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Resumo

Haskell é uma linguagem tipada, lazy e puramente funcional.
Na programação funcional existem vários estilos posśıveis, mas nenhum é considerado

melhor que os restantes. Dois estilos opostos são o estilo pointwise e o estilo point-free, que
podem ser distinguidos pelo facto de no primeiro serem usadas variáveis, e no segundo a
composição de funções.

Actualmente já existe uma ferramenta que permite traduzir código em pointwise para
point-free. Um dos problemas desta tradução é o facto de produzir expressões maiores e mais
complexas do que o esperado.

Este trabalho aborda dois refactorings (que farão parte de uma ferramenta que está ac-
tualmente a ser desenvolvida no projecto HaRe1), e a simplificação e transformação de ex-
pressões em point-free. Para este segundo objectivo foi estudada uma forma de definir regras
e estratégias, usando uma notação simples, e de as aplicar a termos point-free.

1HaRe – Haskell Refactoring – é um projecto que está a ser desenvolvido em Canterbury, Inglaterra, que
aplica vários refactorings a código Haskell, preservando a indentação e os comentários (secção 2.3).





Abstract

Haskell is a typed, lazy, purely functional language.
In functional programming there are several possible styles, but none is considered better

than the others. Two opposite styles are the pointwise and the point-free programming styles,
which can be distinguished by the fact that, in the first case variables are used, and in the
second one functional composition is used instead.

In previous work a way of translating pointwise code into point-free was developed [Cun05,
Pro05b]. But the resulting expressions are more complicated and bigger than expected, since
they are generated by an automated process.

This work focuses on two Haskell refactorings (to be part of the tool beeing developed in
the HaRe2 project), and on the simplification and transformation of point-free terms. For
the latter goal a new way of defining possible rules and strategies using an easy notation is
introduced, and their application to point-free terms is then studied in detail.

2HaRe – Haskell Refactoring – is a project being developed in Canterbury that applies different refactorings
to a Haskell source code, preserving comments and indentation (section 2.3).
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Chapter 1

Introduction

In functional programming two distinguished styles of programming can be found: the
pointwise and the point-free styles. The first one is characterised by the use of variables and
the application of functions to other pointwise expressions, while in the second programs are
written without variables, and the composition of functions is used instead of application.
In this work point-free terms consist only of categorically-inspired combinators and algebraic
data types defined as fixed points of functors. The recursion is made with type-parameterised
recursion patterns (implicit recursion).

For some readers the concept of the point-free style may not be very clear. To make it
easier to understand let us consider a very simple example in Haskell.

assocr : (A×B)× C → A× (B × C)
assocr ((a, b), c) = (a, (b, c))

This function re-associates a nested pair with three elements to the right. Another way of
expressing this function, without using pattern matching, is using the fst and snd functions
to inspect the values of the argument:

assocr x =
(
fst (fst x), (snd (fst x), snd x)

)
Both these definitions are defined in pointwise, since functions are applied to variables. It is
also possible to express this function in point-free, by combining the fst and snd functions,
using special combinators:

assocr = (fst ◦ fst) M (snd× id)

In this point-free expression, the outermost pair is constructed with the split constructor
(· M ·), while the innermost pair is constructed by transforming the original pair with the
product constructor (· × ·)

Both styles have advantages and disadvantages. The pointwise style is usually easier to
write and to understand, while the point-free allows for algebraic and equational reasoning,
studied for a long time in the domains of mathematics and computer science.

In this work the point-free language was defined by a simple set of constants and basic
combinators that can be used to define more complex macros and expressions. The recursion is
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14 CHAPTER 1. INTRODUCTION

represented by the hylomorphism recursion pattern, that can be used to define other recursion
patterns and even any fixed point definition.

In previous work the conversion from a subset of pointwise Haskell to point-free has been
studied, as can be seen in chapter 4. So the next natural steps are:

1. To increase the subset of pointwise Haskell that can be converted, by the removal of
syntactic sugar

2. To simplify automatically the complex point-free expressions produced by DrHylo, a
tool described in section 4.2 that translates some Haskell code to the point-free style,
and to manipulate point-free expressions in general.

The main emphasis of this work is on how the simplification process can be automated and
how the user can define rules and strategies to simplify and transform point-free expressions.
The removal of guards, which can be seen as a way of increasing the pointwise subset of
interpreted Haskell, was studied as a refactoring in the HaRe project [LRT03].

The manipulation of point-free terms is done using generic traversals. The generic libraries
in the Strafunski software bundle [LV03] were used in the final version of the tool that simplifies
and transforms point-free terms, but other approaches were also tried.

Report structure

In the first three chapters some previous studies and the state of the art is presented.
Some tools related to term rewriting (the Dumatel system, the MAG system, and the HaRe
project) and a small review on how to perform generic traversals using the Scrap your Boil-
erplate approach and Strafunski, can be found in chapter 2. In the next chapter some syntax
definitions are introduced, and the pointwise and point-free styles are formally introduced.
Finally, in chapter 4, a framework for programming in point-free, part of the Uminho Haskell
Software, is described.

Chapter 5 describes the work developed in the context of the HaRe project. Two refac-
torings for Haskell developed in this work can be found in here: the conversion of pointwise
to point-free, and the removal of guards from a function definition.

In chapter 6 the most important part of this work is described, which is a tool that
simplifies and transforms point-free programs automatically (the SimpliFree tool).

We conclude and give, in chapter 7, some ideas of future work.



Chapter 2

Term rewriting

One of the main goals of this work is to perform rewriting on a specific small language
– a point-free language. There are also similar approaches to achieve this goal, developed in
Haskell language, like the Dumatel and MAG systems.

The main objective is not to prove equivalences, but to simplify terms. The first case
often requires the simplification, when the most reduced term is unique (confluence). Since
the transformation studied with point-free terms only deals with a small set of operators,
there is no need for generalising concepts like associativity (only composition is associative).

In this chapter we will start by looking at the Dumatel system, which uses an algebraic
approach to reason about programs and to construct proofs automatically. In the next section
the transformation system MAG will be analysed, which implements two novel matching
algorithms, and is able to apply several transformations with side conditions. In section 2.3
we will take a look at a the HaRe project, that allows the application of refactorings to
Haskell projects just by using editors like gvim or emacs.

In the last section of this chapter two different approaches to term traversal are presented,
using, respectively, the Data.Generics packages, and using Strafunski libraries.

2.1 Dumatel system

The Dumatel system [Mec05] is a term rewriting system written in the Haskell language.
The name comes from a Russian joke, where it means thinker. The implementation language
and strategy language are the Haskell code, while the object language for this system is a
smaller and simpler language. In this section only some characteristics of Dumatel will be
presented.

The proofs result from a first-approach strategy, that combines several prover parts:

• proof by induction;

• proof by arbitrary constants;

• proof by induction on a variable;

15



16 CHAPTER 2. TERM REWRITING

• proof by searching for equational lemma;

• others.

Dumatel uses an algebraic approach, allowing for the definition of operators (that form a
total order) and the attribution of properties to these operators. Algorithms (implemented
as Haskell functions) for substitution, matching and unification (the most general unification
– mgu – is obtained by the Martelli and Montanari method) are defined in this tool.

The term ordering is a very important concept, and in this tool it should be a simplifi-
cation ordering total on gound terms (which means that it is a total order for ground terms,
subterms are always smaller, it is monotonous by the term structure, and it is invariant under
substitutions). Two different algorithms for comparing these kind of terms were implemented:
the lexicographic-path ordering (lpo), and the Knuth-Bendix order (kbo). The kbo algorithm
is currently very slow, and the lpo is used instead.

In the Haskell file with the property to be proved several properties, operator defini-
tions, and parameters needed to be introduced by the definition of functions. The object
language to be parsed and interpreted are strings passed as arguments to the functions with
the corresponding definition.

Although the prover can already prove several simple problems, like the double reverse
property for lists (in this case by induction) – with the specification forall [Xs] ((rev rev
Xs) = Xs) – in other apparently simple problems it fails to prove in real time. This is the
case of commutativity of the multiplication of naturals, when the multiplication is defined
recursively with the plus operator. There are still several bugs that have been reported since
the release of Dumatel-1.02, that will probably be solved in the near future. In the current
version notes it is said to be “hardly usable”, so it should be safer to wait for the next release
to use it in practise.

To define a proof the user has to write a client program, which uses a complex syntax, and
lots of specific functions to set several parameters of the proof, together with the definition of
the several operators present in the expression to be proved. In this report no examples will
be presented of proofs due to its length and to the fact that there are several functions and
details that were not explained here. A detailed description of this tool and some examples
can be found in the manual of Dumatel [Mec05].

2.2 MAG System

The MAG system is a program transformation system developed by Sittampalam and de
Moor, for a small functional language similar to Haskell [dMS99, SdM03].

It implements a new mechanism to perform generic higher-order matching [dMS01], that
allows to find new functions by pattern matching. The first successful algorithm to overcome
the problem of the infinite solutions when pattern matching a function, was defined by Huet
and Lang [HL78]. For that they restricted the set of possible matches to second order terms.
Since this restriction is not reasonable in the context of program transformation, de Moor
and Sittampalam proposed a different approach: instead of that restriction, they substituted
the function that applied the β-normalisation by a similar one (less complete). The main
problem with this approach is that the behaviour of this normalisation is no longer intuitive.
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This system relies on the concept of active source: the original source code has instructions
on how to optimise it. Basically, the MAG system implements a term rewriting mechanism
that, given a set of transformation rules, tries to apply them in the order in which they appear
in the code, repeating this process until no rule can be applied. To apply a rule the system
makes a left-to-right and larger-to-smaller traversal until a matching rule is found. No loop
detection is made through this process, so the user has to be careful enough to avoid infinite
loops.

An example of a program transformation that this system is capable of doing is the
optimisation of the naive version of reverse, using the following specification:

fastreverse xs ys = reverse (foldr (:) [] xs) ++ ys = reverse xs []

and redefining reverse to: reverse xs = fastreverse xs [].
The MAG source code for this transformation is:

{- reverse.p -}

reverse [] = [];
reverse (x:xs) = reverse xs ++ [x];

TRANSFORM fastrev
REDEFINE reverse xs = fastreverse xs []
SPECIFYING fastreverse xs ys = reverse (foldr (:) [] xs) ++ ys
USING

DEFINITION reverse,(++);
catassoc: (xs ++ ys) ++ zs = xs ++ (ys ++ zs);
fusion: f (foldr plusl e xs) = foldr crossl e’ xs,

if {f e = e’;
\ x y -> f (plusl x y)

= \ x y -> crossl x (f y)}
END;

foldr f e [] = e;
foldr f e (x:xs) = f x (foldr f e xs);

The syntax description can be found in the system’s manual1. After the application of
the fastrev transformation the following code is obtained:

fastreverse
= { fastrev specification of fastreverse }

(\ a -> (++) (reverse (foldr (:) [] a)))
= { fusion

(++) (reverse [])
= { definition of reverse }

(++) []
= { definition of (++) }

(\ a -> a)

1http://web.comlab.ox.ac.uk/oucl/research/pdt/progtools/mag/index.html

http://web.comlab.ox.ac.uk/oucl/research/pdt/progtools/mag/index.html
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(\ a b -> (++) (reverse (a : b )))
= { definition of reverse }

(\ a b -> (++) (reverse b ++ (a : [])))
= { catassoc }

(\ a b c -> reverse b ++ ((a : []) ++ c))
= { definition of (++) }

(\ a b c -> reverse b ++ (a : ([] ++ c)))
= { definition of (++) }

(\ a b c -> reverse b ++ (a : c ))
}
foldr (\ c d e -> d (c : e )) (\ f -> f)

reverse xs = fastreverse xs [];
fastreverse = foldr (\ c d e -> d (c : e )) (\ f -> f);
foldr f e [] = e;
foldr f e (x : xs ) = f x (foldr f e xs);

As it can be seen, the correct efficient version is successfully calculated, defined as a fold.
This system is powerful enough to automate several useful transformations, and in some cases
it is possible to optimise using the tupling strategy.

2.3 The HaRe Project

A refactoring can be defined as a source-to-source program transformation that only
changes the program structure and organization, not program functionality. So the main
goal of this project is to promote the improvement of the design of existing code, by the
application of structural changes.

Similar projects already exist for other paradigms, but not for the functional paradigm.
The Haskell language was chosen as the concrete case-study.

2.3.1 Overview of Refactoring

To show some of the advantages of refactoring, we will start by presenting a sequence of
transformations to a small part of Haskell code, extracted from [LRT03], in figure 2.1.

In the first 3 refactorings in figure 2.1 different ways of lifting the definition of table
to the top level are shown. The last refactoring exemplifies a typical program development
scenario, where new parameters are introduced to make the definition more general.

The application of each transformation step does not only consist of textual search and
replace, since the program functionality must be preserved, and there may be certain side-
conditions that need to be validated. By program functionality is meant that the semantics of
the program is not changed, or at least no observable change (from the point of view of a well
defined interface) exists, since some functionality may be added (as in the last refactoring of
figure 2.1).

There are several issues related to the side-conditions in the application of transformation
steps: the validity of an attempted refactoring step may need to be checked before (precon-
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The original code:

showAll :: Show a => [a] -> String

showAll = table . map show

where

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n") : format xs

table :: [String] -> String

table = concat . format

A simple way to refactor:

-- First move format to the top level ...

showAll = table . map show

where

table = concat . format

format [] = ...

-- ... then move table to the top level.

showAll = table . map show

table = concat . format

format [] = ...

Another simple way to refactor:

-- First make format local to table ...

showAll = table . map show

where

table = concat . format

where

format [] = ...

-- ... then move table to the top level.

showAll = table . map show

table = concat . format

where

format [] = ...

Refactoring with type change:

-- Move table to the top level; it needs to

-- take format as a parameter.

showAll = table format . map show

where

format :: [String] -> [String]

format [] = ...

table :: ([String] -> [String]) -> [String]

-> String

table format = concat . format

--Rename the formal parameter for readability.

showAll = table format . map show

where

format [] = ...

table fmt = concat . fmt

-- Move format to the top level.

showAll = table format . map show

format [] = ...

table fmt = concat . fmt

-- Unfold (inline) the definition of table

showAll = (concat . format) . map show

format [] = ...

table fmt = ...

-- Remove the definition of table

showAll = (concat . format) . map show

format [] = ...

-- Define table to be (concat . format)

showAll = table . map show

table = concat . format

format [] = ...

Refactoring for generalisation:

-- The refactored program, typed.

showAll :: Show a => [a] -> String

showAll = table . map show

format :: [String] -> [String]

format [] = []

format [x] = [x]

format (x:xs) = (x ++ "\n") : format xs

table :: [String] -> String

table = concat . format

-- Stage 1: make "\n" a parameter of format.

...

format :: [a] -> [[a]] -> [[a]]

format sep [] = []

format sep [x] = [x]

format sep (x:xs) = (x ++ sep) : format sep xs

table = concat . format "\n"

-- Stage 2: now make "\n" a parameter of table

showAll :: Show a => [a] -> String

showAll = table "\n" . map show

format :: [a] -> [[a]] -> [[a]]

format sep [] = ...

table :: [a] -> [[a]] -> [a]

table sep = concat . format sep

-- Stage 3: copy showAll, calling it makeTable;

-- generalise by making show and "\n" parameters.

...

makeTable :: (a -> [b]) -> [b] -> [a] -> [b]

makeTable trans sep = table sep . map trans

-- Stage 4: make showAll an instance of makeTable.

showAll :: Show a => [a] -> String

showAll = makeTable show "\n"

...

Figure 2.1: Refactoring examples
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ditions) or after (postcondition) the transformation. In some cases there are several global
transformations that need to be applied to compensate for any problem resulting from a local
transformation, to ensure validity.

Other important issues covered in this project are: (i) the integration of the tools with
editors (in this case with the Vi and Emacs families of editors), (ii) the preservation of the
layout style of the code, and (iii) the preservation of all comments.

2.3.2 Basic Refactorings

In the prototype tool developed in this project, several basic refactorings with side-
conditions were introduced. Among them we can find:

Renaming - Replace an identifier by other with a different name;

Duplication of a definition, using a given name or a fresh generated name;

Deletion of any unused definition;

Promote one level - Lifting of a definition from a where or let to the surrounding binding
group;

Demote one level - Demotion of a definition to a local scope given by a where or a let;

Add an argument - Usually to prepare for the generalisation of a definition parameters
are added to definitions of constants and functions;

Remove an argument - Removal of unused arguments;

Generalise a definition - By the selection of a sub-expression in the right-hand side of the
definition, introducing that sub-expression as a new parameter;

Inline a definition - Unfold of a definition by its corresponding right-hand side;

Introduce a definition to denote an identified expression.

These apparently innocent refactorings require several issues to be taken into account, like
polymorphic vs monomorphic bindings, and the monomorphic restriction.

2.3.3 Tools Involved

Before the real work involved in the refactoring begins in the HaRe tool, there is still the
need to parse the source texts to extract the abstract syntax trees, that requires large amounts
of “boilerplate” code. For these tasks several different tools were analysed and tested, as we
will soon see.

To parse, represent the abstract syntax tree, and to print, the Programatica’s frontend
was used [HHJK04]. When compared with other frontends it includes several other features,
like the use of a lexer that preserves more information about source programs, the use of
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an abstract syntax with a parameterised version (using mutually recursive types) supporting
syntax variants and extensions, among others.

The existence of a large number of algebraic types, each consisting of a large number of
constructors, led to the use of a tool that provides a general way to traverse and to specify
strategies. The Strafunski project [LV03] was chosen, since it combines generic and strategic
programming in a pragmatic way, that soon became an indispensable tool for this project’s
purposes. In section 2.4.2 it is possible to have a better view of how the generic traversals
are implemented in Strafunski.

The initial plan was to use an IDE built from scratch to interact with the user, but the im-
plementation effort would have distracted from the current project’s main research questions,
and would also be questionable for pragmatic reasons. So it was decided to design the Haskell
refactorer to be independent of a specific GUI, and to produce instead a generic textual API
and bindings to this API for Vim and Emacs – two of the most popular programmer’s editors.

2.3.4 Implementation

To use the tool in Vim or Emacs, the user only has to place the cursor on a part of the
code or to select the part to be read, and then select the desired refactoring to be applied
from the top menu. In page 47 a screenshot of the application of a refactoring can be found.
In some cases the editor will still ask for extra parameters, like the name of an identifier when
renaming.

The implementation architecture tries to avoid the parsing after each refactoring when it is
not necessary, updating only the position of the needed definitions, and to preserve comments
and position information (possible with Programatica’s lexer).

The lexer produces a token stream (with comments and white spaces), that is also parsed
into an AST. The AST is only used as an auxiliary representation to guide the direct modifica-
tion of the token stream. The refactorer performs the program analyses and transformations
on the AST, but the refactorer will modify the token stream once the AST is changed.

