
Reengeneering of the PUReCamila interpreter

DRAFT VERSION
Alexandra Silva

2005, August

Abstract

This report describes the reengeneering of the PURe Camila in-
terpreter. Some features that will provide more specification power,
similar to Vdm-sl and Vdm++, and are not currently implemented
in the Camila librarie, are also analysed.

1 Introduction

The Camila project explores how concepts from the VDM specifica-
tion language and the functional programming language Haskell can
be combined. This project, part of PURe project1, is a revival of the
original Camila system2, initially developed in the 90’s at University
of Minho.
In the first phase of this project, J. Ferreira and A. Mendes[MF05,
MFP05] developed an Haskell library that allows to express Vdm-
sl data types (maps, sets, sequences), data type invariants, pre- and
post-conditions. To animate this concepts they built a small prototype
interpreter.
The interpreter was built on top of hsplugins [Ste05] - a library that
provides a mechanism to recompile haskell code at runtime. This in-
direction was introduced to overcome some difficulties in handling the
interpreter state but introduces some efficiency problems.
This project aims to develop an alternative implementation that avoid
the use of hsplugins to animate Camila objects and, instead, re-
lies directly on the ghci IO monad interaction. Since there are several
state changes involved – we must clearly set the difference between the
object-state level and the interpreter-state level – it is required a care-
ful review of the monads and monad-transformers used in the project.
A careful review of the monadic modeling of Vdm-sl features of [MF05]
is done in [VOB+05]. Parametrized monads are used to control the
switching among the different modes of evaluation.
To mantain the state of the objects we need a mutable variable. An
approach to have mutable variables in Haskell is described in 2. The

1FCT under contract POSI/ICHS/44304/2002
2http://camila.di.uminho.pt

1



storing of the several camila objects in the same structure implies the
use of generic programming techniques, detailed in section 3.
VDM++ is a formal specification language intended to specify ob-
ject ori- ented (OO) systems with parallel behaviour. The use of
classes and object concepts facilitates the development of object ori-
ented formal specifications. To model this behaviour in Haskell we
describe OOHaskell in section 4, a librarie that models OO features
in Haskell.

2 IORef

A mutable variable, often used in imperative languages, is a very useful
feature. In Haskell it can be modeled using the Haskell primitive
IORef [Jon05].

data IORef a

We can look at a value of type IORef a as a reference to a mutable
cell of type a. Such references can be manipulated using the following
functions:

newIORef :: a -> IO (IORef a)
readIORef :: IORef a -> IO a
writeIORef :: IORef a -> a -> IO ()

that, respectively, allow to create, read and write a reference to a value
a.
To better understand how we can easily use this concept it follows an
example, that models a counter.

counter :: IORef Int
counter = unsafePerformIO $ newIORef 0

incCounter = readIORef counter >>= \c -> writeIORef counter (c+1)

inspectCounter :: IORef Int -> Int
inspectCounter = unsafePerformIO . readIORef

Using ghci it is possible to observe the following results:

*Counter> inspectCounter counter
0
*Counter> incCounter
*Counter> incCounter
*Counter> incCounter
*Counter> inspectCounter counter
3

3 Generic Programming

The next topics are intimately related. The set of ideas presented were
result of a very richful interaction between three great researchers –

2



Simon Peyton Jones, Ralf Lammel and Joost Visser.
Although the three subjects can be seen as generic programming tools,
some diferences bettween them justify the description of all in this
report.

3.1 Scrap your BoilerPlate

This technique is very general (it supports arbitrary datatypes, includ-
ing parametrised, nested and mutually dependent types) and makes the
application program flexible to changes in the data types [LP03]. It
saves time for several reasons:

• allows to write most of the boilerplate code only once;

• makes easier the updates (since there is less code to change, the
probability of errors substantially decreases);

• reduces the testing time (specially the “looking for bugs” time),
since the boilerplate code has only to be tested once.

The Scrap your boilerplate work was further developed to include generic
functions that traverse generic data structures ([LP05]) and generic
casts ([LP04]).

