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The Point-free Style

Point-free language
No variables are used
Categorically-inspired combinators
Algebraic data types as fixed points of functors
Polytypic recursion patterns
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Main Goal

Why Point-free
Easy to prove

reason equationaly

DRHYLO

Translation from pointwise to point-free
Removal of explicit recursion
Automated process

⇒ Complex point-free results

Reason automatically on point-free terms
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General View
SIMPLIFREE

Simplification and Transformation of point-free terms
Active source – Code with special commented blocks
Rules and strategies to transform terms
Strategies implemented with generic traversals -
Strafunski
Uses Haskell patterns matching
Visualisation of intermediate steps
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SimpliFree Architecture

foo.hs strat_foo.hs
SimpliFree

SimpliFreeLib

simpl_foo.hs
Compilation

Interpretation
Calculation steps
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Point-Free Language

data Term = ID | Term :.: Term
| FST | SND | Term :/\: Term
| INL | INR | Term :\/: Term
| AP | Curry Term
| BANG
| IN | OUT
| Macro String [Term]
| Hylo Type Term Term
deriving Eq

data Type = ...
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Basic Concepts

Strafunski generic libraries were used;
Instances for Typeable and Term derived with DrIFT;
Several strategy combinators were defined:
rule, many, or, and, oneOrMore, optional and
fail.
Associativity of composition:
Terms are reassociated to the right after each
transformation
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Computation

Application of a strategy to a point-free term:
COMPUTATION

Computation definition

Computation = Result Steps
Step = (Term, String)
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Normalization of the Composition

Reassociation to the right.

normalizeStrat :: MonadPlus m => TP m
normalizeStrat = iterateTP strat
where
strat = once_tdTP (adhocTP failTP flat)
flat ((x :.: y) :.: z)

= return $ x :.: (y :.: z)
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘

(iterateTP strat))
‘choiceTP‘ idTP
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Apply a Rule Once

rulePF :: (MonadPlus m) =>
String -> (Term -> m Term)

-> TU Computation m

rulePF name rule =
... collect original term
(once_tdTP (adhocTP failTP rule)
‘seqTP‘ normalizestrat
... get new term, and create new Computation
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More Complete Justifications

In final version:
Rules can apply strategies in the right-hand side;
Justifications are now a string and a list of
Computations;
Redefinition of Computation

Computation = Result Steps
Step = (Term, Computations, String)

Strategy combinators a bit more complex.
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Examples

{- Strategies:
strategy : compute and fold_macros
compute : simplify and (opt

((oneOrMore unfold_macros)
and compute))

simplify : many base_rules
base_rules : rule1 or rule2 or rule3 or ...
fold_macros : many ( fold_macro1 or

fold_macro2 or ... )
unfold_macros : many (unfold_macro1 or

unfold_macro2 or ...)
-}
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Basic Principles

A rule is a function with type Term -> m Term;
Tries to apply a transformation to a term or a prefix of
a term;
Assumes composition is normalized.

Example: natId1 : id ◦ f → f
natId1 (ID :.: f) = return f
natId1 _ = fail "..."
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First Complication

Matching a prefix of a composition.

When the matching term is a composition,
not ending on a variable.

Adition of a new match to the function.

Example: sumCancel1 : (f O g) ◦ inl → f
sumCancel1 ((f :: g) :.: INL)

= return f
sumCancel1 ((f :: g) :.: (INL :.: x))

= return (f :.: x)
sumCancel1 _

= fail "..."
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Left variables
The Problem

Oops: Variables on the left of compositions.

Why?
Composition is associated to the right;
Different associations until a pattern matching is
found.

Example

f ◦ ap

would not match any subterm of

fst ◦ (snd ◦ ap)
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Left Variables
Solution

Replace compositions with left variables for new
variables.

Use auxiliary functions for these substerms.
Still using Haskell pattern matching.

The auxiliary functions use an intermediate structure –
Maybe ([Term], Maybe Term) – to:

check if the pattern matching succeded;
return the values of variables inside subterm;
return the possible ending.
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Left Variables
Example

exp_fold : f ◦ ap → f ◦

exp_fold (Curry f’) | success (aux f’) =
= return $

(\f -> getEnd
left_vars (Macro "exp" [f]))

(getTerm 0 left_vars)
where
left_vars = aux f’
aux (f :.: AP) = addTerm f (emptyVar)
aux (a :.: b) | success (aux b)
= addComp a (aux b)

aux _ = noVar

exp_fold _ = fail "rule not applied"
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Conditions
The Problem

Conditions can be introduced by:
A string starting by “<=”;
Equal variables;
Strategies in the right-hand side.

Not enough to add conditions to guards:
Need to backtrack when conditions fail



SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
The Problem

Conditions can be introduced by:
A string starting by “<=”;
Equal variables;
Strategies in the right-hand side.

Not enough to add conditions to guards:
Need to backtrack when conditions fail



SIMPLIFREE:
Transforming

Point-free
Programs Using

Strafunski

José Proença

Introduction
Motivation

SimpliFree Overview

Term Traversal
Basic Concepts

Defining Strategy
Combinators

Examples

Rule construction
Basic Principles

Main Problems

Testing Strategies
Simple Strategy

Cata-FUSION for Lists

Conclusions

Conditions
Solution – Not Regarding Left Variables

Introduction of a new match when composition ends in a
variabe:

rule (... :.: f :.:x) | cond
= return ( exp :.:x)

rule (... :.: f :.:(x1:.:x2))
= rule (... :.:( f :.:x1):.:x2)

rule (... :.: f ) | cond
= return exp
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Conditions
Solution – In the presence of Left Variables

Auxiliary funcions collect all possible matches for each
variable.