A more detailed description of the implementation of HaRe can be found in [LRT03].

2.4 Generic Traversals

The main goal of this work is the simplification of point-free terms, by the application of
several rules in a certain order. The application of these rules is usually not applied to the
full point-free term, but rather to a sub-term. So a term traversal is needed for each rule that
is applied.

Term traversals could be done without the use of any generic traversal mechanism, but
the reuse of code that already does this can reduce the amount of produced code and make
it easier to understand. Two different libraries were studied in the development of this tool:

• Data.Generics libraries, already in default GHC libraries, using the Scrap your Boiler-
plate approach (SyB);
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• StrategyLib libraries, part of Strafunski software bundle.

2.4.1 The SyB approach

Scrap your Boilerplate is a generic programming approach for Haskell, developed by Ralph
Lämmel and Peyton Jones [LJ03]. It is supported in the GHC (≥ 6.0) implementation of
Haskell, and can be used by importing the module Data.Generics. This approach defines not
only traversal schemes, but other generic operations, like read, show and equality.

In this section this approach will not be studied in deep detail. We cover only the necessary
material to understand how can it be used to apply rules using traversal schemes defined in
SyB.

To apply generic operations to a user defined data type, the instances of some classes need
to be defined. This classes will allow for a manipulation of the type and the use of generic
folds over the data type:

• Typeable - Allows type information relative to a value.

• Data - Defines a generic function gfoldl for folding over instances of this class.

These classes can be derived automatically using the deriving option when defining the
data type, in the supported version of GHC.

Note that this approach requires two Haskell extensions: rank2-polymorphism, that is
used to implement generic traversals (since they receive polymorphic functions as arguments),
and a type-safe cast with signature

cast :: (Typeable a, Typeable b) => a -> Maybe b

that returns Nothing if types are not equal, or the same value otherwise.
With the cast function it is possible to define ways of transforming a monomorphic

function into a full polymorphic one (with functions like mkT and mkQ, which create a trans-
formation or a query, respectively). With these functions, together with generic folds defined
for the Data class, some generic traversals can now be defined, as in the following examples:

everywhere :: (forall a. Data a => a -> a)
-> (forall a. Data a => a -> a)

everywhere f = f . gmapT (everywhere f)

everything :: (r -> r -> r)
-> (forall b . Data b => b -> r)
-> a -> r

everything k f x = foldl k (f x) (gmapQ (everything k f) x)

The first example performs a transformation to a data type, and the second performs a
query. When using the strategies it is important to apply the conversion from a monomorphic
type into a full polymorphic one, before passing as an argument, using the correct function.
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To better understand this idea a small example will be presented. Let us consider the
Haskell syntax in the package Language.Haskell.Syntax of GHC, and assume that the
instances of Typeable and Data are already defined. The root of a Haskell module is

data HsModule = HsModule ...

Now let us suppose that we want to do two different operations:

1. change the names (of functions, variables, . . . ) that began with normalize to normalise;

2. collect all integer literals.

The syntax tree of the Haskell code is not very small, so it would require to check for
several cases to perform these operations. The first operator can be easily encoded using the
everywhere strategy.

british_norm :: HsModule -> HsModule
british_norm = everywhere (mkT change_string)

where change_string :: String -> String
change_string x | "normalize" ‘isPrefixOf‘ x

= "normalise" ++ drop 9 x
change_string x = x

The second operation requires the use of a query, that can be encoded using the everything
strategy.

collect_ints :: HsModule -> [Int]
collect_ints = everything (++) (mkQ [] getInt)

where getInt :: HsLiteral -> [Int]
getInt (HsInt i) = [fromInteger i]
getInt _ = []

So using this approach several lines of boilerplate code can avoided and replaced by very
small and easy to read functions. Other common strategies like somewhere and something
can also be found in these libraries.

2.4.2 The Strafunski approach

Strafunski is a software bundle for implementing language processing documents [LV03].
In this work we will focus be on the support provided for generic traversals over typed repre-
sentations of parse trees, although it also provides means of integrating external components
(such as parsers, pretty printers, and graph visualisation tools).

In a similar way to SyB, most functions require the instantiation of the following classes:

• Typeable - as in SyB;

• Term - where the conversion between a term representation is defined (using the Dynamic
library).
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Although instances for the Term class cannot be automatically derived by most compilers
(unlike the Data class), it is possible to derive the code defining the correct instance (for
both Typeable and Term classes) by using a tool called DrIFT, which is part of the Strafunski
bundle.

The way the Dynamic library works will not be explained here, but the mechanisms are
also associated with the same Haskell extension needed for the definition of the cast function,
and the rank2-polymorphism extension.

In Strafunski a number of functional strategies are defined, that are composed via func-
tion combinators, as described in [LV02a]. Each strategy combinator is associated to a type
preserving or to a type unifying strategy (using the postfixes TP and TU, respectively).

A strategy has type TP m or TU u m, where m is a monad (or a MonadPlus), and u is the
type being calculated in the type unifying traversal. Some combinators will now be explored
in more detail.

After the defining a strategy, to apply it to a given term it is necessary to use one of the
following functions:

applyTP :: (Monad m, Term t) ⇒ TP m → t → m t
applyTU :: (Monad m, Term t) ⇒ TU u m → t → m u

The strategy is usually defined as a scheme applied to steps, where:

• the scheme defines the type of traversal (responsable for the application of the steps for
different places of the term);

• the steps are a default strategy (like id or fail) updated by the functions

adhocTP :: (Monad m, Term t) ⇒ TP m → (t → m t) → TP m
adhocTU :: (Monad m, Term t) ⇒ TU a m → (t → m u) → TU u m

The most common traversals are: full td, full bu, once td, stop td, etc, that also receive
the postfix TU or TP.

Some of the basic combinators can be found in figure 2.2.

idTP :: Monad m ⇒ TP m constTU :: Monad m ⇒ u → TU u m
failTP :: MonadPlus m ⇒ TP m failTU :: MonadPlus m ⇒ TU u m
seqTP :: Monad m ⇒ TP m →TP m → TP m seqTU :: Monad m ⇒ TP m → TU u m → TU u m
passTP :: Monad m ⇒ TU u m

→ (u → TP m) → TP m
passTU :: Monad m ⇒ TU u m

→ (u → TU u′ m) → TU u’ m
choiceTP :: MonadPlus m ⇒ TP m

→TP m → TP m
choiceTU :: MonadPlus m ⇒ TU u m

→ TU u m → TU u m

Figure 2.2: Some basic strategy combinators

For example, to traverse any data type and collect all strings inside that data type, directly
or indirectly (a type unifying traversal), it is only necessary to write:

collectStr :: (Monad m, Term t) => t -> m [String]
collectStr = applyTU (scheme steps)
where scheme = full_tdTU
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steps = (constTU []) ‘adhocTU‘ getStr
getStr :: String -> m [a]
getStr s = return [s]

The collected type must be an instance of Monoid (in this case it is a list), which means
the functions mempty and mappend must be defined.

In [LV02b] more details can be found on how to combine strategies and how to define new
strategy themes.



Chapter 3

Pointwise and Point-free
Functional Programming

Two opposite styles can be defined in functional languages: the pointwise and the point-
free style. The first one is based on the λ-calculus, where variables and pattern matching are
used to inspect values. The point-free style is distinguish by not using variables, and using
combination of functions instead. The inspection of values and the application of functions
can only be made through the use of special combinators.

In particular, the point-free style consists only of a small set of categorically-inspired
combinators, where algebraic data types are viewed as fixed-points of functors. Recursion
(implicit) is defined by the use of type-parameterised recursion patterns.

In this chapter the formal definitions for types and for the pointwise and point-free lan-
guage will be presented.

3.1 Types

In both the pointwise and the point-free style, types can be defined according to the
following syntax:

A,B ::= 1 | A → B | A×B | A + B | µF
F,G ::= Id | A | F ⊗G | F ⊕G | F } G

In this work a standard domain-theoretic semantics is assumed, where types are pointed
complete partial orders (pcpo), with least element ⊥. The single type element is represented
by 1 (its only inhabitant is ⊥); continuous functions from A to B are represented by A → B;
the cartesian product by A × B; the separated sum (with distinguished least element) by
A + B; and finally a recursive (regular type), defined as a the fixed point of a functor F , is
represented by µF .

In the syntax described before, F and G represent functor definitions. A functor can
be viewed as a mapping from types to types and from functions to functions. The functors

26
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defined here are the identity functor (Id), the constant functor that always returns the given
type A (A), the lifted product and sum bifunctors (F ⊗G and F ⊕G, respectively), and the
composition of functors (as F } G).

Their operation on types can be informally summarised as follows.

Id A 7→ A (F ⊗G) A 7→ (F A)× (G A)
A B 7→ A (F ⊕G) A 7→ (F A) + (G A)

(F } G) A 7→ F (G A)

For example, using this definition, booleans, naturals and lists can be easily defined as:

Bool = 1 + 1

Nat = µ(1⊕ Id)
List A = µ(1⊕A⊗ Id)

3.2 Pointwise Language

The syntax of the pointwise language is very similar to the λ-calculus with pairs and
sums, together with the fix function and constructors to inspect and construct fixed points,
according to the following grammar:

L,M,N ::= ? | x | M N | λx. M | 〈M,N〉 | fst M | snd M |
case L M N | inl M | inr M | inµF M | outµF M | fix M

Similarly to the traditional λ-calculus, there are variables, abstractions and applications.
The symbol ? is the unique inhabitant of the terminal type (therfore, ? = ⊥1); 〈M,N〉 allows
to construct pairs; fst and snd are the projections from products; inl and inr are the injection
into a sum; case L M N inspects if L was injected with inl or inr, and applies M or N
respectively.

Γ ` ? : 1

Γ(x) = A

Γ ` x : A

Γ[x 7→ A] ` M : B

Γ ` λx. M : A → B

Γ ` M : A → B Γ ` N : A

Γ ` M N : B

Γ ` M : A Γ ` N : B

Γ ` 〈M,N〉 : A×B

Γ ` L : A + B Γ ` M : A → C Γ ` N : B → C

Γ ` case L M N : C

Γ ` M : A×B

Γ ` fst M : A

Γ ` M : A×B

Γ ` snd M : B

Γ ` M : A

Γ ` inl M : A + B

Γ ` M : B

Γ ` inr M : A + B

Γ ` M : F (µF )
Γ ` inµF M : µF

Γ ` M : µF

Γ ` outµF M : F (µF )
Γ ` M : A → A

Γ ` fix M : A

Figure 3.1: Typing rules for the pointwise language

The typing rules for the pointwise language can be found in figure 3.1. Some examples of
pointwise terms can be seen in figure 3.2, where constructors for booleans, naturals and lists
are defined, together with other polymorphic terms.
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true : Bool
true = inl ?

false : Bool
false = inr ?

zero : Nat
zero = in (inl ?)

succ : Nat → Nat
succ = λx. in (inr x)

nil : List A
nil = in (inl ?)

cons : A → List A → List A
cons = λht. in (inr 〈h, t〉)

null : List A → Bool
null = λl.case (out l) (λx.true) (λx.false)

swap : A×B → B ×A
swap = λx. 〈snd x, fst x〉

distr : A× (B + C) → (A×B) + (A× C)
distr = λx. case (snd x) (λy. inl 〈fst x, y〉) (λy. inr 〈fst x, y〉)

Figure 3.2: Example of basic pointwise terms

The definition of recursive functions can be made using the fix function, as can be seen in
figure 3.3, where mult is the function that multiplies naturals.

fact : Nat → Nat
fact = fix (λf. λx. case (out x) (λy. succ zero) (λy. mult 〈succ y, f y〉))
length : List A → Nat
length = fix (λf. λl. case (out l) (λx. zero) (λx. succ (f (snd y))))

Figure 3.3: Example of pointwise recursive functions

3.3 Point-free Language

The point-free style was introduced by John Backus in 1977, in an ACM Turing Award
Communication [Bac78]. It is here defined by a small set of categorical-inspired combinators.
Most of the combinators presented in this section were defined by this author.

The main goal of this style is to gain not only the programming power associated to these
combinators, but mainly a collection of useful algebraic laws. In some cases it is possible to
prove properties in this style by equational reasoning in a much simpler and more concise way
than using a pointwise style.

In this chapter some basic combinators will be presented, followed by the definition of
some recursive patterns, and finally the definition of the point-free language that will be used
in this work will be shown.

3.3.1 Basic Combinators
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The composition operator can be seen as a point-free combinator. The composition of
two functions f : A → B and g : B → C will be represented by f ◦ g, where f ◦ g : A → C.
The following diagram illustrates the composition’s behaviour.

A
g //

f◦g

88B
f // C

The terminal object is still ? = ⊥1. This means that, from any other object A there is a
unique function to 1, namely the function that always returns ⊥1. This function is represented
by bangA : A → 1. Its uniqueness is captured by the law

bangB ◦ f = bangA

which is valid for any f : A → B, as can be seen in the following diagram.

A
f //

bangA ��@
@@

@@
@@

B

bangB

��
B

Next some type constructors (like products and sums) will be introduced, together with
their own combinators and laws.

The product of two types is defined as the cartesian product:

A×B = {(x, y)|x ∈ A, y ∈ B}

It is possible to define the projection functions and the split combinator (denoted by · M ·).

fst (x, y) = x
snd (x, y) = y

(f M g) x = (f x, g x)

The universal law of products can be obtained from the diagram below. In this diagram
the product of two objects A and B is an object A × B, together with two projections
fst : A×B → A and snd : A×B → B, such that for every object C, and functions f : C → A
and g : C → B, there exists exactly one function from C to A × B that makes the diagram
commute (denoted by f M g, represented by a dashed line in the diagram).

C
f

{{xxxxxxxxx
fMg

���
�
�

g

##GGGGGGGGG

A A×B
fst

oo
snd

// B

The universal law of products can then be defined as:

k = (f M g) ⇔
{

fst ◦ k = g
snd ◦ k = f
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Another useful combinator is the product of functions (product bifunctor on functions).
It will be denoted by ·× ·, and it is defined as follows (we will assume that this operator binds
stronger than any other combinator in order to avoid the proliferation of parentheses).

f × g = f ◦ fst M g ◦ snd

The swap function can now be easily defined with the split operator, that swaps the
elements of a pair.

swap : A×B → B ×A

swap = snd M fst

There are several more laws about products that will not be presented here.

The sum will be presented, as in most functional languages, as a tagged union of two
sets, together with a new bottom element.

A + B = ({0} ×A) ∪ ({1} ×B) ∪ {⊥A+B}

In an similar way to products, there are injection functions and the either combinator
(denoted by ·O ·), that are defined as follows:

inl x = (0, x)
inr x = (1, x)

(f O g) ⊥ = ⊥
(f O g) (0, x) = f x
(f O g) (1, x) = g x

The universal law of sums can be written as:

k = f O g ⇔
{

k ◦ inl = g
k ◦ inr = f

Strictness conditions will not be mentioned in here (although there are some issues that
can be relevant in some cases). This law is illustrated by the existence of a unique function
from A + B to C that makes the diagram commute.

A
inl //

f ##FFFFFFFFF A + B

f O g

���
�
� B

inroo

g
{{wwwwwwwww

C

It is now possible to turn the sum into a bifunctor by introducing the sum combinator
(·+ ·) defined bellow.

f + g = inl ◦ f O inr ◦ g

The exponentiation of type B to type A is defined as the set of all functions with domain
A and codomain B:
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BA = {f | f : A → B}

Exponentiation is associated to the apply and curry functions (denoted by · )

ap (f, x) = f x

f x y = f (x, y)

Likewise to products and sums, it is possible to write the universal law of exponentiation:

k = f ⇔ ap ◦ (f × id)

Looking at the diagram below, it is possible to verify that from any object C and any
function f : C × A → B, f is the only function from C to BA that makes the diagram
commute.

BA ×A
ap // B

C ×A

f×id

OO�
�
� f

;;wwwwwwwww

The exponentiation combinator allows to turn this operation into a functor:

fA = f ◦ ap

It is now possible to define functions to distribute the product and sum, in a point-free
style.

distl : (A + B)× C → (A× C) + (B × C)
distl = ap ◦ ((inlO inr)× id)
distr : A× (B + C) → (A×B) + (A× C)
distr = (swap + swap) ◦ distl ◦ swap

The elements of an object A can be represented by functions with type 1 → A, called
points. Given an element x ∈ A, its point is denoted by x. Functions also have a point
– given a function f : A → B, its point is f : 1 → BA (and it is also possible to define a
function based on its point). Using the previously defined combinators, the point and unpoint
combinators can be defined as follows.

f = f ◦ snd

f = ap ◦ (f ◦ bang M id)
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3.3.2 Recursive Patterns

We have seen before that recursive data types are here viewed as fixed-points of a base
functor. Given a base functor F , there is a unique data type µF , and two unique functions
inµF : F (µF ) → µF and outµF : µF → F (µF ) that are each other’s inverse. The inµF allows
the construction of a fixed-point, while the outµF function allows its inspection. The following
diagram shows the isomorphism.

µF

outµF
--∼= F (µF )

inµF

ll

It is now possible to define constructors for the boolean, natural and list types, as we have
done in pointwise style (in figure 3.4).

true : Bool
true = inl

false : Bool
false = inr

zero : Nat
zero = in ◦ inl)

succ : Nat → Nat
succ = in ◦ inr

nil : List A
nil = in ◦ inl

cons : A → List A → List A

cons = in ◦ inr
null : List A → Bool
null = (true O false ◦ bang) ◦ out

Figure 3.4: Examples of point-free terms

The next step is to define recursive patterns to manipulate data types viewed as fixed
points. The main advantage of using recursive patterns in the definition of functions instead
of explicit recursion is the fact that they allow for the application of several well known
calculational laws, thus being more appropriate when equational reasoning is desired. The
recursion patterns presented in this section are: the catamorphism (also known as fold),
the anamorphism (also known as unfold), the hylomorphism, and the paramorphism.

Catamorphisms

A catamorphism, also known as fold, is an iteration, where data types are “consumed”
by substituting their constructors by arbitrary functions. For example, the Haskell function
foldr is a catamorphism for lists.

Given a function g : F A → A, it is possible to define the catamorphism of g (denoted by
(|g|)), that iterates upon a data type µF . It can be defined as
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(|g|)µF : µF → A

(|g|)µF = g ◦ F (|g|)µF ◦ outµF

according to the following diagram.

µF
outµF //

(|g|)
��

F (µF )

F (|g|)
��

A F Ag
oo

The function g is called the gene of the catamorphism.

Anamorphisms

The dual recursion pattern to iteration is a way of producing elements of some recursive data
type. It is also known as unfold.

Given a function h : A → F A, it is possible to define an anamorphism for any recursive
type (denoted as bd(h)ce) as:

bd(h)ceµF : A → µF

bd(h)ceµF = inµF ◦ F bd(h)ce ◦ h

according to the following diagram.

