
Metrication of SDF Grammars

Tiago Alves and Joost Visser

{tiago.alves,joost.visser}@di.uminho.pt

Technical Report DI-PURe-05.05.01

2005, May

PURe
Program Understanding and Re-engineering: Calculi and Applications

(Project POSI/ICHS/44304/2002)

Departamento de Informática da Universidade do Minho
Campus de Gualtar — Braga — Portugal

DI-PURe-05.05.01
Metrication of SDF Grammars by Tiago Alves and Joost Visser

Abstract

Metrication of grammars is an important instrument in grammar engi-
neering, in particular to monitor iterative grammar development. In this
report, we discuss the definition and implementation of metrics for the
syntax definition formalism SDF. Two tools for SDF metrication have
been developed: SdfMetz for static metrication of grammars themselves,
and SdfCoverage for metrication of associated parser tests. We applied
these tools to SDF grammars for a range of languages. We present and
interpret the collected data.

Tiago Alves and Joost Visser 1

1 Introduction

Quantification is an important instrument in software engineering. Quan-
tification can for instance play a role in monitoring and controlling the
software development process, or in specifying and improving software
quality aspects such as performance or reliability. To wit, the 200 page
Guide to the Software Engineering Body Of Knowledge - SWEBOK [1]
contains about 500 references to the topic of quantification1. The basis
of quantification is metrication: the definition and calculation of numeric
measures of attributes of artifacts or processes. An extensive array of
software engineering metrics have been defined and applied [6, 5].

Grammar engineering [11] is an emerging subfield of software engi-
neering that aims to apply solid software engineering techniques to gram-
mars, just as they are applied to other software artifacts. Such techniques
include version control, static analysis, and testing. Through their adop-
tion, the notoriously erratic and unpredictable process of developing and
maintaining large grammars can become more efficient and effective, and
can lead to results of higher-quality.

In grammar engineering, quantification is an important instrument
for understanding and controlling grammar evolution as well as for speci-
fying and improving grammar quality attributes, just as it is for software
evolution and software artifacts in general.

Though grammars have been used in software engineering for decades,
the systematic definition and application of grammar metrics is a more
recent development. Purdom [21] pioneered with a coverage metric, which
quantifies an attribute, not of the grammar an sich, but of the coverage
of a grammar by a given set of sentences (usually a parser test suite). Re-
cently, Lämmel provided a refined coverage metric [13]. Malloy et al. [20]
have defined a suite of metrics for attributes of grammars themselves, such
as size, complexity, and structure. All these authors provide definitions for
grammars written in BNF, EBNF, or Yacc-style BNF dialects.

Our preferred grammar notation is the Syntax Definition Formalism
SDF [9, 26]. This choice is motivated from our grammar-centered ap-
proach to language tool development [10], and the availability of Gen-
eralized LR parser support [22, 25] for SDF grammars, which is essential
in this approach. Key differences between SDF and (E)BNF are reviewed
in Section 2.

In this paper, we take the size, complexity, structure, and coverage
metrics defined by others for (E)BNF, and adapt them for the SDF gram-

1 With search keys like quantification, metric, measure, statistic, and their derivations.

2 Metrication of SDF Grammars

grammar

size and
 complexity

syntax

sentences

coverage

context
dependent

context
independent

disambiguation structurehalstead

flow
graph

component
graph

Fig. 1. Categories of grammar metrics.

mar notation. We also introduce disambiguation metrics, relevant for SDF
only. We have implemented two tools, named SdfMetz and SdfCoverage,
to support these metrics for SDF. We applied these tools to collect met-
rics data for a series of SDF grammars developed by us and by others.
Elsewhere, we report on the use of our SDF metrication tools for monitor-
ing the development of an industrial strength grammar of the VDM-SL
language [2, 3]. Here we use excerpts from that grammar for purposes of
exemplification.

Figure 1 provides a schematic overview of the metrics discussed in this
paper. Sections 3, 4, 5, and 6 discuss the definition of the size, complex-
ity, Halstead, structure, and disambiguation metrics for SDF, and their
implementation in the SdfMetz tool. Section 7 discusses the definition of
coverage metrics for SDF, and their implementation in the SdfCoverage
tool. Section 8 presents metrics data collected with SdfMetz for a wide
variety of SDF grammars, side by side with corresponding data for BNF
grammars. We also comment on an extension of SdfMetz to accept a sec-
ond GLR-supported grammar formalism, employed by Semantic Designs’
DMS toolkit [4]. Finally, we discuss related work in Section 9 and the
paper is concluded in Section 10.

