, shopping, creating objects, etc. Customizing avatar

appearance, earning money, creating a business, are other features supported by this viewer.

A complete description of functionalities are available at the Second Life website
34

. Figure

5.1 presents Second Life Viewer version 3 in use.

33

 Third party viewers to connect to Second Life or OpenSimulator:

http://wiki.secondlife.com/wiki/Alternate_viewers#non-linden (last accessed: 25 February 2012).
34

 Second Life description: http://secondlife.com/whatis/ (last accessed: 15 November 2011).

Chapter 5. Prototyping Experience Alternatives

97

Figure 5.1: Second Life Viewer

5.1.2 Support for importing virtual objects

Virtual objects are typically created through a viewer at runtime. However viewers pro-

vide limited support for virtual object creation when compared with game engines. Many

thousands of developed objects are freely available including buildings, furniture, daily ob-

jects, cars and planes. The Google 3D Warehouse
35

 is a popular site for users to share and

gather 3D content. Consequently a major advantage for the creation of virtual environments

is the possibility of importing virtual objects build using third party tools. The Project Mesh

viewer introduces a major advantage over the Second Life Viewer because it is possible to

create complex environments just by adding previous or third party developed objects instead

of creating all from scratch. The more realistic the prototypes are, the more accurate is the

representation of a ubicomp environment, contributing to improving user experience and im-

mersion.

The Project Mesh viewer is based on Second Life viewer. It provides the same function-

ality but introduces the capability of including objects, known as meshes, that are created in

external 3D computer graphics software such as Blender, Maya, 3DS Max and Google

Sketchup. The file format supported by the objects is the COLLADA 1.4 specification sup-

35

 Google 3D Warehouse: http://sketchup.google.com/3dwarehouse/ (last accessed: 27 February

2012)

5.1. Alternative User's Experiences

98

porting triangles and polygons (no support for nurbs, surface patches, etc.). This specification

format can be consulted at the khronos website
36

. Most 3D computer graphics software sup-

ports this format and provides tools that enable the conversion from other formats to COL-

LADA and vice-versa. Once an object is created and saved in the COLLADA format it can

be uploaded into the OpenSimulator server using the Project Mesh Viewer's import function-

ality. The object is processed by the server and represented in the virtual environment. It must

be noted, however, that while the Project Mesh viewer is able to correctly interpret these

meshes, if another viewer is used (without mesh support), meshes will not be rendered cor-

rectly. Figure 5.2 shows the visualization of an environment composed of mesh and non-

mesh objects through the Project Mesh viewer, and Figure 5.3 shows the result of using a

viewer that does not support meshes.

Figure 5.2: Rendering of meshes with Mesh Project viewer

Figure 5.3: Rendering of meshes with a viewer which does not support meshes (the ob-

jects present are not meshes)

36

 COLLADA format specification: http://www.khronos.org/collada/ (last accessed: 1 March

2012)

http://www.khronos.org/collada/

Chapter 5. Prototyping Experience Alternatives

99

Since the Mesh Project viewer was made available, Second Life™ showed an interest in

the power of meshes
37

. Consequently during the summer of 2011 mesh support was made

available in the Second Life viewer and the Project Mesh viewer was discontinued. Users

must now pay for the import of mesh objects whereas before it was free. However, more re-

cently the Phoenix Viewer Project Inc. (a non-profit incorporated organization)
38

 decided to

release a viewer with free mesh support, the Firestorm Beta 3 Viewer
39

.

5.1.3 Supporting 3D visualization

A different approach to improve user experience, improving the texture of their experience, is

to provide users with stereoscopic 3D visualization. Dale's SL viewer improves the Second

Life viewer by supporting a set of stereoscopic modes that can be used to improve user im-

mersion. According to Dale's SL viewer web page
40

, these modes are:

1. Anaglyph Stereo (Red/Cyan Glasses): the impression of depth is achieved

through the use of glasses and two images overlapped with different colours and

lagged contours [82] (See Figure 5.4);

2. Passive Stereo (dual Projector): to obtain a stereo effect the use of two projectors

for one screen is required and the user requires polarized glasses where each lens

only allows visibility of the projected images of one projector [82];

3. Active Stereo (Shutter Glasses): this mode requires shutter glasses and only one

projector but with high video frequencies. The stereo effect is achieved by the

separation of the frames displayed to each eye. This means that through the shut-

ter glasses the right eye sees half of the frames and the left eye sees the other half

[82]. Figure 5.5 shows the process of Active Stereo.

The major advantage of using this viewer is that a stereoscopic 3D visualization provid-

ing support to different stereo modes is offered. This visualization provides a richer experi-

ence to users because they can feel more immersed. User reaction to design changes can

37

 Second Life™ interest in Meshes: http://community.secondlife.com/t5/Featured-News/Mesh-

Coming-to-Second-Life-This-Summer/ba-p/902061 (last accessed: 15 November 2011).
38

 Phoenix Viewer Project Inc: http://www.phoenixviewer.com (last accessed: 6 March 2012)
39

 Firestorm Beta 3 viewer: http://phoenixviewer.blogspot.com/2011/09/firestorm-beta-3-with-

mesh-support.html (last accessed: 6 March 2012).
40

 Dale’s SL viewer: http://sl.daleglass.net/ (last accessed: 15 November 2011)

5.1. Alternative User's Experiences

100

therefore be evaluated more accurately because users are closer to the physical ubicomp envi-

ronment being prototyped. The prototyping gains in realism and therefore user experience is

potentially enriched.

Figure 5.4: Dale's SL Viewer in anaglyph stereo mode

Figure 5.5: Active Stereo - shutter glasses behaviour

5.1.4 Supporting multi displays systems

Another possibility to improve user immersion in the prototypes is to adapt the traditional

Second Life viewer for large scale immersive displays such as CAVE (Cave Automatic Vir-

tual Environment, see Figure 5.6) and other multi-projector systems [83]. Multiple computer

screens provide immersion that enables a much richer experience than using just one screen.

The approach of CaveSL uses multiple concurrent Second Life logins across an unlimited

number of machines to provide multiple display support. Figure 5.7 shows data and display

synchronization between all viewers (Second Life clients).

Chapter 5. Prototyping Experience Alternatives

101

The major advantage of this solution is to provide users with a richer and more immer-

sive experience by providing a wide view of the space they are exploring (see Figure 5.8).

Figure 5.6: A CAVE
41

Figure 5.7: Data and display synchronization with CaveSL
42

41

 Adapted from the Virtual Development and Training Center (VDTC) website:

www.vdtc.de/en/en_dru/press-photos.htm (last accessed: 10 January 2012)
42

 Adapted from the CaveSL website:

http://projects.ict.usc.edu/force/cominghome/cavesl/index.html (last accessed: 10 January 2012)

http://www.vdtc.de/en/en_dru/press-photos.htm
http://www.vdtc.de/en/en_dru/press-photos.htm
http://projects.ict.usc.edu/force/cominghome/cavesl/index.html

5.2. Virtual Environment Creation

102

Figure 5.8: CaveSL with 3 clients running at the same time (adapted from [82])

5.2 Virtual Environment Creation

In the previous sections a number of viewers supporting different styles of interaction with

the virtual world were described. However a fundamental prerequisite for using these solu-

tions is to develop a virtual environment. This section presents this creation process.

The process of developing a rapid prototype in APEX includes the creation of a virtual

environment close enough to the physical target system providing an adequate and realistic

experience for users. An environment is created for the user or users by means of a viewer

through the OpenSimulator server. The smart library example was created without using

mesh objects. All the objects of this example were developed within the viewer. Creating the

environment first involved developing a flat terrain where the building containing the ubiqui-

tous environment was to be situated. The process of creating sophisticated elements such as

chairs, bookshelves and tables was accomplished by linking basic shapes. Figure 5.9 shows

the linkage of basic shapes, leading to the creation of a chair through the viewer. At the end

of the creation process a virtual environment is created. Figure 5.10 shows snapshots of the

use of the library prototype.

Figure 5.9: Linkage of the elements composing a chair

Chapter 5. Prototyping Experience Alternatives

103

Figure 5.10: Smart library prototype created in the OpenSimulator server

Alternatively, it is also possible to create a simulation using objects that are already

available. This can be accomplished by uploading them into the environment. Figure 5.11

shows the upload of a mesh object using the Project Mesh viewer. Once uploaded the object

can be moved to the desired location. This is done using viewer features provided for object

manipulation (e.g. object movement, scale and rotation). Once the virtual environment is cre-

ated the space can be explored by simulated users using avatars.

5.3 Conclusions

The aim of this chapter was to explore alternatives to improving user experience while inter-

acting with the prototyped environment. Solutions to improve different aspects of the experi-

ence include, stereoscopic 3D and multi-display support. Although not addressed in this

chapter (already discussed in Chapter 3.1), the use of external physical devices also helps

immersion by providing a more natural style of interaction. By using these solutions we aim

to provide a richer experience for users when experiencing the prototyped ubicomp environ-

ment. How much immersion is enough and when simpler solutions provides the same user

experience results has been discussed by Bowman & McMahan [84].

It is important to evaluate environments in terms of aspects that are difficult to address

with exhaustive model analysis (e.g. experience). For this purpose it is of major importance

5.3. Conclusions

104

to use a virtual environment representation of the system under development. The support for

exploring these spaces in different ways aims to provide users with a more complete experi-

ence, as close as possible to the one provided by the target physical ubicomp environment.

Figure 5.11: Mesh upload through the Project Mesh viewer

105

Chapter 6

Ubiquitous Environments Analysis

6 Ubiquitous Environments Analysis
Ubicomp environments are difficult to analyse because of the large number of different ele-

ments involved in their construction, including features of ambient intelligence and distrib-

uted computing. As a result of the complex interactions arising from the combination of mul-

tiple sensors, devices and users in a physical space, observation of episodic use of the proto-

type alone is not sufficient to guarantee that some particular feature of the system is a general

property of the design. It becomes difficult to establish whether observations made about use

are truly representative of all possible interactions or whether certain characteristics of the

system are true in all possible scenarios.

In APEX the behaviour of the ubiquitous system simulated within virtual environment is

described using a CPN model. The fact that behaviour is driven by a CPN model makes it

possible to analyse the behaviour of the prototype systematically and exhaustively using CPN

Tools. The model-based approach makes it possible to reason about systems providing an

adequate base for analysis. It is this analysis of ubicomp environments that forms the discus-

sion of this chapter.

Because of the multilayer approach (Section 3.1.2), APEX prototypes can be analysed

with real physical sensor data. The results of experiments, using the virtual and physical lay-

ers, help to focus analysis to particular contexts. These contexts relate to conditions that are

likely to be encountered at runtime. Tools such as Replay [85] can be used to capture and

play back sensor traces reflecting realistic scenarios that can be either analysed or tested

within the modelling layer or alternatively experienced or tested at the simulation layer.

Hence the design can be explored interchangeably at three different layers (modelling, simu-

lation and physical). Common analysis techniques as well as the use of empirical and hypo-

thetical data are easily usable as will be demonstrated.

6.1. Approach

106

Despite a possible behaviour being apparently correct at the simulation layer (by user ex-

ploration through the 3D simulation) it is useful to evaluate important aspects exhaustively

thereby avoiding erroneous deductions. These situations can occur because, in experiencing

the environment, the analysis is not exhaustive and consequently some features can work for

specific uses but fail for different ones. Analysis, accomplished at the modelling layer, pro-

vides an accurate and exhaustive examination from which errors/faults are highlighted with

little effort. For example, when experiencing the prototype at the simulation layer, the gate

can behave correctly when an avatar gets close to it. However, the behaviour of the gate can

fail when several avatars get close to it at the same time. At the simulation layer several ava-

tars are needed to test this situation. In the modelling layer this situation is analysed just by

adding values (e.g. user identifiers, presence sensors detections) to the scenario that is used to

represent avatars close to the gate.

The application of special purpose heuristics to the design of the ubiquitous environment

is the basis of the discussion. The description of the proposed approach starting from devel-

oped modules through the process that leads to property verification is presented. Finally,

alternative analysis approaches are suggested.

6.1 Approach

The heterogeneous features of ubicomp environments pose challenges to developers in ana-

lysing them. As stated the model-based approach makes systematic analysis of the environ-

ment behaviour easier because technical aspects are abstracted. Being able to guarantee and

check properties are the focus of concern here. There are other dimensions of analysis (e.g.

user experience) that are not directly covered here.

Usability heuristics [68] are a starting point for analysis using the APEX system. In this

approach the analyst is encouraged to explore how well a particular design supports general

properties that encourage ease of use. The analyst or team of analysts bring their expertise in

human factors or their understanding of the domain to decide where there are issues (for ex-

ample in relation to ease of recovery, or the visibility of the effect of explicit or implicit ac-

tions) in the design that deserve being investigated through verification. When the verifica-

tion detects problems, they can then propose design improvements.

Chapter 6. Ubiquitous Environments Analysis

107

6.1.1 Tool support

To achieve systematic and exhaustive analysis of the CPN behaviour model, the verification

capabilities of CPN Tools are used. These tools provide a modelling and verification envi-

ronment for Coloured Petri Nets. Particularly relevant here is the State Space (SS) tool.

Reachability graphs (also known as state spaces or occurrence graphs) and a number of im-

plemented standard queries are the means provided by this tool to accomplish the analysis.

The tool generates a reachability graph that defines the states that can be reached from some

starting state. Each node of the graph represents an execution state. Each binding of the vari-

ables associated to a transition is represented by an arc (the notion of binding is explained in

Section 2.2.2). Figure 6.1 illustrates part of one of these graphs. The whole graph represents

all possible executions of a ubicomp system showing which actions can be executed in each

system state. Nodes and arcs are numbered and their values can be consulted (e.g. variable

idRead="removed" of the arc caption in Figure 6.1). Arc captions indicate the selected bind-

ing which triggered the transition. Node captions indicate the tokens present in all places of

the model for that particular execution state (thus describing the system state).

Figure 6.1: Reachability graph

The process of verification of a property involves applying a query to relevant states in

the reachability graph. These queries are used to explore standard properties like reachability,

liveness, fairness and boundedness [58]. Queries are used to request information about the

generated reachability graph that demonstrate the truth of corresponding properties. Standard

queries together with ML code are used to write specific queries about the CPN models, for

example to demonstrate that the system always works as expected. The returned result is ei-

ther that the query is true of all relevant states or that the query fails to be true, in which case

the path to the failing state is deduced. This path can then be used to explore situations that

6.1. Approach

108

may be of interest from the perspective of the design of the ubiquitous system. More details

about these tools are contained in the CPN Tools State Space manual [44] .

In APEX the CPN model (composed of modules) represents the behaviour of a ubiqui-

tous environment and is the basis for exhaustive analysis. The SS tool creates a reachability

graph computed up to some limit (e.g. number of nodes/arcs, time), executing a deterministic

CPN model with all possible bindings. To create the graph, the colour sets defining the val-

ues used in the bindings should be finite. During the graph creation process a node is created

whenever a binding leads to a new state of the model. Otherwise the binding is represented as

an arc connected to the existing node that represents the reached state of the model.

6.1.2 Patterns

The approach uses verification patterns adapted from standard properties based on both us-

ability heuristics and a broader range of properties used in other fields [86]. A particular set

of property patterns is provided by the IVY tool [87]. This tool is a model-based usability

environment for the analysis of interactive systems. In IVY, patterns define property tem-

plates, expressed in temporal logic, which must be instantiated to the particular details of the

system and property under consideration. This instantiation process creates a temporal for-

mula that can be verified. Analysis is performed automatically on the developed models using

a model checker.

Applying the patterns in the context of APEX raises a number of challenges. A first challenge

is how the property template, defined within the pattern, relates to the verification process. As

explained above verification is achieved using the SS tool by writing queries over the reach-

ability graph. Hence, the pattern, instead of defining a temporal logic template, must define

an algorithm skeleton describing how the reachability graph is to be explored (which queries

are needed) to perform the verification. Other challenges concern the interpretation of the

patterns, and in particular:

 Who are the users? IVY patterns assume interaction between a user and the device. In

APEX the interaction context is richer, involving spaces where several users might be

present. Hence, when considering user actions and system responses it is necessary to

consider how different users affect each other, e.g., an action by one user might trig-

Chapter 6. Ubiquitous Environments Analysis

109

ger a system response directed to a different user. It becomes relevant to consider

therefore who carried out an action or caused some change in the system state.

 What are the actions? In a ubicomp setting implicit interaction becomes relevant as

well as explicit user action. The system might be responding to conditions arising

through implicit user action or environmental change. These conditions are typically

monitored indirectly through sensors, e.g., a user entering or leaving a room. Hence,

rather than actions, situations of interest may require characterisation.

 What is being analysed? A general problem not specific to this context is whether the

property is addressing the design of the system or the model itself, i.e., whether the

property is being used to reason about features of the system’s design, or is being used

to validate the model itself. This affects the interpretation of the reachability graph.

Indeed, while some nodes correspond to states of the ubiquitous system, others corre-

spond to intermediate execution states of the model.

In this chapter and the next these interpretation challenges are clarified with concrete ex-

amples.

6.2 Setting Up the Analysis

APEX performs formal analysis of models using the SS tool. To be able to accomplish analy-

sis with APEX some steps are necessary. This section shows them. The model conversion,

the scenario selection for analysis using the purpose built tool APEXi and finally the usage of

the SS tool allows verification of properties based on the generated reachability graph.

6.2.1 Model conversion

For a property to be verified, the model must be converted to a form that will allow CPN

Tools to check the truth of the property. CPN Tools require that the model be deterministic

and small so as to reduce the search space used during analysis. The SS tool then uses brute

force to bind each variable to each of its possible known values, creating the reachability

graph.

6.2. Setting Up the Analysis

110

A model is considered to be nondeterministic, as defined in CPN, when the execution of an

enabled transition can lead to a state that cannot be uniquely determined by the binding of the

transition’s variables. The use of random distribution functions (e.g. Poisson and Student) or

the reading of unpredictable values (external information exchange) leads to these situations.

In both situations the bindings of the transition’s variables cannot be uniquely determined and

are therefore unpredictable. The application of the SS tool to a nondeterministic model is not

feasible because it is not possible to create a constant reachability graph in different SS tool

executions (states cannot be identified deterministically). A model conversion must be ac-

complished prior to SS tool usage. This conversion removes non-determinism by substituting

two types of functions (distribution functions and external information exchange functions)

by reading from a finite set of values (a small colour set). CPN Tools define a set of up to one

hundred elements to be a small colour set. In the context of distribution functions, if there is a

known limited set of all possible values that are used or are significant these random distribu-

tion functions can be substituted by small colour sets. Consequently, the SS tool can use

brute force to consider all different possibilities. The same happens with information ex-

change functions that are substituted by functions that read from small colour sets composed

of the possible values to be read.

Because, under normal conditions, an APEX model exchanges information with the vir-

tual world simulation and/or actual physical external devices, the model is nondeterministic

and can in principle be of unlimited size. This large open model must therefore be translated

into a closed one, to make it tractable within the SS tool. Closing the model means isolating it

from external components. As explained above, this is achieved by defining finite sets of pos-

sible values for all the variables in the model that previously held values acquired externally.

A small example is presented to illustrate this conversion process.

Figure 6.2 and Figure 6.3 illustrate the conversion of a non-deterministic module to a de-

terministic one. This module is responsible for reading information sent from the other layers

and to analyse it to decide which module of the model will process it. The receiveString func-

tion is used to read external data (Figure 6.2). The function is substituted by the reading of

values from a small colour set (Figure 6.3) composed of 13 different values (the values pre-

sent in the box) making the module deterministic. This is accomplished by introducing a

place (Commands) initialized with a list of all possible values to be read. This list is used by

the transition and values to be processed are selected randomly (e.g. newUser) and bound to

Chapter 6. Ubiquitous Environments Analysis

111

the id. The run place (see Figure 6.2) was removed because it is now the case that before the

reading of values from the small colour set these have to be initialized. The run place was

added to the small colour set initialization modules that are first executed.

