
SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE:
Transforming Point-free Programs Using

Strafunski

José Proença

Department of Informatics
University of Minho

PURe Workshop, 2005

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

The Point-free Style

Point-free language
No variables are used
Categorically-inspired combinators
Algebraic data types as fixed points of functors
Polytypic recursion patterns

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Main Goal

Why Point-free
Easy to prove

reason equationaly

DRHYLO

Translation from pointwise to point-free
Removal of explicit recursion
Automated process

⇒ Complex point-free results

Reason automatically on point-free terms

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Main Goal

Why Point-free
Easy to prove

reason equationaly

DRHYLO

Translation from pointwise to point-free
Removal of explicit recursion
Automated process

⇒ Complex point-free results

Reason automatically on point-free terms

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Main Goal

Why Point-free
Easy to prove

reason equationaly

DRHYLO

Translation from pointwise to point-free
Removal of explicit recursion
Automated process

⇒ Complex point-free results

Reason automatically on point-free terms

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

General View
SIMPLIFREE

Simplification and Transformation of point-free terms
Active source – Code with special commented blocks
Rules and strategies to transform terms
Strategies implemented with generic traversals -
Strafunski
Uses Haskell patterns matching
Visualisation of intermediate steps

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SimpliFree Architecture

foo.hs strat_foo.hs
SimpliFree

SimpliFreeLib

simpl_foo.hs
Compilation

Interpretation
Calculation steps

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Point-Free Language

data Term = ID | Term :.: Term
| FST | SND | Term :/\: Term
| INL | INR | Term :\/: Term
| AP | Curry Term
| BANG
| IN | OUT
| Macro String [Term]
| Hylo Type Term Term
deriving Eq

data Type = ...

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Basic Concepts

Strafunski generic libraries were used;
Instances for Typeable and Term derived with DrIFT;
Several strategy combinators were defined:
rule, many, or, and, oneOrMore, optional and
fail.
Associativity of composition:
Terms are reassociated to the right after each
transformation

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Basic Concepts

Strafunski generic libraries were used;
Instances for Typeable and Term derived with DrIFT;
Several strategy combinators were defined:
rule, many, or, and, oneOrMore, optional and
fail.
Associativity of composition:
Terms are reassociated to the right after each
transformation

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Basic Concepts

Strafunski generic libraries were used;
Instances for Typeable and Term derived with DrIFT;
Several strategy combinators were defined:
rule, many, or, and, oneOrMore, optional and
fail.
Associativity of composition:
Terms are reassociated to the right after each
transformation

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Computation

Application of a strategy to a point-free term:
COMPUTATION

Computation definition

Computation = Result Steps
Step = (Term, String)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Normalization of the Composition

Reassociation to the right.

normalizeStrat :: MonadPlus m => TP m
normalizeStrat = iterateTP strat
where
strat = once_tdTP (adhocTP failTP flat)
flat ((x :.: y) :.: z)

= return $ x :.: (y :.: z)
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘

(iterateTP strat))
‘choiceTP‘ idTP

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Normalization of the Composition

Reassociation to the right.

normalizeStrat :: MonadPlus m => TP m
normalizeStrat = iterateTP strat
where
strat = once_tdTP (adhocTP failTP flat)
flat ((x :.: y) :.: z)

= return $ x :.: (y :.: z)
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘

(iterateTP strat))
‘choiceTP‘ idTP

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Normalization of the Composition

Reassociation to the right.

normalizeStrat :: MonadPlus m => TP m
normalizeStrat = iterateTP strat
where
strat = once_tdTP (adhocTP failTP flat)
flat ((x :.: y) :.: z)

= return $ x :.: (y :.: z)
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘

(iterateTP strat))
‘choiceTP‘ idTP

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Normalization of the Composition

Reassociation to the right.

normalizeStrat :: MonadPlus m => TP m
normalizeStrat = iterateTP strat
where
strat = once_tdTP (adhocTP failTP flat)
flat ((x :.: y) :.: z)