A
h //

bd(h)ce
��

F A

F bd(h)ce
��

µF F (µF )
inµF

oo

The function h is called the gene of the anamorphism.

Hylomorphisms

Hylomorphisms were originally introduced by Fokkinga and Meijer in [FM91]. Given a
functor F and functions g : F B → V and h : A → F A, it is possible to define a hylomorphism
(denoted by [[g, h]]) as:

[[g, h]]µF : A → B

[[g, h]]µF = (|g|)µF ◦ bd(h)ceµF

according to the following diagram.
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A
h //

bd(h)ce
��

[[g,h]]

""

F A

F bd(h)ce
��

µF
outµF //

(|g|)
��

F (µF )

F (|g|)
��

inµF

oo

B F Bg
oo

Note that the hylomorphism can also be defined as a fixed point as:

[[g, h]]µF = µ(λf . g ◦ Ff ◦ h)

The catamorphisms and anamorphisms introduced before can also be defined using the
hylomorphism recursion pattern:

(|g|)µF = [[g, outµF ]]µF

bd(h)ceµF = [[inµF , h]]µF

Paramorphisms

Paramorphisms resemble of catamorphisms, since that both performs recursion on the
domain recursive type. The main difference is that, while catamorphisms encode iteration,
the paramorphisms encode the notion of primary recursion [Mee92]. This means that, unlike
catamorphisms, the value to which the recursion is applied is also passed as an argument to
its gene (and not only the recursion result).

Given a function g : F (A× (µF )) → A, a paramorphism can be defined as:

〈|g|〉µF : µF → A

〈|g|〉µF = g ◦ F (〈|g|〉µF M id) ◦ outµF

according to the following diagram.

µF
outµF //

〈|g|〉µF

��

F (µF )

F (〈|g|〉µF Mid)

��
A F (A× (µF ))g

oo

In this case the gene is more complex than in the catamorphism case. Note that paramor-
phisms can also be defined as hylomorphisms:

〈|g|〉µF = [[g, F (id M id) ◦ outµF ]]µ(F◦(Id⊗µF ))



3.3. POINT-FREE LANGUAGE 35

3.3.3 The Language

The syntax of the core point-free language consists only of a few basic combinators:

M,N ::= id | bang | ap |fst | snd | inl | inr | in | out
M ◦N | M M N | M O N | M | hyloµF M N

The F in the hylo constructor represents a functor, as seen before. All the other construc-
tors seen before can be easily derived from this set of point-free combinators.

An important issue is the fact that the only way of defining recursion is by the hylomor-
phism recursion pattern. This is not only because the remaining recursion patterns can be
defined as hylomorphisms, but also because it have been proved to be powerful enough to
allow for the definition of any fixpoint [MH95].

Recalling some point-free definitions introduced in figure 3.4, recursive functions like the
factorial and the length of a list can be defined as seen in figure 3.5.

fact : Nat → Nat
fact = hyloList Nat (zero O mult) ((id + succ M id) ◦ outNat)

length : List A → Nat
length = hyloNat inNat ((id + snd) ◦ outList A)

Figure 3.5: Example of recursive functions in point-free



Chapter 4

The Point-free framework

The point-free style can be very helpful in proofs and in program transformation. The
Haskell language seems to be a good choice to study this style, since it is a well known lazy
functional language with type checking.

The framework consists of several Haskell libraries and tools, part of the Uminho Haskell
Software. Among them it is possible to find:

• Libraries containing the syntax, parsers and pretty printers of a pointwise and point-free
language.

• The Pointless library, that allows the execution and type-checking of point-free code,
using a notation very similar to the one used at the theoretical level. It also defines
recursion patterns, parameterised by data types.

• The DrHylo tool, that allows programmers to automatically convert Haskell code to
point-free code with recursion patterns, that can be executed with the Pointless library.

In this section only the Pointless library and the DrHylo tool will be presented. The
SimpliFree tool developed in this work (to be presented only in chapter 6) will also be included
in this framework.

4.1 Pointless Haskell

The Pointless library was developed by Alcino Cunha [Cun05], to allow for programmers
to execute and type-check their programs in the point-free style. Several problems associated
with the theoretical characterisation of the point-free language, and with the implementation
of the recursion patterns parameterised on the data types (views as fixed points of functors),
were contemplated in the development of this library.

This section starts by explaining some problems in the implementation of the basic com-
binators. After that, the implementation of functors and data types, based on the PolyP
approach, is described. In the end, a practical implementation of recursion is defined, using
the functor definition.

36
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4.1.1 Implementing the Basic Combinators

It is well known that the semantics of a real functional programming language like Haskell
differs from the standard domain-theoretic characterisation, since all data types are by default
pointed and lifted (every type has a distinct bottom element). This means that Haskell does
not have true categorical products because (⊥,⊥) 6= ⊥, nor true categorical exponentials
because (λx.⊥) 6= ⊥. Concerning products, any function defined using pattern matching,
such as \(_,_) -> 0, can distinguish between (⊥,⊥) and ⊥. For exponentials, the examples
are more subtle and typically involve using the standard seq function.

As discussed in [DJ04], this fact complicates equational reasoning because the standard
laws about products and functions no longer hold. In point-free however, as will be shown
later, pairs can only be inspected using a standard set of combinators that cannot distinguish
both elements, and thus Haskell pairs can safely be used to model products. If we prohibit
the use of seq, the same applies to functions. This problem does not occur with sums because
the separated sum also has a distinguished least element. Sums are modelled by the standard
Haskell data type Either.

data Either a b = Left a | Right b

A second problem concerns the terminal object. Using the standard Haskell 98 it is not
possible to define a type that implements 1, because any type declaration must have at least
one constructor. The best approach would be to use the special predefined unit data type (),
however, this still has two elements, namely () and undefined. The same discussion applies
to any isomorphic data type with a single constructor without parameters. The problem can
be solved by resorting to the use of Haskell extensions that allow for a data type without
constructors to be declared.

data One
_L = undefined

The only element of this data type is undefined, thus it correctly implements 1. The alias
_L = undefined is defined since this element will be used often, with the advantage that it
graphically resembles the mathematical notation.

The definition of the point-free combinators in the Pointless library is trivial, and some
of them can be seen in figure 4.1. Equipped with these definitions, non-recursive point-free
expressions can be directly defined in Haskell. For example, the swap and distr functions can
be encoded as follows.

swap :: (a,b) -> (b,a)
swap = snd /\ fst
distr :: (c, Either a b) -> Either (c,a) (c,b)
distr = (swap -|- swap) . app . ((curry inl \/ curry inr) >< id) . swap

4.1.2 Implementing Functors and Data Types



38 CHAPTER 4. THE POINT-FREE FRAMEWORK

-- The final object
bang :: a -> One
bang _ = _L

-- Products
infix 6 /\
(/\) :: (a -> b) -> (a -> c) -> a -> (b,c)
(/\) f g x = (f x, g x)

infix 7 ><
(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
f >< g = f . fst /\ g . snd

-- Sums
inl :: a -> Either a b
inl = Left

inr :: b -> Either a b
inr = Right

infix 4 \/
(\/) :: (b -> a) -> (c -> a) -> Either b c -> a
(\/) = either

infix 5 -|-
(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
f -|- g = inl . f \/ inr . g

-- Exponentials
app :: (a -> b, a) -> b
app (f,x) = f x

-- Points
pnt :: a -> One -> a
pnt x = \_ -> x

Figure 4.1: Haskell definition for basic point-free combinators
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The implementation of recursive types in Pointless is based on the generic programming
library PolyP [NJ03]. This library also views data types as fixed points of functors, but
instead of using an explicit fixpoint operator, a non-standard multi-parameter type class with
a functional dependency [Jon00] is used to relate a data type d with its base functor f. We
remark that this is a non-standard Haskell feature provided as an extension. This class can
be defined as follows.

class (Functor f) => FunctorOf f d | d -> f
where inn’ :: f d -> d

out’ :: d -> f d

The dependency means that different data types can have the same base functor, but each
data type can have at most one. The main advantage of using FunctorOf is that predefined
Haskell types can be viewed as fixed points of functors (the use of the primes will be explained
later).

We would like to stress that PolyP is not directly used in the implementation of Pointless
Haskell. Some of its design choices would prevent the use of a syntax similar to the one
described in the first section. As such, the relevant subset of PolyP was reimplemented
according to our own design principles. For example, the FunctorOf class was simplified by
restricting base functors to monofunctors (a parameterized type can still be defined using
the left-sectioning of a bifunctor). The methods were reduced to the essential in and out
functions.

To avoid the explicit definition of the map functions, regular functors are described using
a fixed set of combinators, according to the definition.

newtype Id x = Id {unId :: x}
newtype Const t x = Const {unConst :: t}
data (g :+: h) x = Inl (g x) | Inr (h x)
data (g :*: h) x = g x :*: h x
newtype (g :@: h) x = Comp {unComp :: g (h x)}

The Functor instances for these combinators are trivial and omitted here. Given this set
of basic functors and functor combinators, there is no need to declare new functor data types
to capture the recursive structure of recursive. Instead, the latter types are declared using
this basic set. For example, it is now possible to view the standard Haskell type for lists as
the expected fixed point.

instance FunctorOf (Const One :+: (Const a :*: Id)) [a]
where inn’ (Inl (Const _)) = []

inn’ (Inr (Const x :*: Id xs)) = x:xs
out’ [] = Inl (Const _L)
out’ (x:xs) = Inr (Const x :*: Id xs)

Naturally, it is still possible to work with data types declared explicitly as fixed points of
functors. The explicit fixpoint operator can be defined at the type level using newtype.

newtype Functor f => Mu f = Mu {unMu :: f (Mu f)}

For these, the instance of the FunctorOf class can be defined once and for all.

instance (Functor f) => FunctorOf f (Mu f)
where inn’ = Mu

out’ = unMu
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The following multi-parameter type class is used to convert values declared using the
functor combinators into the corresponding standard Haskell types and vice-versa.

class Rep a b | a -> b
where to :: a -> b

from :: b -> a

The first parameter should be a type declared using the basic set of functor combinators,
and the second is the type that results after evaluating those combinators. The functional
dependency imposes a unique result to evaluation. Unfortunately, a functional dependency
from b to a does not exist because, for example, a type A can be the result of evaluating both
Id A and A B. The instances of Rep are also rather trivial. For the identity and constant
functors one has

instance Rep (Id a) a
where to (Id x) = x

from x = Id x
instance Rep (Const a b) a

where to (Const x) = x
from x = Const x

For the case of products and sums, the types of the arguments should be computed prior to
the resulting type. This evaluation order is guaranteed by using class constraints, as in

instance (Rep (g a) b, Rep (h a) c) => Rep ((g :*: h) a) (b, c)
where to (x :*: y) = (to x, to y)

from (x, y) = from x :*: from y

To ensure that context reduction terminates, standard Haskell requires that the context of an
instance declaration must be composed of simple type variables. In this example, although
that condition is not verified, reduction necessarily terminates because contexts always get
smaller. In order to force the compiler to accept these declarations, a non-standard type
system extension must be activated with the option -fallow-undecidable-instances.

A possible interaction with a Haskell interpreter could now be

> to (Id ’a’ :*: Const ’b’)
(’a’,’b’)
> from (’a’,’b’) :: (Id :*: Const Char) Char
Id ’a’ :*: Const ’b’
> from (’a’,’b’) :: (Id :*: Id) Char
Id ’a’ :*: Id ’b’

Note the annotations are compulsory since the same standard Haskell type can represent
different functor combinations. This type-checking problem can be avoided by annotating
the polytypic functions with the functor to which they should be specialized (similarly to
the theoretical notation). Types cannot be passed as arguments to functions, and so this
is achieved indirectly through the use of a “dummy” argument. By using the type class
FunctorOf, together with its functional dependency, it suffices to pass as argument a value
of a data type that is the fixed point of the desired functor. Since recursive data types can
still be defined explicitly using Mu, there is always a convenient choice for this parameter.
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To achieve an implicit coercion mechanism it suffices to insert the conversions in the
functions that refer to functors, namely inn’, out’, and fmap. In fact, this was the reason
why the primes were used in the declaration of the FunctorOf class. The following functions
should be used instead.

inn :: (FunctorOf f d, Rep (f d) fd) => fd -> d
inn = inn’ . from
out :: (FunctorOf f d, Rep (f d) fd) => d -> fd
out = to . out’
pmap :: (FunctorOf f d, Rep (f a) fa, Rep (f b) fb) =>

d -> (a -> b) -> (fa -> fb)
pmap (_::d) (f::a->b) =

to . (fmap f :: FunctorOf f d => f a -> f b) . from

4.1.3 Implementing Recursion

A polytypic hylomorphism operator can be defined using pmap.

hylo :: (FunctorOf f d, Rep (f b) fb, Rep (f a) fa) =>
d -> (fb -> b) -> (a -> fa) -> a -> b

hylo mu g h = g . pmap mu (hylo mu g h) . h

Due to the use of implicit coercion it is now possible to program with hylomorphisms in a
truly point-free style. For example, the definition of factorial from Section 3.3.3 can now be
transcribed directly to Haskell. The same applies to derived recursion patterns. Notice the
use of bottom as the dummy argument to indicate the type to which a polytypic function
should be instantiated.

fact :: Int -> Int
fact = hylo (_L :: [Int]) f g where g = (id -|- succ /\ id) . out

f = one \/ mult
cata (_::d) g = hylo (_L::d) g out
ana (_::d) g = hylo (_L::d) inn g
para (_::d) g = hylo (_L::FunctorOf f d => Mu (f :@: (Id :*: Const d)))

g
(pmap (_L::d) (id /\ id) . out)

The functor change that occurs in the definition of paramorphisms can be naturally modeled,
due to the ability to use explicit fixed points.

4.2 DrHylo

The DrHylo [Cun05, CPP05] is a tool that converts a subset of pointwise Haskell code
to point-free expressions. The resulting code can be executed and type-checked using the
Pointless library.

This translation is based on the well known equivalence introduced by Lambek [Lam80],
between simply-typed λ-calculus and Cartesian Closed Categories (CCC). In this work, the
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author defined a translation from pointwise terms to point-free combinators, already used by
Curien in the implementation of the categorical abstract machine [Cur93]. In the DrHylo tool
this translation was also used, and extended to handle sums and recursion.

The three main problems approached by this tool are:

• Translation of non-recursive pointwise expressions to point-free;

• Translation of explicit recursion to recursion patterns;

• Removal of pattern matching.

4.2.1 Pointwise to Point-free

The first question on the translation to point-free is how to eliminate variables. In this
approach, this process resembles the translation of the λ-calculus into the de Bruijn notation,
where variables are represented by naturals that measure the distance to their binding ab-
stractions. Typing contexts are represented by left-nested pairs, as defined by the grammar
Γ ::= ? | 〈Γ, x : A〉, with x a variable and A a type. Each variable will be replaced by the
path to its position in the context tuple, given as follows.

path(〈c, y〉, x) =
{

snd if x = y
path(c, x) ◦ fst otherwise

The translation, denoted by Φ, operates on typing judgements. A judgement is translated
as Φ(Γ : B ` M : A) : B → A according to the rules defined in figure 4.2 (typing information
is omitted).

Φ(Γ ` ?) = bang
Φ(Γ ` x) = path(Γ, x)
Φ(Γ ` MN) = ap ◦ (Φ(Γ ` M) M Φ(Γ ` N))
Φ(Γ ` λx.M) = Φ(〈Γ, x〉 ` M)
Φ(Γ ` 〈M,N〉) = Φ(Γ ` M) M Φ(Γ ` N)
Φ(Γ ` fst M) = fst ◦ Φ(Γ ` M)
Φ(Γ ` snd M) = snd ◦ Φ(Γ ` M)
Φ(Γ ` inl M) = inl ◦ Φ(Γ ` M)
Φ(Γ ` inr M) = inr ◦ Φ(Γ ` M)
Φ(Γ ` case L M N) = ap ◦ (either ◦ (Φ(Γ ` M) M Φ(Γ ` N)) M Φ(Γ ` L))
Φ(Γ ` in M) = in ◦ Φ(Γ ` M)
Φ(Γ ` out M) = out ◦ Φ(Γ ` M)

Figure 4.2: Translation rules of non-recursive pointwiseto point-free

Note that the translation of a closed term M : A → B is a an element of type 1 → (A →
B). But it can be easily converted into a point-free function of the expected type by the
application of a macro after the translation:

ap ◦ (Φ(? ` M) ◦ bang M id)
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For example, the swap function is translated as the following closed term of functional type.

Φ(? ` swap) = snd ◦ snd M fst ◦ snd : 1 → (A×B → B ×A)

We can convert the result to a function of type A×B → B ×A and simplify it as expected:

ap ◦ (snd ◦ snd M fst ◦ snd ◦ bang M id)
= {×-Absor }

ap ◦ (snd ◦ snd M fst ◦ snd× id) ◦ (bang M id)
= {Exp-Cancel }

(snd ◦ snd M fst ◦ snd) ◦ (bang M id)
= {×-Fusion }

snd ◦ snd ◦ (bang M id) M fst ◦ snd ◦ (bang M id)
= {×-Cancel }

snd M fst

In the translation proposed by Lambek the sums were not evaluated. In this transla-
tion there were some concerns relative to the case construct. Let us start by noticing that
case L M N is equivalent to (M O N) L. This equivalence exposes the fact that a case
is just an instance of application, and as such its translation exhibits the same top level
structure ap ◦ (Φ(Γ ` M O N) M Φ(Γ ` L)). The question remains of how to combine
Φ(Γ ` M) : Γ → (A → C) and Φ(Γ ` N) : Γ → (B → C) into a function of type
Γ → (A + B → C). The proposed solution is based on the internalisation of the uncurried
version of the either combinator, that can be defined in point-free as follows.

either : (A → C)× (B → C) → (A + B) → C

either = (ap O ap) ◦ (fst× id + snd× id) ◦ distr

As an example, consider the translation of the function coswap.

coswap : A + B → B + A
coswap = λx.case x (λy. inr y) (λy. inl y)

The following result is obtained, which (given some additional facts about either) can be easily
simplified into the expected definition inr O inl.

ap ◦ (either ◦ (inr ◦ snd M inl ◦ snd) M snd) : 1 → (A + B → B + A)

It can be shown that the translation Φ is sound [Cur93], i.e., all equivalences proved with
an equational theory for the λ-calculus can also be proved using the equations that characterise
the point-free combinators. Soundness of the translation of sums is proved in [Cun05].

4.2.2 Recursion

Two methods can be used for translating recursive definitions into hylomorphisms. The
first is based on the direct encoding of fix by a hylomorphism, first proposed in [MH95]. The
insight to this result is that fix f is determined by the infinite application f (f (f . . .)), whose
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recursion tree is a stream of functions f , subsequently consumed by application. Streams can
be defined as Stream A = µ(A⊗ Id) with a single constructor in : A× Stream A → Stream A.