Figure 6.2: DataTypeReading non-deterministic module

Figure 6.3: DataTypeReading deterministic module

read data typerun

run
UNIT

1`()

UNIT

datatype read

dataType
DATATYPE

dataType

run

()

()

output(dataTypeRead);
action
(receiveString());

dataTypeRead

able to
read

ableToReadableToRead

1

1`()

id
STRING

DATATYPE

datatype read

dataTypedataType

()

able to
read

ableToReadableToRead

read data type Commands

AllCommandsAllCommands

UNIT

id

1

1`()

13

1`"DynamicObjIni"++
1`"DynamicObjUpdate"++
1`"LightSensorIni"++
1`"LightSensorUpdate"++
1`"PresenceSensorIni"++
1`"PresenceSensorUpdate"++
1`"SensorDelete"++
1`"TimeSensorIni"++
1`"UserList"++
1`"lightSensor"++
1`"movementSensor"++
1`"newUser"++
1`"presenceSensor"

6.2. Setting Up the Analysis

112

The problem of this conversion appears when the set of possible values exchanged with

the other layers is larger than 100 (upper limit size of small colour sets). For instance the set

of values used by timeSensor (senses the actual time) and movementSensor (senses user

movements) typically consist of more than one hundred values. This means that after having

proceeded with the model conversion, selection criteria must be taken into consideration to

choose which values will be present in the small colour sets. For example, it might only be

relevant to consider when the user arrives at or leaves the area covered by the movement sen-

sor. In this case movements while not near the sensor do not need to be considered

6.2.2 APEXi tool - scenario selection and small colour sets initialization

APEXi, a component of APEX, is used to initialize small colour sets semi-automatically. The

tool provides an interface to enable analysts to supply or select desired values to populate

with tokens the corresponding places of the CPN model as represented by a chosen scenario.

Different scenarios can be tested by passing different values to the model as input using the

APEXi tool. This tool and its usage is described in this section.

Analysis Models

The amount of work associated with model conversion makes the analysis process relatively

slow. For this reason the conversion process was simplified. The simplification introduced is

that only specific modules developed for a particular situation need to be converted (e.g. gate

module, screen module), for all other modules the corresponding closed versions are pro-

vided. Two CPN base models for the use of developers are provided as part of APEX. The

original CPN base model (Appendix A) drives the virtual environment and is used for user

exploration of a proposed design. A closed version of the CPN base model the CPN analysis

base model (Appendix B) is used for analysis. This analysis model is a semi-closed version of

the original one. It uses small colour sets instead of reading functions and contains modules

responsible for small colour sets initialization. However, these modules include some reading

functions to read values from APEXi used to fill the small colour sets. Despite having these

reading functions and being potentially non-deterministic, this semi-closed model is still ade-

quate for analysis because after the small colour sets are initialized the reading functions pre-

Chapter 6. Ubiquitous Environments Analysis

113

sent are no longer executed. Consequently, this model is equivalent to providing a determi-

nistic model to the SS tool with the advantage that it has the capability of initializing the

small colour sets present. Notice that this model is usable for analysis with the SS tool only

after the initialization of the small colour sets.

Architecture and User Interface

The second step after model conversion consists in scenario selection. The APEXi tool was

developed to reduce configuration effort prior to analysis and to satisfy the need for CPN

small colour sets initialization. The selection of desired values representing a scenario is es-

tablished semi-automatically using this tool. APEXi enables selected and provided values to

be inserted automatically into the respective small colour sets of the deterministic model

making it ready to be tested. Useful situations, i.e. the ones that occur in practice through

typical use can easily be recreated and tested avoiding typical verification problems associ-

ated with considering all possible values (e.g. state explosion). The selection of adequate val-

ues for analysis is an important step that the analyst must consider carefully.

The APEXi tool aims to reduce the time needed to create scenarios to be tested as well as

increasing analysis automation. It reuses part of the APEX communication/execution compo-

nent responsible for exchanging information with CPN models. Modules that receive values

sent by the APEXi tool also use functions of the Comms/CPN library [77] that connects CPN

Tools with external processes as done in APEX (see Section 3.1.1). The Figure 6.4 illustrates

how APEXi tool relates to the remaining components through connection to the APEX be-

havioural component.

Figure 6.4: APEXi tool connection to the APEX behavioural component

6.2. Setting Up the Analysis

114

APEXi supports small colour sets initialization and its graphical user interface (GUI) is

presented in Figure 6.5. The GUI provides support for the enrichment of the small colour sets

by providing lists and checkboxes that enable the selection of the scenario to be considered

for analysis using the model. For example, the UsersIDs list (Figure 6.5) enables the insertion

of the users' names (e.g. Silva and Cardoso). The interface contains a collection of lists that

are labelled with the names of all small colour sets that can be populated with the values pro-

vided. The small colour sets are always the same considering the type of elements provided

(e.g. presence sensor). Depending on the particular scenario being analysed some small col-

our sets do not need to be initialized (e.g. presence sensors not used) or additional fields used

to initialize the small colour sets associated with the new type of elements may be required

(e.g. use of new type of sensors). The association between the lists (e.g. which users a pres-

ence sensor affects) is specified sequentially i.e., the position of the values in the lists (line

number) is considered and used to make associations.

To illustrate APEXi a scenario involving two users is analysed (see Figure 6.5). The val-

ues that represent their behaviour in the scenario are inserted in the APEXi interface so that

they can form the relevant small colour set. Some elements of the InitialCommands field are

checked. This means that, in this scenario, the connection of the users to the simulation (ne-

wUser), the initialization by the analyst of the presence and light sensors (PresenceSensorIni,

LightSensorIni) and the synchronization of the dynamic objects with the value provided (Dy-

namicObjIni) are simulated.

In the list AllCommands the presenceSensor field is checked enabling the simulation of

the detection of users by the presence sensors. The lightSensor is checked enabling the simu-

lation of the light level variation of the environment. The values of the light are associated

with the hour of the day provided in the Hours field. In this example three levels are possible

(1, 2 and 3). The UserList is checked enabling the variation of the elements that compose the

user's list.

The ObjIDs field makes it possible to specify the identifiers (must be numbers) of the

dynamic objects present. Their features are specified in the OBJfeatures lists. In this scenario

the object present is in the position (x=121, y=122, z=120) and it is a window (Type field

value). Two users are present (UserIDs field). The user Silva has an associated list with vary-

ing content (Listfeature lists). The value 1 (Values field) can be added or removed (PUT and

REM values of the Actions field). To associate values to the list of the Cardoso user the sec-

Chapter 6. Ubiquitous Environments Analysis

115

ond line of the Listfeatures lists should be completed. In this scenario two presence sensor are

present with identifiers PS1 and PS2 and with the actions to detect new users (PUT) and clear

the list of detected users (CLEAR). This information is present in the presenceSensorsIDAc-

tion field. The list of users to which these sensors react are present in the S_UserIDs field.

The information is associated sequentially. Consequently the presence sensor PS1 reacts to

the user Silva and the presence sensor PS2 reacts to all users present (ALL value).

Figure 6.5: APEXi interface

This scenario is also composed by one light sensor (LS1). One identifier is specified in

each line. The Sfeatures lists are used to specify the features of each presence sensor. In this

case the presence sensor PS1 affects the object with id one (first line of the lst_objID field),

has a threshold of 2 (first line of the Threshold field) and is in the position x=120, y=120,

z=120 (first line of the Position field). The presence sensor PS2 affect the object with id one

(second line of the lst_objID field), has a threshold of 3 (second line of the Threshold field)

and is in the position x=10, y=10, z=120 (second line of the Position field). Analogously the

list LSfeatures is used to specify the features of the light sensors. In this case the light sensors

has initially the value of one (Value field) and the position x=121, y=120, z=120 (Position

field). Analogously the lists TSfeatures and MSfeatures are used to specify the features of the

6.2. Setting Up the Analysis

116

time and movement sensors. Since these sensors are not used in this scenario these lists are

empty.

The values selected and provided specify the sequence of actions that happen in the sce-

nario. A description of each element of the APEXi GUI is presented below. The APEXi GUI

has the following elements:

1. InitialCommands: offers the list of commands to be executed before starting the ex-

ploration. The newUser option simulates the connection of a new user to the simula-

tion and is the only command of the list (see Figure 6.5) which is not an APEX com-

mand provided to users in the exploration of the environment through a viewer, see

Appendix E for a list of commands provided by APEX to users. As explained in Ap-

pendix E these commands are used to synchronize components of the simulation with

the model (e.g. sensors) before the exploration. For example it does not make sense to

execute the PresenceSensorUpdate command without executing the PresenceSen-

sorIni command first;

2. AllCommands: offers the list of all commands to be executed continuously throughout

the exploration once the initial commands have been executed. Some commands are

provided by APEX (e.g. PresenceSensorIni, see the Appendix E) while others repre-

sent events in the simulation (e.g. PresenceSensor). The users' positions are not repre-

sented in the model. Rather, identifiers of users detected by presence sensors are used.

Consequently, the use of the PresenceSensor command simulates the reading of new

user identifiers, which represent the movement of avatars in the scenario. The list of

detectable users is provided in the S_UserIDs list (see description below);

3. Hours: offers the list of possible hours being used during the exploration enabling the

consideration of time in the specification of a scenario;

4. ObjIDs: makes it possible to specify the list of dynamic object identifiers present. It

makes it possible to indicate which dynamic objects compose the scenario;

5. UsersIDs: makes it possible to specify the user identifiers present;

6. S_UsersIDs: user identifiers that presence sensors react to. Used to specify to which

users a presence sensor reacts to. Each line in the list corresponds to the presence sen-

sor in the same line in the presence sensors' IDs list (first list of the presenceSensor-

sIDAction lists);

7. LS_IDs: identifiers of the light sensors that are present;

Chapter 6. Ubiquitous Environments Analysis

117

8. TS_IDs: identifiers of the time sensors that are present;

9. Sfeatures: a set of three list boxes (List_objIDs, Threshold and Position) describing

the features of each presence sensor. The features of each sensor are represented in its

corresponding line (the first line of each list box corresponds to one sensor, the sec-

ond line of each list box corresponds to a different sensor, etc.). These features are the

following:

a. List_objIDs: list of object identifiers which the presence sensor affects;

b. Threshold: distance from which the presence sensor triggers an action;

c. Position: the position of the presence sensor (as stated, each line refers to the

features of the corresponding presence sensor).

10. LSfeatures: describes the features of each light sensor. Their features are the follow-

ing:

a. Value: list of light sensors values from 0 to 23 (representing the light level

throughout the day). These are used to modify the intensity of the light of the

scenario;

b. Position: positions of the light sensors.

11. TSfeatures: list of time values (year, month, day, hour, minute, second and elapsed

seconds) of the time sensors. For example, dates are used in the model to associate

them to an action. In the figure only one date is present but more dates can be added

(one date per line).

12. MSfeatures: list of time values triggered by the movement sensors. Used to identify

the time of specific movement in the scenario;

13. OBJfeatures: features of the dynamic objects present.

a. Position: positions of the dynamic objects;

b. Type: type of dynamic objects.

14. Listfeatures: values associated with the users (users' list).

a. Actions: possible actions to perform in the users' list, add an element (PUT) or

remove (REM);

b. Values: list of information to be associated with each user through the actions.

In the figure the number 1 indicates the identifier of the book (present in the

ObjIDs field) desired by the user Silva. Each line in the list corresponds to

values of the user in the corresponding line (field UsersIDs).

6.2. Setting Up the Analysis

118

15. presenceSensorsIDAction: describes information associated with the presence sensors.

a. Ids: list of presence sensor identifiers;

b. Actions: list of presence sensor actions. The action PUT adds user identifiers

to the list of users detected by the sensor. The list of detectable users is pro-

vided in the presented S_UserIDs list. The action CLEAR removes all the ele-

ments from the identifiers detected list and the action REM removes one ele-

ment. As stated this is used to simulate user movement.

The interface also contains 3 buttons to:

i) establish the connection between APEXi and the model (Connect);

ii) start the values initialization process (Initialize);

iii) leave the application (Exit).

The Initialization Process

A more detailed description of the initialization process is now presented. The connection

request between APEXi and the CPN model is started by pressing the connect button in the

APEXi interface. The connection is accepted at the modelling layer by the module of Figure

6.6 which forwards received values to the dataTypeAPEXi fusion place. After the communi-

cation has been established the populating process can start. This process is not straightfor-

ward. Figure 6.7 shows a small colour set initialization module. This module reads the type

of values transmitted from APEXi present in the dataTypeAPEXi fusion place. These values

are sent one by one. Depending on the tokens held in the place different transitions may fire.

There are different modules to initialize different small colour sets. Figure 6.7 represents a

module that initializes the object and user identifiers. It initializes two small colour sets, Ob-

jIDs and UsersIDs and it is executed when values of these types are sent by APEXi. All types

of elements present in the APEXi interface are supported. APEXi sends each selected value

to the CPN model preceded by its type (e.g. UsersID Silva). In the example if the type of the

value sent is equal to UsersID, then a token representing the user identifier sent is inserted

into the place which holds the small colour set of all user identifiers (place UsersIDs). The

value of the inserted token is obtained by the returning value of the receiveString reading

function associated with the transition. After that, a token is inserted into the

ready2ReadAPEXi fusion place enabling the populating of other small colour sets (Figure

Chapter 6. Ubiquitous Environments Analysis

119

6.7). The initialization process stops once all values are forwarded to their corresponding

small colour set.

Figure 6.6: APEXi and CPN model connection module

Figure 6.7: Module which initialize some small colour sets (e.g. UsersIDs, ObjIDs)

()dataTypeRead

()

dataTypeRead

()

()

SmallColorSetsInitialized

[dataTypeRead="END"]

ReadDataTypeFromAPEXi
output(dataTypeRead);
action
(receiveString());

InitializeConection

action
acceptConnection(connName,9002);

able to
read

ableToRead UNIT

runINI

run
UNIT

ToolConnected

ready2readAPEXi
UNIT

dataTypeRead

dataTypeAPEXi
DATATYPE

dataTypeAPEXi

ready2readAPEXi

run

ableToRead

idReadidRead

idRead idRead

()

dataTypeRead

()

dataTypeRead

SmallColorSetsIni1

[dataTypeRead="UsersIDs"]

output(idRead);

action
(receiveString());

SmallColorSetsIni

[dataTypeRead="ObjIDs"]

output(idRead);
action
(receiveString());

IDs

AllIDs
STRING

ObjIDs

ObjIDs
STRING

UsersIDs

UserIDs
STRING

ToolConnected

ready2readAPEXi
UNIT

dataTypeRead
dataTypeAPEXi

DATATYPE
dataTypeAPEXi

ready2readAPEXi

UserIDsObjIDs

AllIDs

6.2. Setting Up the Analysis

120

The selected values simulate the information that can be read from the simulation and

physical layers for a particular situation. Providing these values makes it possible to create

specific scenarios and to analyse them avoiding the need for a time consuming exhaustive

analysis that arises as a result of the state explosion that results from the large set of values.

The prototype developer is the one who transforms a scenario into values of the APEXi

tool to be analysed. The different features supported by APEXi have been presented. An il-

lustration of how a complete concrete example is specified in APEXi is presented in the next

chapter.

Once all small colour sets are initialized the model can be analysed exhaustively with the

SS tool. The next section presents the instruments provided by the SS tool for this exhaustive

analysis.

6.2.3 Reachability graph and analysis

This section describes first a resulting reachability graph and how it is interpreted. Secondly

the concepts concerned with the SS tool for analysis are presented through a simple example.

Reachability graph

Applying the SS tool to the initialized model creates a directed graph with all possible execu-

tions of the model as limited by the small colour sets. Figure 6.8 provides a partial represen-

tation of one of these graphs. The selected values for the initial commands in the example

were newUser, presenceSensorIni, TimeSensorIni and DynamicObjIni as shown in Figure

6.9. Consequently node 6 of Figure 6.8 has four successor nodes. These nodes represent each

of the possible bindings. As an illustration, arc number 9 (from node 6 to node 10) represents

the binding of the variable id (which is used to identify the command read) with the value

DynamicObjIni. This information is represented in the arc caption ({id="DynamicObjIni"})

in Figure 6.8.

As stated the value of each node and arc can be consulted and by this means it is possible

to identify the values of a state (the tokens present in each place of the model), in the case of

nodes, or the binding value of variables, in the case of arcs. Figure 6.10 shows the exploration

of node 10 in the reachability graph. The second line of the figure indicates that there is one

Chapter 6. Ubiquitous Environments Analysis

121

token in the datatype_read place as expected (1`"DynamicObjIni"). It is also possible to

know that the place UsersIDs of the MovementSensorUpdate module contains two tokens,

Other and Test User. This is deduced by consulting the sixth line of the Figure 6.10 (Move-

mentSensorUpdate’UsersIDs 1: 1`“Other”++1`“Test User”).

Figure 6.8: Reachability graph

Figure 6.9: APEXi selected values

6.2. Setting Up the Analysis

122

Figure 6.10: Reachability graph node consultation

Properties - APEXi and SS tools

Properties are checked by means of the reachability graph. They are expressed by identifying

states over the reachability graph that are relevant to determining whether the system behaves

as expected (e.g. reachability property). Consider a property of a simple ubiquitous system

that helps disabled elderly people to go to the bathroom at night by showing the way using

lights that are lit as determined by sensors. The lights come on when the user is near a pres-

ence sensor and go off after a certain delay, when the user is near to another presence sensor.

Developers may wish to prove that the light always goes off when the person is near another

presence sensor (consistency property). A way to prove this could be by defining a query that

searches for states where this property does not occur. If no states are found then the property

is proved. If states are found, the property is false, and those states represent counter exam-

ples (situations where the user is near to another presence sensor and the light remains on).

Basic properties are demonstrated in this section in order to introduce the SS tool capabilities.

Chapter 7 verifies a set of potentially useful properties (e.g. consistency, feedback, prece-

dence). The next section presents proposed property patterns for ubicomp environments to be

followed in order to identify and check properties more easily.

In the example above only one module (responsible for modelling the lights’ behaviour)

needs to be added to the analysis base model. This module (presented in Figure 6.11) is com-

posed of four fusion places (objects, users, timeSensor and presenceSensor) used to deter-

mine when to turn lights on or off. For example, a light is turned on when a (registered) per-

Chapter 6. Ubiquitous Environments Analysis

123

son is near a presence sensor that affects this light. The condition [is(obj,"light") andalso

objAfectedByPresenceSensor(ps,obj) andalso userNearPresenceSensor(ps,u)] associated

with the turn light on transition is responsible for satisfying this condition. A similar condi-

tion is associated with the turn light off transition.

Figure 6.11: CPN light module

Consider now that the developer wants to verify the example property "the module turns

lights off when the user is near to another presence sensor" for a specific scenario. A sce-

nario must be provided to the APEXi tool to be analyzed by means of the SS tool. Then a

query on the reachability graph is generated, based on the scenario and model, to demonstrate

the property.

Initially a simple scenario with just one user (Figure 6.12a), one light (id=1, position

x=121, y =122, z =123) (Figure 6.12b) and one presence sensor (Figure 6.12c) is used. The

movement of the user is simulated by a series of presence sensor detections. For this purpose

the presenceSensor command is used (Figure 6.12d). In the example, the date and time

sensed are 2011-02-22 4:10:07 and 20 seconds elapsed (see Figure 6.12e). This information

is used to determine when to turn off the light. The module specifies a minimum delay of 10

seconds to turn off a light. Consequently using this scenario the delay needed to turn off the

light is satisfied because the provided seconds elapsed (20) are greater than 10.