= return $ x :.: (y :.: z)
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘

(iterateTP strat))
‘choiceTP‘ idTP

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Apply a Rule Once

rulePF :: (MonadPlus m) =>
String -> (Term -> m Term)

-> TU Computation m

rulePF name rule =
... collect original term
(once_tdTP (adhocTP failTP rule)
‘seqTP‘ normalizestrat
... get new term, and create new Computation

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Apply a Rule Once

rulePF :: (MonadPlus m) =>
String -> (Term -> m Term)

-> TU Computation m

rulePF name rule =
... collect original term
(once_tdTP (adhocTP failTP rule)
‘seqTP‘ normalizestrat
... get new term, and create new Computation

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

More Complete Justifications

In final version:
Rules can apply strategies in the right-hand side;
Justifications are now a string and a list of
Computations;
Redefinition of Computation

Computation = Result Steps
Step = (Term, Computations, String)

Strategy combinators a bit more complex.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

More Complete Justifications

In final version:
Rules can apply strategies in the right-hand side;
Justifications are now a string and a list of
Computations;
Redefinition of Computation

Computation = Result Steps
Step = (Term, Computations, String)

Strategy combinators a bit more complex.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

More Complete Justifications

In final version:
Rules can apply strategies in the right-hand side;
Justifications are now a string and a list of
Computations;
Redefinition of Computation

Computation = Result Steps
Step = (Term, Computations, String)

Strategy combinators a bit more complex.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Examples

{- Strategies:
strategy : compute and fold_macros
compute : simplify and (opt

((oneOrMore unfold_macros)
and compute))

simplify : many base_rules
base_rules : rule1 or rule2 or rule3 or ...
fold_macros : many (fold_macro1 or

fold_macro2 or ...)
unfold_macros : many (unfold_macro1 or

unfold_macro2 or ...)
-}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Examples

{- Strategies:
strategy : compute and fold_macros
compute : simplify and (opt

((oneOrMore unfold_macros)
and compute))

simplify : many base_rules
base_rules : rule1 or rule2 or rule3 or ...
fold_macros : many (fold_macro1 or

fold_macro2 or ...)
unfold_macros : many (unfold_macro1 or

unfold_macro2 or ...)
-}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Examples

{- Strategies:
strategy : compute and fold_macros
compute : simplify and (opt

((oneOrMore unfold_macros)
and compute))

simplify : many base_rules
base_rules : rule1 or rule2 or rule3 or ...
fold_macros : many (fold_macro1 or

fold_macro2 or ...)
unfold_macros : many (unfold_macro1 or

unfold_macro2 or ...)
-}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Examples

{- Strategies:
strategy : compute and fold_macros
compute : simplify and (opt

((oneOrMore unfold_macros)
and compute))

simplify : many base_rules
base_rules : rule1 or rule2 or rule3 or ...
fold_macros : many (fold_macro1 or

fold_macro2 or ...)
unfold_macros : many (unfold_macro1 or

unfold_macro2 or ...)
-}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Basic Principles

A rule is a function with type Term -> m Term;
Tries to apply a transformation to a term or a prefix of
a term;
Assumes composition is normalized.

Example: natId1 : id ◦ f → f
natId1 (ID :.: f) = return f
natId1 _ = fail "..."

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Basic Principles

A rule is a function with type Term -> m Term;
Tries to apply a transformation to a term or a prefix of
a term;
Assumes composition is normalized.

Example: natId1 : id ◦ f → f
natId1 (ID :.: f) = return f
natId1 _ = fail "..."

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

First Complication

Matching a prefix of a composition.

When the matching term is a composition,
not ending on a variable.

Adition of a new match to the function.

Example: sumCancel1 : (f O g) ◦ inl → f
sumCancel1 ((f :: g) :.: INL)

= return f
sumCancel1 ((f :: g) :.: (INL :.: x))

= return (f :.: x)
sumCancel1 _

= fail "..."

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

First Complication

Matching a prefix of a composition.