Intermediate structure of auxiliary functions change:
from Maybe ([Term], Maybe Term)
to [ ([Term], Maybe Term) ]

When a match is found in a composition∗ ending in a
variable:

Keep searching for more matches.

Use the first match that validates the conditions.
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Syntactic Sugar
Making Life Easier

Equal variables
Associativity property:
Given ⊕ produces ⊕ ◦ ⊕ → comp ◦ (⊕×⊕)

Fold and unfold macros, based on its definition.
Introduction of lists of terms.
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Basic Concepts
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Simple Strategy
Input

Simple iteration of

Prod-Cancel1 : fst ◦ (f M g) = f
Prod-Cancel2 : snd ◦ (f M g) = g

Original Code
f = curry ((snd.(snd /\ fst)).(fst /\ fst))

{- Rules:
simplify: many (prodCancel1 or prodCancel2)
prodCancel1: fst.(f/\g) -> f
prodCancel2: snd.(f/\g) -> g -}

{- Optimizations: f -> simplify -}
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Simple Strategy
Output

import SimpliFreeLib
...
f = Curry (SND :.: ((SND :/\: FST) :.: (FST :/\: FST)))
...
prodCancel1 (FST :.: (f :/\: g)) = return (f)
prodCancel1 (FST :.: ((f :/\: g) :.: x))

= return (f :.: x)
prodCancel1 _ = fail "rule prodCancel1 not applied"
prodCancel2 (SND :.: (f :/\: g)) = return (g)
prodCancel2 (SND :.: ((f :/\: g) :.: x))

= return (g :.: x)
prodCancel2 _ = fail "rule prodCancel2 not applied"

simplify = manyPF ((rulePF "prodCancel1" prodCancel1)
‘orPF‘ (rulePF "prodCancel2" prodCancel2))

f_simplify = unOk (applyPF simplify f)
...
main = putStrLn ...
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Simple Strategy
Results

Computation

*Main> f_simplify
curry (snd.(snd /\ fst).(fst /\ fst))

= { prodCancel2 }
curry (fst.(fst /\ fst))

= { prodCancel1 }
curry fst

The main function just return the final result.
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Cata-FUSION Law

Cata-FUSION

f ◦ (|g|)µF = (|h|)µF ⇐ f strict ∧ f ◦ g = h ◦ F f
cata-FUSION

For Lists
FList A = 1⊕ A⊗ Id
g = g1 O g2

f ◦ (g1 O g2) = h ◦ (id + id × f )
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Some Calculations
f ◦ (g1 O g2) = h ◦ (id + id × f )



f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2
= { † }

f ◦ g1 O i ◦ (j × k ◦ f )
= { Natural Id, Prod-Functor }

f ◦ g1 O i ◦ (j × k) ◦ (id × f )
= { Sum-Absortion }

(f ◦ g1 O i ◦ (j × k)) ◦ (id + id × f )

(h1 O h2) ◦ (id + id × f )

Strategy for calculating h2 based on f ◦ g2:
Keep trying to perform †,
extract i , j and k to h2 when possible
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SIMPLIFREE Strategy

cataList : cataList_rule
cataList_rule : f . (’cataList’ [g1\/g2])
-> ’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or
extractH2C or extractH2D

extractH2A : [f,a.(b >< (c.f))] -> a.(b><c)
extractH2B : [f,a.(b >< f)] -> a.(b><id)
extractH2C : [f,b >< (c.f)] -> b><c
extractH2D : [f,b >< f] -> b><id
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SIMPLIFREE Strategy
Continuation

cataList_step :
user_cataL_rules or swapLeft or
base_rule or base_unfMacros

swapLeft :
(f >< g) . ’swap’ -> ’swap’ . (g >< f)
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Example: Reverse in Point-free
Cata-FUSION

Pointwise Haskell
reverse [] = []
reverse (x:xs) = cat (reverse xs, wrap x)

Point-free

reverse = (|nil O(cat ◦ swap ◦ (wrap × id))|)List A

reverset l y = cat (reverse l) y

reverset = cat ◦ reverse
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Example: Reverse
SIMPLIFREE Input

reverse_t =
= curry cat . (cataList

((pnt nil) \/ (cat.swap.(wrap >< id))))

{- Rules:
Assoc catAssoc: ’cat’
user_cataL_rules: catAssoc
-}

{- Optimizations: reverse_t -> cataList -}
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SIMPLIFREE Input

reverse_t =
= curry cat . (cataList

((pnt nil) \/ (cat.swap.(wrap >< id))))

{- Rules:
Assoc catAssoc: ’cat’
user_cataL_rules: catAssoc
-}

{- Optimizations: reverse_t -> cataList -}
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Example: Reverse
SIMPLIFREE Results

*Main> reverse_t_cataList
curry ’cat’.(’cataList’ [(’pnt’ [’nil’]) \/

(’cat’.’swap’.(’wrap’ >< id))])
= { cataList

--- and ---
[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ >< id)]

= { catAssoc }
[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.

(’wrap’ >< id)]
= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).
(’wrap’ >< id)]

= { prodFun }
[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><

(curry ’cat’.id))]
= { natId2 }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><
curry ’cat’)]

= { extractH2B }
’comp’.’swap’.((curry ’cat’.’wrap’) >< id)

}
’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/

(’comp’.’swap’.((curry ’cat’.’wrap’) >< id))]
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Conclusions and Future Work

What was done:
Automated simplification of point-free terms;
Easy definition of strategies and rules;
Program transformation – cata-FUSION

Future Work:
Formal validation;
Use of type information;
Generalise cata-FUSION;
Loop detection;
Improve rules repository.
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