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Abstract

This report is a follow up of [16]. It shows how to model some of the key con-
cepts of VDM++ in HASKELL. Classes, objects, operations and inheritance are
encoded based on the recently developed OOHASKELL library.



1 Introduction

The CAMILA1 innitiative explores how concepts from the VDM specification
language and the functional programming language Haskell can be combined.
This task, part of PURe project2, is a revival of the original CAMILA system3,
initially developed in the 90’s at University of Minho.

A careful review of the monadic modeling of VDM-SL features (Sets, Maps,
datatype invariants and pre/post conditions, among others) can be found in [16].

Parameterized monads are used to control the switching among different
modes of evaluation. The use of monads allows the integration of many features
[18,17,5], just by changing the monad definition and with no need of re-writing
the code. This is very useful in several situations, such as error control, and is
very desirable for software maintenance [5].

VDM++ is a formal specification language intended to specify object ori-
ented (OO) systems with parallel behaviour [6]. The use of classes and object
concepts facilitates the development of object oriented formal specifications. In
this report, we will analyse how to translate VDM++ code to HASKELL, in par-
ticular OO features such as classes, objects and instance variables. Parallelism
issues are left for future research.

1.1 Structure of the report

Section 2 describes mutable variables in HASKELL and their use in implement-
ing instance variables.

We describe HLIST and OOHASKELL libraries, in sections 3 and 4, that,
respectively, model heterogeneous lists and OO features in Haskell.

A simple example is presented in section 5 as an illustration of the differ-
ences between OOHASKELL and the behaviour we intend to model and of how
we intend to overcome them. A more complex example involving inheritance is
discussed in section 6.

Conclusions and plans for future work are presented in section 7.
In appendix A, we explain how to get and use the source code which under-

lies the technical content of this report.

1 http://wiki.di.uminho.pt/wiki/bin/view/PURe/Camila
2 FCT under contract POSI/ICHS/44304/2002
3 http://camila.di.uminho.pt



2 IORef

A mutable variable, ubiquitously used in imperative languages, is a very useful
programming feature. In HASKELL it can be modeled by using the primitive
IORef [8].

data IORef a

We can look at a value of type IORef a as a reference to a mutable cell of type
a. Such references can be manipulated by the functions:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()
modifyIORef :: IORef a -> (a -> a) -> IO ()

which, respectively, allow to create, read and write a reference to a value a.
In order to better understand how we can easily use this concept we present the
example which follows, which models a counter.

counter :: IORef Int
counter = unsafePerformIO $ newIORef 0

incCounter :: IO ()
incCounter = modifyIORef counter (+1)

inspectCounter :: IO ()
inspectCounter = do

c <- readIORef counter
putStrLn $ show c

The use of unsafePerformIO :: IO a -> a is not strictly necessary, but
provides a easier way of defining the operations which access counter.

Using ghci it is possible to observe the following results:

*Counter> inspectCounter
0
*Counter> incCounter
*Counter> incCounter
*Counter> incCounter
*Counter> inspectCounter
3



3 The HLIST library

A heterogeneous collection can be regarded as a data structure that works as a
repository for objects of different types and allows operations of update, itera-
tion, lookup, etc. On a first approach we could define such a structure as:

type HetList = [Dynamic]

However, the type of each element is not precisely described. Type-level pro-
gramming has been exploited by Kiselyov et al. [10] to model a more typeful
heterogeneous list. The following declarations form the basis of the library:

data HNil = HNil
data HCons e l = HCons e l

class HList l
instance HList HNil
instance HList l => HList (HCons e l)

myHList = HCons 1 (HCons True (HCons "foo" HNil))

The datatypes HNil and HCons represent empty and non-empty heterogeneous
lists, respectively. The HList class, or type-level predicate, establishes a well-
formedness condition on heterogeneous lists, viz. that they must be built from
successive applications of the HCons constructor, terminated with HNil. Thus,
heterogeneous lists follow the normal cons-list construction pattern on the type-
level.

Now, a function over this structure becomes a new class. As an example,
the function for the concatenation of two heterogeneous lists can be defined as
follows:

class HAppend l l’ l’’ | l l’ -> l’’ where
hAppend :: l -> l’ -> l’’

instance HList l => HAppend HNil l l
where hAppend HNil l = l

instance (HList l,HAppend l l’ l’’)
=> HAppend (HCons x l) l’ (HCons x l’’)

where hAppend (HCons x l) l’ = HCons x (hAppend l l’)

Note the use of functional dependencies in the class definition. The clause l l’ -> l’’
declares that the parameters l and l’ uniquely determine l’’. This dependency



is exploited by the compiler – when l and l’ are instantiated, the instantiation
of l’’ is automatically inferred.

