SdfMetz: Extraction of Metrics and Graphs
From Syntax Definitions*
— Tool Demonstration —

Tiago L. Alves' and Joost Visser?

! University of Minho, Portugal, and
Software Improvement Group, The Netherlands
t.alves@sig.nl
2 Software Improvement Group, The Netherlands
j-visser@sig.nl

Abstract. We developed SdfMetz, a tool for the extraction of metrics
and graphs from syntax descriptions. SdfMetz supports various input lan-
guages, such as SDF and the syntax formalisms of DMS, ANTLR, and
Bison. Among the extracted metrics are size and complexity metrics,
feature metrics, and structure metrics. Some metrics are extracted di-
rectly from grammars, such as adaptations of the NPath and cyclomatic
complexity metrics. Several structure metrics, such as tree impurity and
recursiveness, are based on various kinds of grammar dependency graphs.
The metrics and graphs can be emitted in several formats to allow their
subsequent visualization and (statistical) analysis. We present the func-
tionality of the tool, its implementation, and its use for grammar com-
parison and analysis.

1 Introduction

Grammars play a central role in language tool development. Their primary pur-
pose is definition of surface syntax and parser generation, but they are likewise
used to generate other language processing ingredients, such as AST traversal
support and pretty-printers. Currently, renewed interest in domain-specific lan-
guages [1] (DSLs), e.g. in the context of model-driven engineering (MDE), again
emphasises grammars as primary software artifacts.

Grammar engineering [2] aims to apply solid software engineering techniques
to grammars. Such techniques include version control, static analysis, and test-
ing. Through their adoption, the notoriously erratic and unpredictable process
of developing and maintaining large grammars can become more efficient and
effective, and can lead to results of higher-quality. In grammar engineering, quan-
tification is an important instrument for understanding and controlling grammar
evolution as well as for specifying and improving grammar quality attributes, just
as for software artifacts and evolution in general.

* This is an extended version of a tool demo paper that was presented at LDTA 2006,
but was not published in the proceedings.

Though grammars have been used in software engineering for decades, the
systematic definition and application of grammar metrics is a more recent de-
velopment. Power and Malloy [3] have defined a suite of metrics for attributes
of grammars, such as size, complexity, and structure. Their definitions are given
for grammars written in BNF, EBNF, or Yacc-style BNF dialects.

We have implemented a tool for grammar quantification and visualization,
named SdfMetz. The suite of metrics calculated by SdfMetz is a significant ex-
tension of those defined by Power and Malloy, and apart from Yacc-like BNF
dialects (Bison), the tool accepts ANTLR [4], SDF [5], and DMS [6] grammars.
We also implemented disambiguation metrics, relevant for SDF only. The graphs
constructed by SdfMetz for calculation of various metrics can also be exported
and used for grammar visualization.

Elsewhere, we report on the use of SdfMetz for monitoring the development
of an industrial strength grammar of the VDM-SL language [7].

2 Tool functionality

SdfMetz is a command line tool that accepts various grammar formalisms as
input and emits either a metrics report or a graph. Currently the accepted input
includes SDF, ANTLR, Bison, and DMS grammars. A total of thirty one metrics
can be emitted:

— The twelve metrics defined in [3]: the counts of terminals, non-terminals,
and production rules; cyclomatic complexity; average size of right-hand side;
Halstead effort; tree impurity; number of grammatical levels, and normalised
count of levels; count of non-singleton levels; count of non-terminals in the
largest grammatical level; and maximum height.

— Twelve additional Hasltead metrics. Besides Halstead effort defined in [3], we
additionally report: the underlying count of operators and operands, distinct
and total; and derived metrics such as length, vocabulary, volume, difficulty,
level, and time.

— An alternative tree impurity metric, applied to the successor graph of a
grammar (instead of the transitive closure of that graph as defined in [3]).

— Three NPath metrics. We adapted the NPath metric [8] to grammars, which,
like cyclometric complexity, measures possible paths, but gives more weight
to nested choices. Additionally we implemented the average NPath per non-
terminal and maximum NPath per non-terminal.

— Four ambiguity metrics, specific to SDF: counts of follow restrictions, asso-
ciativity and preference attributes, reject and prioritized productions.

These metrics can be emitted either as nicely formatted textual reports for hu-
man consumption, or as comma-separated value files for further processing by
spreadsheet or statistical tools. An example of this will be given in Section 4.

The calculation of several metrics requires the construction of a grammar
successor graph, its transitive closure, or its corresponding strong connected
component graph. SdfMetz can emit these graphs in the dot format [9]. An
example of a strong connected component graph is given in Figure 1.