When the matching term is a composition,
not ending on a variable.

Adition of a new match to the function.

Example: sumCancel1 : (f O g) ◦ inl → f
sumCancel1 ((f :: g) :.: INL)

= return f
sumCancel1 ((f :: g) :.: (INL :.: x))

= return (f :.: x)
sumCancel1 _

= fail "..."

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left variables
The Problem

Oops: Variables on the left of compositions.

Why?
Composition is associated to the right;
Different associations until a pattern matching is
found.

Example

f ◦ ap

would not match any subterm of

fst ◦ (snd ◦ ap)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left variables
The Problem

Oops: Variables on the left of compositions.

Why?
Composition is associated to the right;
Different associations until a pattern matching is
found.

Example

f ◦ ap

would not match any subterm of

fst ◦ (snd ◦ ap)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
The Problem

Conditions can be introduced by:
A string starting by “<=”;
Equal variables;
Strategies in the right-hand side.

Not enough to add conditions to guards:
Need to backtrack when conditions fail

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
The Problem

Conditions can be introduced by:
A string starting by “<=”;
Equal variables;
Strategies in the right-hand side.

Not enough to add conditions to guards:
Need to backtrack when conditions fail

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – Not Regarding Left Variables

Introduction of a new match when composition ends in a
variabe:

rule (... :.: f :.:x) | cond
= return (exp :.:x)

rule (... :.: f :.:(x1:.:x2))
= rule (... :.:(f :.:x1):.:x2)

rule (... :.: f) | cond
= return exp

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – In the presence of Left Variables

Auxiliary funcions collect all possible matches for each
variable.

Intermediate structure of auxiliary functions change:
from Maybe ([Term], Maybe Term)
to [([Term], Maybe Term)]

When a match is found in a composition∗ ending in a
variable:

Keep searching for more matches.

Use the first match that validates the conditions.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – In the presence of Left Variables

Auxiliary funcions collect all possible matches for each
variable.

Intermediate structure of auxiliary functions change:
from Maybe ([Term], Maybe Term)
to [([Term], Maybe Term)]

When a match is found in a composition∗ ending in a
variable:

Keep searching for more matches.

Use the first match that validates the conditions.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – In the presence of Left Variables

Auxiliary funcions collect all possible matches for each
variable.

Intermediate structure of auxiliary functions change:
from Maybe ([Term], Maybe Term)
to [([Term], Maybe Term)]

When a match is found in a composition∗ ending in a
variable:

Keep searching for more matches.

Use the first match that validates the conditions.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – In the presence of Left Variables

Auxiliary funcions collect all possible matches for each
variable.

Intermediate structure of auxiliary functions change:
from Maybe ([Term], Maybe Term)
to [([Term], Maybe Term)]

When a match is found in a composition∗ ending in a
variable:

Keep searching for more matches.

Use the first match that validates the conditions.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Syntactic Sugar
Making Life Easier

Equal variables
Associativity property:
Given ⊕ produces ⊕ ◦ ⊕ → comp ◦ (⊕×⊕)

Fold and unfold macros, based on its definition.
Introduction of lists of terms.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Syntactic Sugar
Making Life Easier

Equal variables
Associativity property:
Given ⊕ produces ⊕ ◦ ⊕ → comp ◦ (⊕×⊕)

Fold and unfold macros, based on its definition.
Introduction of lists of terms.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Syntactic Sugar
Making Life Easier

Equal variables
Associativity property:
Given ⊕ produces ⊕ ◦ ⊕ → comp ◦ (⊕×⊕)

Fold and unfold macros, based on its definition.
Introduction of lists of terms.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Syntactic Sugar
Making Life Easier

Equal variables
Associativity property:
Given ⊕ produces ⊕ ◦ ⊕ → comp ◦ (⊕×⊕)

Fold and unfold macros, based on its definition.
Introduction of lists of terms.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Simple Strategy
Input