Given a function f , the hylomorphism builds the recursion tree in (f, in (f, in (f, . . .))),
and then just replaces in by ap. The operator and its straightforward translation are given
as follows

fix : (A → A) → A
fix = hyloStream (A→A) ap (id M id) Φ(Γ ` fix M) = fix ◦ Φ(Γ ` M)

Although complete, this translation yields definitions that are difficult to manipulate by
calculation. Ideally, one would like the resulting hylomorphisms to be more informative about
the original function definition, in the sense that the intermediate data structure should model
its recursion tree. An algorithm that derives such hylomorphisms from explicitly recursive
definitions has been proposed [HIT96]. In the present context, the idea is to use this algorithm
in a stage prior to the point-free translation: first, a pointwise hylomorphism is derived, and
then the translation is applied to its parameter functions.

DrHylo incorporates this algorithm, adapted to the present setting where data types are
declared as fixed points, and pattern matching is restricted to sums. For the algorithm to
work correctly, some restrictions must be imposed on the syntax used to define recursive
functions, however these are broad enough to encompass most useful definitions.

Given a single-parameter recursive function defined as a fixpoint, three transformations
are produced by the algorithm: one to derive the functor that generates the recursion tree
of the hylomorphism (F), a second one to derive the function that is invoked after recursion
(A), and a third one for the function that is invoked prior to recursion (C). The function
fix (λf. λx. L) : A → B is translated as the following hylomorphism.

hyloµ(F(L)) (λx. A(L)) (λx. C(L)) : A → B

For example, the length function is converted into the following hylomorphism, which after
being converted to the point-free style can easily be shown to be equal to the expected
definition.

length : List A → Nat
length = hyloµ(1⊕Id) (λx. case x (λy.in (inl ?)) (λy. in (inr y)))

(λx. (out x) (λy. inl ?) (λy. inr (snd y)))

4.2.3 Pattern Matching

One of the problems with the current translation is the fact that it is restricted to the
pointwise Haskell code defined before. To allow the translation to realistic Haskell code, some
extra manipulation was added to the original code:

• An algorithm for defining FunctorOf instances (described in [NJ03]) is incorporated in
DrHylo.

• Constructors are replaced by their equivalent fixpoint definitions.
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• Pattern matching is only performed over the generic constructor in, sums, pairs, and
the constant ?, due to the previous items.

A new constructor was then added to the pointwise definition to implement such a mech-
anism, but with some limitations: there can be no repeated variables in the patterns, no
overlapping, and the patterns must be exhaustive. It matches an expression against a set of
patterns, binds all the variables in the matching pattern, and returns the respective right-hand
side.

P ::= ? | x | 〈P, P 〉 | in P | inl P | inr P
M,N ::= . . . | match M with {P → N ; . . . ;P → N}

Instead of directly translating this new construct to point-free, a rewriting system is defined
that eliminates generalized pattern-matching, and simplifies expressions back into the core
λ-calculus previously defined [Cun05]. We remark that since Haskell does not have true
products, this rewrite relation can sometimes produce expressions whose semantic behaviour
is different from the original. Consider the Haskell function \(x,y) -> 0. This function
diverges when applied to _L, but returns zero if applied to (_L,_L). This function can be
directly encoded using match and translated into the core λ-calculus using the following
rewrite sequence.

λz.match z with {〈x, y〉 → in (inl ?)}
; λz.match (fst z) with {x → match (snd z) with {y → in (inl ?)}}
; λz.match (fst z) with {x → in (inl ?)}
; λz.in (inl ?)

Since it no longer has pattern-matching, the resulting function is different from the original
since it never diverges. Apart from this problem, with this pattern-matching construct it
is now possible to translate into point-free many typical Haskell functions, such as the ones
defined in appendix C.1.

For example, using this constructor distr and the length function can be defined as follows
(list constructors are replaced by their pointwise definition given in Section 3.2).

distr : A× (B + C) → (A×B) + (A× C)
distr = λx.match x with {〈y, inl z〉 → inl 〈y, z〉; 〈y, inr z〉 → inr 〈y, z〉}

length : List A → Nat
length = fix(λf.λl.match l {in (inl ?) → in (inl ?); in (inr 〈h, t〉) → in (inr (f t))})



Chapter 5

Haskell refactorings

The HaRe project was described in section 2.3. The main tool allows the application of
refactorings to Haskell code, using editors like Vim or Emacs. In this chapter two refactorings
developed in the context of point-free programming will be described:

• Conversion from pointwise code to point-free. Uses the same theoretical background
used by DrHylo (section 4.2). This refactoring was developed under the coordination of
the author of DrHylo, and during DrHylo’s development, so there are several similarities
with this tool. The explicit recursion (fix function) is not converted to recursion
patterns.

• Removal of guards. The main purpose of this refactoring is to remove syntactic sugar (in
this case the guards), to enrich the language recognised by DrHylo, since this tool does
not support guards. In this work no other syntactic sugar is tried to be removed, since
we decided to put a bigger effort into the simplification of point-free terms (chapter 6)
rather than in covering a larger subset of Haskell.

5.1 Pointwise to point-free

The first refactoring addresses the conversion of pointwise code to point-free code, already
approached in section 4.2 (according to [Pro05b, Cun05]).

Using HaRe, a user only has to select the expression in pointwise that he wants to
convert, and then select the conversion option under the HaRe menu of the editor (as shown
in figure 5.1). The conversion process consists in:

• Parse of the expression by Programatica’s tools (lexer, parser and AST), done automat-
ically by HaRe;

• Conversion (if possible) of the term in Programatica’s syntax tree to a Haskell data
type representing a pointwise term (GLTerm, in module GlobalPW );

46
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Figure 5.1: Using HaRe to convert from pointwise to point-free
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• Conversion of the GLTerm to a simpler pointwise term, with less constructors (PWTerm,
in module PWCore);

• Conversion of the pointwise term to a point-free term (PFTerm), using a set of rules
specified in 4.2.1 (in module PwPfConversion).

• Conversion of the resulting point-free term back to a term in Programatica’s syntax
tree, that is later printed back using the HaRe tool pretty printer.

The diagram in figure 5.2 illustrates the process of conversion (the token stream described
in section 2.3 will be ommited here).

foo.hs

Parse
��

foo changed.hs

AST

Partial conversion to GLTerm
��

AST

Print

OO

GLTerm

Conversion to PWTerm
��

PWTerm // PFTerm

Conversion to the AST

OO

Figure 5.2: Conversion process from pointwise to point-free

5.1.1 Read pointwise expressions

Only a small subset of pointwise languages are recognised by the refactoring. The following
grammar defines the language that can be converted to point-free.

G, G1, G2, G3 ::=
(G) | undefined | () | L | inN ( L::type) G | ouT ( L::type)
| True | False | 0 | [] | n, n > 0 | [G1,G2,...] | G1:G2 | succ G | pred G
| (==0) G | G==0 | head G | tail G | null G
| recNat G1 G2 G3 | recList G1 G2 G3

| fix G | if G1 then G2 else G3 | var | (G1,G2) | fst | snd | Left | Right
| G1 infixOp G2 | \var1var2 ...-> G
| case G1 of Left var1-> G2; Right var2-> G3

| let var = G1 in G2

where var, var1 and var2 are variables that are read as strings, infixOp is an infix operator,
and type is also read as a single string.
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5.1.2 Pointwise definitions

As mentioned before, two different data types were defined to represent pointwise terms.
PWCore is the most general pointwise language, that is later transformed into a point-free
term. GlobalPW is a more specific pointwise language, with more syntactic sugar than the
previous language, but less powerful. The two languages are defined in table 5.1.

PWCore.hs GlobalPW.hs

data PWTerm

= Unit -- Unit

| Var’ String -- Variable

| PWTerm:@:PWTerm -- Aplication

| Abstr String PWTerm -- Abstraction

| PWTerm:><:PWTerm -- Pair

| Fst PWTerm -- Point-wise first

| Snd PWTerm -- Point-wise second

| Inl PWTerm -- Point-wise left injection

| Inr PWTerm -- Point-wise right injection

| Case PWTerm (String,PWTerm) (String,PWTerm)

-- Case of

| In HsExpP PWTerm -- Injection on a specified type

| Out HsExpP PWTerm -- Extraction of the functor of

-- a specified type

| Fix PWTerm -- Fixed point

data GLTerm

= Star -- Unit

| V String -- Variable

| GLTerm:-:GLTerm -- Aplication

| Lam String GLTerm -- Abstraction

| GLTerm:&:GLTerm -- Pair

| Pi1 GLTerm -- Point-wise first

| Pi2 GLTerm -- Point-wise second

| Inl’ GLTerm -- Point-wise left injection

| Inr’ GLTerm -- Point-wise right injection

| Case’ GLTerm (String,GLTerm) (String,GLTerm)

-- Case of

| In’ HsExpP GLTerm -- Injection on a specified type

| Out’ HsExpP GLTerm -- Extraction of the functor

-- of a specified type

| Fix’ GLTerm -- Fixed-point

| T’ -- Constant True

| F’ -- Constant False

| Z’ -- Constant Zero

| Suc GLTerm -- Successor

| Pred GLTerm -- Predecessor

| IsZ GLTerm -- is zero?

| Ite GLTerm GLTerm GLTerm -- ^if then else

| N’ -- Empty list

| GLTerm ::: GLTerm -- Constructor for lists

| Hd GLTerm -- Head of a list

| Tl GLTerm -- Tail of a list

| IsN GLTerm -- is the list empty?

| Letrec String GLTerm GLTerm

-- recursive let

| RecNat GLTerm GLTerm GLTerm

-- Primitive recursion on Nat’s

| RecList GLTerm GLTerm GLTerm

-- Primitive recursion on List’s

Table 5.1: Pointwise language definitions

Only a GLTerm can be parsed from an expression from Programatica’s syntax tree.

5.1.3 Resulting point-free expressions

After a successful conversion a new point-free term is obtained. The point-free terms
have the syntax described in section 3.3.3. The main problem with the resulting terms is
that, besides the fact that the recursion is still explicit (unlike code produced by DrHylo),
the resulting terms are usually too big and complex. The DrHylo tool has the same problem,
which we address with the automatic simplification of these terms studied in this work in
chapter 6.
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The produced expressions are very similar to the resulting code of DrHylo, so only a small
example will be presented here.

Consider the coswap function written with a lambda expression.

coswap = \x -> case x of Left y -> Right y
Right y -> Left y

After the selection of the lambda expression and the application of this refactoring the
following function is obtained:

coswap = app .
(((curry

(app .
((curry (((Right . snd) \/ (Left . snd)) . distr)) /\
snd))) .

bang) /\
id)

Modules from the Pointless library are also added to the imports list (if necessary), to ensure
that the file can still be executed correctly. The imported modules are not from the original
Pointless library, because the HaRe parser does not support infix constructors, used by
Pointless.

More examples of this refactoring can be found in http://wiki.di.uminho.pt/wiki/
bin/view/Ze/Bic.

5.2 Removal of guards

Syntactic sugar exists for practical issues, to make a language easier to use, but it does not
make the language more powerful. This is why DrHylo only focus on a Core language with
very little syntactic sugar. On the other way, it is obviously useful to extend it to the complete
Haskell language, since it is far more expressive. The extension of this Core language is the
main motivation for the removal of syntactic sugar, in this case of Haskell guards.

In this section the removal of guards (which are not part of the recognized pointwise
grammar) is studied. The removal consists not only in replacing a guard for an if then else,
but mainly in manipulating the several matches that define a function. This substitution is
only applied when possible.

The difficulty of removing guards lies on the following facts:

• it is not always possible to remove a guard (since it may not allow the function to match
in further cases);

• it may be necessary to merge matches before removing the guards.

The process of removing guards consists of three stages:

Consistency check – where for each match it is checked if it can be converted and swapped
with matches defined below, without changing the function behaviour;

http://wiki.di.uminho.pt/wiki/bin/view/Ze/Bic
http://wiki.di.uminho.pt/wiki/bin/view/Ze/Bic
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Merge of matches – where similar matches with guards are merged into a single match,
renaming the needed variables;

Conversion to if then elses – where the guards are finally removed and replaced by nested
if then elses, and an error is returned if no otherwise case is found.

5.2.1 Consistency check

Before any evaluation, each match is compared with the matches below on the same
function definition, by the function isConsist. Each match is then associated with a boolean
stating either that it is consistent or not.

The function isConsist returns:

• Just True – if disjoint patterns are found;

• Just False – if an incongruence is found and there are no disjoint patterns;

• Nothing – if no incongruence nor disjoint patterns are found

Note that two patterns are said to be disjoint if they have different constructors or dif-
ferent constant values, and incongruent if one is a variable and the other something else. In
this comparison, every sub-pattern is also evaluated, and all possible cases for patterns are
contemplated. The value returned by isConsist is then converted to a boolean, based on
the presence of guards (Nothing becomes True if there are guards, or False otherwise).

5.2.2 Merge of matches

After knowing which matches can be manipulated and swapped, the next step is to try to
merge matches with guards and similar patterns, using all possible combinations.

Because there is sometimes the need to create fresh variables, a string that is not the prefix
of any of the variable names (in this case the smaller non-empty sequence of x ’s) is used as
the base name, and a counter is added to the variable name. The function mergeMatches
uses a state monad with partiality, to manage fresh variables with the state, and that fails
when the merging of two matches is not possible.

Before trying to merge matches, the declarations of the consistent matches are passed
inside the guards and to the main expressions, by converting the wheres to lets. This is
necessary because after the merging of two matches, the declarations inside the where clause
of each match will now affect the other matches as well. This will duplicate the declarations
inside the where clause.

In the merge of two matches all the possible patterns were contemplated, as before. In
some cases there is more than one way to merge patterns. The merge process of each base
case is now explained in more detail.
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Similar patterns – If the two patterns are syntactically equivalent, then no transformation
is applied. Since this is the first test to be performed, the patterns are considered to be
different in the remaining tests;

Variables – When two different variables are found they are replaced by a fresh variable: in
the pattern, in the guards and in the main expression;

Parenthesis – They are initially ignored, and after the merging they are placed back;

WildCard (underscore) – Can only be matched with a variable. In this case a fresh
variable will replace both the wild card and the variable, in every important place of
the match;

var @ pattern – If both matches have this construction, then the variable and the associ-
ated pattern are split into two different patterns, and after the recursive evaluation the
resulting variable is “glued” back to the resulting pattern. If only one match has this
construction, then the variable is replaced by a fresh variable, so that the same variable
can also be assigned to the second pattern;

Irrefutable pattern – When an irrefutable pattern is found, it is replaced by a fresh vari-
able, and a let constructor is added inside the guards and in the main expression,
assigning the irrefutable pattern to take the value of the fresh variable. This way the
fact that Haskell uses lazy evaluation allows the behaviour of the function to be the
same as before;

Constructors with fields – Whenever a constructor with fields is found, it is converted
into a pattern where the constructor is applied to the different arguments, using wild
cards when a variable name is not assigned;

Application – When, in both matches, an application of a constructor is found, and the
constructors have the same name, then the constructor is ignored and arguments are
merged (using recursion), and in the end the new arguments are extracted and wrapped
with the constructor again:

Infix application – Same approach to normal application was taken.

Tuples and lists – Each pattern inside the tuple or list is added to the remaining patterns
to be merged, and in the end they are “glued” again with the tuple or list constructor.

5.2.3 Conversion to if then elses

This final stage is the simplest one, since there are not many cases to evaluate. The
function guards2ifs is applied to each match with a guard and with the consistency check
mark. When the otherwise guard is not found, the else case of the resulting expression issues
an error message. The consistency check made previously ensures that no other match would
succeed after every guard fails, therefore it is safe to issue the error message.
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5.2.4 Tracing an example

To give a better understanding of how this refactoring works, the removal of guards of a
simple example will be explored in detail. The example does not do anything in particular,
only tries to cover differents problems in the removal of guards.

foo (h:t1) x | h == 0 = x
foo [] y | y > 0 = 1
foo (h:t2) z | otherwise = -z
foo [] v | v < 0 = -1

The first step is to check, for each match, if any inconsitency is found with the matches
below. After this step, each match is associated with a boolean, stating if the it can be swaped
with the matches below and the corresponding guards can be removed.

True --> foo (h:t1) x | h == 0 = x
True --> foo [] y | y > 0 = 1
True --> foo (h:t2) z | otherwise = -z
True --> foo [] v | v < 0 = -1

In this case all the matches are consistent with the matches below, which means that,
if a pattern matching is found after the merging of matches, no other pattern matching is
possible.

In the merging step all the possible combinations to merge matches are perfomed. This is
the most complex part of this calculations. After the merging of matches some fresh variables
are introduced, as it can be seen below.

foo ((h : xx_0)) xx_1
| h == 0 = xx_1
| otherwise = -xx_1

foo [] xx_2
| xx_2 > 0 = 1
| xx_2 < 0 = -1
| otherwise = error "UnMatched Pattern"

Finally, the replacement of guards by nested if then elses is a simple process that produces
the following code:

foo ((h : xx_0)) xx_1
= if h == 0 then xx_1 else -xx_1

foo [] xx_2
= if xx_2 > 0

then 1
else if xx_2 < 0

then -1
else error "UnMatched Pattern"

This example and others of removal of guards can be found in appendix A.
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5.2.5 Future work on the removal of guards

In the removal of guards an effort was made to evaluate every possible case, and to
introduce new variables only when really necessary. But even an apparently easy piece of
syntactic sugar like the conversion of guards to if then elses can get very complicated when
all possibilities are analysed.

There are still some cases that could be improved. For example, the following function,

f x | x > 0 = 1
f x = 0

could be evaluated in a previous stage to:

f x | x > 0 = 1
f x | otherwise = 0

and only then the matches could be merged, so that the guards can be converted to if then
elses.

Another possible improvement would be to try to merge the declarations inside the wheres
when possible, instead of placing them inside let expressions. This would require to check
if the declared functions or constants in one declaration are not used in the other match, or
equally defined in the respective declaration.



Chapter 6

SimpliFree tool

6.1 Introduction

One of the main problems with the conversion to point-free code described in section 4.2.1
is the fact that the resulting terms are much more complex than the expected terms. This is
due to the automated process that applies the several transformations.

The SimpliFree tool [Pro05a] was developed to simplify the resulting point-free terms as
much as possible, and in an automated way. The approach taken is based on the notion of
active source, in the same way as MAG 2.2: the code to be analysed is annotated with special
commentated blocks with rules to be used in the transformation of the code.

Unlike MAG, the SimpliFree tool uses the Haskell compiler’s pattern matching mechanism,
and instead of having a fixed strategy, it allows the user to produce new strategies or to adapt
existing ones using several strategy combinators, to suit particular cases.