"compoundStatement”
"statement"”
"statementList"

"functionDef"

/

"initDeclList"

"initDecl"

"initializer"
"asm expr" M
asm_expl initializerList"

"additiveExpr" "argExprList" "assignExpr" "bitAndExpr" "castExpr"
"conditionalExpr" "constExpr" "declSpecifiers" "declarator"
"enumList" "enumSpecifier" "enumerator" "equalityExpr"
"exclusiveOrExpr" "expr" "functionCall" "inclusiveOrExpr"
"logicalAndExpr" "logicalOrExpr" "multExpr"
"nonemptyAbstractDeclarator" "parameterDeclaration"
"parameterTypeList" "postfixExpr" "postfixSuffix" "primaryExpr"
"relationalExpr" "shiftExpr" "specifierQualifierList"
"structDeclaration" "structDeclarationList"
"structDeclarator" "structDeclaratorList"
"structOrUnionSpecifier" "typeName" "typeSpecifier" "unaryExpr"

"externalList" |—> "externalDef"

"declaration" |

"declarationPredictor"

"translationUnit" |—>

"assignOperator"

"charConst" "functionDeclSpecifiers"

"pointerGroup" |—>| "typeQualifier"

| "typedefName"

~_

"floatConst"

»

"intConst" "structOrUnion" "unaryOperator"

| "idList"

"stringConst" "storageClassSpecifier" "functionStorageClassSpecifier"

Fig. 1. Excerpt of a strong connected component graph for an ANTLR grammar of
the C language, generated with SdfMetz.

3 Tool implementation

SdfMetz was developed in Haskell and SDF, making essential use of the Strafun-
ski bundle [10] for generating Haskell code from SDF grammars and for generic
AST traversal. From the SDF grammar of each input language we generated
AST, serialization, traversal, and pretty-printer components.

After parsing an input grammar, it is first translated to SDF, which is thus
used as a universal syntax definition language. This allows all metrics to have a
single implementation. Some metrics were defined directly over the AST. Other
metrics require the construction of a successor graph, and subsequent calcu-
lation of its transitive closure or strong components. We used a graph library
based on finite maps for the representation and manipulation of such graphs.
Further librares were used, such as datatype libraries for sets, and bags, and for
exporting to dot format. The tool was extensively unit tested using the HUnit
framework [11].

4 Tool demonstration

The demonstration of the tool consists of the following elements.

Run We show how to invoke SdfMetz on various different input formalisms, and
how to configure it to obtain different kinds of output.

Graphs By means of instructive examples, we explain which kinds of graphs
are emitted, and how they can be visualized and interpreted.

Metrics Using grammars of well-known languages as examples, we explain the
various metrics emitted by SdfMetz. We explain how these metrics can be
visualized and interpreted.

Census We present the result of running SdfMetz on a large suite of syntax
definitions, of various sizes and written in various grammar formalisms. We
explain how simple statistical instruments can be used to interpret the huge
amount of resulting measurement data.

As example we describe two scenarios where we applied SdfMetz: grammar com-
parison and statistical study of the tree impurity metric.

4.1 Grammar comparison

The main motivation to support different grammar formalisms in SdfMetz was
to initiate the research of grammar quality. Our main focus is to identify an
important set of metrics that can be used to assess grammar quality. Not only
are we interested in investigating quality of grammars specified in the same
formalism (e.g. quality of ANTLR grammars) but also quality of grammars in
different formalisms.

As starting step for that purpose we show how SdfMetz can be used to
compute and collect metrics for different formalisms. Additionally, we show an
excerpt of the collected metrics and provide comments about our findings.

Grammar Collection The first step to analyze grammars is to collect gram-
mars for different formalisms. We collected grammars from different sources.
ANTLR grammars were download from the ANTLR website [12]. Bison gram-
mars were obtained from GNU GCC [13] and from several internet pages. DMS
grammars were kindly provided by Dr. Ira Baxter, from Semantic Designs (SD) [14].
SDF grammars were downloaded from GrammarBase web site (GB) [15] and pro-
vided by the authors. Additional grammars were kindly provided by Dr. Tobias
Kuipers from the Software Improvement Group (SIG) [16].

Metric computation To compute and collect metrics we execute SdfMetz for
a set of grammars in the same formalism. The execution of SdfMetz is done as
following:

$ SdfMetz -f antlr -c -o AntlrMetrics.csv -i AntlrGrammars/*.g
$ SdfMetz -f bison -c -o BisonMetrics.csv -i BisonGrammars/*.y
$ SdfMetz -f dms -c -o DMSMetrics.csv -i DMSGrammars/*.def

$ SdfMetz -c -o SDFMetrics.csv -i SDFGrammars/*.bnf

Table 1. Sampled grammars and some of their properties.