After the initialization the next step toward verification is to specify a query that captures

this property. The desired query is composed of two simple queries which, when executed,

(obj,(#id ps))

turn light off

turn light on

Dynamic Objects

objects

P_sensors

presenceSensors

lighted
lights

objects
USER time_SENSOROBJ

(ts,obj)tsuobj
ps

presence_SENSOROBJxID
presenceSensors

input (obj);
action
(sendTurnLightOff(obj));

input (u,obj);
action
(sendTurnLightOn(obj));

(obj,id) ps (ts,obj)ts1uobj

[is(obj,"light") andalso objAfectedByPresenceSensor(ps,obj) andalso userNearPresenceSensor(ps,u)]

historyusers

usersusers

T_sensor

timeSensortimeSensor

[objAfectedByPresenceSensor(ps,obj) andalso nobodyNearPresenceSensor(ps) andalso
(#id ps <> id) andalso userNearPresenceSensor(ps,u) andalso (timeElapsed(ts1) - timeElapsed(ts)) >10]

time_SENSORxOBJ

6.2. Setting Up the Analysis

124

enable the analysis of the stated property (if it is true or not). Breaking the property into two

queries facilitates the verification. The first query identifies nodes that are then provided as

arguments to the second query. These queries are responsible for the:

1. identification of nodes in which the light is on;

2. verification that the light is turned off from the nodes identified by the first query.

The first query identifies nodes of the reachability graph where the light is on (Figure

6.13). The query uses the predefined PredAllNodes query (described next) that looks for

nodes that satisfy a provided condition. In this case the condition is that the number of tokens

in the place (lighted lights, see Figure 6.13) that describe the lights as turned on is greater

than zero. The variable lightID (Figure 6.13) holds the values (i.e. id, position, objType) of

the light selected for the analysis (provided to APEXi). The execution of this query over the

reachability graph (lightNodes lightID) returns the list of nodes in which the light is on

(Figure 6.14).

Figure 6.12: Specification of elements in the APEXi interface: a) one user; b) one light;

c) one presence sensor; d) user movement simulation; e) one time sensor

Chapter 6. Ubiquitous Environments Analysis

125

Figure 6.13: Lights' on query

Figure 6.14: List of nodes where the light is on

The second query identifies the nodes in which the light is turned off. The query looks

for the states where the light is on (previously obtained, variable resL) and can be turned off,

i.e. a light off state is reachable. The initial steps are to identify dark nodes (i.e. when the

light is turned off). This is accomplished using the same reasoning as was used for the first

query (Figure 6.15). Then the Light2Dark function identifies the nodes from which a Dark

node can be reached. This function uses the predefined SearchNodes function (also described

next) used to obtain desired states that satisfy specified conditions. The predefined Reachable

function is also used to identify the reachability between two nodes.

Figure 6.15: Light turns off property

6.2. Setting Up the Analysis

126

The Light2Dark function execution over the graph returns an empty list. This means that

for the developed module and selected scenario the light never turns off. The explanation for

this situation is that the module developed only turns off a light when the user is near a pres-

ence sensor that was different from the one responsible for turning on the light. In the se-

lected scenario only one presence sensor is used so it is obvious that the light will never turn

off. As demonstrated the selection of adequate scenarios is essential for the adequate verifica-

tion of properties.

With the introduction of a second presence sensor (Figure 6.16) the analysis produces a

different set of results. A list of states is returned by the Light2Dark function where the light

turns off in the new scenario.

Figure 6.16: Inserting two presence sensors in the APEXi interface

Defining the queries is a detailed process that should not be done in an ad hoc way. An

approach is needed to support query development. Property patterns have been developed to

help in this development and are presented in the next section.

The standard searchNodes and predAllNodes queries used in the previous queries are

now clarified. The SearchNodes query identifies nodes of the graph and takes six arguments

used to filter and evaluate the nodes. These arguments are:

 Search area: indicates the part of the state space to be searched;

 Predicate function: used to ignore some nodes during the analysis;

 Search limit: indicates how many times a predicate function should evaluate to true

before terminating the search;

 Evaluation function: application of a function to the nodes in the search area that sat-

isfy the provided predicate function;

 Start value: initial value of the returned results, usually an empty list ([]);

Chapter 6. Ubiquitous Environments Analysis

127

 Combination function: a function that indicates how each individual result is com-

bined with the collected ones, usually the concatenation function (::).

Some variations of this standard query are provided by CPN Tools with predefined ar-

guments that are useful to express properties. The PredAllNodes standard query is one of

them. This query is the instantiation of the searchNodes query with the following arguments:

 Search area: all nodes

 Search limit: no limit

 Evaluation function: identity function

 Start value: empty list

 Combination function: concatenation function

Reachable, ListDeadMarkings, ListLiveTIs are examples of other standard queries pro-

vided by the CPN Tools. The reachable query returns a possible path to get to the required

destination state from the specified original one: “After doing an action it is possible to return

to the previous state” is a concrete example of the use of the reachability query. The List-

DeadMarkings query returns the list of dead nodes, specifically these nodes identify system

states from which it is impossible to do anything. ListLiveTIs provides the list of live transi-

tions present in the model.

In this section a simple example was used to introduce the concepts involved with analy-

sis using the SS tool. More complex and useful examples are addressed in Chapter 7.

6.3 Property Specification Patterns for Ubicomp Environments

Patterns provide a basis for analysis serving two roles: they aid the process of elicitation of

appropriate properties and they help the analyst use CPN Tools to perform the analysis of the

instantiated property. A sample of relevant property patterns are now described. These pat-

terns are taken from those supported by the IVY tool [87] applied to the ubicomp context

(consistency, feedback, reachability, precedence, completeness, reversibility, possibility, uni-

versality and eventually patterns).

In [88] patterns are expressed as CTL (Computational Tree Logic) [89] templates to be

instantiated to concrete actions and queries. We express the patterns as queries over the CPN

model’s reachability graph where actions are represented as transitions and effects as queries

6.3. Property Specification Patterns for Ubicomp Environments

128

over states. States are defined by the values of the attributes in the model and capture relevant

configurations/conditions of the system.

All relevant patterns are presented following a common structure. Firstly the justification

and intuition for the pattern is presented. Secondly its meaning in the ubicomp context is de-

scribed. Finally a description of the algorithm skeleton to be used over the reachability graph

to prove the property is provided.

6.3.1 The consistency pattern

Justification: Consistency is a heuristic that has widespread relevance, including in the

ubicomp area [88].

Intuition: The consistency pattern defined in [88] captures the requirement that some

given event Q always causes some effect R (expressed as a query over the states before and

after Q). There is optionally an additional query (a guard) that constrains when the system

behaves consistently.

In the ubicomp context: the event (Q) is either an explicit or an implicit action by the

user. It might also be a change in the environment, or an internal action of the system. Im-

plicit actions and environment changes will be expressed in terms of the values read by the

sensors in the system. The effect of the action (R) represents a change in the state of the sys-

tem as a whole, which may be reflected in the environment itself as perceived by its users

who must also be considered. Context plays an important role. If an action by some user is

being analysed then the presence of other users might also influence the response. Hence, the

gate in the library may not close when a user leaves its neighbourhood because another user

might be close to it. All these dimensions provide a rich texture in which the pattern can be

used beyond simply providing values for Q and R. The whole context of the environment

being analysed is described by the tokens held by the small colour sets initialized by the AP-

EXi tool.

Algorithm: Relevant states in terms of the SS tool are defined as those states in the reach-

ability graph that satisfy the guard S (if defined, otherwise all states are considered). The al-

gorithm considers all transitions in the reachability graph that both originate from relevant

states and correspond to the action Q, and then asserts the query R over states that these tran-

sitions lead to. In this case the skeleton of the algorithm to be followed is presented in Figure

Chapter 6. Ubiquitous Environments Analysis

129

6.17. This skeleton is used to identify counter examples. The algorithm identifies firstly rele-

vant nodes (corresponding to the effect R) for the property being verified in the reachability

graph (identifyRelevantNodes function). Nodes correspond to states of the reachability graph.

The function parameter (obj) should be provided in agreement with the scenario being used

for the analysis (i.e. the variable obj must be of the type of the tokens present in the place

(PLACE) analysed). From the identified relevant nodes (returned by the identifyRelevant-

Nodes function) the algorithm identifies the nodes of the counter example (counterExam-

pleNodes function) mapping the counterExampleNodes function to the set of relevant values

of the selected scenario and holding the resulting list of nodes in a variable (CONSISTENCY).

Concrete instantiations of this algorithm are presented in Chapter 7. The underlined pieces in

Figure 6.17 are the parts that need to be instantiated. In summary, the application of this pat-

tern after being instantiated implies firstly the evaluation of the identifyRelevantNodes func-

tion. Secondly the evaluation of the counterExampleNodes function that depends on the iden-

tifyRelevantNodes function and finally the evaluation of the predicate that provides the list of

the counter example nodes.

6.3.2 The feedback pattern

Justification: Feedback is another common heuristic. A particular use of the consistency

pattern is to verify that the system provides consistent feedback.

Intuition: The feedback pattern therefore is a specialisation of Consistency, where a user

action Q always causes a perceivable effect R.

In the ubicomp context: the action (Q) must be either an explicit or implicit action by a

user, or some internal change to the system state that the user must be made aware of. The

effect of the action (R) represents a change in the environment as represented by observable

features of the environment. It is important to recognise that the person causing the system’s

response might not necessarily be the same person as the person to whom the response is di-

rected. Even if it is the same person, the fact that the response might be triggered by an im-

plicit interaction or an environment change begs the question of whether the response will be

salient enough. At this stage issues such as salience are not being considered, rather the con-

cern is to guarantee that feedback is always provided. It is likely that evaluating the salience

6.3. Property Specification Patterns for Ubicomp Environments

130

of a particular feedback will require input from the simulation (an example of synergy be-

tween the formal and empirical analysis - but see [69] for a formal treatment of salience).

Figure 6.17: Consistency/feedback property algorithm skeleton

Algorithm: The algorithm considers all transitions in the reachability graph, from relevant

states, that correspond to the action Q and then asserts the query R to the states that these

transitions lead to. Relevant states in terms of the SS tool are defined as those states in the

reachability graph that satisfy the condition S. The algorithm skeleton to be followed and

instantiated is the same as defined for Consistency. The restriction to verify a feedback prop-

erty with this algorithm is that the relevant nodes being analysed (returned by the identi-

fyRelevantNodes function, see Figure 6.17) should cause a perceivable effect. Hence, Feed-

Chapter 6. Ubiquitous Environments Analysis

131

backAlgorithm(Q,R) = ConsistencyAlgorithm(Q,R) where Q always causes a perceivable

effect R.

6.3.3 The reachability pattern

Justification: reachability is a basic property from which other properties are derived (e.g.

precedence, completeness). It can be used to demonstrate that the system can reach a specific

state or situation.

Intuition: The reachability pattern captures the requirement that the system can always

evolve from one specific state S to another state Q.

In the ubicomp context: the environmental situation is represented as a state with particu-

lar distinguishing features, for example, the light associated with a book being switched on,

or a user being at a given location. Hence, some features of the state are directly controlled by

the system (the light in the book), while others are observed (the user’s position). Neverthe-

less, the observed features might be indirectly influenced by the system (e.g., the gate, when

it opens, enables the user to move inside the library). In a complex system, establishing how

these influences work will not be easy, and performing verification will help in this respect.

Algorithm: The algorithm uses the reachability graph and identifies desired states with

identifying attributes. For each identified state S the algorithm checks whether it is possible

to reach a new state Q with the desired environment attributes. The associated algorithm

skeleton is presented in Figure 6.18. It identifies all target nodes (state Q – targetNodes func-

tion). The token (TOKEN) and the place of the model where to search for (MOD-

ULE'PLACE), need to be in agreement. In a similar way original nodes (state S – original-

Nodes function) are identified. From each node of the original list the algorithm identifies the

nodes from which it is impossible to reach a node of the target list (the counter examples -

held in the REACHABILITY variable). If the returning list of nodes is empty this means that

for each state S it is possible to reach a new state Q with the desired environment attributes.

Concrete instantiations of this algorithm are presented in Chapter 7. The application of this

pattern after being instantiated (underlined parts of the model) implies two evaluations.

Firstly the evaluation of the targetStates and originalStates functions. Secondly the evalua-

tion of the SearchNodes function (Figure 6.18), that depends on the values returned by the

targetStates and originalStates functions (variables TS and OS).

6.3. Property Specification Patterns for Ubicomp Environments

132

Figure 6.18: Reachability property algorithm skeleton

6.3.4 The precedence pattern

Justification: The precedence pattern describes the relationship between a pair of

events/states where the occurrence of the first is a necessary pre-condition for the occurrence

of the second.

Intuition: This pattern captures the requirement that a state or event S precedes another

state or event P. The occurrence of the second is enabled by the occurrence of the first.

In the ubicomp context: This property can be used to verify that some event or state does

not occur without the satisfaction of a pre-condition. Consider for example the stated property

concerned with the illumination of a book light. The first state (S), triggered by a user action

(for example, the user approaching the book), is a pre-condition for the occurrence of the

second state (P – book light turning on). In this example the property requires that the light

will never turn on without a relevant user approaching the book. Note that this does not guar-

antee that the light will always turn on when a relevant user approaches the book. That is ex-

pressed by the consistency pattern.

Algorithm: The algorithm identifies the target states (P) of the reachability graph and then

verifies the presence of the original state S in the list of predecessors states of P. The algo-

rithm skeleton is presented in Figure 6.19. It identifies all target nodes (state P – targetNodes

function) looking for tokens in a specific place (e.g. book with id 1 in the lightedBooks

place). Analogously the same approach is taken to identify the original nodes (state S - origi-

nalNodes function). Finally for each node of the target nodes’ list the algorithm identifies all

Chapter 6. Ubiquitous Environments Analysis

133

predecessor nodes and check whether they are not members of the original nodes list (counter

examples - hold in the PRECEDENCE variable). If the returning list of nodes is empty this

means that each state P is preceded by a state S.

The underlined pieces in the algorithm are the part that need to be instantiated. The token

(TOKEN) to look for, and the place in the model that need to be searched (MOD-

ULE'PLACE), must be provided. The application of this pattern after being instantiated is

accomplished by evaluating the targetNodes and originalNodes functions and subsequently

the searchNodes function which depends on the returned values from the targetNodes and

originalNodes functions (TN and ON variables).

Figure 6.19: Precedence property algorithm skeleton

6.3.5 The completeness pattern

Justification: this enables the determination of all system states that can be reached from

any state in the system in only one action. This property may be useful to check if features of

the environment are always easily accessible to users. By easy we mean here that they are

achieved in just one action.

The intuition: is to verify that a user can get from a state S to any other state in one step.

In the ubiquitous context: A new state is identified by a change of the environment at-

tributes and the change is triggered through one explicit or implicit action. Who made the

action or satisfied the condition is not relevant. The focus here is to determine that given any

6.3. Property Specification Patterns for Ubicomp Environments

134

situation in the environment it is possible to move to all other possible situations/states in one

step (e.g. user action, change of context).

Algorithm: The state S is represented in the reachability graph. The algorithm skeleton

present in Figure 6.20 is used to verify the property. It checks whether the successors of the

state S contain all possible system states. The variable ALLNODES holds all nodes of the

reachability graph. The propertyHoldsNODES variable holds all nodes that are reachable

from S (NODE_S variable) in only one action. Finally the variable COMPLETENESS indi-

cates if the property analysed is verified (number of nodes of the reachability graph should be

equal to the number of nodes reached in only one step from S) for the state analysed. The

algorithm skeleton should be instantiated (underlined parts) with the node representing the

state S.

Thimbleby and Oladimeji [90] argue that completeness is a way of measuring usability of

interactive systems. However being able to accomplish everything in just one action can of

course lead to low levels of usability. Nevertheless this pattern provides the possibility to

check the completeness of the system.

Figure 6.20: Completeness algorithm skeleton

6.3.6 The reversibility pattern

Justification: undo is a very important feature of most systems to provide the means of

undoing mistakes (wrong actions). The property is important to prevent user frustration.

Chapter 6. Ubiquitous Environments Analysis

135

Intuition: This property requires that the effect of action Q on attributes in S can be un-

done eventually. The intention is to check whether the effect of an action can eventually be

undone.

In the ubicomp context: some actions are implicit and consequently it can be difficult to

undo them. One feature associated with this property is that the action performed (Q) should

provide feedback in the environment. If this does not occur then it is difficult for a user to

decide whether the effect is undone. Additionally it is difficult for users to undo the effect of

an action if they do not know what was the cause of the effect. Indeed because many users

can interact in the environment an effect can be caused by another user. This property pattern

can be verified by an algorithm but this does not mean that users know how to undo the ef-

fect. Characteristics such as these are the focus of the user experience analysis provided by

the 3D simulation of APEX.

Algorithm: If we were dealing with an undirected graph the verification of this property

would be immediate. However the reachability graph is a directed graph and consequently to

verify the property we check that from a desired state an action leads to a new state and the

previous state can be reached. This can be done by finding all the states reached by executing

Q and applying the reachability pattern from that state to the state before Q. Figure 6.21

shows the algorithm skeleton to identify all states reached by executing Q (OUTNODES vari-

able). To verify a reversibility property the nodes before Q (AQN) are provided as the target

nodes of the reachability pattern and the nodes after Q (OUTNODES) are provided as the

original nodes of the reachability pattern. Analogous to previous patterns this algorithm needs

to be instantiated (underlined parts).

Figure 6.21: Algorithm skeleton for the identification of the nodes before and after Q

6.3. Property Specification Patterns for Ubicomp Environments

136

6.3.7 The possibility pattern

Justification: The intent of this property is to express that some event or state is always

possible throughout the execution of the system. Note that it does not require that the state or

event actually happens in a specific execution of the model, only that it is possible that it will.

This property can be used to identify features of the system that cannot be accessed.

Intuition: this property pattern means that an event or state P is always possible to be ac-

cessed.

In the ubicomp context: consider an ubicomp system that sends alerts, this is crucial to

know independently of the system state if it is always possible to reach the alert state P.

Algorithm: the reachability graph provides all possible states that can be reached by the

execution of the system. The algorithm checks if for every state we can reach the state P. This

can be done by applying the reachability pattern from all states (original nodes in the reach-

ability algorithm) to P (target node in the reachability algorithm). The function of Figure 6.22

provides every node of a reachability graph (ALLNODES variable).

Figure 6.22: Function to provide all nodes of the reachability graph

6.3.8 The universality pattern

Justification: this property pattern aims to demonstrate that a property is always true

throughout the system execution. Consider for example that we want to verify that the num-

ber of objects in the environment remains constant throughout the system execution.

Intuition: the intent presented by Campos et al. [87] is that some event or state occurs in

every state of the execution of the system.

In the ubicomp context: In the example given above this means that the number of ob-

jects (attributes) in any state of the system possesses always the same value. This relates to

the interpretation of patterns presented in Section 6.1.2 in particular to what is being ana-

lysed. In this example the property is more focussed to validate the model itself instead of

addressing the system's design.

val ALLNODES =
 SearchNodes (EntireGraph,fn n => true, NoLimit, fn n => n, [], op ::)

Chapter 6. Ubiquitous Environments Analysis

137

Algorithm: each state of the reachability graph is analysed, checking whether their attrib-

utes satisfy the property. The Figure 6.23 shows the algorithm skeleton to be used. The vari-

able ALLNODES holds all nodes of the reachability graph. The propertyHoldsNODES vari-

able holds all nodes where the property is true. Finally the variable UNIVERSALITY indicates

if the property analysed is always true for every state (number of nodes of the reachability

graph should be equal to the number of nodes where the property is true). The underlined part

of the figure should be instantiated to identify the nodes that hold the property being verified.

Figure 6.23: Universality property algorithm skeleton

6.3.9 The eventually pattern

Justification: the need to demonstrate that a state or event can become true.

Intuition: this property pattern means that a state or event P eventually becomes true as

stated by Campos et al. [87].

In the ubicomp context: this property pattern is used to identify whether an undesired be-

haviour can occur. For example in the case of the book light example, whether the light can

be on and off at the same time is a relevant property to be verified.