These lists, in turn, are used to model extensible polymorphic records with
first-class labels and subtyping, which will be used in the OOHASKELL library
presented in section 4.

Records are modeled as heterogeneous lists of pairs of labels and values.

myRecord
= Record (HCons (zero,"foo") (HCons (one,True) HNil))
one = succ zero

All labels of a record are required to be pairwise distinct on the type level. Type-
level naturals are a simple candidate. A datatype constructor Record is used to
distinguish lists that model records from other lists.

The library offers numerous operations on heterogeneous lists and records,
such as append, zip, map or lookup.

4 OOHASKELL

Object oriented languages offer features such as encapsulation, mutable state,
overriding, inheritance, and so on. Implementing these features in HASKELL is
an issue that has been addressed for several years. There were some encodings
proposed for OO idioms in HASKELL [7,14,3,9]. In this section, we will analyse
the features of the recently developed library OOHASKELL (major release by
September 2005). OOHASKELL is based in the extensible polymorphic records
of HLIST and tries to overcome the insufficiencies of previous OO libraries in
HASKELL and delivers an amount of polymorphism and type inference that is
unprecedented when compared to other implementations [9]. The main design
decisions of OOHASKELL are:

– Classes are represented as functions
– Objects are records with a component for each method
– State is maintained using mutable variables
– Methods are functions (monadic) that can access state and self

Let us analyse the following example modelling the participants in a conference:



There are three types of participant:

– Regular participants, who have name and are assigned a number;
– Speakers, who additionally to the participants information have the confer-

ence title and expenses;
– Guests, who additionally to the participants information have a comment

(purpose to attend in the conference, etc)

To encode this example in OOHASKELL we start by defining unique identifiers
for methods and instance variables, e.g.:

data GetName; getName = undefined :: GetName
data GetNumber; getNumber = undefined :: GetNumber
data SetName; setName = undefined :: SetName
data SetNumber; setNumber = undefined :: SetNumber

Concerning class Participant, which is modeled as a monadic function
that takes constructor arguments and a self reference (needed for controling
inheritance issues):

participant name_init number_init self
= do

name <- newIORef name_init
number <- newIORef number_init
returnIO $

getName .=. readIORef name
.*. getNumber .=. readIORef number
.*. setName .=. (\newn -> writeIORef name newn)
.*. setNumber .=. (\newnu -> writeIORef number newnu)
.*. emptyRecord

The essence of inheritance is illustrated in the encoding of both speaker and
guest classes. The super-class constructor is invoked and self is passed from



the sub to the super class.

speaker name number price conftitle self
= do

super <- participant name number self
p <- newIORef price
c <- newIORef conftitle
returnIO $

getPrice .=. readIORef p
.*. getConferenceTitle .=. readIORef c
.*. setPrice .=. (\newp -> writeIORef p newp)
.*. setConferenceTitle .=. (\newc -> writeIORef c newc)
.*. super

guest name number comment self
= do
super <- participant name number self
c <- newIORef comment
returnIO $

getComment .=. readIORef c
.*. setComment .=. (\newc -> writeIORef c newc)
.*. super

Multiple inheritance, width and depth subtyping, among other OO topics are
discussed in [9]. However, these issues go beyond the purpose of this report,
and so they will not be dealt with in the sequel.

5 Simple Stack model

Let us start with a very simple example – the model for a stack. A stack can be
represented (in a simplistic way) has a sequence of elements (in HASKELL[Elem])
that offers two basic operations – push :: Elem -> () and pop :: () ->
Elem.

We consider the VDM++ model of a Stack given in[13].

class stackObj
types
public Stack = seq of A ;
public A = token ;



instance variables
stack : Stack := [];

operations
public PUSH : A ==> ()
PUSH(a) == stack := [a] ^ stack;

public POP : () ==> A
POP() == def r = hd stack

in ( stack := tl stack;
return r)

pre s <> [];
end stackObj

In OOHaskell we directly translate the StackObj class to the following monadic
function. (We omit the declaration of unique identifiers, cf. section 4):

stackObj
= liftIO $

do
s <- newIORef []
returnIO

$ getStack .=. (liftIO $ readIORef s)
.*. push .=. (pushop s)
.*. pop .=. (popop s)
.*. emptyRecord

The needed auxiliary operations are as follow.