& > R
& & o N © < § NS N <
o o | 5 (&Q‘ o ?ﬂxo @OO @2?’ < &x\‘\ o v@* Ov‘@ og < é&‘
XPath GCC | Bison | 47 | 28 | 8 | 58 | 86 78 | 2.3 |93.7] 9 |32.1 I 20 | 4
BibTeX GB | SDF 20 | 6 | 16 | 21 32 8.9 | 20.0 |100.0| 6 [100.0| © 1|6
MatLab DK | Bison | 44 |34 | 92 | 58 | 92 | 13.0 | 4.0 [62.3]| 15 | 44.1 2 16 | 6
Fortran 77 || GB | SDF | 41 | 16 | 41 | 32 58 | 18.9 | 4.8 |42.9| 15 | 93.8 1 2 | 7
c P&M| BNF | 8 | 65 | - | 149 - 51 - |64.1| 22 338 3 38 | 13
c ALR |ANTLR| 122 | 67 | 67 | 197 | 285 | 59.4 | 1.4 |94.9 | 27 | 40.9 | 3 37 | 13
Java 1.3 ALR [ANTLR| 104 | 68 | 68 |171| 263 | 74.0 | 2.1 |86.1 | 24 | 35.3 1 45 | 9
EcmaScript|| SD | DMS | 144 | 90 | 344 | 254 | 344 | 80.8 | 1.6 |83.7| 20 | 32.2| 3 57 | 10
Ada HF | Bison | 93 |238| 458 | 220 | 458 | 87.4 | 0.8 |63.3 |156| 655 | 4 42 | 24
Java P&M| BNF | 100 |149| - | 213 - 95 - | 327|890 |50.7| 4 33 | 23
PHP 5 SD | DMS | 159 |112| 418 | 306 | 418 | 96.5 | 1.6 | 76.1 | 55 | 49.1 2 37 | 15
Java 1.5 ALR |ANTLR| 108 |102 | 102 | 245 | 450 [132.2| 1.9 |93.1| 24 | 235 | 2 73 | 9
SDL GB | SDF 89 | o1 | 174 | 170 | 273 |132.5| 1.1 [39.8| 76 [835 | 2 13 | 14
Java SD | DMS | 99 |144| 460 | 316 | 460 |137.9| 1.3 [93.9 | 41 [28.5| 2 87 | 17
c GB | SDF | 102 | 24 | 148 | 162 | 196 |146.4| 5.9 |75.9 | 15 | 62.5 1 10 | 10
C++ P&M | BNF | 116 |141| - | 368 - 173.0| - |85.8 | 21 | 14.9 1 |121] 4
EcmaScript || ALR [ANTLR| 185 | 198 | 198 | 406 | 612 |175.6 | 0.6 | 43.5 |104|52.5 | 4 89 | 10
DB2 SIG | SDF | 214 | 98 | 292 | 311 | 478 |185.0| 1.0 |42.6 | 69 | 71.1 1 29 | 16
c# ALR |[ANTLR| 133 |219| 219 | 408 | 660 |202.3| 0.7 |55.6 |159| 72.9 | 4 30 | 27
PL/SQL ALR |ANTLR| 196 | 157 | 157 | 449 | 4683 |215.5| 1.5 | 45.6 [119|76.3 | 6 15 | 21
Cc# P&M| BNF | 138 |245| - | 466 - 228 - | 207 |159| 649 | 5 44 | 28
VDM-SL TA | SDF | 143 | 71 | 227 | 232 | 316 |247.6| 2.8 |78.7| 35 | 49.3 | 3 27 | 13
Java 1.5 GB | SDF | 105 |122| 327 | 318 | 616 [265.4| 2.1 |79.8 | 53 |43.4 | 2 63 | 10
Ada ALR |ANTLR| 99 |209| 209 | 326 | 537 [205.4| 1.1 |56.9 143|684 | 5 36 | 19
VB.net JV | SDF | 170 |206| 446 | 466 | 1554 |390.0 | 1.0 |42.9 |154|74.8 | 6 25 | 26
Veriog 2001|| SD | DMS | 232 |488 | 1248 | 760 | 1248 |455.7 | 0.5 | 46.1 | 266 | 54.5 | 10 |117| 19
SDL ALR |[ANTLR| 174 |461 | 461 | 822 | 2043 |708.9 | 0.6 |35.4 |357| 77.4 | 6 43 | 28
PL/SQL SIG | SDF | 456 |499 | 1094 | 888 | 1564 |710.9| 0.3 |24.5 [434|87.0 | 2 38 | 20
Cobol GB | SDF | 479 |774| 1330 [1122| 2194 |909.4| 0.2 |22.2 |627|81.2| 7 70 | 26
C++ SD | DMs | 173 |436 | 2122 [1686] 2122 [1300.6] 0.7 | 96.3 | 42 | 9.6 2 [393] 10
GB = The online Grammar Base [15]. JV = Joost Visser.
SIG = Software Improvement Group [16]. TA = Tiago Alves.
SD = Semantic Designs [14]. DL = Danny Luk.
GCC = GNU C Compiler [13]. HF = Herman Fischer.
ALR = ANTLR web site [12]. P&M = Power and Malloy [3].