In order to simplify most point-free terms, the possibility of importing some strategies
from a rules repository (built for the tool) was introduced. This import can be mentioned by
a special commentated block or by the use of arguments. In this way the concept of active
source can be avoided in some cases, if the user desires so.

To apply the strategies in a more efficient way, the pattern matching of Haskell compilers
is used. This means that the tool does not translate the original point-free terms directly to
simpler point-free terms. The SimpliFree tool produces a new Haskell file with functions that
apply the transformations to the point-free terms found in the original file. The produced file
imports a SimpliFree library which defines the core functions for the traversals on point-free
terms, taking the maximum advantage possible of the Haskell compiler pattern matching.

When the produced file is interpreted, it is possible to follow the intermediate results and
the rules applied at each step to every simplification made. The main function prints a new
Haskell program, similar to the original one, where the simplified terms replace the old ones.
Diagram 6.1 illustrates the way files are organised when using the tool.

55
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foo.hs strat_foo.hs
SimpliFree

SimpliFreeLib

simpl_foo.hs
Compilation

Interpretation
Calculation steps

Figure 6.1: Diagram with SimpliFree architecture

6.2 Term traversal

A very important issue is how to traverse a term to apply a transformation. In this work
more than one way of traversing the terms were tested, all using generic schemes:

1. Calculation of a simplified term with Data.Generics libraries (SyB approach);

2. Calculation of a simplified term with Strafunski ;

3. Calculation of intermediate steps and the simplified term with Strafunski ;

4. Calculation of intermediate steps that can contain computations (to be presented bel-
low).

The application of a strategy returns a Computation, which is defined as a final point-free
term and a list of intermediate results (pairs of term×rule). But only on the last two generic
schemes the list of intermediate results is not empty.

Module SimpliFreeLib contains, among others, functions that use the generic libraries to
define the traversals. This is the only file that needs to be altered when changing the way
traversals are made. In the final version of the SimpliFree tool the Strafunski library was
used, calculating the intermediate results (scheme 4). The strategy combinators defined in
the library are: rule, many, or, and, oneOrMore, optional and fail. Other auxiliary functions
were also defined inside the library.

6.2.1 Traversal with the Generics library

This approach has several advantages:

• It is not very difficult to implement;

• The needed instances can be automatically derived by GHC;
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• The needed libraries are already in the default libraries of the current versions of GHC.

The main problem is that the resulting code is not so efficient as the one using the
Strafunski libraries, and the fact that the instances for the needed class cannot be derived
automatically into an external file (without using the deriving option).

In this approach rules and strategies have the same type:

type Strat m = Pointfree.Term -> m Pointfree.Term

And the definition of the strategy that normalises the composition (reassociates compo-
sition to the right), the function that builds a rule, and the strategy combinator and are as
follows:

once :: (MonadPlus m, Data a) => (forall b . Data b => b -> m b) -> a -> m a
once f x = f x ‘mplus‘ (gmapMo (once f) x)

normalise :: MonadPlus m => Strat m
normalise = iteratePF (once (mkMp flat))
where flat ((x :.: y) :.: z) = return (x :.: (y :.: z))

flat _ = fail "no need to flat"
iteratePF :: MonadPlus m => Strat m -> Strat m
iteratePF strat = (strat ‘andPF‘ (iteratePF strat)) ‘orPF‘ return

rulePF :: MonadPlus m => String -> Strat m -> Strat m
rulePF _ r = once (mkMp r)

andPF :: MonadPlus m => Strat m -> Strat m -> Strat m
andPF r g e = r e >>= g

The function that applies a strategy to a term only needs to use an Haskell application,
without the use of other combinators. No further work was performed using the SyB approach,
since the resulting code was not so efficient as the code produced with Strafunski ’s libraries.

6.2.2 Simple traversal with Strafunski

The main advantage of the Strafunski approach is that the resulting code is much more
efficient (apparently twice as fast). And since this tool was specially developed to make
traversals on any data type (while the Generics library deals with other concerns involving
generic programming as well as traversals), it already has more specialised combinators to
facilitate the traversal definitions.

Strafunski has type preserving and type unifying strategy combinators. In the present
case only the simplified term is calculated, so only type preserving strategy combinators need
to be used. The same example functions as before are now:

normaliseStrat :: MonadPlus m => TP m
normaliseStrat = iterateTP strat
where strat = once_tdTP (adhocTP failTP flat)
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flat ((x :.: y) :.: z) = return (x :.: (y :.: z))
flat _ = fail "no need to flat"
iterateTP :: MonadPlus m => TP m -> TP m
iterateTP strat = (strat ‘seqTP‘ (iterateTP strat)) ‘choiceTP‘ idTP

rulePF :: (MonadPlus m) => String -> (Term -> m Term) -> TP m
rulePF _ r = (once_tdTP (adhocTP failTP r)) ‘seqTP‘ normaliseStrat

andPF :: MonadPlus m => TP m -> TP m -> TP m
andPF s1 s2 = s1 ‘seqTP‘ s2

Note that a rule is still a monadic function that changes a point-free term, but a strategy
is now of type TP m (type preserving), and to apply a strategy to a term the combinator
applyTP has to be used.

6.2.3 Advanced traversal with Strafunski

In this approach the intermediate calculation steps are calculated. To accomplish this it
is necessary to combine both strategies of Strafunski mentioned in section 6.2.2, in order to
change a term (type preservation) and to collect all changed terms and rules applied (type
unification).

The equivalent functions to the previous examples are more complicated in this approach,
except for the normalise strategy that remains unaltered. This is due to the need of combining
type preserving and type unifying strategy combinators.

rulePF :: (MonadPlus m) => String ->
(Pointfree.Term -> m Pointfree.Term) -> TU Computation m

rulePF name r =
idComp ‘passTU‘ \(_,t1) ->

(((once_tdTP (adhocTP failTP r)) ‘seqTP‘ normaliseStrat) ‘seqTU‘ idComp)
‘passTU‘ \(_,t2) ->
constTU ([(t1,name)],t2)

idComp :: MonadPlus m => TU Computation m
idComp = adhocTU (constTU (mempty::Computation)) (\x->return ([],x))

andPF :: MonadPlus m => TU Computation m -> TU Computation m -> TU Computation m
andPF s1 s2 = s1 ‘passTU‘ \(lst1,t1) ->

(constTP t1) ‘seqTU‘ s2 ‘passTU‘ \(lst2,t2) ->
(constTU (lst1++lst2,t2))

where constTP t = adhocTP idTP (\_->return t)

6.2.4 More complex justifications

In the definition of rules it is possible to apply strategies to the resulting expression. This
means that the rule is only succesfully applied if the strategies do not fail. It also means that,
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in case of success, the intermediate steps associated to the strategies applied inside the rule
cannot be visualised.

In order to access the intermediate steps, the rule functions are changed so that they
return not only the resulting expression, but also a list of the computations associated to the
strategies applied inside the rule. So a rule will have the following signature:

rule :: MonadP lus m ⇒ Term → m (Term, [Computation])

This implies changing the definition of a Computation, to add the possibility of having
other computations inside a main computation:

type CalcTerm = (Pf.Term,[Computation])
data Computation = Comp { csteps :: [(CalcTerm,String)],

cresult :: Pf.Term}

It is also necessary to change the strategy combinator that applies a rule, which becomes much
more complicated, since the intermediate computations are extracted using a state monad:

rulePF :: (MonadPlus m) => String ->
(Pf.Term -> m CalcTerm) -> TU Computation m

rulePF name r =
let tu_state =

idComp ‘passTU‘ \(Comp _ t1) ->
(((once_tdTP (adhocTP failTP (aux r))) ‘seqTP‘ normaliseStrat)
‘seqTU‘ (insSteps t1))

tu_nostate =
-- conversion of "StateT [Computation] m (a,b,c)" to "m (a,b,c)"
msubstTU (flip evalStateT []) tu_state

in tu_nostate ‘passTU‘ \(t1,t2,comps) -> constTU (Comp [((t1,comps),name)] t2)
where aux :: MonadPlus m => (Pf.Term -> m CalcTerm) -> Pf.Term

-> StateT [Computation] m Pf.Term
aux r term = do (t,comp) <- lift (r term)

put comp
return t

-- convertion of "m a" to "StateT s m a"
lift m = StateT (\s -> m >>= \a -> return (a,s))
insSteps :: MonadPlus m => Pf.Term

-> TU (Pf.Term,Pf.Term,[Computation]) (StateT [Computation] m)
insSteps t1 = adhocTU (constTU (ID,ID,[]))

(\t2 -> get >>= \comps -> return (t1,t2,comps))

After defining a Show instance for Computations, it is possible to visualise the calculations
associated to strategies called from rule definitions.

The main problem with this approach is that the application of any rule involves more cal-
culations, so the produced code is slower than the one obtained with the previous approaches.

6.2.5 Builtin strategies
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To facilitate the user task, a few default strategies were included in the SimpliFreetool. The
possibility of redefining strategies made the process of adding new rules to existing strategies
easier.

The strategies present in the tool can be found in appendix B. There is a base strategy
(appendix B.1) that is used in the creation of other strategies, like the advanced strategy
(appendix B.2). The base strategy not only simplification rules but also rules to fold and
unfold several known macros, like swap (= sndO fst) and exp (= f ◦ ap). The main idea of
this strategy is:

1. Apply the simplification rules as many times as possible;

2. Unfold known macros if possible, and return to previous step until no more known
macros exist.

3. Fold known macros, to make the result easier to read.

During the simplification, the rules follow the idea that the composition should be the
inner operator. For example, (f M g) ◦ h is converted to (f ◦ h) M (g ◦ h), and not the other
way (unless followed by certain strategies), since it can trigger more cancelation rules.

The advanced strategy uses the base strategy, but some more simplification rules are
added. The reason why a new strategy pack was created is because there are several rules
that can give type error, like the convertion of id× id to id.

6.3 Rule construction

6.3.1 Basic principles

A rule is converted to a Haskell function of type Term -> m Term, where m is a MonadPlus,
such that:

• it applies a transformation to a term or to the prefix of a composition, not to other
subterms;

• it fails (fail "...") when it is not possible to apply the transformation;

• it assumes that the composition is normalised (associated to the right).

Example 1 natId1 : id ◦ f → f

natId1 (ID :.: f) = return f

natId1 _ = fail "..."

In example 1 a very simple example is shown, but the definition of these functions can get
very complicated, as described in the next subsections.
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6.3.2 Adition of the ending

The first problem comes from the fact that the rules can be applied not only to terms,
but also to prefix of terms, relatively to compositions. Remember that the composition is
assumed to be always associated to the right (this way the composition operator behaves
similarly to the constructor of lists in Haskell).

The best way to solve this problem is to add a new match to each rule definition when
necessary, to pattern match the ending (when the last element is also a composition), and to
place it in the resulting expression, as can be seen in example 2.

Example 2 sumCancel1 : (f O g) ◦ inl → f

sumCancel1 ((f :\/: g) :.: INL) = return (f)

sumCancel1 ((f :\/: g) :.: (INL :.: x)) = return (f :.: x)

sumCancel1 _ = fail "..."

The ending case needs to be added when the outermost operator is the composition, and
the last element is not a variable.

6.3.3 Left variables (l.v.)

Variables on the right of compositions match with the biggest composition possible, as
expected when looking at example 1, since the composition is associated to the right. The
main problem is when variables are found on the left of a composition (including the case of
variables in the middle of compositions, since it is on the left of a subterm).

Each composition with a left variable (l.v.) is substituted by another variable that is
analysed by a new auxiliary function (top down substitution).

Example 3 exp fold : f ◦ ap → f◦

exp_fold (Curry f’) | ... = ... aux_f f’ ...

where aux_f (f :.: AP) = ...

...

...

Inside the guards it is verified if the variable(s) representing the composition with a l.v.
match with the term being evaluated, also by the use of the auxiliary function.

The empty spaces in example 3 will be explored in full detail in the next subsections.

Auxiliary functions

Each new auxiliary function is responsible by the association of elements of a composition
to match with a l.v., through recursion and pattern matching. It calculates:

a) if the pattern matching succeeded;
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b) a list of terms corresponding to each of the variables inside the expression;

c) if the the auxiliary function is associated with a l.v. that precedes the last element of a
composition, where this composition is the outermost operator, and if the last element
of this composition is not a variable, then it also calculates the possible ending, similarly
to what has been done in subsection 6.3.2.

In the auxiliary functions an intermediate structure was used – Maybe ([Term], Maybe
Term), and several new functions were added to the library TravGenLib.hs:

success - Verifies if the pattern matching was successful.
success = isJust

noVar - When the pattern matching fails
noVar = Nothing

emptyVar - When the pattern matching succeeds, but no variable was found yet.
emptyVar = Just ([],Nothing)

addTerm - Adds a new term to the list of expressions associated to variables.
addTerm t (Just (l,e)) = Just (t:l,e)

addComp - Composes a term (through the constructor :.:) with the last term added to
the list with addTerm.
addComp t (Just (x:xs, e)) = Just ((t:.:x):xs, e)

joinVars - Joins the results of more than one auxiliary functions.
joinVars = fmap mconcat . sequence1

getTerm - Return the nth term.
getTerm n (Just (l,e)) = l !! n

getEnd - Add the end to a given term.
getEnd (Just (_,Just t1)) t2 = t2 :.: t1

getEnd _ t = t

Each auxiliary function consists of 3 or 4 cases:

i) The pattern matching succeeds.

In example 3:
aux_f (f:.:AP) = addTerm f emptyVar

ii) Only in some cases – The pattern matching succeeds, but the ending case needs to be
considered (as described in section 6.3.2).

In example 3 this case is not needed since the composition where
f appears is not the outtermost operation. If it were, then it
would be written as:
aux_f (f:.:(AP:.:x)) = addEnd x (addTerm f emptyVar)

1where Maybe belongs to the classes Functor and Monad, and an instance to the class Monoid where added;
in GHC ≤ 6.4 an instance of Monoid for pair were added.



6.3. RULE CONSTRUCTION 63

iii) The pattern matching is not well succeeded, but it is a composition case, so the auxiliary
function is recursively called to the tail of the composition.

In example 3:
aux_f (f0:.:f1) | success (aux_f f1)

= addComp f0 (aux_f f1)

iv) The pattern matching fails.

In example 3:
aux_f _ = noVar

If a composition with a l.v. is found inside the expression that is matched (e.g., g:.:ID),
then it is substituted by another variable (g’), and the condition success (aux g g’) is
added to the guards of the cases i) and ii), where aux g is the auxiliary function associated
to g (built in a similar way to aux f). The body of the i) and ii) cases are also changed, by
substituting emptyVar by aux g g’, and if more l.v. are found it is replaced by joinVars
[aux g g’,...].

It is important to note that the order in which the terms are added to the intermediate
structure is always the same, regardless of the terms that are instantiated with the auxiliary
functions, making the controlled extraction of elements from the list possible.

Main function

For each l.v. f, the condition success (aux f f’) is added to the guard. In the main
body two transformations are applied to the returned term:

• The variables inside the compositions with a l.v., calculated by the auxiliary functions,
are collected by the function getTerm, that is applied to the union of the result of the
auxiliary functions. They are then “put inside” the resulting term through a lambda
abstraction. The order is very important here.

In example 3:
exp_fold (Curry f’) | success (aux_f f’)

= (\f -> Macro "exp" [f]) (getTerm 0 (aux_f f’))

• The possible ending is added to the term, by the function getEnd.

In example 3:
... (\f -> getEnd (aux_f f’) (Macro "exp" [f])) (getTerm 0 (aux_f f’))

The addition of the ending in normal expressions, as described in subsection 6.3.2, may
also be needed when no l.v. are found in the end of the outer composition. In this case a
duplication of the function and all of the auxiliary functions is made, with the small difference
that the ending is contemplated (in a similar way to example 2).
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Extras

An important feature that was added was the use of conditions. But the correct ver-
ification of conditions required important changes to the code, as will be seen in the next
section (6.3.4). The main problem with the way conditions are handled is when l.v.’s oc-
cur. So far the auxiliary functions only return a single possible pattern match, and do not
backtrack if the condition fails.

With the verification of conditions working correctly, new features were added to the tool.
One example is when equal variables are found in the left hand side of a rule. In this case
they are substituted by fresh variables, and the tests for their equality are added to the list
of conditions.

Another improvement is the possibility of applying strategies to the result of a rule.
The test to check if the strategies are successfully applied is added to the list of conditions.
This allows the definition of much more complex rules, as the fusion for catamorphism on
lists, that will be presented in section 6.4.

6.3.4 Conditions

So far a condition is interpreted as a string containing a Haskell expression that returns
a boolean. When equal names for variables are used in the left-hand side of an expression,
then one of it is replaced by a fresh variable, and the condition that verifies their equality is
automatically added.

A way of verifying conditions correctly was introduced by applying some changes to the
produced code. The changes described in subsection 6.3.3 were not sufficient for the verifica-
tion of conditions. In this subsection the changes to the previous algorithm are explained in
detail.

Simplest case

In the cases of a rule where the left hand side is a composition, where the last element is
a variable (not a l.v.), and conditions are supplied by the user, two new matches are added
before the usual matches. For example, consider the case of a rule called rule, that matches
with a composition ending with variable f, returning the expression exp with conditions cond.
In this case the main match will be replaced by the 3 following matches:

rule (... :.:f:.:x) | cond = return (exp:.:x)
rule (... :.:f:.:(x1:.:x2)) = rule (... :.:(f:.:x1):.:x2)
rule (... :.:f) | cond = return exp

where the third one remains equal (appart from the presence of the condition inside the
guard).

Even if there are left variables (as long as f is not a l.v.), the validation of the auxiliary
functions will still be evaluated in the first and third match without undesirable side condi-
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tions. But still some is attention needed in the presence of left variables, as it will be shown
in the next subsection. Then, so far, the conditions are correctly evaluated when:

• The outermost operator is not the composition;

• The outermost operator is the composition and the last element is not a variable;

• The outermost operator is the composition and the last element is a variable – not a
left variable (only here the proposed changes are needed).

In the presence of left variables

In subsection 6.3.3 the auxiliary functions return an intermediate structure with a possible
definition for each of the variables in a sub-expression and a possible ending, in the data type
– Maybe ([Term], Maybe term). Instead of just returning the first possible solution for
each variable, the intermediate structure was changed to [([Term], Maybe Term)], and the
auxiliary functions now return the list of all possible solutions for each variable. The new
functions added to TravGenLib.hs in subsection 6.3.3 were now changed, as described in
table 6.1.