pushop :: (CamilaMonad m, MonadIO m) => IORef [a] -> a -> m ()
pushop s i = liftIO $ modifyIORef s (i:)

popop :: (CamilaMonad m, MonadIO m) => IORef [a] -> m a
popop s = do l <- liftIO $ readIORef s

pre (not $ null l)
liftIO $ modifyIORef s tail
return (head l)

Note that we need all the computation to be performed inside a CamilaMonad
which will allow different modes of evaluation using runCamilaT as described
in [16]. Because we are using IORef’s, the computations are restricted to the
IO monad. In order to lift the computation from this monad to a CamilaMonad,



in particular to CamilaT mode m, we define the latter as instance of MonadIO,
class that provides the function liftIO :: (MonadIO m) => IO a -> m a.

instance MonadIO m => MonadIO (CamilaT mode m) where
liftIO = CamilaT . liftIO

5.1 Hiding liftIO

To avoid confusing errors due to a missing liftIO invocation, we decided to
encapsulate the IORef behaviour inside a generic monad.

class MonadRef m where
readRef :: IORef a -> m a
modifyRef :: IORef a -> (a -> a) -> m ()
writeRef :: IORef a -> a -> m ()
newRef :: a -> m (IORef a)

Then, to achieve the behaviour described in the last sections we just have to
define an instance of MonadRef for MonadIO.

instance MonadIO m => MonadRef m where
readRef = liftIO . readIORef
modifyRef r f = liftIO $ modifyIORef r f
writeRef r a = liftIO $ writeIORef r a
newRef = liftIO . newIORef

Using this approach the new encoding for StackObj is as follows.

stackObj
=

do
s <- newRef []
return

$ getStack .=. (readRef s)
.*. push .=. (pushop s)
.*. pop .=. (popop s)
.*. emptyRecord

pushop :: (CamilaMonad m, MonadRef m) => IORef [a] -> a -> m ()
pushop s i = modifyRef s (i:)

popop :: (CamilaMonad m, MonadRef m) => IORef [a] -> m a
popop s = do l <- readRef s



pre (not $ null l)
modifyRef s tail
return (head l)

6 Folder Example

Let us now focus on an example that involves inheritance – the folder objectifi-
cation example discussed in [4]. This example starts with two purely functional
classes which model a stack and a folder – StackAlg and FolderAlg – in-
cluding appropriate access methods. Two similar classes with state are then en-
coded – StackObj and FolderObj (objectification of the two purely functional
classes). The hierarchy for these classes is depicted in figure 1.

Fig. 1. Class hierarchy for the Folder example

Class StackAlg is purely functional, providing an API for Stack’s.

type Stack = [Elem]
type Elem = Int

stackAlg :: CamilaMonad m => s ->
m (Record (

Empty :=: Stack
:*: IsEmpty :=: (Stack -> Bool)
:*: Push :=: (Elem -> Stack -> Stack)
:*: Pop :=: (Stack -> Stack)
:*: Top :=: (Stack -> Elem)
:*: HNil))

stackAlg self
=
return



$ empty .=. []
.*. isempty .=. (==[])
.*. push .=. (:)
.*. pop .=. tail
.*. top .=. head
.*. emptyRecord

Class StackObj is a subclass of StackAlg and offers an object oriented API
for the outside [4] where all the function signatures lose the Stack parameter
when compared to the corresponding ones in the superclass.

stackObj self
=

do
super <- stackAlg self
s <- newRef []
return

$ getStack .=. (readRef s)
.*. opempty .=. (emptyop s super)
.*. opisempty .=. (isemptyop s super)
.*. oppush .=. (pushop super s)
.*. oppop .=. (popop s super)
.*. optop .=. (topop s super)
.*. super

The auxiliary functions are defined as follows.

-- push operation
pushop super s i = modifyRef s ((super # push) i)

popop s super = do l <- readRef s
pre (not $ null l)
modifyRef s (super # pop)

topop s super
= do l <- readRef s

pre (not $ null l)
return ((super # top) l)

emptyop s super = modifyRef s ((!) (super # empty))

isemptyop s super = do x <- readRef s
return $ (super # isempty) x



The functional core for a Folder is represented in the FolderAlg class. A folder
is modelled via two stacks and provides methods to turn pages forward and
backwards:

folderAlg self =
do

super <- stackAlg self
return $

new .=. ((super # empty, super # empty))
.*. insert .=. (\e -> id >< ((super # push) e))
.*. remove .=. (id >< (super # pop))
.*. backward .=. (backwardop super)
.*. forward .=. (forwardop super)
.*. emptyRecord