2 The SDF grammar notation

The most salient difference between SDF and (E)BNF, is purely syntac-
tical: the direction of grammar production rules. For instance:

BNF SDF
S ::= A B A B -> S

Tiago Alves and Joost Visser 3

For the purposes of metrication, this difference is inconsequential.
But SDF differs from (E)BNF in more than pure syntax. For instance,

it allows several productions for the same non-terminal, which are treated
as alternatives.

BNF SDF
S ::= A

| B
A -> S
B -> S

or A | B -> S

Thus, the number of productions in an (E)BNF grammar always coin-
cides with the number of defined non-terminals, but not so in SDF. When
adapting metrics to SDF, this forces us to choose between using the num-
ber of productions or the number of non-terminals in some definitions.
Based on this possibility of distributing alternatives of a non-terminal
over various productions, SDF offers supports for grammar modularity.

SDF offers more regular expression-style operators than BNF and even
EBNF. An important example of this is the notation for separated lists.
In SDF they can be written more concisely:

EBNF SDF
S ::= [A {";" A}] {A ";"}* -> S

where the curly braces in EBNF indicate zero or more repetitions and the
square brackets indicate optionality. The curly braces in SDF together
with the star indicate zero or more repetitions.

Furthermore, SDF grammars specify more than just context-free syn-
tax. They also contain lexical syntax and disambiguation information.
The notation for lexical syntax is the same as for context-free syntax, but
grouped in lexical syntax rather than context-free syntax sections. The
constructs for disambiguation include lookahead restrictions and chains
of priorities which are specified in specific sections, as well as reject pro-
ductions, and associativity and preference attributes which are specified
in the context-free syntax sections. As explained below, we decided to
apply the size, complexity, Halstead, and structure metrics only to the
context-free syntax of SDF grammars (excluding reject productions), to
make comparisons possible with the results of other studies, on (E)BNF
grammars. For the disambiguation information, a dedicated set of metrics
was defined.

3 Size and Complexity Metrics

Table 1 lists a number of size and complexity metrics for grammars. Most
of these metrics were formally defined for BNF in [20]. Below we will

4 Metrication of SDF Grammars

Size and complexity metrics (E)BNF SDF

TERM Number of terminals x x
VAR Number of defined non-terminals x x

PROD Number of productions x x
MCC McCabe’s cyclometric complexity x x
AVS Average size of RHS x
AVSn Average size of RHS per non-terminal x
AVSp Average size of RHS per production x

Table 1. Size and complexity metrics for grammars. The last two columns indicate
which are defined in [20] for (E)BNF and adapted to SDF by us, and which were
introduced specifically for SDF by us.

briefly discuss the adaptation of these BNF metrics to SDF as well as
a few additional metrics specific to SDF. We will briefly remark on the
implementation of these metrics in the SdfMetz tool.

TERM - Number of terminals The TERM metric is the count of
unique terminals in a context-free grammar. In SDF, three types of ter-
minals occur: literals (e.g. ";" or "begin"), lexical non-terminals (i.e. non-
terminals defined in a lexical syntax section, rather than in a context-free
syntax section), and character classes (e.g. [a-z]). The latter are rarely
used in context-free productions.

VAR - Number of non-terminals The VAR metric is the count of
unique defined non-terminals in a context-free grammar.

Example 1. Consider the following grammar fragment:

QuoteLiteral -> Type

"compose" Identifier "of" FieldList "end" -> Type

Type "|" Type -> Type

Type "*" Type -> Type

Here, the only defined non-terminal is Type, and hence the value of VAR
is 1. The non-terminals QuoteLiteral, Indentifier, and FieldList are used,
but not defined in the above fragment.

Non-terminals that are used, but not defined in context-free syntax
can either be lexical non-terminals, i.e. defined with productions in a lex-
ical syntax section, or they can be undefined, i.e. bottom non-terminals.
Bottom non-terminals occur in incomplete grammars, or grammar frag-
ments. Since we want our metrics to be applicable also for incomplete
grammars, we need to be clear about counting bottom non-terminals. We
prefer to keep bottom non-terminals out of the VAR metric. Hence the
restriction to defined non-terminals.