The -f argument indicates the grammar formalism to be analyzed. In case of
an SDF grammar, this argument can be omitted. The -c argument indicates
that the output is done in Comma Separated Values (CSV) format. The -o
argument indicates the output file where the results are stored, and the -i
argument indicates the files where grammars can be found. SdfMetz can handle
a single file or multiple files of the same formalism, as show in the code execution
example.

Metric analysis To analyze the metrics we imported the four generated files
into Excel for statistical analysis. An excerpt of the analyzed grammars and com-
puted metrics is presented in Table 1. Additionally, for comparison, we manually
included the values for the grammars reported in [3]. The grammars are ordered
by the Halstead effort metric.

Focusing on the McCabe’s cyclomatic complexity (MCC) we can observe that
it is below 500 for 25 of the 30 grammars. From the remaining ones, the two
highest scoring grammars are the Cobol grammar from the GB (MCC=1122)
and the C++ grammar from the SD(MCC=1686), which double and triple this
value, respectively. A possible explanation for these high values is that the Cobol
grammar contains an embedded SQL grammar and the C4++ grammar includes
macro parsing.

Entries Entries
: /
Entry
/ N\
Field Field
\ |
Value Value D
ValWordDQ ValWordDQ

/ .
ValWord D ValWord)

Fig. 2. Immediate successors graph and transitive closure graph for BibTeX.

From Table 1 we can also observe that grammars for the same language have
different metric values. Taking as example the two Java 1.5 grammars specified in
ANTLR and SDF, we notice that the number of terminals are different, however
this difference is small. The same can be also observed for the C# grammar
from ANTLR when compared with the values reported in [3]. In contrast, when
comparing the two C++ grammars, from SD and as reported in [3] we note that
the former contains about 50% more terminals than the latter. This provides
stronger evidence that the two grammars in fact parse different language subsets.

4.2 Tree Impurity metric analysis: TIMP vs. TIMPi

In table 1 we can observe that there are significant differences between the two
tree impurity metrics.

Tree impurity metric [17] measures to which extent the graph deviates from
a tree structure. A value of 0% means that the graph is a tree, while a value
of 100% means the graph is a fully connected graph. The TIMP metric follows
the definition of [3], where the formula is applied to the transitive closure of the
grammar graph. TIMPi, introduced in SdfMetz, implements the same formula
but applied to the successor graph instead of the transitive closure of that graph.

For tree impurity for immediate successor graphs (TIMPi), the values lie
between 0.2% and 5.9%, except for BibTeX grammar. For tree impurity for
transitive successor graphs (TIMP), the values range between 22.2% and 100.0%.

For the BibTeX grammar, we can observe that TIMP has a value 100% where
TIMPi reports just 20%. Hence, according to the definition presented in [3], the

100
" ¢ * o o0
80 . t
e =~ °® o
70
60 . .
¢ @
% 50
. 0’ % @ PN
v
@
30
@
20 ’
10
0

TIMPI

Fig. 3. Scatter plot between TIMP and TIMPi for all grammars except BibTeX.

BibTeX grammar is 100% tree “impure”. To visualize this we used the SdfMetz,
and the execution is done as following:

$ SdfMetz -g -o BibTeX-Graph.dot -i SDFGrammars/bibtex.def
$ SdfMetz -t -o BibTeX-TcGraph.dot -i SDFGrammars/bibtex.def

On the first execution, the —g argument was passed to request the graph of the
grammar in dot format. On the second execution, we passed the -t argument
which computes the transitive closure of the graph and outputs the result in dot
format. The result of these graphs is presented in Figure 2.

From the graph of the immediate successors we can see that two of ten nodes
have multiple dependencies (Value and ValWord) which explain the deviation
from the tree shape and a result of 20% for tree impurity. In contrast, in the
transitive closure graph, we can observe that all nodes are connected which
explains the value of 100%.