Simple iteration of

Prod-Cancel1 : fst ◦ (f M g) = f
Prod-Cancel2 : snd ◦ (f M g) = g

Original Code
f = curry ((snd.(snd /\ fst)).(fst /\ fst))

{- Rules:
simplify: many (prodCancel1 or prodCancel2)
prodCancel1: fst.(f/\g) -> f
prodCancel2: snd.(f/\g) -> g -}

{- Optimizations: f -> simplify -}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Simple Strategy
Input

Simple iteration of

Prod-Cancel1 : fst ◦ (f M g) = f
Prod-Cancel2 : snd ◦ (f M g) = g

Original Code
f = curry ((snd.(snd /\ fst)).(fst /\ fst))

{- Rules:
simplify: many (prodCancel1 or prodCancel2)
prodCancel1: fst.(f/\g) -> f
prodCancel2: snd.(f/\g) -> g -}

{- Optimizations: f -> simplify -}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Simple Strategy
Output

import SimpliFreeLib
...
f = Curry (SND :.: ((SND :/\: FST) :.: (FST :/\: FST)))
...
prodCancel1 (FST :.: (f :/\: g)) = return (f)
prodCancel1 (FST :.: ((f :/\: g) :.: x))

= return (f :.: x)
prodCancel1 _ = fail "rule prodCancel1 not applied"
prodCancel2 (SND :.: (f :/\: g)) = return (g)
prodCancel2 (SND :.: ((f :/\: g) :.: x))

= return (g :.: x)
prodCancel2 _ = fail "rule prodCancel2 not applied"

simplify = manyPF ((rulePF "prodCancel1" prodCancel1)
‘orPF‘ (rulePF "prodCancel2" prodCancel2))

f_simplify = unOk (applyPF simplify f)
...
main = putStrLn ...

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Simple Strategy
Results

Computation

*Main> f_simplify
curry (snd.(snd /\ fst).(fst /\ fst))

= { prodCancel2 }
curry (fst.(fst /\ fst))

= { prodCancel1 }
curry fst

The main function just return the final result.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Simple Strategy
Results

Computation

*Main> f_simplify
curry (snd.(snd /\ fst).(fst /\ fst))

= { prodCancel2 }
curry (fst.(fst /\ fst))

= { prodCancel1 }
curry fst

The main function just return the final result.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Cata-FUSION Law

Cata-FUSION

f ◦ (|g|)µF = (|h|)µF ⇐ f strict ∧ f ◦ g = h ◦ F f
cata-FUSION

For Lists
FList A = 1⊕ A⊗ Id
g = g1 O g2

f ◦ (g1 O g2) = h ◦ (id + id × f)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Cata-FUSION Law

Cata-FUSION

f ◦ (|g|)µF = (|h|)µF ⇐ f strict ∧ f ◦ g = h ◦ F f
cata-FUSION

For Lists
FList A = 1⊕ A⊗ Id
g = g1 O g2

f ◦ (g1 O g2) = h ◦ (id + id × f)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f)

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f)
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f)
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f)

(h1 O h2) ◦ (id + id × f)

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE Strategy

cataList : cataList_rule
cataList_rule : f . (’cataList’ [g1\/g2])
-> ’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or
extractH2C or extractH2D

extractH2A : [f,a.(b >< (c.f))] -> a.(b><c)
extractH2B : [f,a.(b >< f)] -> a.(b><id)
extractH2C : [f,b >< (c.f)] -> b><c
extractH2D : [f,b >< f] -> b><id

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE Strategy

cataList : cataList_rule
cataList_rule : f . (’cataList’ [g1\/g2])
-> ’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or
extractH2C or extractH2D

extractH2A : [f,a.(b >< (c.f))] -> a.(b><c)
extractH2B : [f,a.(b >< f)] -> a.(b><id)
extractH2C : [f,b >< (c.f)] -> b><c
extractH2D : [f,b >< f] -> b><id