Tiago Alves and Joost Visser 5

PROD - Number of productions In (E)BNF, the number of defined
productions is equal to the number of defined non-terminals. But, as noted
in Section 2, this is not the case in SDF. For this reason, we use the metric
PROD for the number of context-free productions.

All three metrics TERM, VAR, and PROD are calculated by SdfMetz
by collecting the relevant items into corresponding sets and subsequently
taking the cardinality of those sets.

MCC - McCabe’s cyclometric complexity The MCC metric is an
interpretation of McCabe’s cyclometric complexity [27] for grammars,
based on an analogy between grammar production rules and program
procedures.

The cyclometric complexity of a program procedure is defined as the
number of possible non-circular execution paths, and is generally imple-
mented as the number of branching control constructs (e.g. if, while),
plus 1. There is always at least one execution path, i.e. MCC ≥ 1.

Following [20], MCC for a complete grammar is computed by sum-
ming the values for individual production. The value of an individual
production is the number of branching operators (alternatives, repeti-
tions, optionals) that it contains. Note that according to this definition,
the value of MCC is always one below the number of paths, and the
minimum value of MCC is not 1, but 0.

As in BNF, alternatives in SDF give rise to additional paths. Consider
the following production from our SDF grammar for VDM-SL [2]:

Type | ("(" ")") -> DiscretionaryType

The value of MCC for this production is 1 since it contains a single
alternative operator (|).

In addition to the alternative operator, in SDF different alternatives
can be expressed with multiple production rules. The following example
is equivalent to the excerpt presented before:

Type -> DiscretionaryType

"(" ")" -> DiscretionaryType

This fragment has value 1, just as its equivalent.
There are more operators that create branches and thus affect the

MCC value: optional and repetition operators. Consider the following
productions:

6 Metrication of SDF Grammars

"types" { TypeDefinition ";"}+ -> TypeDefinitions

Identifier "=" Type Invariant? -> TypeDefinition

Both production rules have a MCC value of 1. The first production
uses the repetition operator + which allows two possible paths: a sin-
gle TypeDefinition or several TypeDefinitions separated by a semi-colon.
The second production uses the optional operator (?), again allowing two
paths corresponding to zero or one occurrences of Invariant.

SdfMetz calculates the MCC value for each production by counting occur-
rences of alternative, optional, and repetition operators. The total MCC
value of a grammar is computed as the sum of all MCC values of the
individual productions. To account for the occurrence of more than one
production per non-terminal, the number of such additional productions
(PROD minus VAR) is added to that sum.

AVS - Average size of RHS The AVS metric represents the average
size of the right-hand sides (RHS) of context-free grammar productions.
Given the inverted direction of SDF productions versus BNF production,
we adopt the direction-neutral term of body of a production, rather than
right-hand side.

In (E)BNF the definition of this metric is trivial: count the number of
terminals and non-terminals in the body of each production, and divide by
the total number of productions (PROD) or, equivalently by the number
of defined non-terminals (VAR).

Since in SDF the values of PROD and VAR are not necessarily equal,
two interpretations of the metric are possible: average production body
size per production (AVSp) and average production body size per non-
terminal (AVSn).

Example 2. Consider the following fragment:

"-" | Identifier -> Pattern

"(" Expression ")" -> Pattern

SymbolicLiteral -> Pattern

"{" PatternList "}" -> Pattern

Pattern "union" Pattern -> Pattern

"[" PatternList "]" -> Pattern

Pattern "^" Pattern -> Pattern

"mk_" "(" Pattern "," PatternList ")" -> Pattern

"mk_" Name "(" PatternList? ")" -> Pattern

The body sizes of these productions are 2, 3, 1, etc., totalling to 29. The
number of productions is 9, and the number of defined non-terminals is

Tiago Alves and Joost Visser 7

Halstead metrics (primitive)

u1 Number of distinct operators
u2 Number of distinct operands
n1 Total number of operators
n2 Total number of operands

Halstead metrics (derived) Formula

n Program vocabulary n = u1 + u2
N Program length N = n1 + n2
V Program volume V = N × log2n
D Program difficulty D = u1

2
× n2

u2

E Program effort E = D × V
L Program level L = 2

u1
× u2

n2

T Program time T = E
18

Table 2. Halstead metrics, primitive and derived.

1. Hence, the value of AVSp is 29/9 ≈ 3.22 and the value of AVSn is 29.
This is exactly how SdfMetz computes these metrics.