Algorithm: this property is verified by analysing each state of the reachability graph and

identifying whether at least one state possesses the attributes that satisfy the property. Figure

6.24 presents the algorithm skeleton to be used. The propertyHoldsNODES variable holds all

nodes where the property is true. The variable EVENTUALLY indicates if the property ana-

lysed is true. The number of nodes where the property is true is greater than zero. The under-

lined part of the figure should be instantiated to identify the nodes that hold the property be-

ing verified.

6.4. Alternative Analysis

138

Figure 6.24: Eventually property algorithm skeleton

In Chapter 7 some of these property algorithm skeletons are made concrete through ex-

amples by instantiating them. Results demonstrate that this approach is adequate for analysis

while providing a uniform process for the identification and verification of properties.

6.4 Alternative Analysis

Besides state space analysis different techniques are also possible using the models with tai-

lored queries. For example, CPN simulation together with state consultation can be used. The

advantage of this simulation is that the model can be selectively executed step by step using

an approach similar to program execution. This provides a way to see, by state consultation,

how the system reacts in particular situations. This alternative form of analysis also serves as

a complement to the exhaustive analysis. For example, when counter examples for some

properties are identified, CPN simulation is used to recreate the identified situation and iden-

tify/understand the potential reasons for the failure. CPN simulations are provided with the

CPN Tools and are automatically applicable to the developed models.

It is likely that evaluating a ubicomp environment by analysing its behaviour exhaus-

tively does not guarantee that the proposed design solution provides an adequate experience.

As seen with the feedback property pattern, a system satisfying this property could mean that

at some level the system provides feedback but nevertheless the crucial elements of the envi-

ronment that are actually required for feedback are missing from the analysis. It is impossible

to know from this analysis if the feedback provided is salient, if it can be seen by the user or

what it will look like physically. These are issues raised by analysis performed only at the

modelling layer. However, as the APEX framework provides a multi-layered prototyping

approach each layer supports a specific type of evaluation. Besides analysis of the model in

the modelling layer, observation of virtual objects’ behaviour, and user reaction, within a

virtual environment are possible in the simulation layer and, observation of real objects con-

Chapter 6. Ubiquitous Environments Analysis

139

nected to the virtual environment, and users reaction to them in the physical layer. The analy-

sis provided by these two additional layers are used as solutions to complement the analysis

accomplished at the modelling layer.

6.5 Programmed Avatars

Besides formal analysis, the modelling layer supports the reasoning about the ubicomp envi-

ronment being prototyped and provides features to make the simulation with several avatars

simpler. APEX allows the creation of scenarios with programmed avatars. This is a different

topic from providing values to the presence sensors in APEXi. Here the concern is to experi-

ence in the 3D simulation situations with several avatars and few or only one real user. When

many users are involved simulations can be costly. The advantage of using programmed ava-

tars is clearly identified when considering the human resources needed to experience large

ubicomp environments where many users are interacting (e.g. an airport). With programmed

avatars these costs are reduced because just one real user is strictly needed to evaluate the

experience. Several programmed avatars were modelled that involved different navigations

through the environment enabling one real user to experience the situations where many users

are present. For example, the modelling of several programmed avatars arriving at a gate of

the library at the same time makes it possible for the user to observe the behaviour of the gate

when many users are within its proximity.

Avatars are programmed by defining their movement (other forms of interaction are cur-

rently not supported). This movement can be defined manually or use previously recorded

information of real users exploring the simulation. Figure 4.5 in Section 4.3 shows the

movement module of a programmed avatar.

Using programmed avatars the numbers of real users needed to analyse a scenario in the

simulation is reduced as we can have a mixture of real users and programmed avatars. Alter-

nating between non-programmed (driven by real users) and programmed avatars is easily

achieved in APEX.

6.6. Conclusions

140

6.6 Conclusions

This chapter described the analysis of ubicomp environments made with APEX. The process

used to accomplish the analysis was presented. It involves the use of the analysis base model

and the closing of additional modules to make it tractable.

Because some system aspects can have an effectively infinite set of values (e.g. time) and

some scenarios are not useful for some properties, adequate value selection criteria is critical

to effective analysis. When infinite values are needed the exhaustive analysis of all possible

executions is infeasible, being consequently necessary to select adequate scenarios for analy-

sis. The APEXi tool was developed to increase the automation of the analysis process and to

make the scenario selection process easier. Scenario creation is simplified by providing de-

sired values to the APEXi tool, which is responsible for populating the small colour sets.

The SS tool is applied to the resulting model, creating the relevant reachability graph.

Queries are written over this graph in order to verify desired properties. Property patterns

were specified to help developers identify relevant properties and write queries over the

reachability graph. The patterns make it easier to verify properties using APEX.

This approach is illustrated in the next chapter using a smart library and an aware home

as contexts. The examples illustrate the choice of property patterns and how their associated

algorithm skeletons are instantiated in each example and then checked within the APEX

framework.

The proposed analysis approach considers the development of queries in the ML lan-

guage using property patterns that originally used properties formally described in CTL. An

alternative approach for analysis could be the writing of CTL queries in the CPN tool using

the ASK_CTL library [91]. However ASK_CTL has some limitations. Standard fairness

properties cannot be expressed in ASK_CTL. Our approach enables the verification of a

wider range of properties directly in ML. Because ASK_CTL queries are written in the ML

language it will be possible to use ASK_CTL with the proposed approach if it is so wished.

The advantages of using programmed avatars for analysis with APEX were described.

Additionally, alternative analysis approaches through CPN simulation and physical device

usage where identified. The analysis based on the modelling layer is adequate for exhaustive

and formal analysis providing support to verify useful properties. These different analyses

Chapter 6. Ubiquitous Environments Analysis

141

complement each other, providing more complete analysis support for ubicomp environ-

ments.

This chapter aimed to introduce the reader to the concepts involved with the analysis of

ubiquitous environments using APEX. Useful analysis results are presented using larger and

more useful examples in the next chapter.

6.6. Conclusions

142

143

Chapter 7

Examples

7 Examples
Examples of ubiquitous systems are considered in this chapter to highlight different aspects

of the APEX framework (e.g. experimentation and analysis). These examples show the valid-

ity of the resulting prototypes and the expressiveness and application domain of the tool.

Parts of these examples have already been used to introduce concepts.

7.1 Smart Library

The first example is a smart library where books are identified by means of RFID (Radio

Frequency Identification) tags, and stored on bookshelves. Screens are used to provide infor-

mation to library users. A registered library user is allowed entry or exit via gates. When reg-

istered users arrive at the entry gate, a screen displays which books have been requested by

them earlier (possibly using a web interface at their desktop) and opens the entry gate.

The system recognises the user’s position in real-time through presence sensors. It guides

the user to the required books by means of screens or the user's PDA. As the user approaches

a requested book's location a light with a specified colour is turned on. Several users who are

looking for books in nearby locations can thereby distinguish their own request. When the

book is removed or a certain time elapsed, the light on the book is turned off. As the user

returns to the exit gate a personalised list of requested and returned books is displayed on a

screen by the gate. The gate is then opened so that the user can leave.

This example is not highly problematic and can be considered somewhat anachronistic

assuming a future of paper books on shelves. However while the example is not based on any

specific existing system, systems similar to this can be envisaged to support dispatch in rela-

7.1. Smart Library

144

tion to e-shopping or for guiding people inside buildings (e.g. hospital or airport). Indeed, a

method and system for localizing objects among a set of stacked objects equipped with im-

proved RFID tags has been patented [92] suggesting the feasibility of the physical implemen-

tation of the system.

A system like the proposed could be used as part of a “chaotic storage system”. A chaotic

storage system stores different types of items without allocating fixed positions to specific

item types in order to maximize the usage of storage capacity. The Bosch factory in Braga
43

uses this system to store components between different phases of the production process. The

existing working process is divided into two working spaces where the second space needs

the material produced by the first space. Because of the vast diversity of products that are

produced, a chaotic storage space is used between the two phases of the production process.

This means that when workers need to store or collect specific items they need to determine

where they should be/are stored and locate that position. A similar solution to the one used in

the library could be used to locate and retrieve materials.

In the case of the library example a number of interesting issues can be explored. For ex-

ample if 10 or 20 people look for books located on the same bookshelf at the same time it

may be difficult for each to distinguish their own colour. Additionally the flashing of colours

may disturb people as they are reading. Technological issues may also be explored in the

prototype. For example, exploring different configurations of a virtual sensor in the virtual

environment could help in the selection of a physical sensor to be used in the physical ubi-

comp environment. The proposed solution for locating books in a library is not claimed here

as a perfect solution. The focus of concern is to explore the potential of APEX to enable the

exploration of alternative design solutions and to identify issues that could be difficult or im-

possible to detect at a modelling layer. Additionally, the verification of properties of the be-

havioural solution is also considered.

7.1.1 The model

Creating the prototype involves, in addition to creating the virtual environment, extending the

CPN base model provided by APEX (Appendix A) with the specific behaviour associated

43

 Bosch - Braga: http://www.bosch.pt (last accessed: 3 January 2012)

Chapter 7. Examples

145

with the particular ubiquitous environment. The resulting model is then used to drive the vir-

tual environment so that it can be used for evaluation as users explore the space. It is also the

basis for verification. This section presents two modules that must be added for this example

(the gate modules and the PDA module that directs the user).

In the smart library a number of modules are designed to simulate the behaviour of gates,

books, PDAs and displays. The Gate module is described using CPN in Figure 4.2 (Section

4.2.1, page 61) and holds information about the users, the devices and relevant presence sen-

sors in the environment. As stated in Section 4.2, the purpose of the gates module is to open a

gate when a user, who has appropriate “entering” permission, is in the proximity of a pres-

ence sensor associated with the gate. The Gate module consists of a transition to open a gate

and another one to close it. Whether the module will open or close the gate is based on in-

formation held in a number of places: Dynamic Objects (i.e. gates), Users and P_sensors

(presence sensors). When executed the transitions carry out their associated action: sen-

dOpenGate function in the case of the open gate transition, and sendCloseGate function in

the case of the close gate transition. These functions are responsible for sending the identity

of the gate that is to be opened or closed to the simulation layer.

The opened or closed state of the gates is recognized in two places: the Dynamic Objects

place (holds tokens for closed gates) and the gates opened place (holds tokens for opened

gates). The is function is used to identify, in the Dynamic Objects place, what type of objects

we are dealing with, particularly here to identify the gates. This is necessary because the Dy-

namic Object place holds dynamic objects other than gates (e.g. screens, books). The distinc-

tion is based on the token's information type that the tokens hold (e.g. gate, screen). The func-

tion is designed to receive a Dynamic Object and a string as arguments, and to compare the

type of the object against the string to check whether there is a correspondence. After the

token is identified as being a gate, it is necessary to get further information to decide whether

to open or close the gate. Relevant information is required to ascertain if:

1. a user is near a presence sensor;

2. the presence sensor affects the gate;

3. nobody is near the presence sensor.

Three functions were developed to capture these conditions, respectively:

1. userNearPresenceSensor;

2. objAfectedByPresenceSensor;

7.1. Smart Library

146

3. nobodyNearPresenceSensor.

Using them the behaviours of the gates are modelled. A module responsible for providing

directions to users to reach the books they have requested was also added. This is presented

in Figure 7.1. Using both the user’s position and the position of the desired books, the getDi-

rection function (associated with the show direction transition) returns the direction to be

followed (e.g. North, North East, South, East, etc.). This information is then forwarded to

each avatar's PDA connected to the simulation (sendUserInfo function of the show direction

transition). This information is interpreted by the APEX communication/execution component

and provided to avatars in possibly different ways (e.g. text, arrows, voice). When the direc-

tion is sent to a physical PDA and arrows are used, the application running on it must orien-

tate the direction correctly, for example, a southwest direction obtained from the model

(originated from the show direction transition) must be converted to an arrow pointing in the

appropriate direction. Other important modules developed include one responsible for pick-

ing up books and notifying relevant users.

Figure 7.1: User's PDA book direction module

Once all specific modules are connected to the base model they animate the library envi-

ronment that is to be explored by users as described in Section 4.2.3.

For the purposes of exhaustive analysis the modules must be added to the analysis base

model (Appendix B), and the analysis process carried out as explained in Section 6.2.

show direction

[userNearPresenceSensor(ps,u) andalso isPDAofUser(pda,u) andalso isLookingForBook(obj,u)]

show default

[isPDAofUser(pda,u) andalso (id= #id ps) andalso presenceSensorTimeElapsed4user(ps,u)]

OBJ

PDA's default info

PDAs

PDA's
with new direction info

PDAxSENSORID

P_sensors

presenceSensors

users

usersusers presenceSensorsPDAs
USERPDA presence_SENSOR

(pda,#id ps)

input (u,ps,obj);
action
(let
 val info = getDirection(u,ps,obj)
 in
 sendUserInfo(u,info)
 end
);

ps

obj

upda

u (pda,id)pda ps

Dynamic Objects

objectsobjects

Chapter 7. Examples

147

7.1.2 Instantiating property templates

Having obtained an appropriate model, it is now possible to proceed with the analysis. This

complements the results obtained by evaluating the users’ experience of the prototype. Ana-

lysts may know which property they want to prove (e.g., by observing real users as they in-

teract with the simulation), but they can also have difficulties in identifying them appropri-

ately. Property templates help them in this task. By capturing (and thus guiding the analysis

towards) potentially relevant features of a design, they help the analyst discover appropriate

properties. Additionally, using property algorithm skeletons makes it easier to verify proper-

ties because queries used in instantiating each of the property patterns can be reused. Three

property patterns are considered in relation to this example: feedback, reachability and prece-

dence (their description can be found in Section 6.3). This section shows how the templates

help the identification of properties (associated with patterns). It starts by presenting what the

pattern is about and provides the means to reach a specific property for analysis based on a

situation relevant to the example. The next section focuses on showing how algorithm skele-

tons help in the verification of identified properties and presents the process that is involved.

Feedback

This pattern is used for the identification and verification of relevant feedback properties. It is

used to capture the requirement that some given event causes an effect. In this concrete ex-

ample feedback is a relevant property. For example, one specific situation where feedback is

relevant is when users approach their wanted books and the light associated with the book

should be turned on. The feedback template describes this situation formally as a generic

property. The pattern facilitates verification through the associated algorithm skeleton (as will

be described in the next section). Parameters for property templates are instantiated with user

interactions, environment changes and features or states of the environment. In this case the

feedback variables were instantiated with the following values:

 action (Q): defined as the implicit action that occurs when the user approaches the

book. The proximity of the user to the book is detected by presence sensors in the en-

vironment;

 effect (R): defined as changing the environment so that the relevant light is switched

on;

7.1. Smart Library

148

 guard (S): defined as stating that the light must initially be off for this property to

hold.

These particular variable assignments identify and formally describe the stated situation as

being a feedback property. The following property is identified: “when a user approaches the

appropriate bookshelf the book lights up (unless it is already on)”. However there are proba-

bly other variable assignments that do not produce interesting or meaningful properties. This

template requires variables to be assigned to help identify the particular feedback property

but the interest or usefulness of the resulting property is not guaranteed and depends on the

selected values.

Reachability

This pattern is used for the identification and verification of reachability properties. It is used

to capture the requirement that the system can always evolve from one specific state to an-

other specific state. In this concrete example reachability might be relevant for example when

a user should be notified that the book being looked for has been picked up by another user.

The reachability template provides two variables (initial state Q and target state S as ex-

plained in Section 6.3) to be assigned. The following values can be used to describe formally

the situation as being a reachability property:

 state Q: a book that a user is looking for is picked up by another person (stops being

available);

 state S: the user is notified.

These variable assignments identify the situation as the following reachability property:

"If a book that a user is looking for is picked up by another person (stops being available), it

is possible to notify the user".

Precedence

This pattern is used for the identification and verification of relevant precedence properties. It

is used to capture the requirement that the occurrence of a state or event is enabled by the

occurrence of a first state or event. In the example this type of property might be relevant. For

example, one specific situation where precedence is relevant is that a book light should not

Chapter 7. Examples

149

turn on while the user desiring it is not close to it. The precedence template variables (state S

and then state P) are assigned with values relevant to the precedence property:

 state S: relevant user is near the bookshelf;

 state P: the light turn on.

These variable assignments identify the following property “the light does not turn on

while the relevant user is not near the bookshelf”.

7.1.3 Checking the model using the SS tool

As stated in Chapter 6 APEX provides support for analysis. The SS tool plays a crucial role

in the checking of properties. The use of the property patterns related to the properties in the

previous section is now considered. This section illustrates the verification of useful proper-

ties of the smart library example through the instantiation of property skeletons.

Feedback

The developer should select a scenario with adequate values for the desired analysis as illus-

trated in Section 6.2. The scenario that is used as a basis for analysis using the feedback

property "when a user approaches the appropriate bookshelf the book lights up (unless it is

already on)" uses the following selected values provided to APEXi (see Figure 7.2):

 one user (Test User) who desires the book with identifier number 1 (values field);

 two presence sensors, one at the entrance and the other near the bookshelf. The sen-

sors affect the gate and the book's light (Sfeatures field) respectively;

 two books with identifiers 1 and 2 (OBJfeatures fields);

 one gate with identifier 3 (OBJfeatures fields).

Using the feedback pattern, the information that is required includes the identification of

all possible paths that the models might take when reacting to the user approaching the book-

shelf. These paths would be explored to see if the desired behaviour holds. At any moment

many different events might be triggered in the specified environment. When the user ap-

proaches the bookshelf, depending on how the model is developed, it might react immedi-

ately, or might delay the reaction until it has finished reacting to other events. From a sys-

7.1. Smart Library

150

tem’s design perspective, what needs to be guaranteed is that after all relevant events have

been processed the book light will be turned on.

Figure 7.2: APEXi - selected values

For this purpose the algorithm skeleton of this pattern (see Figure 6.17) was instantiated

(see Figure 7.3), turning the algorithm into concrete functions and trying to identify a counter

example. The identifyRelevantNodes function of the algorithm skeleton was instantiated with

the place where to search (i.e. Books'LightedBooks) to identify the relevant nodes (see Figure

7.3). This function identifies the desired nodes of the reachability graph i.e., the ones that

provide the desired feedback. In this case the nodes are the ones that have books with lights

switched on. The other generic part of the algorithm skeleton was also instantiated (under-

lined part of Figure 6.17), the place AnimationSetup'Dynamic_Objects used to identify the

nodes to be used in the analysis, arguments of the counterExampleNodes function (see Figure

7.3).

After being instantiated, this concrete algorithm identifies, in this case, those nodes

where the user is near the desired book and the book's light has not turned on (FEEDBACK

variable in Figure 7.3). The algorithm identifies firstly the nodes in the reachability graph

where the user is already detected near the bookshelf, but the system is still to react. From

these nodes the system can either turn the book's light on, or alternatively choose to process

some other relevant event. Selecting the second alternative (doing something else), creates

Chapter 7. Examples

151

the executions from which a node with the book's light on is not reached (counterExam-

pleNodes function). The resulting list of nodes is empty. This means that for the analysed

scenario (considering the values provided) there is no system execution containing a node

where the light should be turned on but was not.

Summing up, the feedback property algorithm skeleton was used to verify the property

template. As stated the instantiation is simply accomplished, in this case, by indicating the

places where to search for the relevant nodes used by the algorithm.

Figure 7.3: Book's light behaviour property (concrete feedback algorithm instantiation)

The property "whenever the designated user moves away the light turns off" is another

feedback property relevant to this example and its demonstration follows the same procedure

but using a different instantiation of the algorithm skeleton. The instantiation is accomplished

indicating the places where relevant nodes can be identified (in this example these are when

7.1. Smart Library

152

the light is off). This property demonstrates a different feedback property that concerns how

the light turns off.

Reachability

The property, "If a book that a user is looking for is picked up by another person (stops being

available), it is possible to notify the user" is now addressed. This is a reachability property,

and its verification thus follows the algorithm skeleton associated with the reachability pat-

tern (see Figure 6.18). In this case this property verifies if, for every user looking for the same

book and every time the book is picked up a user notification state is reachable.