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE Strategy
Continuation

cataList_step :
user_cataL_rules or swapLeft or
base_rule or base_unfMacros

swapLeft :
(f >< g) . ’swap’ -> ’swap’ . (g >< f)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE Strategy
Continuation

cataList_step :
user_cataL_rules or swapLeft or
base_rule or base_unfMacros

swapLeft :
(f >< g) . ’swap’ -> ’swap’ . (g >< f)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

SIMPLIFREE Strategy
Continuation

cataList_step :
user_cataL_rules or swapLeft or
base_rule or base_unfMacros

swapLeft :
(f >< g) . ’swap’ -> ’swap’ . (g >< f)

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse in Point-free
Cata-FUSION

Pointwise Haskell
reverse [] = []
reverse (x:xs) = cat (reverse xs, wrap x)

Point-free

reverse = (|nil O(cat ◦ swap ◦ (wrap × id))|)List A

reverset l y = cat (reverse l) y

reverset = cat ◦ reverse

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse in Point-free
Cata-FUSION

Pointwise Haskell
reverse [] = []
reverse (x:xs) = cat (reverse xs, wrap x)

Point-free

reverse = (|nil O(cat ◦ swap ◦ (wrap × id))|)List A

reverset l y = cat (reverse l) y

reverset = cat ◦ reverse

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse
SIMPLIFREE Input

reverse_t =
= curry cat . (cataList

((pnt nil) \/ (cat.swap.(wrap >< id))))

{- Rules:
Assoc catAssoc: ’cat’
user_cataL_rules: catAssoc
-}

{- Optimizations: reverse_t -> cataList -}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse
SIMPLIFREE Input

reverse_t =
= curry cat . (cataList

((pnt nil) \/ (cat.swap.(wrap >< id))))

{- Rules:
Assoc catAssoc: ’cat’
user_cataL_rules: catAssoc
-}

{- Optimizations: reverse_t -> cataList -}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse
SIMPLIFREE Input

reverse_t =
= curry cat . (cataList

((pnt nil) \/ (cat.swap.(wrap >< id))))

{- Rules:
Assoc catAssoc: ’cat’
user_cataL_rules: catAssoc
-}

{- Optimizations: reverse_t -> cataList -}

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Example: Reverse
SIMPLIFREE Results

*Main> reverse_t_cataList
curry ’cat’.(’cataList’ [(’pnt’ [’nil’]) \/

(’cat’.’swap’.(’wrap’ >< id))])
= { cataList

--- and ---
[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ >< id)]

= { catAssoc }
[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.

(’wrap’ >< id)]
= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).
(’wrap’ >< id)]

= { prodFun }
[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><

(curry ’cat’.id))]
= { natId2 }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><
curry ’cat’)]

= { extractH2B }
’comp’.’swap’.((curry ’cat’.’wrap’) >< id)

}
’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/

(’comp’.’swap’.((curry ’cat’.’wrap’) >< id))]

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Outline

1 Introduction
Motivation
SimpliFree Overview

2 Term Traversal
Basic Concepts
Defining Strategy Combinators
Examples

3 Rule construction
Basic Principles
Main Problems

4 Testing Strategies
Simple Strategy
Cata-FUSION for Lists

5 Conclusions

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conclusions and Future Work

What was done:
Automated simplification of point-free terms;
Easy definition of strategies and rules;
Program transformation – cata-FUSION

Future Work:
Formal validation;
Use of type information;
Generalise cata-FUSION;
Loop detection;
Improve rules repository.

SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conclusions and Future Work

What was done:
Automated simplification of point-free terms;
Easy definition of strategies and rules;
Program transformation – cata-FUSION

Future Work:
Formal validation;
Use of type information;
Generalise cata-FUSION;
Loop detection;
Improve rules repository.

	Introduction
	Motivation
	SimpliFree Overview

	Term Traversal
	Basic Concepts
	Defining Strategy Combinators
	Examples

	Rule construction
	Basic Principles
	Main Problems

	Testing Strategies
	Simple Strategy
	Cata-Fusion for Lists

	Conclusions