Maybe ([Term], Maybe term) [([Term], Maybe Term)]
success = isJust success = not.null

noVar = Nothing noVar = []

emptyVar = Just ([],Nothing) emptyVar = [([],Nothing)]

addTerm t (Just (l,e)) = Just (t:l,e) addTerm t lst = [(t:l,nt) | (l,nt) <- lst]
addComp t (Just (x:xs,e))

= Just ((t:.:x):xs, e)

addComp t lst

= [((t:.:x):xs,nt) | (x:xs,nt) <- lst]
addEnd t (Just (x, )) = Just (x,Just t) addEnd t lst = [(l,Just t) | (l, ) <- lst]

joinVars = fmap mconcat . sequence joinVars = fmap mconcat . sequence

getTerm n (Just (l, )) = l !! n getTerm n ((l, ): ) = l !! n
getEnd (Just ( ,Just t1)) t2 = t2:.:t1

getEnd t = t

getEnd (( ,Just t1): ) t2 = t2:.:t1

getEnd t = t

– verifyCond = isJust

– testCond f = findIndex (f.fst)

– getIndex i = drop (fromJust i)

Table 6.1: Changes to the functions that operate on the intermediate structure

Specific changes to the auxiliary functions and to the main functions will be explored in
more detail in the next subsections.

Auxiliary functions

Recall the 4 possible matches added for each auxiliary function described in subsec-
tion 6.3.3. The cases i) and ii) need to be changed, in order to gather all the possible
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results (without regarding the condition), instead of just returning the first possible pattern
match. The new two cases are:

i) If the left hand side is a composition that ends in a variable, then the result of a recursive
call to the tail of the composition is added to the possible results.

In example 3 the result does not end in a variable, so the match
remains unchanged. If it did, the new match would be:

aux_f (f:.:AP:.:g) = addTerm f (addTerm g emptyVar)
++ addComp f (aux_f (AP:.:g)

ii) Only in some cases, as before – The pattern matching succeeds, but the ending case
needs to be considered. In this case the recursive call to the tail of the composition is
always added to the possible results.

In example 3 this case is not needed since the composition where
f appears is not the outermost operation. If it were, then it
would be written as:

aux_f (f:.:(AP:.:x)) = addEnd x (addTerm f emptyVar)
++ addComp f (aux_f (AP:.:x)

Note that the guards, when present, do not suffer any change.

Main function

To facilitate the reading and the writing of the rule function, three new pattern binds
(aliases) were added to declarations of the main function, together with the auxiliary func-
tions:

all pattern = joinVars [auxiliary functions calls ] – gathers all the possible results
for each variable inside compositions in the scope of l.v.. Will be used only in the
evaluation of the conditions;

index = testCond (\[name of variables ] -> conditions ) all pattern – looks for the
first variable attribution that satisfies the conditions (index :: Maybe Int). The
abstraction only captures the names of the variables defined inside the compositions
with l.v. because the others are already captured by the pattern matching in the main
function;

all expression = = getIndex index all pattern – puts a solution that satisfies the con-
ditions at the head of the list with all the terms that pattern matched, by dropping
possibilities. It will be used inside the main expression, when evaluating the final re-
sult.

When there are no conditions to be evaluated, then the alias all expression is enough,
defined in the same way as all pattern, since all possible results returned by the auxiliary
functions are correct.

In the end it is only necessary to add the predicate verifyIndex index to the guard of
the main function, when there are user defined conditions.
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6.3.5 Syntactic sugar

The use of syntactic sugar enables the possibility of using simpler instructions that will
be converted to more complex set of instructions.

Some important additions to the language are:

• The possibility of using equal variables, that are replaced by fresh variables and
compared inside the conditions (already mentioned before in subsection 6.3.4);

• A special rule that constructs a new rule expressing the associativity property, as
shown in the following example:

Assoc assoc_cat : ’cat’ =⇒ catAssoc : (curry ’cat’) . ’cat’ ->
’comp’ . ((curry ’cat’) >< (curry ’cat’))

• Another special rule, given a set of macros definitions, expands each macro to the
corresponding fold and unfold rule, and also creates strategies that gather the folding
rules (named macros fold) and the unfolding rules (named macros unfold), as shown
in the following example:

Macro swap :
snd /\ fst

Macro coswap :
Right \/ Left

=⇒

macros_fold : swap_fold orOF coswap_fold
macros_unfold : swap_unfold orOF coswap_unfold

swap_unfold : ’swap’ -> snd /\ fst
coswap_unfold: ’coswap’ -> Right \/ Left
swap_fold : snd /\ fst -> ’swap’
coswap_fold: Right \/ Left -> ’coswap’

• The introduction of lists of terms, that allows the use of rules with more than one
argument (as will be seen when the strategy for the fusion of catamorphisms is intro-
duced in section 6.4.3). This is internally represented as a macro with a special name
that is ignored when printing.

6.4 Testing Strategies

6.4.1 Simple example

In this section a very small example will be shown, without importing any set of rules
from the rules repository. It will simply be shown how to iterate the product cancellation
rule:

Prod-Cancel1 : fst ◦ (f M g) = f
Prod-Cancel2 : snd ◦ (f M g) = g

The original file is:

f = curry ((snd.(snd /\ fst)).(fst /\ fst))

{- Rules:
simplify: many (prodCancel1 or prodCancel2)
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prodCancel1: fst.(f/\g) -> f
prodCancel2: snd.(f/\g) -> g
-}

{- Optimizations: f -> simplify -}

And the resulting file after the application of the SimpliFree tool is (using SimpliFreeLib
described in section 6.2.3):

module Main where

import SimpliFreeLib
import Language.Haskell.Syntax
import Language.Haskell.Pretty
import Language.Pointfree.Pretty

prodCancel1 (FST :.: (f :/\: g)) = return (f)
prodCancel1 (FST :.: ((f :/\: g) :.: x)) = return (f :.: x)
prodCancel1 _ = fail "rule prodCancel1 not applied"
prodCancel2 (SND :.: (f :/\: g)) = return (g)
prodCancel2 (SND :.: ((f :/\: g) :.: x)) = return (g :.: x)
prodCancel2 _ = fail "rule prodCancel2 not applied"

simplify
= manyPF

((rulePF "prodCancel1" prodCancel1) ‘orPF‘
(rulePF "prodCancel2" prodCancel2))

f = Curry (SND :.: ((SND :/\: FST) :.: (FST :/\: FST)))

f_simplify = unOk (applyPF simplify f)

what = putStrLn "Avaiable results:\n - f_simplify\n"
main
= putStrLn

(prettyPrint
(HsModule .... f_simplify .... )

where f_simplify_ = pf2hs (snd f_simplify)

When interpreting the resulting file it is possible to list all existing optimizations by
the function what (in this case there is only one). The function f simplify returns the
computation with the intermediate steps, which in this case yields:

*Main> f_simplify
curry (snd.(snd /\ fst).(fst /\ fst))
= { prodCancel2 }

curry (fst.(fst /\ fst))
= { prodCancel1 }

curry fst

The main function return the original Haskell file, but with the transformed terms instead
of the original expressions. The comments and the original indentation are lost during this
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process. To make life easier for those who just want the simplified terms, not the intermediate
calculations, a shell script that receives the original file and produces the simplified one was
created. In this script SimpliFree program is applied, and then the resulting code is compiled
and executed.

6.4.2 DrHylo results

The DrHylo tool is part of the Uminho Haskell Libraries, developed in the University of
Minho. As described in the introduction, it can translate normal recursive Haskell functions
to point-free terms, where recursion is only expressed by the hylomorphism recursion pattern.
The main problem with this translation is that the resulting point-free expressions are usually
more complex than the expected ones. In this section some functions obtained by the DrHylo
tool are analysed, and simplified automatically by the SimpliFree tool. The advanced strategy,
introduced in section 6.2.5, will be used to simplify the expressions.

The code bellow was produced by DrHylo.

module Sample where
import Pointless.Functors
import Pointless.Combinators
import Pointless.Combinators.Uncurried
import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c
comp
= app .

(((curry
(curry

(app .
((fst . (fst . ((snd . fst) /\ snd))) /\

(app .
((snd . (fst . ((snd . fst) /\ snd))) /\

(snd . ((snd . fst) /\ snd))))))))
. bang)
/\ id)

swap :: (a, b) -> (b, a)
swap = app . (((curry ((snd . snd) /\ (fst . snd))) . bang) /\ id)

assocr :: ((a, b), c) -> (a, (b, c))
assocr
= app .

(((curry
((fst . (fst . snd)) /\ ((snd . (fst . snd)) /\ (snd . snd))))
. bang)
/\ id)

coswap :: Either a b -> Either b a
coswap
= app .
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(((curry
(app .

((eithr . ((curry (inr . snd)) /\ (curry (inl . snd)))) /\ snd)))
. bang)
/\ id)

undistr :: Either (a, b) (a, c) -> (a, Either b c)
undistr
= app .

(((curry
(app .

((eithr .
((curry ((fst . snd) /\ (inl . (snd . snd)))) /\

(curry ((fst . snd) /\ (inr . (snd . snd))))))
/\ snd)))

. bang)
/\ id)

data Nat = Zero
| Succ Nat
deriving Show

plus :: (Nat, Nat) -> Nat
plus
= hylo (_L :: Mu ((:+:) (Const a0) Id))

(app .
(((curry

(app .
((eithr . ((curry (snd . snd)) /\ (curry (inn . (inr . snd))))) /\

snd)))
. bang)
/\ id))

(app .
(((curry

(app .
((eithr .

((curry (inl . (snd . fst))) /\
(curry (inr . (snd /\ (snd . (snd . fst)))))))

/\ (out . (fst . snd)))))
. bang)
/\ id))

instance FunctorOf ((:+:) (Const One) Id) Nat where
inn’ (Inl (Const _)) = Zero
inn’ (Inr (Id v1)) = Succ v1
out’ (Zero) = Inl (Const _L)
out’ (Succ v1) = Inr (Id v1)

To use the advanced strategy described in appendix B.2 it is enough to use an extra
argument when calling the SimpliFree program:

SimpliFree -i adv strat < Samples drHylo.hs > out drHylo.hs
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The simplified code is:

module Sample where
import Pointless.Functors
import Pointless.Combinators
import Pointless.Combinators.Uncurried
import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c
comp = curry (app . ((fst . fst) /\ (app . (snd >< id))))

swap :: (a, b) -> (b, a)
swap = swap

assocr :: ((a, b), c) -> (a, (b, c))
assocr = (fst . fst) /\ (snd >< id)

coswap :: Either a b -> Either b a
coswap = coswap

undistr :: Either (a, b) (a, c) -> (a, Either b c)
undistr = (id >< inl) \/ (id >< inr)

data Nat = Zero
| Succ Nat
deriving Show

plus :: (Nat, Nat) -> Nat
plus
= hylo (_L :: Mu ((:+:) (Const a0) Id)) (snd \/ (inn . inr))

(app .
((eithr .

((curry (inl . fst)) /\ (curry (inr . (snd /\ (snd . fst))))))
/\ (out . fst)))

instance FunctorOf ((:+:) (Const One) Id) Nat where
inn’ (Inl (Const _)) = Zero
inn’ (Inr (Id v1)) = Succ v1
out’ (Zero) = Inl (Const _L)
out’ (Succ v1) = Inr (Id v1)

Note that in the case of the swap and coswap functions the simplification derived the
corresponding name, because both are known macros in the used strategy. When looking at
the derived computation of coswap, for example, it is possible to follow all the steps taken in
the process.

*Main> coswap_adv_strat
app.((curry (app.((’eithr’.(curry (inr.snd) /\ curry (inl.snd))) /\ snd)).bang) /\ id)
= { eitherConst }

app.((curry (app.(curry ((inr \/ inl).snd) /\ snd)).bang) /\ id)
= { expCancAdv3 }

app.(curry ((inr \/ inl).snd) /\ snd).(bang /\ id)
= { prodFus }
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app.((curry ((inr \/ inl).snd).(bang /\ id)) /\ (snd.(bang /\ id)))
= { prodCancel2 }

app.((curry ((inr \/ inl).snd).(bang /\ id)) /\ id)
= { expCancAdv3 }

(inr \/ inl).snd.(bang /\ id /\ id)
= { prodCancel2 }

(inr \/ inl).id
= { natId2 }

inr \/ inl
= { coswap_fold }

’coswap’

6.4.3 Cata-Fusion for Lists

The rule cata-fusion for lists is a good example to illustrate the advantages of allowing the
application of strategies in the result of a rule.

Example 4 cataList fusion : f.(|g|)List = (|h|)List ⇐ f ◦ g = h ◦ (List f)

cataList_fusion (f :.: (Macro "cata" [g]))

= Macro "cata" [‘apply deriveGene (f:.:g)‘]

The cata-fusion rule is not so straightforward as the previous rules, and there are many
ways of calculating the h value using strategies.

Since FList A = 1 ⊕ A ⊗ Id, it is reasonable to assume that the gene of the catamorphism
is an either (g = g1 O g2). So the difficult task is to find h such that

f ◦ (g1 O g2) = h ◦ (id + id× f)

It is still possible to do some calculations to facilitate the definition of a strategy for
calculating h. 

f ◦ (g1 O g2)
= {Sum-Fusion }

f ◦ g1 O f ◦ g2

= { † }
f ◦ g1 O i ◦ (j × k ◦ f)

= { Natural Id, Prod-Functor }
f ◦ g1 O i ◦ (j × k) ◦ (id× f)

= { Sum-Absortion }
(f ◦ g1 O i ◦ (j × k)) ◦ (id + id× f)

So, if the difficult step † is possible, then it is possible to match h with f ◦ g1 O i ◦ (j × k).
In other words, h = h1 O h2 where:

• h1 = f ◦ g1

• h2 = i ◦ (j × k), if f ◦ g2 = i ◦ (j × k ◦ f)
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At this stage it is possible to note that:

• h1 can be easily calculated, since f and g1 are already known;

• h2 is not so easy to calculate, since the values if i, j and k are not known yet. They
can be calculated by equational reasoning on the equality f ◦ g2 = i ◦ (j × k ◦ f). This
can be achieved by the definition of a strategy that begins by transforming f ◦ g2 into
i ◦ (j × k ◦ f), and then extracts the values of i, j and k to produce the h2 = i ◦ (j × k);

• After having the h1 and h2 value, the new catamorphism can be easily defined as
(|h1 O h2|)

The strategy can be written in the SimpliFree language as:

cataList : cataList_rule

cataList_rule : f . (’cataList’ [g1\/g2]) ->
’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or extractH2C or extractH2D

extractH2A : [g,a.(b >< (c.g))] -> a.(b><c)
extractH2B : [g,a.(b >< g)] -> a.(b><id)
extractH2C : [g,b >< (c.g)] -> b><c
extractH2D : [g,b >< g] -> b><id

cataList_step : user_cataL_rules or swapLeft or base_rule or base_unfMacros

swapLeft : (f >< g) . ’swap’ -> ’swap’ . (g >< f)

cataList_rules : catAssoc

catAssoc : (curry ’cat’) . ’cat’ -> ’comp’ . ((curry ’cat’) >< (curry ’cat’))

where the only user defined rule is

cata-assoc : cat ◦ cat → comp ◦ (cat× cat)

that describes the cat associativity property. Note that, with the syntatic sugar added in
section 6.3.5, the catAssoc rule could be defined as:

Assoc catAssoc: ’cat’

The strategy called base rules is imported from a rules repository, and its main task is
to simplify terms and to put composition inside splits and eithers.

For example, this strategy, using the associative property of concatenation described
above, allows the simplification of

cat ◦ (|nil O(cat ◦ swap ◦ (wrap× id))|)
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to
(|(cat ◦ nil) O(comp ◦ swap ◦ ((cat ◦ wrap)× id))|)

which computes the reverse of a list using an accumulator.
The corresponding pointwise functions to these two point-free definitions can be defined

in Haskell, respectively, as:

reverse [] = []
reverse (x:xs) = cat (reverse xs, wrap x)

reverse_t [] y = y
reverse_t (x:xs) y = reverse_t xs (x:y)

The computation steps produced by the strategy defined before are:

*Main> test_cataList
curry ’cat’.(’cataList’ [’nil’ \/ (’cat’.’swap’.(’wrap’ >< id))])
= { cataList_rule

--- and ---
[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ >< id)]
= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.(’wrap’ >< id)]
= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).(’wrap’ >< id)]
= { prodFun }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) >< (curry ’cat’.id))]
= { natId2 }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) >< curry ’cat’)]
= { extractI2B }

’comp’.’swap’.((curry ’cat’.’wrap’) >< id)
}

’cataList’ [(curry ’cat’.’nil’) \/ (’comp’.’swap’.((curry ’cat’.’wrap’) >< id))]

But there are still some important issues that can be relevant, like the fact that the cata-
fusion would not be possible after an application of the exp-fusion rule (g ◦ f → g ◦ (f × id)).
This is because the strategy would try to fuse the function cat (instead of cat) with the
catamorphism, which fails. This indicates that some manipulation and backtracking may be
necessary before the strategy can be applied.

This strategy for fusing catamorphisms for lists was added to the rules repository (as
can be seen in appendix B.3), so it can be reused for other cases as well. This and the fact
that the associativity property can be automatically written as a special rule (as described
in section 6.3.5) makes this strategy very easy to use. In the case presented in this section it
would be enough to import the strategy pack with the cata-fusion law for lists, and to define
the associativity property using the special rule.

6.4.4 Cata-Fusion for Rose Trees

In a very similar way to the strategy defined in the previous section (6.4.3), a more complex
strategy can be defined for Rose Trees.
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A rose tree can be defined in Haskell as:

data Rose a = Node a [Rose a]

The fixed point associated to this type can be easily defined as Rose A = µ(A× List). So
in this case, the functor on functions can be defined as F f = id×mapList f .