3.2 HList

An heterogeneous collection can be regarded as a data structure that
works as a repository fr objects of different types and allows operations
of update, iteration, lookup, etc ([KLS04]). On a first approach we can
define such a structure as:

type HetList = [Dynamic]

However, the type of each element is not precisely described. Using
type level programming, Ralf Lammel et al have defined a more typeful
heterogeneous list.

class HList l
instance HList HNil
instance HList l => HList (HCons e l)

Now, a function over this structure becomes a new class. As an exam-
ple, the function for the concatenation of two heterogeneous lists can
be defined as follows ([KLS04]):

instance HList l => HAppend HNil l l
where hAppend HNil=id

instance (HList l,HAppend l l’ l’’)
=> HAppend (HCons x l) l’ (HCons x l’’)

where hAppend (HCons x l) = (HCons x) . (hAppend l)

The HList library developed can be used in the cases when the
type of the sequence is not known statically.

3



3.3 Strafunski

[LV03] Strafunski 2
[LV02a] Strafunski 1
[LV02b] Strafunski

4 OOHaskell

Object oriented languages offer features such as encapsulation, mu-
table state, overriding, inheritance, . . . Implementing this features in
Haskell is an issue that has been addressed for several years. There
were some encodings proposed for OO idioms in Haskell ([HS95,
Bay05, KL05]). In this section, we will analyse the features of the
lybrary OOHaskell recently developed (major realease in Septem-
ber 2005), that tries to overcome the insufficiencies of previous OO
libraries in Haskell and delivers an amount of polymorphism and
type inference that is unprecedented ([KL05]). Several comparisons of
OOHaskell to other implementations are done in [KL05]. The ref-
ered library is based in the extensible polymorphic records of HList
(section 3.2).

• Classes are represented as functions

• Objects are records with a component for each methos

• State is amntained using mutable variables

• Methods are functions (monadic) that can access state and self

Let us analyse the following example that tries to model the partici-
pants in a conference.

There are three types of participants:

• Regular participants, that have name and number;

• Speakers, that aditionally to the participants information have
the conference title and the expenses;

• Guests, that aditionally to the participants information have a
comment (reason of attending the conference, etc)

We can encode this example using OOHaskell as follows.

4



-- The class Participant

-- First, declare the labels.
-- Using proxies as of HList/Label4.hs

data GetName; getName = proxy::Proxy GetName
data GetNumber; getNumber = proxy::Proxy GetNumber
data SetName; setName = proxy::Proxy SetName
data SetNumber; setNumber = proxy::Proxy SetNumber

-- This is the actual definition of class participant

participant name_init number_init self
= do

name <- newIORef name_init
number <- newIORef number_init
returnIO $

getName .=. readIORef name
.*. getNumber .=. readIORef number
.*. setName .=. (\newn -> writeIORef name newn)
.*. setNumber .=. (\newnu -> writeIORef number newnu)
.*. emptyRecord

As can be seen in the definition of the class Participant , classes are
function that take constructor arguments and a self reference.

-- Speaker: inherits from Participant

data GetPrice; getPrice = proxy::Proxy GetPrice
data GetConferenceTitle; getConferenceTitle = proxy::Proxy GetConferenceTitle
data SetPrice; setPrice = proxy::Proxy SetPrice
data SetConferenceTitle; setConferenceTitle = proxy::Proxy SetConferenceTitle

speaker name number price conftitle self
= do

super <- participant name number self
p <- newIORef price
c <- newIORef conftitle
returnIO $

getPrice .=. readIORef p
.*. getConferenceTitle .=. readIORef c
.*. setPrice .=. (\newp -> writeIORef p newp)
.*. setConferenceTitle .=. (\newc -> writeIORef c newc)
.*. super

-- SpecialGuest: inherits from Participant

data GetComment; getComment = proxy:: Proxy GetComment

5



data SetComment; setComment = proxy:: Proxy SetComment

guest name number comment self
= do
super <- participant name number self
c <- newIORef comment
returnIO $

getComment .=. readIORef c
.*. setComment .=. (\newc -> writeIORef c newc)
.*. super

The essence of inheritance is illustrated in the encoding of both speaker
and guest classes. The super-class constructor is invoked and self is
passed from the sub to the super class.
The following function encodes an example that uses the classes defined
above.