As in the previous example, this property is verified using a specific scenario. The sce-

nario is composed of books, presence sensors and three users (Silva, Rodrigues and Cardoso)

looking for the same book (with identifier equal to 1). The property algorithm skeleton

should be instantiated, considering the selected values for the small colour sets specified in

APEXi. For example, in this instantiation (Figure 7.4), the user Silva and the book with id

equal to 1 are values of the parameter (userIDxOBJ) used because these are elements which

compose the scenario selected for analysis (APEXi selected values).

The idea behind the demonstration of this property is to identify states from which a user

picks up a book and the system is not able to reach a notification state for users looking for

this book. In other words the aim is to find counter examples where the system does not have

the required properties. Figure 7.4 shows the instantiation of the reachability pattern algo-

rithm skeleton (see Figure 6.18). This is achieved by instantiating the targetNodes and origi-

nalNodes functions to identify the relevant nodes (see underlined pieces in Figure 7.4). The

places (i.e. BookPickUp'User_Notified and BookPickUp'OBJ_deleted) used to identify the

nodes to be used in the analysis and concrete tokens (i.e. userIDxOBJ and book) to be identi-

fied in these places are provided. By this means the desired property can be verified.

The execution of this concrete algorithm identifies firstly all notification nodes (returned

by the targetNodes function). When these have been identified all nodes in which the book is

picked up are identified (returned by the originalNodes function). The final stage is to iden-

tify any node in which the book is picked up and from which no notification can be made, i.e.

no notification node is reachable (hold in the REACHABILITY variable). Checking this prop-

erty using the skeleton (with each of the three users as parameter) returns no nodes (REACH-

ABILITY variable value) which means that for the selected scenario (three users looking for

Chapter 7. Examples

153

the same book) whenever a user picks up a book it is possible to notify all users looking for

the book. For the selected scenario this property is verified.

Figure 7.4: Notification property (concrete reachability algorithm instantiation)

Precedence

The third property "the light does not turn on while the relevant user is not near the book"

follows the precedence property pattern. To reach a state where the light is on, a relevant user

must be near the book. The instantiated precedence algorithm skeleton consists in firstly iden-

tifying the nodes where the light is on (targetNodes function instantiation, Figure 6.19) and

secondly analysing their predecessors to check the presence of a user close to a book (origi-

nalNodes function instantiation, Figure 6.19). In the same way as the reachability pattern, the

instantiation of the algorithm involves providing values to the functions to identify the rele-

vant nodes (i.e. MODULE'PLACE and TOKEN, Figure 6.19) in agreement with the scenario

used. The return of zero nodes means that for the selected scenario the property is always

true.

APEX through CPN provides a way to analyse formally every portion of the system be-

haviour. Depending which property is to be proved different patterns were used and associ-

ated algorithm skeletons instantiated and executed. Patterns here help developers verify iden-

tified properties and to set up the queries used to verify them.

7.1. Smart Library

154

7.1.4 The prototype

Figure 7.5 shows the smart library prototype that was created. Interacting with it, users can

experience proposed design solutions. For instance Figure 7.5 shows the book lighting system

when users are near their desired books. Some issues are identified and solutions provided.

For example, when evaluating the prototype, some users might feel that the book's light

turned on too late i.e., when the user was too close to the book. By experiencing proposed

solutions users are able to decide more accurately what the best distance between user and

book is from which the book light should turn on. Without this experience it is more difficult

to know which is the best value. Another issue resulting from user experience is presented in

Figure 7.6. This figure shows the first view of a person reading a book at a table. It was rec-

ognised that the lights illuminated by the book localization system disturbs other readers in

the same vicinity. This indicates that different solutions should be explored. Improving the

precision of the guiding system could provide an effective alternative design.

Figure 7.5: Book's lights system

The exploration of a prototype using a 3D simulation provides clear advantages when

prototyping ubicomp environments by allowing users to experience the system. This level of

analysis complements the benefits provided by the modelling layer.

Chapter 7. Examples

155

Figure 7.6: People's reading view

7.2 Aware Home

The second example aims to enable the exploration of new characteristics of APEX. In par-

ticular the example demonstrates the requirement for inter-user interaction and for the use of

different types of sensors. The aim of the proposed system, an aware home, is to improve the

quality of life and health education of child asthma sufferers. Asthma is a problem world-

wide, with around 300 million affected individuals [93]. The U.S. Heart Lung and Blood In-

stitute
44

 claims that teaching patients and their family management skills improves asthma

management and reduces the use of emergency services. Cabana et al. [94] indicate that par-

ents need support in taking appropriate action to help asthmatic children who have difficulty

identifying what triggers the asthma. Children spend the majority of their time indoors (e.g.

home). Government and non-government organizations (e.g. Mothers of Asthmatics
45

) have

developed home environment checklists but these lists provides general information and do

not reflect the individual’s real home environment [95]. The proposed system notifies parents

when their child "approaches" a trigger and offers suggestions about how to act. This infor-

mation is sent to a parent’s mobile device or to a relevant screen in a room where the parent

44

 National Heart Lung and Blood Institute Diseases and Conditions Index:

http://www.nhlbi.nih.gov (last accessed: 4 January 2012)
45

 Allergy and Asthma Network Mothers of Asthmatics: http://www.aanma.org (last accessed: 4

January 2012)

7.2. Aware Home

156

is located. Triggers are specific to individuals. They occur when relevant conditions in the

environment are met (e.g. occurrence of tobacco smoke, house dust mites, pets, mould, out-

door air pollution, cockroach allergens) [96].

The prototype was made concrete by modelling a particular physical environment, the

Aware Home
46

 at Georgia Institute of Technology (GaTech). This home contains two identi-

cal floors with nine rooms each designed to explore emerging technologies and services in

the home. The virtual environment is designed to represent the space, the sensors and the

people within the space. The asthma system was developed to contain 16 presence sensors to

detect the location of people and 16 environment sensors to detect environment conditions

(for example smoke or air quality). Presence and collocated environment sensors are distrib-

uted across rooms as shown by the numbers in Figure 7.7.

Figure 7.7: Aware Home floor plan (without furniture) with inserted sensors (one pres-

ence sensor and one environment sensor present in each number)

3D modellers at GaTech had already developed a Google Sketchup 3D model of the

Aware Home and further objects, representing furniture, were selected from an on-line 3D

warehouse
47

. The resulting virtual environment is presented in Figure 7.8.

7.2.1 The model

The aware home is designed to alert parents when their child is in danger when particular

environmental conditions have been met. This system is modelled using two modules de-

46

 Aware Home: http://awarehome.imtc.gatech.edu (last accessed: 15 November 2011)
47

 3D warehouse: http://sketchup.google.com/3dwarehouse/ (last accessed: 15 November

2011)

Chapter 7. Examples

157

scribed in Figure 7.9 and Figure 7.10. They hold information about the users and the sensors

present in the environment. The purpose of the first module is to alert parents when their

child is in the proximity of an asthma trigger. The module contains one transition to alert par-

ents and another to remove the alert. Whether the module alerts or removes alerts depends on

information held by the places: Users and P_sensors (presence sensors). An example of how

the alert works is illustrated by the condition of the Alert Parent transition (expression be-

tween square brackets). This describes how the system alerts the parent of a child as they

approach a trigger related to a specific allergy. The presence sensor is modelled using the

userNearPresenceSensor function. The transition associated with this function causes the

update of parent information with an acknowledgment (meaning that parent is alerted), de-

scribed by the updateUserValues(”PUT”,u1,”ACK”) function. The Alert Parent transition

execution moves one token into the Parents Alerted state. During this transition parents are

alerted as modelled by the sendUserInfo function. When the child is no longer close to an

asthma trigger, indicated by not(userNearPresenceSensor(ps,u)), the system removes the

token from the Child parents Alerted state. The acknowledgment that had been sent is then

removed from the relevant parents using (updateUserValues(”REM”,u1,”ACK”).

Figure 7.8: Aware Home 3D environment

7.2. Aware Home

158

Figure 7.9: Parents’ alert system behavioural model

Figure 7.10: Air quality alert system

The other module that forms the model is responsible for sending an alert when the envi-

ronment reaches an alert state (e.g. air polluted) as can be seen in Figure 7.10. The environ-

u1 u ps

Alert Parent

[mem (#UserList u) "child" andalso parent(u,u1) andalso userNearPresenceSensor(ps,u) andalso not(mem (#UserList u1) "ACK")]

child safe

[not (userNearPresenceSensor(ps,u)) andalso parent(u,u1)]

Child parent Alerted

USER

P_sensors

presenceSensors presence_SENSOR

users

users
USER

users presenceSensors

psupdateUserValues("PUT",u1,"ACK")uu1 u

input (u,u1);
output ();
action
(sendUserInfo(u1,"Your child "^(#id u)^" is near an asthma trigger!"));

updateUserValues("REM",u1,"ACK")

send alert

P_HIGH

remove alert

E_sensor

environmentSensor
env_SENSOR

Adult Alerted

USER

users

users
USER

users environmentSensor

[(#id u1= #id u) andalso #value es < 9]

u1 esupdateUserValues("REM",u,"ACK")u

[#value es >= 9 andalso mem (#UserList u) "adult" andalso not(mem (#UserList u) "ACK")]

input (u);
action
(sendUserInfo(u,"The air quality reached an alert zone!"));

u esupdateUserValues("PUT",u,"ACK")u

Chapter 7. Examples

159

mental sensor (E_sensor) uses integers to indicate the environmental air quality. When the

value is greater than or equal to 9 this means that an alert zone has been reached.

7.2.2 Instantiating property templates

As with the smart library example, having developed an appropriate model it is possible to

proceed with the analysis. As before, this section shows how property templates help analysts

in identifying and describing properties that will help in their verification. The next section

shows how the properties identified in this section are verified by instantiating the algorithm

skeletons associated with the property patterns. The same three property patterns used in the

previous example are considered in relation to this example: feedback, reachability and

precedence (see description in Section 6.3).

Feedback

This type of property might be relevant for this example. One specific situation were feed-

back is relevant is that when a child is in danger parents should be alerted. The variables of

the feedback template were assigned with the following values:

 action (Q): defined as the implicit action that occurs when the child "approaches" an

asthma trigger;

 effect (R): defined as changing the environment so that parents are alerted;

 guard (S): defined as stating that the parent must initially not be alerted for this

property to hold.

These particular variable assignments identify and formally describe the stated situation

as being a feedback property. The following property is identified: “whenever a child is in

danger parents are alerted”.

The following property "whenever a child moves away from danger parents are alerted"

is another property formally described as being a feedback property by the variable assign-

ment of this template with following values:

 action (Q): the child gets away from the asthma trigger;

 effect (R): parents are alerted;

7.2. Aware Home

160

 guard (S): the parent must initially be alerted for this property to hold.

Reachability

One specific situation where reachability is relevant is that parents can always receive infor-

mation about their child wherever the child is. The variables of the reachability template as-

signed with the following values:

 state Q: wherever parents go;

 state S: parents can receive information about their child.

formally identify the following property: "wherever parents go they can always receive

information about their child” as being a reachability property.

Precedence

An example of a precedence property is that a parent alert should always be preceded by a

child being in danger. This will prevent false alerts, and promote parents’ trust in the system.

For this concrete situation the variables of the precedence template were assigned with the

following values:

 state S: child in danger (close to asthma trigger);

 state P: parents are alerted.

This resulted in the identification of the following precedence property: "the parents are

not alerted if their child is not in danger".

Instantiating the templates with actions, effects or conditions of the environment it was

possible to identify new properties. In the next section these properties will be checked by

instantiating the associated property algorithm skeletons and using the SS tool.

7.2.3 Checking the model using the SS tool

The identified properties are verified with the help of algorithm skeletons in the development

of queries.

Chapter 7. Examples

161

Feedback

The information needed to verify the property "whenever a child is in danger parents are

alerted" is to identify all possible paths the models might take when reacting to the child ap-

proaching an asthma trigger and to see if the desired behaviour holds. At any moment many

different events might be happening in the specified environment and when the child ap-

proaches the asthma trigger, the model might react to it immediately, or might delay the reac-

tion until it has finished reacting to other events. What needs to be guaranteed is that after all

relevant events have been processed the parents will be alerted.

Having identified the feedback property (see previous section) the associated property al-

gorithm skeleton is instantiated and used to verify it. As before this instantiation is accom-

plished by providing to the identifyRelevantNodes function (see Figure 6.17) the place from

which to search (TriggersProximity'Child_parent_Alerted - see Figure 7.11) to identify the

target nodes to this situation. Additionally the instantiation of the parameter of the counter-

ExampleNodes function, is provided by indicating the place (AnimationSetup'users) where

the relevant tokens can be found.

After the algorithm has been instantiated it can be executed to verify the property. The

FEEDBACK variable (Figure 7.11) holds those nodes where the child is near an asthma trig-

ger and parents are not alerted. To identify these undesirable nodes which, if found, demon-

strate that the property is not satisfied, the function identifies firstly the nodes in the reach-

ability graph where the child is already detected near the asthma trigger, but the system is still

to react. From these nodes the system can either alert parents, or alternatively choose to proc-

ess some other relevant event. Selecting the second alternative (doing something else), the

nodes from which a parent alerted node is not reached are identified (counterExampleNodes

function of Figure 7.11). The resulting list of nodes is empty (FEEDBACK variable value).

This means that for the analysed scenario (one parent, one child, one asthma trigger, one

presence sensor and the simulation of movement of both parent and child in the home) there

is no system execution containing a node where the parents should be alerted but were not.

Feedback (consistency) properties can be easily verified by instantiating the correspond-

ing algorithm skeletons. A further example of a feedback property is "whenever a child

moves away from danger parents are alerted". This can be verified by instantiating the feed-

back algorithm skeleton. However, despite the verification of this property, parents may still

want to check that their child is surely safe. In this context this property is not as useful as the

7.2. Aware Home

162

previous one, i.e. it is more important for the system to alert parents that their child is in dan-

ger, than to alert them that (s)he no longer is.

Figure 7.11: Parents alerted property (feedback)

Reachability

The property, "wherever parents go they can always receive information about their child” is

verified by instantiating the reachability algorithm skeleton (Figure 6.18). The reachability

property pattern checks whether it is possible, from one state, to reach another state (reach-

ability between two nodes of the reachability graph). This is instantiated as “for every parent

position and every child position a parent alert state can be reached”. The algorithm skeleton

associated with this pattern (see Figure 7.12) is instantiated in the same way as the reachabil-

ity property of the smart library example. This is achieved by instantiating the targetNodes

and originalNodes functions to identify the relevant nodes (see underlined pieces in Figure

Chapter 7. Examples

163

7.12). The places (i.e. Alert'parent_Alerted and Movement'ChildinDanger) used to identify

the nodes to be used in the analysis and concrete tokens (i.e. parent and child) to be identified

in these places are provided. By this means the desired property can be verified.

The execution of the pattern identifies first all the parent's alerted nodes (returned by the

targetNodes function). Then all nodes in which the child is in danger are identified (returned

by the originalNodes function). Finally, the identification of any node from which an alert

should be made, i.e. did not reach any parent's alerted node despite the child being in danger,

are identified (hold in the REACHABILITY variable). The property did not return nodes

which means that for the selected scenario wherever parents go they can receive alerts about

their child. For the selected scenario (a child being in danger) this property is verified.

Figure 7.12: Parents alerted property (reachability)

Precedence

The verification of the property "the parents are not alerted if their child is not in danger"

follows the precedence property algorithm. The verification of this property is important in

this example because it guarantees that parents are only alerted when their child is in danger.

To reach a state where parents are alerted, the child must be near the asthma trigger. The

precedence algorithm consists in firstly identifying the nodes of the reachability graph where

parents are alerted (targetNodes function, see Figure 6.19) and secondly analysing their

7.2. Aware Home

164

predecessors (originalNodes function, see Figure 6.19) to check the presence of a child close

to an asthma trigger (hold in the PRECEDENCE variable, see Figure 6.19). The return of

zero nodes means that for the selected scenario the property is always true. Analogous to the

previous examples the instantiation of the algorithm involves providing values to the func-

tions to identify the relevant nodes (i.e. MODULE'PLACE and TOKEN, Figure 6.19) in

agreement with the scenario used.

We have demonstrated that the suggested patterns can be instantiated to new examples.

The property patterns (algorithm skeletons) identified describe a routine process on the

reachability graph to identify states and demonstrate consequent properties. A summary of

the routine processes of the property patterns verified in the examples are listed below:

 Check whether alternative concurrent transition executions hold the desired property

(consistency property pattern);

 Check state reachability from a specific state (reachability property pattern);

 Check the presence of states holding desired values in specified state paths (prece-

dence property pattern).

7.2.4 Checking non-functional properties

The physical features of the system are also highly relevant to users’ experience of it. A dif-

ferent set of results can be obtained by applying queries over the reachability graph where

physical features are key attributes. This is the focus of this subsection. Example queries

would include demonstration that the positions of the sensors are adequate to drive users to

books or that books are not present in an area that is not covered by a presence sensor. Notice

that the verification of these properties is based on information not explicitly modelled at the

behavioural level. The tokens of the model that represent the sensors are automatically up-

dated with the position of the sensors in the virtual environment. An example demonstrating

this type of property is presented in Figure 7.13.

The developed query demonstrates that for a provided scenario the distance between all

sensors that compose the environment is less than two meters. The function SensorHasOne-

SensorClose achieves this distance analysis for the sensors present in the environment. The

Chapter 7. Examples

165

function identifies the sensors that do not have another sensor close to them (less than or

equal to two units in the example).

Figure 7.13: Physical property (presence sensor distance)

This alternative analysis is also useful in the prototyping of ubicomp environments. In-

deed the verification of non-functional features of the environment can be more important

than functional ones. Imagine that analysts have verified, for the aware home example, that

whenever a child is in danger parents are alerted. This verification can be useless if the pres-

ence sensors are not located close to the asthma triggers. These kinds of verification are the

focus of this alternative analysis.

7.2. Aware Home

166

7.2.5 The prototype

The experience gained by using the APEX prototype resulted in the identification of some

issues. For instance the way that alerts are communicated to parents can be improved. Some

users prefer being notified by using fixed displays others by their PDA. However users do not

always have their PDAs with them and consequently the model should consider this informa-

tion to select how the alert is transmitted. Figure 7.14 shows a user experiencing a proposed

alert system. The small window (bottom right corner) represents the user's PDA where in this

case alerts are sent (a virtual PDA). APEX supports a multi layer approach and consequently

if some resources are not available (e.g. a physical PDA) they can be executed in the simula-

tion layer. Alternatively, as described in Section 3.1.1, physical devices can be connected

through Bluetooth when available. Figure 7.15 illustrates the reception of an asthma trigger

parent alert (Your child "Test User" is near an asthma trigger!) via their PDA connected to

APEX.

Figure 7.14: Aware Home alert system user experience

The multi-layer approach provides obvious benefits in terms of flexibility of prototyping.

As illustrated in this example, depending on the resources available, different user experi-

ences are elicited with various versions of the prototype from the more abstract (PDA as a

popup window) to the more immersive (physical PDA). This approach is flexible in the sense

that it focuses on providing user experience whatever resources are available.

Chapter 7. Examples

167

Figure 7.15: Asthma trigger parent's alert via their PDA

7.3 Serious Games Development

The APEX framework was also used to develop applications other than ubicomp systems’s

prototypes, in particular serious games. This section shows how APEX was successfully used

in the creation of an educational game.

To illustrate the applicability of APEX in the development of serious games an example

based on the aware home is used. The aim of the proposed game is to improve health educa-

tion of child asthma sufferers and their parents to improve the quality of their lives. This

game is played out in a simulation of the aware home, where APEX capabilities are used to

create a game.