So, for a single grammar we have observed an important difference between
the two tree impurity metrics. But how are these grammars related in general? To
investigate this, we have decided to use the metrics computed from all grammars
except from BibTeX and then plot the TIMP metric against TIMPi. BibTeX was
not included because it is an outlier, tree impurity is very high due to the small
number of non-terminals. The result of this is shown in Figure 3. From the scatter
plot we can observe that there is high dispersion. To quantify the dispersion we
have determine correlation using the Spearman rank correlation analysis. The
Spearman rank correlation coefficient between TIMP and TIMPi is 0.401 with
high significance (p < 0.01), which means that the two metrics are very weakly
correlated.

We can conclude that, in fact, the two metrics measure different things.
The BibTeX example indicates that TIMP is more sensitive to long chains of

dependencies. In our opinion, the TIMPi metric is more intuitive and more useful
to quantify the degree of connectedness in a grammar.

5 Conclusion

We have presented SdfMetz, a tool for grammar quantification and visualiza-
tion, supporting a total of thirty one metrics for four different formalisms (SDF,
DMS, Bison and ANTLR). We described the tool functionality, implementation
and how to use the tool for grammar comparison and analysis. Through two
scenarios, we have reported metrics for 30 grammars, and showed how the tool
can be valuable to gain insight about grammar properties. Furthermore, we have
contributed to the grammar engineering body of knowledge showing how metrics
can be analyzed and validated.

Availability The SdfMetz tool is developed as open source software and is avail-
able from: http://wiki.di.uminho.pt/twiki/bin/view/Research/PURe/SdfMetz.
A spreadsheet containing metrics values for more than 50 grammars and the full
metrics for the grammars used in the paper can be found in the first author’s web
page: http://wiki.di.uminho.pt/twiki/bin/view/Personal/ Tiago/Publications.

Acknowledgements The first author is supported by the Fundagao para a
Ciéncia e a Tecnologia, grant SFRH/BD/30215/2006.

References

1. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop domain-specific
languages. ACM Comput. Surv. 37(4) (2005) 316-344
2. Klint, P., Lammel, R., Verhoef, C.: Toward an engineering discipline for grammar-
ware. ACM Trans. Softw. Eng. Methodol. 14(3) (2005) 331-380
3. Power, J.F., Malloy, B.A.: A metrics suite for grammar-based software: Research
articles. J. Softw. Maint. Evol. 16(6) (2004) 405-426
4. Parr, T.J., Quong, R.W.: ANTLR: A predicated-LL(k) parser generator. Software
& Practice and Experience 25(7) (1995) 789-810
5. Heering, J., Hendriks, P., Klint, P., Rekers, J.: The syntax definition formalism
SDF — Reference manual. SIGPLAN Notices 24(11) (1989) 43-75
6. Baxter, 1., Pidgeon, P., Mehlich, M.: DMS: Program transformations for practical
scalable software evolution. In: Proceedings of the International Conference on
Software Engineering, IEEE Press (2004) 625-634
7. Alves, T., Visser, J.: Development of an industrial strength grammar for VDM.
Technical Report DI-PURe-05.04.29, Universidade do Minho (2005)
8. Nejmeh, B.: NPATH: a measure of execution path complexity and its applications.
Commun. ACM 31(2) (1988) 188-200
9. Koutsofios, E.: Drawing graphs with dot. Technical report, AT&T Bell Laborato-
ries, Murray Hill, NJ, USA (November 1996)
10. Lammel, R., Visser, J.: A Strafunski Application Letter. In Dahl, V., Wadler, P.,
eds.: Proc. of Practical Aspects of Declarative Programming (PADL’03). Volume
2562 of LNCS., Springer-Verlag (2003) 357-375

11.
12.
13.
14.
15.

16.
17.

Herington, D.: Hunit - haskell unit testing http://hunit.sourceforge.net/.

Parr, T.J.: ANTLR parser generator http://www.antlr.org/.

: GCC, the GNU compiler collection http://gcc.gnu.org/.

Baxter, I.D.: Semantic Designs, Inc., home page http://www.semdesigns.com/.
de Jonge, M.: The online Grammar Base http://web.archive.org/
web/20050908044013 /http://www.cs.uu.nl/ “mdejonge/grammar-base/ .

Kuipers, T.: Software Improvement Group home page http://www.sig.nl/.
Fenton, N., Pfleeger, S.: Software metrics: a rigorous and practical approach. PWS
Publishing Co., Boston, MA, USA (1997) 2nd edition, revised printing.