myOOP = do
-- Insertion of new participants
p1 <- mfix (participant "Xana" (10::Int))
p2 <- mfix (participant "Bacelar" (11::Int))
p3 <- mfix (participant "Joost" (12::Int))
p4 <- mfix (speaker "Gibbons" (1::Int) (100::Int) "Folds")
p5 <- mfix (guest "Jones" (1::Int) "")
let l=consLub p1 (consLub p2 (consLub p3 (consLub p4 (consLub p5 nilLub))))
mapM_ (\p -> do

n <- p # getNumber
m <- p # getName
putStrLn ("Participant number " ++ (show n) ++ "--" ++ (show m))) l

The results of invoking this function in ghci are presented below.

*Participant> myOOP
Participant number 10--"Xana"
Participant number 11--"Bacelar"
Participant number 12--"Joost"
Participant number 1--"Gibbons"
Participant number 1--"Jones"

5 Developed work

The module State.hs, described in [MF05], simultaneously defines a
state for Camila objects and for the interpreter. This concepts should
be explicitly divided. So, a new module InterpState was defined to
contain the data types and operations concerning the interpreter state.
To construct the store for the camila elements used by the user in the
interpreter, I defined a weakly typed collection, that should be replaced
by a strongly typed collection (3.2), as described in 7. There has been
an attempt to define the store strongly typed but after some type
checking problems (and lack of time) I ended up with this simpler
solution.

6



data CamilaState = CamilaState {
store :: Store
}

type Store = [CamilaElement]
data CamilaElement = forall b. Typeable b => CamilaElement (String,b)

The initial state of the interpreter is:

initialSt :: Store
initialSt = []

-- | The initial state of the interpreter.
camilaInitial :: CamilaState
camilaInitial = CamilaState { store = initialSt}

The Store data structure has defined some funcionalities, such as in-
sertion and lookup, as Haskell classes, using the same principle de-
scribed in section 3.2. The classes AddToStore and HLookup imple-
ment, respectively, the insertion and the lookup operations.

class AddToStore l b where
add :: l -> b -> l

instance AddToStore Store CamilaElement where
add [] c = [c]
add (a@(CamilaElement (y,b)):rs)

e@(CamilaElement (x,v)) | (typeOf b == typeOf v) && (x==y) = (CamilaElement (x,v) : rs)
| (x==y) = (CamilaElement (x,b) : add rs (CamilaElement (x,v)))
| otherwise = a : (add rs e)

class HLookup l b where
hLookup :: String -> l -> Maybe b

-- | Definition of Lookup for Store
instance Typeable b => HLookup Store b where

hLookup _ [] = Nothing
hLookup x (a@(CamilaElement (y,b)):rs) | x==y = case (cast b) of

Nothing -> hLookup x rs
Just k -> Just k

| otherwise = hLookup x rs

The interpreter must have information about the state of the camila
objects.

-- | State of the interpreter

state :: IORef (CamilaState)
state = unsafePerformIO $ newIORef $ initial

-- | Initial State of the Interpreter

7



initial :: CamilaState
initial = camilaInitial

The operations defined for the camila interpreter are:

• creation of a new variable – if the variable has alrady a value of
the same type we are trying to assign this is replaced; otherwise,
a new item in the Store is created;

-- | Definition of a variable value

(.=) :: (Typeable b, Show b) => String -> b -> IO ()
(.=) = ccreate

ccreate id h = modifyIORef state (\s -> (s { store = add (store s) (CamilaElement (id,h)) }))

• lookup for the value of a variable (of a certain type);

-- | Checking if a variable of type b with a certain label
-- | is already defined and what value it has
-- | It is a generic lookup for the Interpreter store

(.>) :: (Typeable b) => String -> Maybe b
(.>)=look

look id = (hLookup id (store $ unsafePerformIO $ readIORef state))

• apply a function to a variable;

-- | Function Application to a defined variable
(.$) :: (Typeable b) => (b -> a) -> String -> Maybe a
(.$) = apply

apply f id = do x <- look id
return (f x)

5.1 Examples

Loading the interpreter to ghci we can use the features described
above. Some simple examples of creating and lookup values of variables
as well as applying a function to a variable follow.