In the definition of this strategy, the extract function needs to recognise a more concrete
expression. Besides that, the strategy is very similar to the previous case:

cataRoseTree_strat : opt cataRoseTree

cataRoseTree : f . (’cataRoseTree’ [g]) -> ’cataRoseTree’ [apply
getRoseTreeH2 [f,f.g]]

getRoseTreeH2 : extractRoseTreeH2 or (cataRoseTree_step and
getRoseTreeH2)

extractRoseTreeH2 : extractRoseTreeH2A or extractRoseTreeH2B or
extractRoseTreeH2C or extractRoseTreeH2D

extractRoseTreeH2A : [f, a . (b >< (c . (’mapList’ [f])))] -> a . (b >< c)
extractRoseTreeH2B : [f, b >< (c . (’mapList’ [f]))] -> b >< c
extractRoseTreeH2C : [f, a . (b >< (’mapList’ [f]))] -> a . (b >< id)
extractRoseTreeH2D : [f, b >< (’mapList’ [f])] -> b >< id

cataRoseTree_step : cataRoseTree_rules or swapLeft or adv_rules or
base_unfMacro

The testing function will be a function that performs a postorder traversal in a rose tree,
and returns the corresponding list. In the point-free style, this function can be defined as
follows.

post : Rose A → List A
post = (|cat ◦ swap ◦ (wrap× (|nil O cat|)List)|)Rose

The specification for the optimization can be written as:

postt = cat ◦ post

It is now possible to apply the cata-fusion law for rose trees, using the associativity property
of the cat operator (mentioned in the previous section), the cata-fusion for lists, and the
following property:

(|f O g ◦ (h× id)|)List = (|f O g|)List ◦mapList h)

The output produced by the SimpliFree tool is:

*Main> post_t_cataRoseTree_strat
curry ’cat’.(’cataRoseTree’ [’cat’.’swap’.(’wrap’ ><

(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))])
= { cataRoseTree

--- and ---
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[curry ’cat’,curry ’cat’.’cat’.’swap’.(’wrap’ ><
(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]
= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’).’swap’.
(’wrap’ >< (’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]
= { swapLeft }

[curry ’cat’,’comp’.’swap’.(curry ’cat’ >< curry ’cat’).
(’wrap’ >< (’cataList’ [(’pnt’ [’nil’]) \/ ’cat’]))]
= { prodFun }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><
(curry ’cat’.(’cataList’ [(’pnt’ [’nil’]) \/ ’cat’])))]
= { cataList

--- and ---
[curry ’cat’,curry ’cat’.’cat’]
= { catAssoc }

[curry ’cat’,’comp’.(curry ’cat’ >< curry ’cat’)]
= { extractH2B }

’comp’.(curry ’cat’ >< id)
}
[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><
(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/
(’comp’.(curry ’cat’ >< id))]))]
= { foldMapFusAdv }

[curry ’cat’,’comp’.’swap’.((curry ’cat’.’wrap’) ><
((’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]).
(’mapList’ [curry ’cat’])))]
= { extractRoseTreeH2A }

’comp’.’swap’.((curry ’cat’.’wrap’) ><
(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]))

}
’cataRoseTree’ [’comp’.’swap’.((curry ’cat’.’wrap’) ><

(’cataList’ [(curry ’cat’.(’pnt’ [’nil’])) \/ ’comp’]))]

As it can be seen, the fusion is successfully applied when using this strategy. The final
catamorphism represents the more efficient version of the postorder traversal, that uses an
accumulator.

6.5 Implementation details and Efficiency

There are three main steps involved in the simplification of an Haskell file:

1) Application of the SimpliFree tool to obtain the intermediate Haskell file, where the
traversals and rules are encoded in Haskell ;

2) Compilation (or interpretation) of the intermediate Haskell file;

3) Application of the traversals in the process of transforming the point-free terms.

The efficiency of each step will be analysed separately in this section. For that, the
example in appendix C will be used, together with the advanced strategy pack described
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in appendix B.2, which has 68 rules (including the folding and unfolding of macros). The
computer involved in the process is a Pentium M at 1.3 GHz, with GHC 6.2.2.

Application of SimpliFree

In the first step – the application of the SimpliFree tool – most of the time is consumed
during the parsing. So in this subsection the only concern will be the parser, since we are
looking at the efficiency problems.

In the first versions of this tool the parsing was done in two ways:

• the point-free functions were parsed using the parser included in GHC
(Language.Haskell.Parser), that are later traversed to collect the existing point-free
expressions.

• the special code inside the blocks, containing rules, strategies, optimisations and pro-
gram options, is parsed with a library using parsing combinators.

Later a tool called Happy2 was used to build the parser for the syntax inside the special
blocks. Happy is a parser generator for Haskell, similar to the yacc tool for the C language,
that takes an annotated BNF specification of a grammar and produces a Haskell module
with a parser for the grammar. The main advantages of using this tool are the fact that the
grammar is now much easier to understand and change, and the produced code is much more
efficient than when using the parsing combinators. Using the example in appendix C the user
CPU time is around 0.33 seconds, versus the 2.1 seconds that the parsing combinators
took in several tests. This means that, in this case, the code produced by Happy is around 6
times faster than with the parsing combinators.

Compilation and interpretation

Recall the several different approaches made in this tool:

1) Calculation of the final result with Data.Generics libraries (SyB approach);

2) Calculation of the final result with Strafunski ;

3) Calculation of intermediate steps with Strafunski ;

4) Calculation of all intermediate steps also with Strafunski.

Later, a 5th version with no generic traversals was developed. In this version only a single
function to traverse the point-free abstract syntax tree was defined, producing identical results
to the last approach, where all the intermediate results were computed.

This boilerplate code involved in this approach is not too extensive, since the definition of
the point-free language is very succinct. The main disadvantage is the fact that the solution is

2http://www.haskell.org/happy

http://www.haskell.org/happy
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not so general, since instead of using a generic monad, it uses a particular monad (all results
have a specific type, and are not parameterised), and the fact that all the combinators to
traverse terms needed to be defined (but so far only a few were used).

The 5th version is, as expected, much more efficient, not only in the traversal of terms,
but also at the compilation or interpretation of the intermediate result. This is just because
the generic libraries are no longer compiled, making the compilation process faster. The user
CPU time obtained with the time command is, in the 4th approach, around 10.5 seconds,
while in the 5th approach is around 6.0 seconds. The difference is not so big in the second
compilation, because the generic libraries are already compiled. In this case the 4th approach
took about 5.2 seconds, while the 5th one took 4.5 seconds.

Application of transformations

The last step consists on the application of the rules and strategies to the expressions. It
can be considered to be the most important stage in this process. The five different approaches
were measured using the unix time command (including the 5th version, that is expected to
be much more efficient, since it is not generic).
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Figure 6.2: User CPU time (in seconds) of the traversal of terms for each approach

The approximate user CPU time of each approach can be seen in figure 6.2. The worse
result is definitely the traversal using the SyB approach, which took more than 10 seconds
to apply the traversals, and only computes the final result (as the 2nd approach that took
around 0.76 seconds). This was the main reason why only the libraries using Strafunski
were developed. In the 4th approach, the application of each rule involves collecting the
computations that the rule may return, and for this a state monad was introduced in the
application of each rule. This lifting of monads was the main responsable for the duplication
of the time involved. In the last approach, the removal of generic traversals generated a much
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more efficient code, that took around 0.11 seconds to execute.

So, using the 5th approach, the total time to obtain a simplified Haskell file is:

0.33(SimpliFree) + 6.0(compilation) + 0.11(transformations) = 6.44s



Chapter 7

Conclusions and Future Work

The main goal of this project was the automatic simplification of expressions written in
a point-free style. Using the SimpliFree tool this is possible with none or very little human
intervention. Other issues like the definition of refactorings to convert Haskell to point-free
and to remove some syntactic sugar (to be applied before the conversion to point-free), and
program transformation of point-free expressions based on rules and strategies, were also
covered.

Refactorings. Two refactorings were developed. In the first a translation from pointwise
to point-free code is performed. This translation is applied to expressions and not to function
definitions. There are some minor differences with respect to the syntax of the recognised
pointwise code. The second refactoring tries to address one of DrHylo’s problems: the small
subset of Haskell code covered. For that the removal of guards was studied, which proved to
be a more complicated task than expected.

The SimpliFree tool. The proposed goals were to simplify complex point-free terms in an
automated way and with the minimum intervention possible. For that purpose a special
syntax was created to be used within the code (this concept is known as active source). With
this tool it is possible to give some hints (not always needed), to guide the simplification
process of the terms. It is also possible to define strategies powerful enough to apply program
transformations like the cata-fusion (in some cases).

The visualisation of the intermediate steps was considered important, so the user can
have some feedback when choosing the right hints to give. A number of powerful strategy
combinators are also available, so the user can describe transformations using a much richer
syntax than would be possible using only rules.

The fact that an intermediate file had to be produced may be seen as a disadvantage, but
it allows to implement pattern-matching more efficiently, which was considered prioritary in
this project.
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Future Work

The first of the two implemented refactorings adresses the conversion from pointwise to
point-free. The final solution resembles the DrHylo results, and there is a clear reason for
this. When this library was created, the development of DrHylo was still in progress and at
that stage of DrHylo it was not clear yet whether the translation of pointwise to point-free
should be a part of the tool or not, since the main goal was the derivation of hylomorphisms
from explicit recursion. Most formal and implementation issues concerning the implemented
refactoring were already presented in [Cun05, Pro05b].

In the second refactoring the main concern was the removal of guards. It manages to re-
move guards in most cases, but there are still some cases that involve a more complex semantic
analysis to make this removal possible. The main motivation of this refactoring was to enrich
the language covered by tools like DrHylo, that do not recognise guards. Other refactorings
to remove syntactic sugar could have been developed, but the automatic simplification of the
resulting point-free expressions from DrHylo was considered to be a priority.

In the SimpliFree tool, in spite of the very satisfactory results, there are several issues that
can still be improved. An important issue that was not approached here was the formal val-
idation of the implemented algorithm for pattern matching. This means that the soundness
of the produced functions in the conversion of rules, as well as the way they are produced,
is not proved yet. This would be specially important in this project, since every other step
involved in the conversion from pointwise already have a strong theoretical basis.

A second important issue is the type information. It is possible to infer types using the
Haskell pattern matching mechanism (as the construction of rules in SimpliFree), as shown
in [Cun05]. Using types, some rules that could not be applied in this system may be possible
to apply. But this would require big changes not only in the syntax tree, but also in all tools
previously defined for untyped point-free expressions. The untyped approach taken in the
development of this tool already proved to be very satisfactory.

There are also other issues that can be improved, namely:

• The cata-fusion for lists may still require some previous manipulation, as mentioned in
section 6.4.3, and a more generic solution for cata-fusion parameterised by the associated
base functor may be possible;

• A more direct and hidden interaction with the DrHylo tool may be a good idea, so that
in a final stage the user only asks to convert to point-free and obtains the simplified
expression (although in some proofs human interaction may still be necessary);

• The strategies defined in the rules repository created for this tool could still be improved,
and new strategies could also be defined. A friendly way of inserting new strategies to
the repository may also be a good idea, but at the moment the rules are all compiled
with the program, not imported at run time;

• It is very easy to define strategies that create infinite loops. A loop detection mechanism
to detect circularities would be a way of preventing these cases;
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• When simplifying an expression it is possible to obtain a Computation with the inter-
mediate steps. A textual view was defined for these computations, but there could be
a way to convert the result to other formats, like LATEX expressions.
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Appendix A

Examples: Removal of Guards

In section 5.2 a refactoring to remove guards was described. In this section some examples
of the application of this refactoring are shown. In some cases the guards cannot be removed.

Crossed merge
Original code:

-- Since the four matches are disjoint, it is possible to swap them
-- to merge matches before removing guards.
crossed (h:t1) x | h == 0 = x
crossed [] y | y > 0 = 1
crossed (h:t2) z | otherwise = -z
crossed [] v | v < 0 = -1

Resulting code:

module Crossed where

-- since the four matches are disjoint, it is possible to swap them
-- to merge matches before removing guards.
crossed ((h : xx_0)) xx_1

= if h == 0 then xx_1 else -xx_1
crossed [] xx_2

= if xx_2 > 0
then 1
else if xx_2 < 0

then -1
else error "UnMatched Pattern"

With declarations
Original code:

-- The declaration will be converted into a let inside the expressions.

f x y | x < 0 = x where x = y
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f u v | u > 0 = -v
f a b | otherwise = 0

Resulting code:

-- The declaration will be converted into a let inside the expressions.

f xx_2 xx_3
= if let x = xx_3 in x < 0

then let x = xx_3 in x
else if xx_2 > 0 then -xx_3 else 0

Irrefutable patterns
Original code:

-- A let will be added to the expressions.

func :: Maybe Int -> Int
func ~(v@(Just x)) | isJust v = x
func v | otherwise = 0

Resulsting code:

-- A let will be added to the expressions.

func :: Maybe Int -> Int
func xx_1

= if let (v@(Just x)) = xx_1 in isJust v
then let (v@(Just x)) = xx_1 in x
else 0

User data type - Success
Original code:

data X a = A | B a | C {x,y::a}

-- only the second match will not be merged, and the otherwise case is not
-- present in none of the expressions.

f (C {x = myx}) ([],0) x | x < 0 = myx
f A (lst,0) x | x == 1 = head lst -- disjoint from others
f (C a b) r@([] ,0) x | x > 0 = snd r
f (B 0) (a,b) x | x == 2 = b
f ((B 0)) (a,c) x | x == 3 = -c

Resulting code:

data X a = A | B a | C {x,y::a}

-- only the second match will not be merged, and the otherwise case is not
-- present in none of the expressions.
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f A (lst, 0) x
= if x == 1

then head lst
else error "UnMatched Pattern"

f (C xx_0 xx_1) xx_2@([], 0) x
= if x < 0

then xx_0
else if x > 0

then snd xx_2
else error "UnMatched Pattern"

f (B 0) (a, xx_3) x
= if x == 2

then xx_3
else if x == 3

then -xx_3
else error "UnMatched Pattern"

User data type - Fail
Original code:

data X a = A | B a | C {x,y::a}

-- Same as in previous example, but the last match makes every other match
-- inconsitent, because after converting to an if then else the last match
-- may become impossible to reach.
-- So no alterations will be made, except for some indentation differences.

f (C {x = myx}) ([],0) x | x < 0 = myx
f A (lst,0) x | x == 1 = head lst -- disjoint from others
f (C a b) r@([] ,0) x | x > 0 = snd r
f (B 0) (a,b) x | x == 2 = b
f ((B 0)) (a,c) x | x == 3 = -c
f _ _ _ = 0

Resulting code:

data X a = A | B a | C {x,y::a}

-- Same as in previous example, but the last match makes every other match
-- inconsitent, because after converting to an if then else the last match
-- may become impossible to reach.
-- So no alterations will be made, except for some indentation differences.

f (C{x = myx}) ([], 0) x | x < 0 = myx
f A (lst, 0) x | x == 1 = head lst
f (C a b) r@([], 0) x | x > 0 = snd r
f (B 0) (a, b) x | x == 2 = b
f ((B 0)) (a, c) x | x == 3 = -c
f _ _ _ = 0



Appendix B

Rules repository

To facilitate the simplification of terms when using the SimpliFree tool, several rules and
strategies were defined. These rules can be imported by activating the corresponding option,
as an argument on the command line, or as a special annotated block. In most cases these
rules and strategies are enough to simplify the point-free terms.

B.1 Base strategy

Several strategies were here created with the purpose of being redefined later, if the user
wants to reuse the strategy and add something more:

• base pre

• base pos

• macros fold

• macros unfold

The strategy consists on applying a set of rules as much as possible, then unfold the known
macros, and loop this process until no rules can be applied. In the end the known macros are
folded again to make the reading easier.

The main strategy is called base strat, and its definition is as follows.

{- Strategies:
base_strat : base_tmp1 and (many base_fMacro)

base_tmp1 : base_tmp2 and (opt ((oneOrMore base_unfMacro) and base_tmp1))
base_tmp2 : many base_rules
base_pre : fail
base_pos : fail
macros_fold : fail
macros_unfold : fail
base_rules : base_pre or base_simpl or base_comp_ins or base_pos
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base_simpl : ((many prodFusInv) and eitherConst)
or natId1 or natId2 or prodCancel1 or prodCancel1’
or prodCancel2 or prodCancel2’ or prodRefl or sumCancel1
or sumCancel1’ or sumCancel2 or sumCancel2’ or sumRefl
or expCancel or constFus

base_comp_ins : prodAbs or prodFun or prodFus or sumAbs or sumFun or sumFus
or expCancAdv1 or expCancAdv2 or expCancAdv3 or expCancAdv4
or expFus

base_unfMacro : exp_unfold or pxe_unfold or unpnt_unfold or pnt_unfold
or swap_unfold or coswap_unfold or distl_unfold
or distr_unfold or split_unfold or macros_unfold

base_fMacro : exp_fold or pxe_fold or unpnt_fold or swap_fold or coswap_fold
or distl_fold or distr_fold or split_fold or either_fold
or expFus_fold or macros_fold

-}

-- simplification
{- Rules:
natId1 : id . f -> f
natId2 : f . id -> f
prodCancel1 : fst . (f /\ g) -> f
prodCancel1’: fst . (f >< g) -> f.fst
prodCancel2 : snd . (f /\ g) -> g
prodCancel2’: snd . (f >< g) -> g.snd
prodRefl : fst /\ snd -> id >< id
sumCancel1 : (f \/ g) . Left -> f
sumCancel1’ : (f -|- g) . Left -> Left . f
sumCancel2 : (f \/ g) . Right -> g
sumCancel2’ : (f -|- g) . Right -> Right . g
sumRefl : Left \/ Right -> id -|- id
expCancel : app . ((curry f) >< id) -> f
constFus : (’pnt’ [f]) . g -> ’pnt’ [f]
eitherConst : ’eithr’.((curry (f.snd)) /\ (curry (g.snd))) -> curry ((f \/ g).snd)
prodFusInv : (f.h) /\ (g.h) -> (f/\g) . h
-}
-- composition to sub terms
{- Rules:
prodAbs : (i><j) . (g/\h) -> (i.g) /\ (j.h)
prodFun : (f><g) . (h><i) -> (f.h) >< (g.i)
prodFus : (f/\g) . h -> (f.h) /\ (g.h)
sumAbs : (g\/h) . (i-|-j) -> (g.i) \/ (h.j)
sumFun : (f-|-g) . (h-|-i) -> (f.h) -|- (g.i)
sumFus : f . (g\/h) -> (f.g) \/ (f.h)
expFus : (curry g) . f -> curry (g . (f >< id))
expCancAdv1: app . (((curry f) . g)><h) -> f . (g><h)
expCancAdv2: app . ((curry f)><h) -> f . (id><h)
expCancAdv3: app . (((curry f) . g)/\h) -> f . (g/\h)
expCancAdv4: app . ((curry f)/\h) -> f . (id/\h)
-}
-- fold and unfold of macros
{- Rules:
exp_unfold : ’exp’ [f] -> curry (f . app)
pxe_unfold : ’pxe’ [f] -> curry (app . (id >< f))
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unpnt_unfold : ’unpnt’ [f] -> app . ((f.bang) /\ id)
pnt_unfold : ’pnt’ [f]-> curry (f.snd)
swap_unfold : ’swap’ -> snd /\ fst
coswap_unfold: ’coswap’ -> Right \/ Left
distl_unfold : ’distl’ -> app . (((curry Left)\/(curry Right)) >< id)
distr_unfold : ’distr’ -> (’swap’-|-’swap’) . (’distl’ . ’swap’)
split_unfold : ’split’ -> curry ((app.(fst >< id)) /\ (app.(snd >< id)))
either_unfold: ’eithr’ -> curry ((app \/ app) . (((fst >< id) -|- (snd >< id)) . ’distr’))
exp_fold : curry (f . app) -> ’exp’ [f]
pxe_fold : curry (app . (id >< f)) -> ’pxe’ [f]
unpnt_fold : app . ((f.bang) /\ id) -> ’unpnt’ [f]
pnt_fold : curry (f.snd) -> ’pnt’ [f]
swap_fold : snd /\ fst -> ’swap’
coswap_fold: Right \/ Left -> ’coswap’
distl_fold : app . (((curry Left)\/(curry Right)) >< id) -> ’distl’
distr_fold : (’swap’-|-’swap’) . (’distl’ . ’swap’) -> ’distr’
split_fold : curry ((app.(fst >< id)) /\ (app.(snd >< id))) -> ’split’
either_fold: curry ((app \/ app) . (((fst >< id) -|- (snd >< id)) . ’distr’)) -> ’eithr’
expFus_fold: curry (g . (f >< id)) -> (curry g) . f
-}

B.2 Advanced Strategy

Reuses the base strategy and adds some more rules. The reason this is a separated strategy
is that some of the rules might not type check.