Hong et al. proposed the creation of an interactive adventure game (TriggerHunter) to

improve the self-management skills of asthmatic children through an enjoyable experience

[95]. The goal of the proposed game is to educate children and their parents about identifying

asthma triggers and to learn how to control them. The original game idea is to use mobile

phones equipped with a “camera” that identifies asthma triggers and provides information on

their screen about the triggers with right and wrong possible options (see Figure 7.16). The

proposed game suggests the use of augmented reality and marker tags to identify real world

triggers to support being played at home. For more details about the proposed game see [95].

7.3. Serious Games Development

168

To avoid a costly development and deployment of the game without reducing its purpose an

alternative solution was developed with APEX.

The APEX-based game uses a 3D virtual representation of the asthma children sufferer's

home instead of using their physical home. The aware home was used for this purpose. Then

the goal of the game is to identify asthma triggers present in the home and select from the

provided options the appropriate action to deal with them (see Figure 7.17). The user controls

an avatar that moves around the house and must find asthma triggers by clicking on objects

that compose the environment. Depending on user errors (discovering a trigger but managing

it incorrectly) faults are attributed. Each time an asthma trigger is identified relevant informa-

tion about it is presented providing a more enjoyable way of learning about them. The game

finishes when all triggers are identified. The game is easily configurable, so new asthma trig-

gers and corresponding questions can be inserted into the environment using the viewer. As

previously stated asthma triggers occur when relevant conditions in the environment are met

[97]. By being aware of all existing triggers, individuals know how to act when dealing with

their own asthma triggers.

Figure 7.16: TriggerHunter game snapshot (adapted from [95])

The game was easily created on top of the virtual environment using APEX by adding to

the CPN base model a module responsible for the logic of the game (see Figure 7.18). This

module receives information from the environment when the child selects an object as being

an asthma trigger. If the selected object is an asthma trigger the module decrements the num-

ber of remaining triggers to discover and send this information to the virtual environment to

Chapter 7. Examples

169

show it to the user. The APEX communication/execution component (see Section 3.1.1) is

responsible for managing this exchange of information. When an object that is selected is not

an asthma trigger the module counts it as a fault. At the end, when all asthma triggers are

discovered the number of faults is displayed to the user indicating their performance.

Figure 7.17: TriggerHunter game asthma trigger management

Questions and alternative responses are displayed when the user selects an asthma trig-

ger. These are associated with objects using LSL scripts. Figure 7.19 shows a snapshot of the

TriggerHunter APEX-based game where an avatar selects an asthma trigger and the associ-

ated question is displayed. A video showing the usage of the game is accessible at the APEX

website
48

.

The example demonstrates that APEX seems a promising approach for the rapid devel-

opment of serious games.

7.4 Conclusions

This chapter introduced a method of evaluating ubicomp environments through exhaustive

analysis, applying and adapting heuristics chosen from other areas of HCI. Ubicomp envi-

48

 APEX website: http://ivy.di.uminho.pt/apex (last accessed: 9 February 2012)

7.4. Conclusions

170

ronments pose new challenges when compared with traditional interactive systems. The ap-

proach enables the successful exhaustive analysis of ubicomp environments through property

patterns. These patterns were instantiated with different values in the context of different ubi-

comp environments, leading to the identification of procedures to verify a set of properties.

The proposed property algorithm skeletons aim to help developers reuse predefined queries

over the reachability graph facilitating the verification of properties using APEX.

Figure 7.18: Game module

dataTypeRead
count fault

reading id

[#id u = idRead]

faults

1`0

INT

1`()

UNIT

STRINGxSTRINGxSTRING

datatype read

dataType
DATATYPE

dataType

idataTypeRead i+1

read action and id

able to
read

ableToReadableToRead

Update
user data

i

()

[dataTypeRead="TryAgain"]

[dataTypeRead="UserList"]

output(action1,idRead,elem);
action
(receiveString(),

 receiveString(),
 receiveString()

);

()

x

(action1,idRead,elem)

(action1,idRead,elem)

USER

input (u,action1,elem,i);
output(x);
action

(
 if(action1 = "PUT" andalso elem<>"0")

 then
 let val uni = sendUserInfo(u,"Now you have to find "

 ^elem^" asthma trigger(s).")
 in returnFaults(i,uni)

 end
 else if(action1 = "PUT" andalso elem="0")

 then
 let val uni = sendUserInfo(u,"Congratulations! :)"^

 " You have found all the asthma triggers with "
 ^Int.toString i^" fault(s).\n\nStart again using"^

 " the start comand.. :)\n")
 in returnFaults(i,uni)

 end
 else if(action1 = "CLEAR")

 then returnFaults(0,())
 else returnFaults(i,())
)

users

usersusers

updateUserValues(
 action1,u,elem)

u

Chapter 7. Examples

171

Figure 7.19: Trigger Hunter game using APEX - asthma trigger discovered

APEX, by using CPN, provides a way to analyse exhaustively and formally every portion

of the system behaviour for selected scenarios and to verify properties on it. The verification

of properties with APEX is limited to the information present in the models. Functional prop-

erties are verified based on the information explicitly modelled (e.g. device behaviour speci-

fication). Non-functional properties are verified based on the information present in the envi-

ronment but not necessarily explicitly modelled in the modelling layer. For example the posi-

tion of dynamic objects in the environment is automatically loaded into the modelling layer

and does not involve explicit modelling. These properties were presented as an important

feature because they enable the verification of additional aspects of ubicomp environments.

For example to consider aspects such as line of sight formally the models would need to be

enriched with architectural information, however modelling physical characteristics of the

space was not the aim here (it would overly complicate the modelling). Aspects such as line

of sight can be dealt with in the 3D simulation.

The APEX multi layer approach complements this exhaustive analysis by providing sup-

port for different types of analysis (e.g. user experience provided by the 3D simulation and/or

physical layer). Introducing physical devices to the prototype increases the realism of the

experience. APEX provides support for physical devices connected through Bluetooth. Their

usage improves realism because they are part of the final physical environment being proto-

typed. Users are able to detect usability issues and design implications by this means. This

could be more difficult to detect using virtual physical devices. The analysis based on 3D

simulation also provides results such as usability, user experience and feedback that are diffi-

cult to obtain using formal analysis based on the SS tool. The focus of concern here is to give

a high level of realism to the experience provided.

7.4. Conclusions

172

APEX has also been shown as a promising approach for the rapid development of Seri-

ous Games. A game for educational purposes developed with APEX was used to indicate this

promise. Further work will evaluate the game with children.

User experience is explored through multi level analysis and an iterative cycle of proto-

typing (see Figure 7.20) provided by APEX as demonstrated in these examples. The tool

therefore responds to the research questions of Section 1.3. It provides reasoning, analysis

and experience support through a cycle of development (design, test and analysis).

Figure 7.20: APEX - iterative cycle of prototyping (design, test and analysis)

173

Chapter 8

Evaluation of the Prototyping Approach

8 Evaluation of the Prototyping Approach
To assess the APEX tool and the proposed prototyping approach an evaluation using an ex-

ample was performed. The evaluation accomplished and presented in this chapter is a pre-

liminary experiment. A more developed experiment will occur later in the broader project in

which this thesis work was set. The evaluation made was based on the use of the tool in the

context of different alternative solutions for the development of a ubicomp environment. The

main goals of the evaluation were to observe how acceptable the tool was to software engi-

neers, how the system is likely to be used, and to identify the aspects that should be im-

proved.

8.1 Example

The goal of the proposed ubiquitous environment is to help elderly persons to go to the bath-

room at night (see Section 6.2.3). This is achieved by using presence sensors and lights. The

focus of concern was using APEX for the comparison of different solutions to solve the prob-

lem of creating a ubiquitous environment addressing the above goal. The developers who

participated in the evaluation were asked to produce three alternative solutions for the stated

problem. The solutions varied in terms of number, features and position of presence sensors

used and the necessary conditions to turn on and off the lights. The proposed exercises can be

consulted in Appendix D.

8.2. Relevant User Study Techniques

174

8.2 Relevant User Study Techniques

There are several user study techniques in the literature aimed at evaluating systems. Con-

solvo et al. [98] proposed a list of relevant techniques to the evaluation of ubiquitous envi-

ronments. More information about user study techniques can be found in [99, 100]. The par-

ticular techniques proposed by Consolvo et al. are listed below.

Intensive Interviewing

This evaluation technique consists in interviewing users about the tasks they have accom-

plished using open-ended questions. The structure of the questions can vary in content and

order from on user to another. The advantages of this technique are that it is:

i. not necessary to use it during the usage of the system by users;

ii. not expensive when compared with other user study techniques.

A main disadvantage is that sometimes users forget some details of their experience of

using the system and consequently important aspects may not be mentioned.

Contextual Field Research

This technique is used to discover how users think and act. Data is obtained by interacting

with and observing users as part of their normal activity i.e., there is no need for a special

environment or conditions to perform the evaluation. Data are typically collected by video,

photography, note-taking and/or audio.

This technique has some disadvantages because users know that they are being observed

and can consequently change their usual behaviour. Additionally, the technique is more ex-

pensive than Intensive Interviewing. Despite these drawbacks, evaluators do not have to rely

on the memory of users about the tasks they have accomplished. In our case, a further draw-

back is that APEX provides a novel prototyping approach that developers will not have used

as part of their normal activity.

Chapter 8. Evaluation of the Prototyping Approach

175

Usability Testing

This technique consists in observing users while they are performing a planned task relating

to the system that is being evaluated. Data are collected by observation (e.g. video recording).

Two disadvantages are that users know that they are being observed and the scenarios being

analysed are planned which means that results in practice could be different. Consolvo et al.

argue that it is not the best solution for the evaluation of ubiquitous environments [98].

Lag Sequential Analysis

This technique is similar to Context Field Research but with an important difference that data

are captured just by observing users without interacting with them. The observation can be

made by video recording or note-taking. As with other techniques users know that they are

observed.

In their research, Consolvo et al. [98] used this technique for the evaluation of a ubicomp

environment and obtained adequate results. However they also stated that the technique is

quite expensive mainly because of the expense of video coding.

Questionnaire

Although not mentioned in the original list proposed by Consolvo et al. [98], this technique is

relevant and worth mentioning. This technique, like Intensive Interviewing, is applied after

the system has been used. It collects users’ opinions by asking them to complete a question-

naire. The questionnaire is composed of open-ended questions and questions with a finite set

of options. This technique differs from Intensive Interviewing in that there is no interaction

between the interviewer and the users.

In our evaluation we have selected a mixture of some of the above techniques to reduce

costs and to avoid reliance on users’ memory. A questionnaire approach combined with ob-

servation (e.g. note-taking) was used while users were performing the planned task (Usability

Testing).

8.3. Process and Questionnaire

176

8.3 Process and Questionnaire

Twenty seven post-graduate software engineers at the University of Minho participated in the

evaluation. The evaluation process involved:

1. introducing subjects to Coloured Petri nets and APEX;

2. solving a proposed problem using APEX (see Appendix D);

3. producing a prototype based on a provided virtual environment;

4. completing a questionnaire (see Appendix C).

The participants were monitored by taking notes. The aim was to aid understanding of

how the APEX framework was used to provide a prototype. The development was interpreted

and marked as being divided into four phases:

1. CPN interpretation;

2. CPN development;

3. virtual environment configuration;

4. prototype examination.

The observation of these phases provided an overall understanding of where participants

spent their time. The results were inconclusive in providing insight into whether use of the

tool followed any clear pattern. However time spent was as follows:

 CPN modelling (39.9%, σ = 9.5);

 Virtual environment configuration (30.2%, σ = 9.2);

 Prototype examination (15.5%, σ = 6.7);

 CPN interpretation (14.4%, σ = 4.8).

Because participants were not familiar with the virtual environment configuration this

was significantly time consuming. Unsurprisingly, as participants became more familiar with

APEX activities they took less time to complete the solutions. To give an idea of the amount

of time used in developing prototypes with APEX the following time estimations are pro-

vided. Time needed to:

 extend the CPN base model for the stated problem (third solution, relatively low

complexity level - 2 presence sensors, 1 time sensor and 5 dynamic objects with

two possible states): about 15 minutes (once software engineers were familiar

with APEX) based on the evaluation results;

Chapter 8. Evaluation of the Prototyping Approach

177

 construct the 3D environment: estimation of about 1 person day (importing ob-

jects using the Project Mesh viewer) based on the time we spent constructing it;

 tie the two together: 0 minutes (this is done automatically).

The second part of the evaluation involved the questionnaire (Appendix C). The ques-

tionnaire was divided into six parts:

 participant characterization;

 usefulness;

 ease of use of the framework;

 ease of learning of the framework;

 user satisfaction.

Subjects were asked to respond with values from -3 (strong disagree) to +3 (strong

agree). A final part of the questionnaire enabled the participant to make comments and in-

cluded open questions. The questionnaire was based on the USE questionnaire
49

 which has

been used successfully by many companies, and as part of several dissertation projects to

evaluate applications.

8.4 Results

The resulting questionnaire results (see APEX website
50

) indicated that the system is around

the average in terms of ease of use (-0.37, σ = 1.28) and the related notion of user satisfaction

(-0.11, σ = 1.22). As mentioned by participants on the open questions and comments, this can

be partially due to difficulty using the CPN Tools interface that differs from the usual non-

moded style of interface. Another reported reason is that APEX does not provide a general

undo facility and provides little support to prevent users making mistakes. This clearly led to

frustration in some cases. On the other hand the tool was considered to be relatively easy to

learn (+0.63, σ = 1.35) and to provide useful features (+1.15, σ = 0.97). While APEX was

considered to provide results that met the participants’ goals it can clearly be improved.

49

 USE questionnaire: http://www.stcsig.org/usability/newsletter/0110_measuring_with_use.html

(last accessed: 15 November 2011)
50

 APEX website: http://ivy.di.uminho.pt/apex (last accessed: 19 March 2012)

8.5. Conclusions

178

The results enabled us to better identify aspects of APEX that should be improved as

well as providing information about how the system is likely to be used by computer science

engineers. These improvements, particularly in terms of ease of use, are planned as future

work. The results indicated, besides some usability improvements, that the tool is feasible and

appropriate for usage by developers.

8.5 Conclusions

The evaluation results we were aiming at through this preliminary exploration were broadly

satisfied. They pointed out some directions for work and revealed reasonable acceptance by

software engineers. However this is a very limited evaluation.

It was observed than the time needed to extend the model for the desired problem was

very acceptable for a software engineer familiar with APEX (about 15 minutes for the third

solution). On the basis of the experiment software engineers became quickly familiar with

APEX. In this case familiarity resulted from a training session of four hours.

In this evaluation the virtual environment was provided. However the most time consum-

ing task is related to its creation. In any case, the time needed to create the prototype is low

when compared with the one necessary to develop a physical working ubicomp environment

(including the costs of materials) which once developed have very high costs of redesign.

Another evaluation could be performed to look into what people can build using APEX.

The threshold and ceiling of the framework (how easy is it for people to start using it, and

how complex the results they achieve with the tool) is worth further investigation.

The literature on virtual reality for purposes such as education, training or medical treat-

ment, contains good indications that ubicomp environments provide a rich enough experience

to allow relevant feedback (e.g., see [101] for some interesting papers on the applicability of

virtual reality to behavioural sciences). Nevertheless, further evaluation with end users is an

ongoing part of the APEX project to determine whether generated APEX simulations are

adequate to help understand how users would experience a specific proposed ubiquitous

computing environment reflecting the physical features of the space to be built. A first study

was performed where the results of a depth of view study in a physical space [102] were rep-

licated in a virtual environment.

179

Chapter 9

Conclusions

9 Conclusions
This dissertation presents an approach to the rapid prototyping of ubicomp environments. We

argue that the thesis answers the research questions proposed in Section 1.3. A summary of

the contributions provided and a discussion of the work developed are presented. Finally,

directions for future work are listed.

9.1 Answers to Research Questions

The overarching goal of the thesis is to investigate whether:

The ubicomp environment development process can be made easier thereby reducing

costs, providing early experience and automated analysis support.

This goal raises three primary research questions as stated in the introductory chapter.

They were addressed throughout this document and are now summarized.

 Question one: can a formal model represent ubicomp environments? This re-

search has demonstrated that the CPN modelling approach is appropriate to model

ubicomp environments. By using the developed models and following the pro-

vided guidelines the CPN model has been successfully used in the prototyping of

two ubicomp environment examples.

 Question two: can ubicomp environments prototypes address features with the

potential to assess user experience without physical deployment? The APEX ap-

proach, being multi layered, can provide realistic experience to users using the

physical and simulation layers. Physical components that compose the final ubi-

comp environment in its location can be experienced by users as part of the simu-

9.2. Summary of Contributions

180

lation. This can be achieved during the prototyping phase using the physical

layer. The 3D simulation provided by the simulation layer aims to provide a tex-

tured simulation of the space being prototyped, providing a realistic user experi-

ence. Design and user experience issues of the presented examples where identi-

fied using the developed prototypes.

 Question three: can ubicomp environments be analysed in the early stages of de-

velopment providing evaluation results at different levels? This research has

demonstrated that the use of a formal modelling approach for the prototyping of

ubicomp environments (modelling layer) enables reasoning, formal analysis and

evaluation in the early phases of development. Additionally, the simulation and

physical layers provide support for different evaluations of ubicomp environ-

ments being prototyped. It has been shown in the examples that the ubicomp envi-

ronments can be analysed in the early stages of development. The evaluation can

be related to design, experience and usability concepts or to formal and exhaus-

tive concepts.

9.2 Summary of Contributions

This work addressed several issues that contribute to the main findings of the thesis, con-

cerned with the rapid prototyping of ubiquitous computing environments. The APEX tool

provides reasoning and analysis support, while at the same time enabling an assessment of

user experience and immersion. These capabilities can reduce development costs. The APEX

framework is the major result of this thesis. It satisfies the expected requirements (see Section

2.1) providing a distinct advance over the state of the art.

The APEX framework links together many missing benefits, when compared with the

existing approaches, namely:

 support for the design of the ubicomp environment and exploring alternatives,

with a particular emphasis on how users will experience the designs;

 support for analysis either by simulation (similar to program execution) or by

checking properties of the CPN models;

Chapter 9. Conclusions

181

 a multilayered development approach addressing different ubicomp environment

features separately;

 support for the whole prototyping cycle;

 multi-user support and collaborative features enabling interaction between users.

Figure 9.1 summarises all aspects that were addressed during APEX’s development.

Analysis support was considered capable of enabling the verification of properties on the

developed prototypes. Evaluation with software engineers pointed out the aspects where

APEX should be improved. The simulation and physical devices were addressed to provide

experience to users. The modelling provides a way of reasoning and formal/exhaustive analy-

sis support. Immersion provides deeper experience to users. Aspects related to costs, the

whole cycle of development and ubiquitous computing were also considered in the develop-

ment of APEX.

Figure 9.1: APEX fields

The APEX framework proposes a solution to reduce the costs of the development of

ubicomp environment. A video showing results achieved using the APEX framework can be

consulted at the APEX website
51

.

51

 APEX website: http://ivy.di.uminho.pt/apex (last accessed: 19 March 2012)

9.3. Discussion

182

9.3 Discussion

Since there have been many ubicomp frameworks, architectures, toolkits and tools proposed

over recent years (see Chapter 2), it should be clear why the ubicomp/HCI community needs

another prototyping framework (see Chapter 2). As stated in Chapter 2, existing approaches

already address some aspects provided by the APEX framework. For example VARU pro-

vides a multilayered development approach and d.tools provides support for the whole cycle

of prototyping. However a framework that provides the list of benefits identified in the previ-

ous section in a single framework was missing. APEX provides benefits also provided by

other approaches (e.g. multilayered development) and link them with new benefits (e.g. ex-

haustive analysis support) into an integrated framework.

It is difficult to set up, analyse and experience ubicomp environments in a safe, practical

and economical way. APEX is a framework where avatars (programmed or controlled by real

users) interact in a 3D ubicomp environment and with physical devices allowing the unex-

pected to occur. Ubicomp environments can be experienced with APEX in a 3D environment

and analysed through exhaustive analysis.