*Camila.Interpreter> ccreate "bool" True
*Camila.Interpreter> ccreate "str" "Mfp2"
*Camila.Interpreter> ((.>) "str")::Maybe String
Just "Mfp2"
*Camila.Interpreter> ((.>) "a")::Maybe String

8



Features Camila

Vdm-sl
invariants

pre/post conditions
state

√
√
√

Vdm++ class —

Nothing
*Camila.Interpreter> ((.>) "bool")::Maybe String
Nothing
*Camila.Interpreter> ((.>) "bool")::Maybe Bool
Just True
*Camila.Interpreter> apply (\s->s++"x") "str"
Just "Mfp2x"
*Camila.Interpreter> apply (==True) "bool"
Just True
*Camila.Interpreter> apply (==False) "bool"
Just False

We can have different values store in the same variable (if they have
different types) and still apply functions to the variable, as we can see
in the following example.

*Camila.Interpreter> "x" .= "abcd"
*Camila.Interpreter> "x" .= True
*Camila.Interpreter> apply (==False) "x"
Just False
*Camila.Interpreter> apply ("123"++) "x"
Just "123abcd"

6 General overview

7 Conclusions and Future Work

References

[Bay05] A. Bayley. Functional programming vs object oriented pro-
gramming. June 2005.

[HS95] Jonh Hughes and Jan Sparud. Haskell++ : An object
oriented extension of Haskell. April 1995.

[Jon05] Simon Peyton Jones. Tackling the awkward squad:
monadic input/output, concurrency, exceptions and
foreign-language calls in Haskell. May 2005.

[KL05] Oleg Kiselyov and Ralf Lämmel. Haskell’s overlooked ob-
ject system. 2005.

[KLS04] Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly
typed heterogeneous collections. In Haskell ’04: Proceed-

9



ings of the ACM SIGPLAN workshop on Haskell, pages
96–107. ACM Press, 2004.

[LP03] Ralf Lämmel and Simon Peyton Jones. Scrap your boiler-
plate: a practical design pattern for generic programming.
ACM SIGPLAN Notices, 38(3):26–37, March 2003. Pro-
ceedings of the ACM SIGPLAN Workshop on Types in
Language Design and Implementation (TLDI 2003).

[LP04] Ralf Lämmel and Simon Peyton Jones. Scrap more boiler-
plate: reflection, zips, and generalised casts. In Proceedings
of the ACM SIGPLAN International Conference on Func-
tional Programming (ICFP 2004), pages 244–255. ACM
Press, 2004.

[LP05] Ralf Lämmel and Simon Peyton Jones. Scrap your boiler-
plate with class: extensible generic functions. In Proceed-
ings of the ACM SIGPLAN International Conference on
Functional Programming (ICFP 2005), pages ??–?? ACM
Press, September 2005.

[LV02a] R. Lämmel and J. Visser. Typed Combinators for Generic
Traversal. In Proc. Practical Aspects of Declarative Pro-
gramming PADL 2002, volume 2257 of LNCS, pages 137–
154. Springer-Verlag, January 2002.

[LV02b] Ralf Lämmel and Joost Visser. Design Patterns for Func-
tional Strategic Programming. In Proc. of Third ACM SIG-
PLAN Workshop on Rule-Based Programming RULE’02,
Pittsburgh, USA, October5 2002. ACM Press. 14 pages.

[LV03] R. Lämmel and J. Visser. A Strafunski Application Letter.
In V. Dahl and P. Wadler, editors, Proc. of Practical As-
pects of Declarative Programming (PADL’03), volume 2562
of LNCS, pages 357–375. Springer-Verlag, January 2003.

[MF05] Alexandra Mendes and João Ferreira. Pure camila – a sys-
tem for software development using formal methods. Tech-
nical report, University of Minho, 2005.

[MFP05] Alexandra Mendes, João Ferreira, and José Proença.
Camila prelude. Technical report, University of Minho,
2005.

[Ste05] Don Stewart. hs-plugins – dynamically loaded Haskell
modules. July 2005.

[VOB+05] Joost Visser, J.Nuno Oliveira, Lúıs Soares Barbosa, João
Ferreira, and Alexandra Mendes. Camila: Vdm meets
haskell. 2005.

10