As in the definition of the base strategy, there are some rules that are meant to be redefined
by the user, if needed:

• adv pre

• adv pos

• macros fold

• macros unfold

The main strategy is called adv strat, and its definition is as follows.

{- import base_strat }

{- Strategies:
adv_strat : base_strat

adv_rules : adv_pre or base_rules or adv_pos
adv_pre : fail
adv_pos : fail
base_pre : adv_pre or toProd1 or toProd2 or toProd3
base_pos : idTUn1 or idTUn2 or apTUn or bangTUn or prodReflAdv or

sumReflAdv or unfix1 or unfix2 or expCancAdv5 or
toSum or toSum2 or
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toSum3 or fixProdCancel1 or fixProdCancel2 or
fixProdCancel3 or fixProdCancel4 or fixProdCancel5
or adv_pos

-}
{- Rules:
idTUn1: id >< id -> id
idTUn2: id -|- id -> id
apTUn: curry app -> id
bangTUn: bang.f -> bang
prodReflAdv: (fst.f) /\ (snd.f) -> f
sumReflAdv: (f.Left) \/ (f.Right) -> f
expCancAdv5: curry (app . (f><id)) -> f
toProd1: (f.fst) /\ (g.snd) -> f >< g
toProd2: (f.fst) /\ snd -> f >< id
toProd3: fst /\ (g.snd) -> id >< g
toSum: (Left . f) \/ (Right . g) -> f -|- g
toSum2: (Left . f) \/ Right -> f -|- id
toSum3: Left \/ (Right . g) -> id -|- g
unfix1: ’fix’ . (curry fst) -> id
unfix2: ’fix’ . (curry (curry snd)) -> (curry snd) . bang
fixProdCancel1: ’fix’ . (curry (curry snd)) -> curry snd
fixProdCancel2: ’fix’ . (curry (curry (f.snd))) -> curry (f.snd)
fixProdCancel3: ’fix’ . (curry (curry ((f.snd) /\ (g.snd)))) -> curry ((f/\g).snd)
fixProdCancel4: ’fix’ . (curry (curry ((f.snd) /\ snd))) -> curry ((f/\id).snd)
fixProdCancel5: ’fix’ . (curry (curry (snd /\ (g.snd)))) -> curry ((id/\g).snd)
-}
{-
expCancAdv5:
curry (app . (f><id)) = {exp fusion}
curry app . f = { exp Refl (not in base rules) }
id . f = f
Without types I think it can be dangerous to use
- id >< id -> id
- id -|- id -> id
- curry app -> id
So they are not in base rules
-}

B.3 Fusion of catamorphisms for lists

This strategy was created to show that the main idea underneath the fusion of catamor-
phisms for lists could also be generalised in a strategy. But in some cases the user still have
to add several hints before the fusion is possible.

The advanced strategy is used, so some of the strategies to be redefined are still exported:

• adv pos

• macros fold

• macros unfold
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The main strategy is called cataList strat, and its definition is as follows.

{- import adv_strat -}

{- Strategies:
cataList_strat : adv_strat

adv_pre : cataList
cataList_rules : fail

cataList : f . (’cataList’ [g1\/g2]) ->
’cataList’ [(f.g1) \/ (apply getH2 [f,f.g2])]

getH2 : extractH2 or (cataList_step and getH2)

extractH2 : extractH2A or extractH2B or extractH2C or extractH2D
extractH2A : [f,a.(b >< (c.f))] -> a.(b><c)
extractH2B : [f,a.(b >< f)] -> a.(b><id)
extractH2C : [f,b >< (c.f)] -> b><c
extractH2D : [f,b >< f] -> b><id

cataList_step : cataList_rules or swapLeft or adv_rules or base_unfMacro

swapLeft : (f >< g) . ’swap’ -> ’swap’ . (g >< f)
-}



Appendix C

Examples: DrHylo and SimpliFree

In this chapter a Haskell file with different known functions will be presented, that will be
translated first into point-free with the DrHylo tool, and later simplified with the SimpliFree
tool

C.1 Original Haskell file

The original file to be tested is presented bellow.

module Sample where

import Pointless.Functors

comp :: (b->c, a->b) -> (a->c)
comp (f,g) y = f (g y)

swap :: (a,b) -> (b,a)
swap (x,y) = (y,x)

assocr :: ((a,b),c) -> (a,(b,c))
assocr ((x,y),z) = (x,(y,z))

distr :: (a, Either b c) -> Either (a,b) (a,c)
distr (x, Left y) = Left (x,y)
distr (x, Right y) = Right (x,y)

coswap :: Either a b -> Either b a
coswap (Left y) = Right y
coswap (Right y) = Left y

undistr :: Either (a,b) (a,c) -> (a, Either b c)
undistr (Left (y,z)) = (y, Left z)
undistr (Right (x,z)) = (x, Right z)

data Nat = Zero | Succ Nat deriving Show

plus :: (Nat, Nat) -> Nat

94
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plus (Zero, z) = z
plus (Succ n, z) = Succ (plus (n,z))

mult :: (Nat, Nat) -> Nat
mult (Zero, x) = Zero
mult (Succ n, x) = plus (x, mult (n, x))

fact :: Nat -> Nat
fact Zero = Succ Zero
fact (Succ n) = mult (Succ n, fact n)

fib :: Nat -> Nat
fib Zero = Succ Zero
fib (Succ Zero) = Succ Zero
fib (Succ (Succ x)) = plus (fib x, fib (Succ x))

len :: [a] -> Nat
len [] = Zero
len (h:t) = Succ (len t)

cat :: [a] -> [a] -> [a]
cat [] l = l
cat (h:t) l = h:(cat t l)

data Tree a = Leaf | Node a (Tree a) (Tree a)

inorder :: Tree a -> [a]
inorder Leaf = []
inorder (Node x l r) = cat (inorder l) (x:(inorder r))

C.2 DrHylo Results

In this section the modified Haskell file with point-free expressions obtained by the DrHylo
tool are presented. The DrHylo tool was called by the following line:

$ drhylo < foo.hs > foo_drhylo.hs

module Sample where
import Pointless.Functors
import Pointless.Combinators
import Pointless.Combinators.Uncurried
import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c
comp
= app .

(((curry
(curry

(app .
((fst . (fst . ((snd . fst) /\ snd))) /\
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(app .
((snd . (fst . ((snd . fst) /\ snd))) /\

(snd . ((snd . fst) /\ snd))))))))
. bang)
/\ id)

swap :: (a, b) -> (b, a)
swap = app . (((curry ((snd . snd) /\ (fst . snd))) . bang) /\ id)

assocr :: ((a, b), c) -> (a, (b, c))
assocr
= app .

(((curry
((fst . (fst . snd)) /\ ((snd . (fst . snd)) /\ (snd . snd))))
. bang)
/\ id)

distr :: (a, Either b c) -> Either (a, b) (a, c)
distr
= app .

(((curry
(app .

((eithr .
((curry (inl . ((fst . (snd . fst)) /\ snd))) /\

(curry (inr . ((fst . (snd . fst)) /\ snd)))))
/\ (snd . snd))))

. bang)
/\ id)

coswap :: Either a b -> Either b a
coswap
= app .

(((curry
(app .

((eithr . ((curry (inr . snd)) /\ (curry (inl . snd)))) /\ snd)))
. bang)
/\ id)

undistr :: Either (a, b) (a, c) -> (a, Either b c)
undistr
= app .

(((curry
(app .

((eithr .
((curry ((fst . snd) /\ (inl . (snd . snd)))) /\

(curry ((fst . snd) /\ (inr . (snd . snd))))))
/\ snd)))

. bang)
/\ id)

data Nat = Zero
| Succ Nat
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deriving Show

plus :: (Nat, Nat) -> Nat
plus
= hylo (_L :: Mu ((:+:) (Const a0) Id))

(app .
(((curry

(app .
((eithr . ((curry (snd . snd)) /\ (curry (inn . (inr . snd))))) /\

snd)))
. bang)
/\ id))

(app .
(((curry

(app .
((eithr .

((curry (inl . (snd . fst))) /\
(curry (inr . (snd /\ (snd . (snd . fst)))))))

/\ (out . (fst . snd)))))
. bang)
/\ id))

mult :: (Nat, Nat) -> Nat
mult
= hylo (_L :: Mu ((:+:) (Const One) ((:*:) (Const a0) Id)))

(app .
(((curry

(app .
((eithr .

((curry (inn . (inl . bang))) /\
(curry

(app .
(((pnt plus) . bang) /\ ((snd . (fst . snd)) /\ (snd . snd)))))))

/\ snd)))
. bang)
/\ id))

(app .
(((curry

(app .
((eithr .

((curry (inl . bang)) /\
(curry (inr . ((snd . fst) /\ (snd /\ (snd . (snd . fst))))))))

/\ (out . (fst . snd)))))
. bang)
/\ id))

fact :: Nat -> Nat
fact
= hylo (_L :: Mu ((:+:) (Const One) ((:*:) (Const a0) Id)))

(app .
(((curry

(app .
((eithr .
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((curry (inn . (inr . (inn . (inl . bang))))) /\
(curry

(app .
(((pnt mult) . bang) /\

((inn . (inr . (fst . snd))) /\ (snd . snd)))))))
/\ snd)))

. bang)
/\ id))

(app .
(((curry

(app .
((eithr . ((curry (inl . bang)) /\ (curry (inr . (snd /\ snd)))))

/\ (out . snd))))
. bang)
/\ id))

fib :: Nat -> Nat
fib
= hylo

(_L :: Mu ((:+:) (Const One) ((:+:) (Const One) ((:*:) Id Id))))
(app .

(((curry
(app .

((eithr .
((curry (inn . (inr . (inn . (inl . bang))))) /\

(curry
(app .

((eithr .
((curry (inn . (inr . (inn . (inl . bang))))) /\

(curry
(app .

(((pnt plus) . bang) /\ ((fst . snd) /\ (snd . snd)))))))
/\ snd)))))

/\ snd)))
. bang)
/\ id))

(app .
(((curry

(app .
((eithr .

((curry (inl . bang)) /\
(curry

(inr .
(app .

((eithr .
((curry (inl . bang)) /\

(curry (inr . (snd /\ (inn . (inr . snd)))))))
/\ (out . snd)))))))

/\ (out . snd))))
. bang)
/\ id))

len :: [a] -> Nat
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len
= hylo (_L :: Mu ((:+:) (Const One) Id))

(app .
(((curry

(app .
((eithr .

((curry (inn . (inl . bang))) /\ (curry (inn . (inr . snd)))))
/\ snd)))

. bang)
/\ id))

(app .
(((curry

(app .
((eithr . ((curry (inl . bang)) /\ (curry (inr . (snd . snd))))) /\

(out . snd))))
. bang)
/\ id))

cat :: [a] -> [a] -> [a]
cat
= app .

(((fix .
(curry

(curry
(curry

(app .
((eithr .

((curry (snd . (((snd . fst) . fst) /\ (snd . fst)))) /\
(curry

(inn .
(inr .

((fst . snd) /\
(app .

((app . ((((snd . fst) . fst) . fst) /\ (snd . snd)))
/\
(snd . (((snd . fst) . fst) /\ (snd . fst)))))))))))

/\ (out . (fst . ((snd . fst) /\ snd)))))))))
. bang)
/\ id)

data Tree a = Leaf
| Node a (Tree a) (Tree a)

inorder :: Tree a -> [a]
inorder
= hylo

(_L :: Mu ((:+:) (Const One) ((:*:) Id ((:*:) (Const a0) Id))))
(app .

(((curry
(app .

((eithr .
((curry (inn . (inl . bang))) /\

(curry
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(app .
((app . (((pnt cat) . bang) /\ (fst . snd))) /\

(inn .
(inr .

((fst . (fst . (snd . snd))) /\ (snd . (snd . snd))))))))))
/\ snd)))

. bang)
/\ id))

(app .
(((curry

(app .
((eithr .

((curry (inl . bang)) /\
(curry

(inr . ((fst . (snd . snd)) /\ (snd /\ (snd . (snd . snd))))))))
/\ (out . snd))))

. bang)
/\ id))

instance FunctorOf ((:+:) (Const One) Id) Nat where
inn’ (Inl (Const _)) = Zero
inn’ (Inr (Id v1)) = Succ v1
out’ (Zero) = Inl (Const _L)
out’ (Succ v1) = Inr (Id v1)

instance FunctorOf
((:+:) (Const One) ((:*:) (Const a) ((:*:) Id Id))) (Tree a) where

inn’ (Inl (Const _)) = Leaf
inn’ (Inr ((Const v1 :*: (Id v2 :*: Id v3)))) = Node v1 v2 v3
out’ (Leaf) = Inl (Const _L)
out’ (Node v1 v2 v3) = Inr ((Const v1 :*: (Id v2 :*: Id v3)))

C.3 SimpliFree Results

In this section the modified Haskell file with simplified point-free expressions obtained by
the SimpliFree tool are presented. The SimpliFree tool was called by the following line:

$ SimpliScript.sh -i adv_strat foo_drhylo.hs foo_simplifree.hs

module Sample where
import Pointless.Functors
import Pointless.Combinators
import Pointless.Combinators.Uncurried
import Pointless.RecursionPatterns

comp :: (b -> c, a -> b) -> a -> c
comp = curry (app . ((fst . fst) /\ (app . (snd >< id))))

swap :: (a, b) -> (b, a)
swap = swap



C.3. SIMPLIFREE RESULTS 101

assocr :: ((a, b), c) -> (a, (b, c))
assocr = (fst . fst) /\ (snd >< id)

distr :: (a, Either b c) -> Either (a, b) (a, c)
distr
= app .

((eithr . (((curry inl) . fst) /\ ((curry inr) . fst))) /\ snd)

coswap :: Either a b -> Either b a
coswap = coswap

undistr :: Either (a, b) (a, c) -> (a, Either b c)
undistr = (id >< inl) \/ (id >< inr)

data Nat = Zero
| Succ Nat
deriving Show

plus :: (Nat, Nat) -> Nat
plus
= hylo (_L :: Mu ((:+:) (Const a0) Id)) (snd \/ (inn . inr))

(app .
((eithr .

((curry (inl . fst)) /\ (curry (inr . (snd /\ (snd .
fst))))))

/\ (out . fst)))

mult :: (Nat, Nat) -> Nat
mult
= hylo (_L :: Mu ((:+:) (Const One) ((:*:) (Const a0) Id)))

(app .
((eithr .

((curry (inn . (inl . bang))) /\
(curry (plus . ((snd . (fst . snd)) /\ (snd . snd))))))
/\ id))

(app .
((eithr .

((curry (inl . bang)) /\
(curry (inr . (fst /\ (snd /\ (snd . fst)))))))
/\ (out . fst)))

fact :: Nat -> Nat
fact
= hylo (_L :: Mu ((:+:) (Const One) ((:*:) (Const a0) Id)))

(app .
((eithr .

((curry (inn . (inr . (inn . (inl . bang))))) /\
(curry (mult . ((inn . (inr . (fst . snd))) /\ (snd .

snd))))))
/\ id))

(app .
((eithr . ((curry (inl . bang)) /\ (curry (inr . (snd /\ snd)))))
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/\ out))

fib :: Nat -> Nat
fib
= hylo

(_L :: Mu ((:+:) (Const One) ((:+:) (Const One) ((:*:) Id Id))))
(app .
((eithr .

((curry (inn . (inr . (inn . (inl . bang))))) /\
(curry

(app .
((eithr .
((curry (inn . (inr . (inn . (inl . bang))))) /\

(curry (plus . snd))))
/\ snd)))))

/\ id))
(app .
((eithr .

((curry (inl . bang)) /\
(curry

(inr .
(app .

((eithr .
((curry (inl . bang)) /\

(curry (inr . (snd /\ (inn . (inr . snd)))))))
/\ (out . snd)))))))

/\ out))

len :: [a] -> Nat
len
= hylo (_L :: Mu ((:+:) (Const One) Id))

(app .
((eithr .

((curry (inn . (inl . bang))) /\ (curry (inn . (inr .
snd)))))

/\ id))
(app .
((eithr . ((curry (inl . bang)) /\ (curry (inr . (snd . snd)))))

/\
out))

cat :: [a] -> [a] -> [a]
cat
= app .

((fix .
(curry

(curry
(curry

(app .
((eithr .
((curry (snd . fst)) /\

(curry
(inn .



C.3. SIMPLIFREE RESULTS 103

(inr .
((fst . snd) /\

(app .
((app . ((snd . (fst . fst)) >< snd)) /\

(snd . fst)))))))))
/\ (out . (snd . fst))))))))

/\ id)

data Tree a = Leaf
| Node a (Tree a) (Tree a)

inorder :: Tree a -> [a]
inorder
= hylo

(_L :: Mu ((:+:) (Const One) ((:*:) Id ((:*:) (Const a0) Id))))
(app .
((eithr .

((curry (inn . (inl . bang))) /\
(curry

(app .
((cat . (fst . snd)) /\

(inn .
(inr . ((fst . (fst . (snd . snd))) /\ (snd . (snd .

snd))))))))))
/\ id))

(app .
((eithr .

((curry (inl . bang)) /\
(curry

(inr . ((fst . (snd . snd)) /\ (snd /\ (snd . (snd .
snd))))))))

/\ out))

instance FunctorOf ((:+:) (Const One) Id) Nat where
inn’ (Inl (Const _)) = Zero
inn’ (Inr (Id v1)) = Succ v1
out’ (Zero) = Inl (Const _L)
out’ (Succ v1) = Inr (Id v1)

instance FunctorOf
((:+:) (Const One) ((:*:) (Const a) ((:*:) Id Id))) (Tree a)

where
inn’ (Inl (Const _)) = Leaf
inn’ (Inr ((Const v1 :*: (Id v2 :*: Id v3)))) = Node v1 v2 v3
out’ (Leaf) = Inl (Const _L)
out’ (Node v1 v2 v3) = Inr ((Const v1 :*: (Id v2 :*: Id v3)))
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