The APEX framework enables the possibility of identifying requirements for a specific

ubicomp environment to be built. Additionally, the capacity of the framework to show a 3D

simulation to the clients of the ubicomp environment being prototyped instead of, for exam-

ple, communicating via UML diagrams is a clear advantage. Clients can easily understand the

proposed solutions making it easier to indicate directions for improvement. The disadvantage

is related to the work associated with the construction of the virtual environment. However,

the usage of a viewer supporting mesh objects substantially reduces these costs.

Including a virtual environment in the prototyping process (the simulation layer) means

prototyping becomes less rapid than when done with models only (the modelling layer), due

to the time needed to create a virtual environment. However, the fact that it enables move-

ment between layers means that different features of a ubiquitous environment can be ex-

plored in a variety of modes. When compared with alternative solutions (e.g. Wizard of Oz or

paper prototyping) this approach offers benefits in terms of results such as analysis support

and user experience.

Chapter 9. Conclusions

183

It should be noticed that APEX is not focused at the rapid prototyping of all ubicomp ap-

plication domains but mainly to ubicomp environments characterised as technologically en-

hanced spaces (e.g. ubicomp airport or hospital).

9.4 Threats and limitations

Ubicomp environments can in principle be simulated without APEX i.e., just using Open-

simulator and scripts associated with objects. This is enough to provide user experience to

users and identify design issues. However APEX is an integrated framework that support the

whole cycle of development, exhaustive analysis, multi-layer development support, physical

device connection among other aspects which are much more than just providing user experi-

ence. The availability of all these characteristics in only one framework is a benefit in the

sense that there no need for other tools for the prototyping of ubicomp environments.

Another remark relates to CPN model simulation. As stated the execution of the model

within CPN Tools (similar to a program execution) drives the environment. The delay in mil-

liseconds of each transition execution is configurable however never lower than 1 millisec-

ond. Consequently, possible performance problems can appear when for instance too much

information is transmitted from the simulation to CPN Tools (e.g. many users arriving close

to a presence sensor at same time). During experiments the information sent from Opensimu-

lator (e.g. user detection by a presence sensor) were so low that it was not an issue. Neverthe-

less, the assumption that CPN Tools run fast enough to keep up with input from Opensimula-

tor could be a dangerous assumption to make. As future work the number of messages sent

from Opensimulator could be optimized (reduced) eliminating possible performance prob-

lems (environment' reaction delay to user actions or context changes).

9.5 Future Work

Some future work has already been pointed out in this thesis. A summary of future directions

are listed below:

 Properties are verifiable within APEX, however improvement of the APEXi tool

to verify properties, without it being necessary to write queries over the model at a

9.5. Future Work

184

low level of abstraction, will represent an important improvement. The idea would

be to specify the queries at a higher level of abstraction following the concepts

used by the IVY tool [88];

 The means of interaction with APEX prototypes could provide a even more realis-

tic experience to end users through the integration of more digital devices (e.g.

touch screens, interactive whiteboards and digital gloves). Further development of

the framework should also focus on the connection of isolated sensors that are not

integrated into mobile devices, and support the modelling of a richer set of inter-

actions of programmed avatars;

 Experience results are obtained with APEX mainly based on the virtual experi-

ence provided. However, it is important to check if the results acquired reflect the

experience obtained while experiencing the final environment on location. The

application of the APEX framework to prototyping an existing physical ubicomp

environment is a topic to consider that will indicate the eventual limits of the ap-

proach and point areas for improvement. For example, the extension of APEX to

the internet of things [103] in the sense that it will enable the prototyping and

analysis of physical ubicomp environments composed of elements which are con-

nected to the internet can be an adequate direction to follow. Additionally, more

evaluations of the framework not only with developers but also with end users

will emphasize the assessment of APEX for developers and end users usage.

185

Bibliography

[1] J. L. Silva, J. C. Campos, and M. D. Harrison, “An infrastructure for experience cen-

tered agile prototyping of ambient intelligence,” in Proceedings of the 1st ACM

SIGCHI symposium on Engineering interactive computing systems, 2009, pp. 79–84.

[2] J. L. Silva, Ó. Ribeiro, J. Fernandes, J. Campos, and M. Harrison, “The APEX frame-

work: prototyping of ubiquitous environments based on Petri nets,” in Human-Centred

Software Engineering. Lecture Notes in Computer Science. Springer, 2010, vol. 6409,

pp. 6–21.

[3] J. L. Silva, Ó. R. Ribeiro, J. M. Fernandes, J. C. Campos, and M. D. Harrison, “Proto-

tipagem rápida de ambientes ubíquos,” in 4a. Conferência Nacional em Interacção

Humano-Computador (Interacção 2010), 2010, pp. 121-128.

[4] M. Weiser, “The computer for the 21st century,” Scientific American, vol. 265, no. 3,

pp. 94-104, 1991.

[5] T. Jokela, N. Iivari, and J. Matero, “The standard of user-centered design and the

standard definition of usability: analyzing ISO 13407 against ISO 9241-11,” the Latin

American conference, pp. 53-60, 2003.

[6] G. D. Abowd, E. D. Mynatt, and T. Rodden, “The human experience,” Pervasive

Computing, IEEE, vol. 1, no. 1, pp. 48–57, Jan. 2002.

[7] K. Harrison, M., Campos, J., Doherty, G., Loer, “Connecting rigorous system analysis

to experience centred design,” in Maturing Usability: Quality in Software, Interaction

and Value. Springer-Verlag, 2008, pp. 56-74.

[8] D. Garlan, D. P. Siewiorek, A. Smailagic, and P. Steenkiste, “Project aura: Toward

distraction-free pervasive computing,” Pervasive Computing, IEEE, vol. 1, no. 2, pp.

22–31, 2002.

[9] S. H. and A. S. N. Davies, J. Landay, “Special Issue of IEEE Pervasive Computing on

Rapid Prototyping for Ubiquitous Computing,” 2005, vol. 4, no. 4.

[10] J. J. Barton and V. Vijayaraghavan, “UBIWISE, a simulator for ubiquitous computing

systems design,” Hewlett-Packard Laboratories Palo Alto, HPL-2003-93, 2003.

[11] H. Nishikawa et al., “UbiREAL: Realistic smartspace simulator for systematic test-

ing,” Lecture Notes in Computer Science, vol. 4206/2006, pp. 459–476, 2006.

[12] B. Hartmann et al., “Reflective physical prototyping through integrated design, test,

and analysis,” in Proceedings of the 19th annual ACM symposium on User interface

software and technology, 2006, pp. 299–308.

186

[13] Y. Li and J. I. Hong, “Topiary: a tool for prototyping location-enhanced applications,”

Proceedings of the 17th annual ACM, vol. 6, no. 2, pp. 217–226, 2004.

[14] D. Salber, A. K. Dey, and G. D. Abowd, “The context toolkit: aiding the development

of context-enabled applications,” in Proceedings of the SIGCHI conference on Human

factors in computing systems: the CHI is the limit, 1999, pp. 434–441.

[15] G. D. Abowd et al., “Prototypes and paratypes: Designing mobile and ubiquitous com-

puting applications,” Pervasive Computing, IEEE, vol. 4, no. 4, pp. 67–73, 2005.

[16] D. Kang, K. Kang, H. Lee, and E.-jung Ko, “A Systematic Design Tool of Context

Aware System for Ubiquitous Healthcare Service in a Smart Home,” in Future Gener-

ation Communication and Networking, 2007, vol. 2, p. 49--54.

[17] S. Nazari and A. Klar, “3DSim: Rapid Prototyping Ambient Intelligence,” in SOc-

EUSAI conference, 2005, pp. 303–307.

[18] T. Disz and M. E. Papka, “UbiWorld: an environment integrating virtual reality, su-

percomputing, and design,” Computing Workshop, pp. 46–57, 1997.

[19] E. O’Neill, D. Lewis, and O. Conlan, “A simulation-based approach to highly iterative

prototyping of ubiquitous computing systems,” in 2nd International Conference on

Simulation Tools and Techniques, 2009, p. 56--66.

[20] E. O’Neill, “Master Thesis: TATUS a Ubiquitous Computing Simulator,” University

of Dublin, 2004.

[21] S. Irawati, S. Ahn, J. Kim, and H. Ko, “Varu framework: Enabling rapid prototyping

of VR, AR and ubiquitous applications,” in Virtual Reality Conference, 2008. VR’08.

IEEE, 2008, pp. 201–208.

[22] L. Vanacken, J. De Boeck, C. Raymaekers, and K. Coninx, “Designing context-aware

multimodal virtual environments,” in Proceedings of the 10th international conference

on Multimodal interfaces, 2008, pp. 129-136.

[23] Y. Li and J. A. Landay, “Into the wild: low-cost ubicomp prototype testing,” Comput-

er, vol. 41, no. 6, pp. 94–97, 2008.

[24] T. Sohn, “iCAP: an informal tool for interactive prototyping of context-aware applica-

tions,” CHI 03 extended abstracts on Human factors in computing systems, pp. 974-

975, 2003.

[25] S. Carter, J. Mankoff, and J. Heer, “Momento: support for situated ubicomp experi-

mentation,” in Proceedings of the SIGCHI conference on Human factors in computing

systems, 2007, pp. 125–134.

187

[26] P. Singh, H. Ha, P. Olivier, C. Kray, and Z. Kuang, “Rapid prototyping and evaluation

of intelligent environments using immersive video,” in Proceedings of MODIE work-

shop at Mobile HCI’06, 2006.

[27] “Simulation.” [Online]. Available: http://en.wikipedia.org/wiki/Computer_simulation.

[Accessed: 15-Nov-2011].

[28] E. Dubois, P. Gray, and L. Nigay, “ASUR ++ : A Design Notation for Mobile Mixed

Systems,” in Proceedings of the 4th International Symposium on Mobile Human-

Computer Interaction, 2002, pp. 123-139.

[29] E. Dubois and P. Gray, “A design-oriented information-flow refinement of the ASUR

interaction model,” Engineering Interactive Systems, pp. 465–482, 2008.

[30] R. Wieting, “Hybrid high-level nets,” in Proceedings of the 28th conference on Winter

simulation, 1996, pp. 848–855.

[31] M. Massink, D. Duke, and S. Smith, “Towards hybrid interface specification for virtu-

al environments,” in Design, Specification and Verification of Interactive Systems,

1999, vol. 99, pp. 30–51.

[32] D. Navarre et al., “A formal description of multimodal interaction techniques for im-

mersive virtual reality applications,” in Proceedings of the 2005 IFIP TC13 interna-

tional conference on Human-Computer Interaction, 2005, pp. 170–183.

[33] R. Bastide, D. Navarre, P. Palanque, A. Schyn, P. Dragicevic, and U. Toulouse, “A

Model-Based Approach for Real-Time Embedded Multimodal Systems in Military

Aircrafts,” in Proceedings of the 6th international conference on Multimodal interfac-

es, 2004, pp. 243-250.

[34] L. M. Jensen, Kurt, Kristensen, Coloured Petri Nets Modelling and Validation of Con-

current Systems. Springer, 2009, p. 384.

[35] C. Hoare, Communicating sequential processes. Prentice Hall International, 2004, p.

260.

[36] D. Harel, “Statecharts: A visual formalism for complex systems,” Science of computer

programming, vol. 8, pp. 231-274, 1987.

[37] K. C. Erwin Cuppens, Chris Raymaekers, “VRIXML: A User Interface Description

Language for Virtual Environments,” in Developing User Interfaces with XML: Ad-

vances on User Interface Description Languages, 2004, pp. 111-117.

[38] H. Jed and W. Josie, The VRML 2.0 handbook: building moving worlds on the web.

Addison Wesley Longman Publishing Co., Inc., 1996, p. 412.

188

[39] O. De Troyer, F. Kleinermann, B. Pellens, and W. Bille, “Conceptual modeling for

virtual reality,” in Tutorials, posters, panels and industrial contributions at the 26th in-

ternational conference on Conceptual modeling - Volume 83, 2007, vol. 83, pp. 3–18.

[40] E. Dubois, L. Nigay, and J. Troccaz, “Consistency in augmented reality systems,” in

Proceedings of the 8th IFIP International Conference on Engineering for Human-

Computer Interaction, 2001, pp. 111-122.

[41] E. Dubois, L. Nigay, J. Troccaz, O. Chavanon, and L. Carrat, “Classification Space for

Augmented Surgery. an Augmented Reality Case Study,” in Human-computer interac-

tion. IFIP TC. 13 International Conference on Human-Computer, 1999, vol. 1, p. 353-

-359.

[42] S. Smith, “Virtual environments as hybrid systems,” in Eurographics UK 17th Annual

Conference, 1999, p. 113--128.

[43] J. Willans, “PhD Thesis. Integrating behavioural design into the virtual environment

development process,” University of York, 2002.

[44] K. Jensen and S. Christensen, CPN Tools State Space Manual. University of Aarhus,

2006, pp. 1-49.

[45] A. Ratzer et al., “CPN tools for editing, simulating, and analysing coloured Petri nets,”

Applications and Theory of Petri Nets, pp. 450–462, 2003.

[46] B. V. Schooten, O. Donk, and J. Zwiers, “Modelling interaction in virtual environ-

ments using process algebra,” in WLT15: Interactions in Virtual Worlds, 1999, p. 195-

-212.

[47] L. Briand and C. Williams, Eds., “Model Driven Engineering Languages and Sys-

tems,” in 8th International Conference MoDELS, 2005.

[48] M. Crane and J. Dingel, “UML vs. classical vs. Rhapsody statecharts: Not all models

are created equal,” Model Driven Engineering Languages and Systems, vol. 1, pp. 97–

112, 2005.

[49] R. Eshuis, “Statecharting petri nets.” Technische Universiteit Eindhoven, pp. 1-37,

2005.

[50] J. Kienzle, A. Denault, and H. Vangheluwe, “Model-based design of computer-

controlled game character behavior,” in MoDELS, 2007, pp. 650–665.

[51] D. Harel and M. Politi, Modeling reactive systems with statecharts: the statemate ap-

proach. McGraw-Hill, Inc., 1998.

[52] “The Mathworks. Stateflow and stateflow coder users guide,” 2005. [Online]. Availa-

ble: http://www.mathworks.com. [Accessed: 23-Feb-2012].

189

[53] A. Egyed and D. Wile, “Statechart simulator for modeling architectural dynamics,” in

Proceedings of the Working IEEE/IFIP Conference on Software Architecture, 2001,

pp. 87–96.

[54] K. Fuhrmann and J. Hiemer, “Formal verification of STATEMATE-statecharts,” in

Environment, 2001.

[55] T. BASTEN, “PhD Thesis. In Terms of Nets System Design with Petri Nets and pro-

cess algebra,” Eindhoven University of Technology, 1998.

[56] R. H. and D. M. Robin Milner, Mads Tofte, The Definition of Standard ML, Revised

Edition. The MIT Press, 1997, p. 128.

[57] “Very Brief Introduction to Coloured Petri Nets.” [Online]. Available:

http://daimi.au.dk/CPnets/proxy.php?url=/CPnets/intro/verybrief. [Accessed: 28-Jan-

2012].

[58] K. Jensen, L. M. Kristensen, and L. Wells, “Coloured Petri Nets and CPN Tools for

modelling and validation of concurrent systems,” International Journal on Software

Tools for Technology Transfer, vol. 9, no. 3-4, pp. 213-254, Mar. 2007.

[59] “Recommended Books and Papers on Coloured Petri Nets.” [Online]. Available:

http://www.daimi.au.dk/~kjensen/papers_books/rec_papers_books.html#intro_cpn_pa

pers. [Accessed: 28-Jan-2012].

[60] P. M. Lester and C. M. King, “Analog vs. Digital Instruction and Learning: Teaching

Within First and Second Life Environments,” Journal of Computer-Mediated Commu-

nication, vol. 14, no. 3, pp. 457-483, Apr. 2009.

[61] J. L. McBrien, R. Cheng, and P. Jones, “Virtual spaces: Employing a synchronous

online classroom to facilitate student engagement in online learning,” The Internation-

al Review of Research in Open and Distance Learning, vol. 10, no. 3, p. 17, 2009.

[62] “Virtual worlds registration.” [Online]. Available:

http://www.slideshare.net/nicmitham/kzero-universe-chart-q3-2010. [Accessed: 15-

Nov-2011].

[63] F. Scott, “PhD Thesis: An Investigation into the Ecological Validity of Virtual Reality

Measures of Planning and Prospective Memory in Adults with Acquired Brain Injury

and Clinical Research Portfolio,” University of Glasgow, 2011.

[64] B. Orland, K. Budthimedhee, and J. Uusitalo, “Considering virtual worlds as represen-

tations of landscape realities and as tools for landscape planning,” Landscape and Ur-

ban Planning, vol. 54, no. 1-4, pp. 139-148, May 2001.

[65] S. D. Freitas, “Serious virtual worlds: a scoping study,” Prepared for the JISC e-

learning programme, p. 52, 2008.

190

[66] “OpenSimulator Based Projects.” [Online]. Available:

http://wiki.jokaydia.com/page/Vws_list. [Accessed: 15-Nov-2011].

[67] “Game Engines.” [Online]. Available:

http://en.wikipedia.org/wiki/List_of_game_engines. [Accessed: 15-Nov-2011].

[68] J. Nielsen, “Enhancing the explanatory power of usability heuristics,” in Proceedings

of the SIGCHI conference on Human factors in computing systems: celebrating inter-

dependence, 1994, pp. 152–158.

[69] R. Rukšenas, J. Back, P. Curzon, and A. Blandford, “Formal modelling of salience and

cognitive load,” in Proc. 2nd Int. Workshop on Formal Methods for Interactive Sys-

tems: FMIS, 2007, pp. 57–75.

[70] S. Kim and S. Kim, “Usability challenges in ubicomp environment,” in The Proceed-

ing of International Ergonomics Association (IEA’03), 2003, p. 4.

[71] J. Mankoff, A. Dey, G. Hsieh, and J. Kientz, “Heuristic evaluation of ambient dis-

plays,” in Proceedings of the SIGCHI conference on Human factors in computing sys-

tems, 2003, no. 5, pp. 169-176.

[72] J. Scholtz and S. Consolvo, “Toward a framework for evaluating ubiquitous computing

applications,” Pervasive Computing, IEEE, vol. 3, no. 2, pp. 82–88, 2004.

[73] M. Theofanos and J. Scholtz, “A Framework for Evaluation of Ubicomp Applica-

tions,” in First International Workshop on Social Implications of Ubiquitous Compu-

ting, CHI, 2005, pp. 1-5.

[74] J. Scholtz, L. Arnstein, M. Kim, T. Kindberg, and S. Consolvo, “User-Centered Evalu-

ations of Ubicomp Applications,” Intel Corporation, vol. 10, 2002.

[75] E. Kindler and C. Pále, “3D-visualization of Petri net models: A concept,” in Work-

shop Algorithmen und Werkzeuge für Petrinetze, 2003, p. 464--473.

[76] “OpenSimulator compatible viewers.” [Online]. Available:

http://opensimulator.org/wiki/Connecting. [Accessed: 13-Feb-2012].

[77] “Comms/CPN: A communication infrastructure for external communication with de-

sign/CPN,” in Kurt Jensen (Ed.): 3rd Workshop and Tutorial on Practical Use of Col-

oured Petri Nets and the CPN Tools (CPN’01), 2001, pp. 75-90.

[78] M. Westergaard and K. Lassen, “The britney suite animation tool,” in Proceedings of

the 27th international conference on Applications and Theory of Petri Nets and Other

Models of Concurrency, 2006, pp. 431–440.

[79] L. Paganelli and F. Paternò, “Tools for remote usability evaluation of Web applica-

tions through browser logs and task models.,” Behavior research methods, instru-

191

ments, & computers : a journal of the Psychonomic Society, Inc, vol. 35, no. 3, pp.

369-78, Aug. 2003.

[80] “ISO DIS 9241-210:2008 [3] standard.” .