Methods to turn pages are simply defined by inheriting stack methods as fol-
lows:

backwardop super f = let e = (super # top) $ fst f
in ((super # pop) >< ((super # push) e)) f

forwardop super f = let e = (super # top) $ snd f
in (((super # push) e) >< (super # pop)) f

The subclass FolderObj of FolderAlg, which offers the functionality to the
outside world is defined similarly to FolderAlg. It contains an internal state
which is altered by the methods provided.

folderObj self
=

do
super <- folderAlg self
f <- newRef (super # new)
return

$
opnew .=. (modifyRef f $ const (super # new))

.*. opinsert .=. (\e -> modifyRef f $ (super # insert) e)

.*. opremove .=. (modifyRef f (super # remove))

.*. opbackward .=. (modifyRef f (super # backward))

.*. opforward .=. (modifyRef f (super # forward))

.*. super



6.1 Checking pre-conditions

Similarly to [16], let us show that the pre/post conditions checking using runCamilaT
is still working in the new encoding.

As a test case, let us define a function which checks what happens when we
try to pop an element from an empty stack.

testPopEmptyStack () =
do
s <- mfix (stackObj)
n <- s # oppop
return n

The object construction is done with mfix function, that ties the recursive
knot for the self references. Thus, we can see mfix as the Java operator new.

As expected when invoking runCamilaT, we get no warnings with mode
freefall; exception, using Fail; error, using ErrorMode and a warning, using
Warn mode.

*Camila.Examples.StackOO> runCamilaT $ freeFall $ testPopEmptyStack ()

*Camila.Examples.StackOO> runCamilaT $ fatal $ testPopEmptyStack ()

*** Exception: PreConditionViolation

*Camila.Examples.StackOO> runCamilaT $ errorMode $ testPopEmptyStack

()

*** Exception: user error (PreConditionViolation)

*Camila.Examples.StackOO> runCamilaT $ warn $ testPopEmptyStack ()

PreConditionViolation

7 Conclusion

The representation of classes, objects and state in HASKELL was deeply studied
in [9]. The translation of such features from VDM++ to HASKELL appeared to
be straightforward.

A major obstacle was the monad used to contain the class/object. OOHASKELL

(for simplicity) uses the IO monad, since IORef’s are used to model mutable
variables.

This approach was found unsuitable for our purposes, because of the need
to check invariants and pre/post conditions in different modes. To offer this be-
haviour all the computations must be performed inside a CamilaMonad. There-
fore, we have to lift the IO monad to a CamilaMonad. This was done through
an intermediate class – MonadRef – which allows the encapsulation of IORef
operations in a more general monad.



7.1 Future Work

As future work, and to bring all relevant VDM++ features to PURe Camila,
we believe it is important to investigate how to implement parallel behaviour.
Several research work in how to implement parallelism and concurrency in
HASKELL has been done [15,12,1]. The MonadRef definition could be improved
so that the monad used for implementing mutable references could change. To
do so MonadRef would have an extra argument. Then, we could easily use
STRef [11] instead of IORef to model mutable variables. It would be enough
to declare a new instance of MonadRef for STRef. A hint in how to encode this
approach follows.

class MonadRef m r where
readRef :: r a -> m a
modifyRef :: r a -> (a -> a) -> m ()
writeRef :: r a -> a -> m ()
newRef :: a -> m (r a)

instance MonadRef m IORef where
...

instance MonadRef m (STRef s) where
...

It would also be interesting to work on object communication semantics [2].
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A Demo

All the code used in this report is available under PURe CVS repository. To run
the examples you just have to follow the instructions described below.

A.1 Getting the code

First , you need an environment variable CVS_RSH set to ssh, such that cvs will
make a connection with the server on which the repository resides via ssh.

Then, you can do checkout as follows.

$ cvs -d :pserver:username@haskell.di.uminho.pt:/mnt/ds/cvsroot login

$ cvs -d :pserver:username@haskell.di.uminho.pt:/mnt/ds/cvsroot checkout PURe

If you do not have an username for the repository then, for read only access,
you can use the username anonymous (password anonymous).

A.2 Running the examples

In the directory libraries, inside PURe (PURe/software/haskell/libraries),
just type:



$ make top=Camila/Examples ghci

Inside ghci you can test the defined examples.

*Camila.Examples.InfSet> :m +Camila.Examples.StackObjOO

*Camila.Examples.InfSet Camila.Examples.StackObjOO> runCamilaT $ warn $ testPopEmptyStack ()

PreConditionViolation