[81] E. Law, V. Roto, and M. Hassenzahl, “Understanding, scoping and defining user expe-

rience: a survey approach,” in Proceedings of the 27th international conference on

Human factors in computing systems, 2009, pp. 719-728.

[82] R. Moreira, “Master Thesis: Integrating a 3D application server with a CAVE,” Uni-

versity of Minho, 2011.

[83] K. Haynes, J. Morie, and E. Chance, “I want my virtual friends to be life size!: adapt-

ing Second Life to multi-screen projected environments,” in ACM SIGGRAPH 2010

Posters, 2010, vol. 2004, p. 60--60.

[84] D. Bowman, “Virtual reality: how much immersion is enough?,” Computer, vol. 40,

no. 7, pp. 36 - 43, 2007.

[85] M. W. Newman et al., “Bringing the Field into the Lab: Supporting Capture and Re-

Play of Contextual Data for Design,” Human Factors, pp. 105-108, 2010.

[86] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, “Patterns in property specifications for

finite-state verification,” in Proceedings of the 21st international conference on Soft-

ware engineering, 1999, pp. 411-420.

[87] J. Campos and M. Harrison, “Systematic analysis of control panel interfaces using

formal tools,” in Interactive Systems. Design, Specification, and Verification, 2008, pp.

72–85.

[88] J. Campos and M. D. Harrison, “Interaction engineering using the IVY tool,” in Pro-

ceedings of the 1st ACM SIGCHI symposium on Engineering interactive computing

systems, 2009, pp. 35–44.

[89] E. M. Clarke, E. A. Emerson, and A. P. Sistla, “Automatic verification of finite-state

concurrent systems using temporal logic specifications,” ACM Transactions on Pro-

gramming Languages and Systems (TOPLAS), vol. 8, no. 2, pp. 244–263, Apr. 1986.

[90] H. Thimbleby and P. Oladimeji, “Social network analysis and interactive device design

analysis,” in Proceedings of the 1st ACM SIGCHI symposium on Engineering interac-

tive computing systems, 2009, p. 91--100.

[91] A. Cheng, S. Christensen, and K. H. Mortensen, Model checking coloured petri nets

exploiting strongly connected components, vol. 6. Aarhus Universitet, Datalogisk

Afdeling, 1997, pp. 1-14.

[92] J. Bauchot, F., Clement, J.-Y., Marmigere, G., Picon, “Method and structure for local-

izing objects using daisy chained RFID tags,” U.S. Patent US 2007/0257799 A12007.

192

[93] E. D. Bateman et al., “Global strategy for asthma management and prevention: GINA

executive summary.,” The European respiratory journal : official journal of the Euro-

pean Society for Clinical Respiratory Physiology, vol. 31, no. 1, pp. 143-78, Jan. 2008.

[94] M. D. Cabana et al., “Parental management of asthma triggers within a child’s envi-

ronment.,” The Journal of allergy and clinical immunology, vol. 114, no. 2, pp. 352-7,

Aug. 2004.

[95] H. Hong, H. Y. Jeong, R. I. Arriaga, and G. D. Abowd, “TriggerHunter: designing an

educational game for families with asthmatic children,” in Proceedings of the 28th of

the international conference extended abstracts on Human factors in computing sys-

tems, 2010, pp. 3577–3582.

[96] “Asthma triggers.” [Online]. Available: www.cdc.gov/asthma/triggers.html. [Ac-

cessed: 15-Nov-2011].

[97] “Center for Disease Control and Prevention.” [Online]. Available:

http://www.cdc.gov/asthma/triggers.html. [Accessed: 04-Jan-2012].

[98] S. Consolvo, L. Arnstein, and B. Franza, “User study techniques in the design and

evaluation of a ubicomp environment,” in Proceedings of the 4th international confer-

ence on Ubiquitous Computing, 2002, p. 73--90.

[99] J. A. T. Hackos and J. Redish, User and task analysis for interface design, vol. 31, no.

3. Wiley New York, 1998, pp. 19-20.

[100] J. Rubin, D. Chisnell, and J. Spool, Handbook Of Usability Testing:How To Plan, De-

sign And Conduct Effective Tests. Wiley India Pvt. Ltd., 2008, p. 384.

[101] “CyberPsychology & Behavior,” CyberPsychology & Behavior, vol. 6, no. 3/4, 2003.

[102] T. Varoudis, S. Dalton, K. Alexiou, and T. Zamenopoulos, “Ambient displays: influ-

encing movement patterns,” in Proceedings of the 2011 annual conference extended

abstracts on Human factors in computing systems, 2011, p. 1225--1230.

[103] L. Atzori and A. Iera, “The internet of things: A survey,” Computer Networks, vol. 54,

no. 15, pp. 2787-2805, Oct. 2010.

[104] G. Flaus, Jean-Marie and Ollagnon, “Hybrid flow nets for hybrid processes modelling

and control,” Hybrid and Real-Time Systems, vol. 1201, pp. 213-227, 1997.

193

Appendix A: CPN Base Model

This section describes relevant modules of the CPN Base model. The full model can be con-

sulted in the Compact Disk attached to this document.

The module of Figure A.0.1 presents the overview of the elements that can compose the ubi-

comp environment (e.g. users, dynamic objects and sensors) and is responsible to initialize

the model execution.

Figure A.0.1: CPN base initialization module

The module of Figure A.0.2 is responsible for the reading of information from Open-

simulator.

initial_USERS

initial_PDA
initial_OBJ

initial_light_SENSOR

()

PDA OBJ

movement_SENSOR

time_SENSOR

light_SENSOR

P_sensors

presenceSensors
presence_SENSOR

runINI

run
UNIT

1`()

UNIT

users

users
USER

users

run

presenceSensors

initialise animationinit
()

L_sensor

lightSensorlightSensor

M_sensor

movementSensormovementSensor

T_sensor

timeSensortimeSensor

initial_time_SENSORinitial_presence_SENSORS

PDAs

PDAsPDAs

Dynamic Objects

objectsobjects

initial_movement_SENSOR

194

Figure A.0.2: CPN base data type reading module

The module of Figure A.0.3 is responsible to update the values of the movement sensors

tokens present in the model in agreement with the users movement in the simulation layer.

Figure A.0.3: CPN base update movement sensors module

The module of Figure A.0.4 is responsible to synchronize the sensing of avatars by the

presence sensors in the 3D environment with the tokens in the model that represent them.

dataTypeRead

read data type

output(dataTypeRead);
action
(receiveString());

run

run
UNIT

able to
read

ableToRead

1`()

UNIT

datatype read

dataType
DATATYPE

dataType

ableToRead

run

()

()

movs

()

idRead

dataTypeRead
[dataTypeRead="movementSensor"]

output(idRead);
action
(receiveString());

Update
sensor data

M_sensor

movementSensor
movement_SENSOR

1`()

read ids

STRING

DATATYPE

movementSensor

[(#userID movs)=idRead]

newMovementSensor(idRead,year,month,day,hour,min,sec)

output(year,month,day,hour,min,sec);
action
(receiveInteger(),
 receiveInteger(),
 receiveInteger(),
 receiveInteger(),
 receiveInteger(),
 receiveInteger()
);

idRead

datatype read

dataTypedataType

reading id

able to
read

ableToReadableToRead
UNIT

195

Figure A.0.4: CPN base update presence sensors module

()

dataTypeRead

[dataTypeRead="PresenceSensorIni"]

output(idRead);
action
(receiveString());

Update

sensor data

output(lst_objID,tipo,thres,modo,poll,x,y,z);
action
(receiveString(),
 receiveString(),
 receiveInteger(),
 receiveString(),
 receiveInteger(),
 receiveInteger(),

 receiveInteger(),
 receiveInteger()
);

P_sensors

presenceSensors presence_SENSOR

able to

read

ableToRead

1`()

UNIT

read ids

STRING

DATATYPE

ableToReadpresenceSensors

idRead

reading id

idRead

datatype read

dataTypedataType

newPresenceSensor(idRead,lst_objID,tipo,thres,modo,poll,x,y,z)

196

197

Appendix B: CPN Analysis Model

This section describes the main modules of the CPN Analysis model. The full model can be

consulted in the Compact Disk attached to this document.

The Figure B.0.1 presents the module responsible to update, the tokens of the model that

represent dynamic objects, in agreement with the values provided to the small colour sets

(ObjIDs, ObjFeatures).

Figure B.0.1: CPN analysis dynamic objects update module

The module of Figure B.0.2 represents the module responsible to update the value of the

tokens that represent the light sensors of the environment in agreement with the initialized

small colour sets (LS_IDs, hours).

objfeature

id

obj
()

id

idRead

dataTypeRead

reading id

[dataTypeRead="DynamicObjUpdate"]

Update

sensor data

[idRead = (#id obj)]

OBJfeatures

STRING

Dynamic Objects

objects
OBJ

UNIT

STRING

DATATYPE

objects

read ids

ObjIDs

ObjIDsObjIDs

able to

read

ableToReadableToRead

Objfeatures

ObjFeaturesObjFeatures

datatype read

dataTypedataType

newDynamicObj(idRead,

 List.nth(#x objfeature,discrete(0,length(#x objfeature)-1)),

 List.nth(#y objfeature,discrete(0,length(#y objfeature)-1)),

 List.nth(#z objfeature,discrete(0,length(#z objfeature)-1)),

 List.nth(#objType objfeature,discrete(0,length(#objType objfeature)-1)))

198

Figure B.0.2: CPN analysis light sensors update module

The module of Figure B.0.3 is responsible to update the tokens of the time sensor using

the values of the initialized small colour sets (TS_IDs).

Figure B.0.3: CPN analysis time sensors update module

id

i

()

updateLightSensorValue(ls,i)

ls

idSensorRead

id

dataTypeRead

[dataTypeRead="lightSensor"]

Update LightSensor Value

[(idSensorRead)=(#id ls)]

INT

STRING

able to
read

ableToRead

UNIT
light_SENSOR

STRING

DATATYPE

ableToRead

read ids

reading id

datatype read

dataTypedataType

Ids
LS_IDsLS_IDs

L_sensors

lightSensorlightSensor

hours

hourshours

tsfeature

id

ts

()

dataTypeRead

[dataTypeRead="TimeSensorIni"]

Update
sensor data

TSfeatures

STRING

T_sensor

timeSensor
time_SENSOR

UNIT

STRING

DATATYPE

timeSensor

TS_features

able to
read

ableToReadableToRead

reading id

read ids
newTimeSensor(idRead, List.nth(#year tsfeature,discrete(0,length(#year tsfeature)-1)),

 List.nth(#month tsfeature,discrete(0,length(#month tsfeature)-1)),
 List.nth(#day tsfeature,discrete(0,length(#day tsfeature)-1)),
 List.nth(#h tsfeature,discrete(0,length(#h tsfeature)-1)),
 List.nth(#m tsfeature,discrete(0,length(#m tsfeature)-1)) ,

 List.nth(#s tsfeature,discrete(0,length(#s tsfeature)-1)),
 List.nth(#e tsfeature,discrete(0,length(#e tsfeature)-1)))

id

idRead

datatype read

dataTypedataType

TS1

TS_IDsTS_IDs

199

Appendix C: Evaluation Questionnaire

This questionnaire was used to evaluate the usefulness, satisfaction, ease to use and ease to

learn of the APEX framework by software engineers who used it. Comments were also regis-

tered.

Figure C.0.1: APEX questionnaire - first part

200

Figure C.0.2: APEX questionnaire - second part

201

Appendix D: Exercises Proposed During the Evalua-

tion

The goal of this exercise is to compare different solutions to the problem of creating a ubiqui-

tous environment that guides elderly persons to the bathroom at night. Please create the mod-

els described and answer the questions.

1 - Basic setup (save the solution with the name solution1.cpn).

 Current time: _________

Suggestions:

 Put lights on the floor to be turned on when the person leaves the bed;

 Put a presence sensor near the bed to detect when the user leaves the bed;

 Use functions sendTurnLightOn(obj:OBJ) and sendTurnLightOffobj:OBJ) in the

CPN transitions in order to switch the light on and off;

 Use the function nobodyNearPresenceSensor(ps:presence_SENSOR) in the tran-

sition guard in order to enable the light turn off.

Current time: _________

1.1 - Is the developed solution adequate? What kind of problem can appear with this so-

lution?

2 - Update the environment in order to support turning the light off only when the user

reaches the bedroom. Save the solution with the name solution2.cpn.

Current time: __________

Suggestions:

 Use a second presence sensor

Current time: __________

2.1 - Is the developed solution adequate? What kind of problem can appear with this so-

lution?

202

3 – Update the environment in order to use a timer to determine when the light can be

turned off. Save the solution with the name solution3.cpn.

Current time: __________

Suggestions:

 Make use of the time sensor values (clone the time_SENSOR place into your

model);

 Use the function timeElapsed(ts:time_SENSOR) to access the time elapsed of the

time sensor ts;

Current time: __________

3.1 – What solution do you consider more adequate? Why?

203

Appendix E: APEX Brief User Guide

APEX can be used in developer and user modes. This appendix describes how to use APEX

in both modes of usage and how to install it. The description uses the smart library example

as illustration.

Installation

The Opensimulator server must be installed and appropriately configured (see build instruc-

tions at the Opensimulator website
52

). The CPN model is then loaded by the CPN Tools and

executed. For execution to occur, a connection must be made with Opensimulator. Once the

Opensimulator server is executed, the communications/execution DLL loaded, and connec-

tion to CPN Tools enabled, users can connect through viewers to the virtual environment by

means of appropriate accounts that have been previously created in the Opensimulator server

(create user command). Each avatar have an associated Opensimulator account. These steps

are illustrated in Figure E.0.1.

User Mode

To use APEX, the user must:

1. download a viewer to connect to the virtual environment via the web;

2. run the viewer with the option -loginuri http://A.B.C.D:9000/, where A.B.C.D is the

IP address of the server machine (external host name);

3. connect to the server machine using a provided user account.

It is assumed that the Opensimulator service is running in the server machine on port

9000.

Having taken these steps free exploration and interaction with the virtual environment is

possible. In this mode the CPN base model should be complete and does not need to be ex-

tended. The virtual environment should be complete too. Command execution is achieved

52

 Opensimulator build instructions: http://opensimulator.org/wiki/Build_Instructions (last ac-

cessed: 22 February 2012)

204

with the viewer tool using features provided by APEX (e.g. initialize the synchronization

between the simulation and the modelling layers). The commands provided are:

 load oar filename – load an environment or object from an oar file;

 save oar filename - save an environment or object from an oar file;

 clear – remove all objects from the scene. Optionally, to remove only one object a “!”

must be added to the beginning of its name before using the delete option provided by

the viewer;

 obj ini – send the dynamic objects values (ID, type and position) to the CPN model;

 sensors ini – makes the sensors initialization at modelling layer with the values of the

sensors present in the environment;

 sensors update – performs sensors update with the current values;

 addList:X – add the value X to the user list (e.g. X is the book which the user wants);

 remList:Y – remove the value Y of the user list.

Figure E.0.1: Installation steps diagram

Developer Mode

In this mode the developer extends the CPN base model with the behavioural modules that

specify the devices present in the virtual environment using the CPN Tools. The base model

has information about the context of the environment that is used by the added modules. A

205

library of modules are available and used by the developers to model the ubicomp environ-

ment. The development of a new module is only necessary if it is not already available. Their

development follow the process presented in Chapter 4. The virtual environment, if it does

not yet exist, must be developed using a compatible viewer. Third party developed objects

(meshes) can be imported using an appropriate viewer (e.g. Firestorm viewer) or created

through it, see Section 5.2 for this purpose. To be possible to animate correctly an environ-

ment some environment conditions must be satisfied:

 Each dynamic object in the virtual environment (represented by a token in the CPN

model) must:

o have a unique ID present in the field Name. This ID is used to identify the ob-

jects in both layers (thus linking/associating a token to the correct object in the

virtual environment);

o indicate its object type using the field Description (e.g. object type = gate);

 Each non-dynamic object must have the default name Primitive in the field Name;

 Each sensor must be loaded from the pre-defined sensors provided (OAR files). Al-

ternatively new ones can be defined. The Figure E.0.2 illustrates sensor features. They

are:

o The fields Name and Description must be changed to reflect the desired val-

ues;

o The objectIDs list present in the Description field of the Presence Sensors

represents the Ids of the objects that the sensor affects. The elements of this

list must be separated by commas ‘,’;

o The threshold present in the Description field of the Presence Sensors repre-

sents the distance from which the sensor reacts;

o The value present in the Description field of the Light Sensors represents the

light value of which the sensor is exposed from 0 to 24 (day light correspon-

dence). Modifications to this value will be reflected in the environment and

modifications of the light in the environment will be updated to this value (the

corresponding token in the CPN model will be continually updated).

206

Figure E.0.2: Sensor's attributes

The behaviour of the dynamic objects in the virtual environment is triggered by the asso-

ciated module (connected by common token and object IDs) and made concrete by associated

scripts. Figure E.0.3 shows a script associated with a dynamic object. In this example the

script that determines the behaviour of the gate is linked to it by using the object script asso-

ciation that is provided by the viewer. When a gate is in the open CPN state, this state must

be reflected in the environment. The script of Figure 3.5 (page 44) describes the behaviour of

the gate.

This script is responsible for opening a sliding door when touched and to close it when

touched again. The first touch changes to the opened state of the gate module and the second

touch to the closed state (see Figure 4.2). The touch action present in the script (touch_end) is

automatically triggered in the environment by the APEX communication/execution compo-

nent and Opensimulator API when the relevant CPN transition is executed. To effect a model

state change, one or more actions are executed in the environment responsible to it. This

component searches for the objects in the environment that must change and triggers the

touch action on the ones that it finds.

The developed script starts in the default state. It invokes the touch_end function that

calls the auxiliary function do_process when the object associated with this script is touched.

However, the touched actions are automatically triggered by the communication/execution

component when the CPN model indicates that the gate should react (modification of state)

without being touched by an avatar. The counter variable indicates the state of the gate (0 -

207

closed; 1 - open). The do_process function uses it to decide to open or close the gate. The

counter is initialized with zero (gates should initially be closed). To open or to close the gate

in the virtual environment the coordinate X of the gate is incremented/decremented with two

values respectively (llSetPos(llGetPos() +/- <2,0,0>). These cause the sliding of the door.

The Figure 3.6 (sub-Section 3.1.3) illustrates the process that leads to the opening of the gate

when a user arrives near it.

To associate a script to a device present in the environment the following steps must be

carried out in the Second Life viewer:

 Request Admin Status: Ctrl+Alt+G (optional depending of the Opensimulator server

version);

 Force the owner of the object to be the avatar currently connected:

Admin/Object/Force Owner To Me (optional depending of the Opensimulator server

version);

 Add the script: Select the object/Edit/Content/New Script/Add the script/Save.

After these steps APEX is ready to be used. At this stage the system assumes that the de-

veloper has accomplished the essential steps needed to use APEX (presented in previous sec-

tion, user mode usage description).

Figure E.0.3: Dynamic Object Script association

208

The Time and Movement sensors are invisible in the environment but their values are up-

dated in the CPN model. The insertion of explicit sensors (e.g. presence sensor) in the world

is possible using the command load-oar filename that permits sensor loading (see Figure

E.0.4). Many sensors and objects can be used “off the shelf” as part of the environment when

appropriate using this command. Also pre-defined environments can be loaded using this

command. After the loading of the sensors in the world their features must be completed (e.g.

type, objectIDs which it affects, threshold, etc.) using the field description provided by the

viewer for each world object (see Figure E.0.2). These features are forwarded to the relevant

token in the CPN model. This is achieved using the stated sensors ini command, invoked in

the viewer. The sensor’s features (e.g. value, threshold, position) can be modified in the

viewer at runtime. This feature enables the development of different configurations of a ubiq-

uitous environment at runtime. When the environment is ready, the sensors ini and/or obj ini

commands must be executed in the chat box (see Figure E.0.4) in order to synchronize the

CPN model with the new environment.

Figure E.0.4: Execution of commands in the viewer