4 Halstead Metrics

The classical Halstead effort metric [8] has also been adapted for (E)BNF
grammars in [20]. We adapted the metric to SDF and implemented it in
SdfMetz. Moreover, we compute values not only for the Halstead effort
metric but also for some of its ingredient metrics and related metrics.
Figure 2 shows a list. There are four primitive metrics, counting distinct
and total numbers of operands and operators in a software artifact. Using
various formulas, seven more metrics are derived from the primitive ones.

In [20], the Halstead effort metric (denoted there by HAL) is catego-
rized with the size metrics. In Figure 1 we devote a separate category to
Halstead metrics, because we discuss the entire range, not just effort.

u1, u2, n1, n2 - Primitive Halstead metrics The essential step in
adapting Halstead’s metrics to grammars is to interpret the notions of
operand and operator in the context of grammars. In [20] the operands
and operators are defined for (E)BNF. We have extended that interpre-
tation to arrive at a definition of these notions for SDF.

For a first simple example, consider the following production rule from
our VDM-SL grammar:

"forall" BindList "&" Expression -> QuantifiedExpression

8 Metrication of SDF Grammars

Operand Non-terminal

terminal e.g. ";" or begin Literal

non-terminal e.g. Expression Sort

character class e.g. [a-z] CharClass

number e.g. 2 NatCon

Operator Syntax

label : Literal ":" Symbol

epsilon () "(" ")"

sequence (· · ·) "(" Symbol Symbol* ")"

optional ? Symbol "?"

alternative | Symbol "|" Symbol

repetition (≥ 0) * Symbol "*"

repetition (≥ 1) + Symbol "+"

repetition (≥ n) + Symbol NatCon "+"

repetition w. separator (≥ 0) {· · ·}* "{" Symbol Symbol "}" "*"

repetition w. separator (≥ 1) {· · ·}+ "{" Symbol Symbol "}" "+"

repetition w. separator (≥ n) {· · ·}·+ "{" Symbol Symbol "}" NatCon "+"

set Set [· · ·] "Set" "[" Symbol "]"

pair # Symbol "#" Symbol

function (· · ·=>·) "(" Symbol* "=>" Symbol ")"

permutation <<· · ·>> "<<" Symbol* ">>"

Table 3. Operands and operators of SDF. Note that the syntax Symbol* gives rise to
implicit juxtaposition operators for symbol lists longer than 1.

In this production, all terminals and non-terminals are regarded as operands,
and they happen to be all distinct. Thus, u2 = n2 = 5. Furthermore, the
arrow (->) that joins production body and defined non-terminal, is re-
garded as an operator, and so are the ‘implicit’ juxtaposition operator
that compose the various terminals and non-terminals into a production
body. If we would turn this implicit juxtaposition into an explicit con-
catenation operator (.), the production would look as follows:

"forall" . BindList . "&" . Expression -> QuantifiedExpression

With this auxiliary transcription in mind, it is easy to see that u1 = 2
and n1 = 4.

SDF offers a wide range of operators beyond the juxtaposition and
arrow operators, and a few additional operands beyond non-terminals
and terminals as well. Table 3 offers a more complete overview.

Example 3. For an example, consider the following two productions from
the VDM-SL grammar:

"let" { LocalDefinition "," }+ "in" Expression -> Expression

"let" Bind ("be" "st" Expression)? "in" Expression -> Expression

Tiago Alves and Joost Visser 9

Structure metrics

TIMPi Tree impurity of immediate successor graph (%)
TIMP Tree impurity of transitive successor graph (%)
LEV Count of levels

CLEV Normalized count of levels (%)
NSLEV Number of non-singleton levels
DEP Size of largest level
HEI Maximum height

Table 4. Structure metrics for grammars.

In this excerpt, is possible to observe that besides juxtaposition and ->
operators, other operators are present: iterative, sequence and optional
operators. Thus, the values of the primitive Halstead metrics are u1=5,
u2=8, n1=13, and n2=14.

In SdfMetz, the count of operators and operands is implemented through
a recursive algorithm that traverses the parse trees of all context-free
productions. The algorithm returns a pair of two lists: operators and
operands. The length of these lists are the values of n1 and n2. To obtain
u1 and u2, the cardinality is computed of sets created from these lists.

n, N, V, D, E, L, T - Derived Halstead metrics The derived Hal-
stead metrics are computed from the primitive ones using the formulas
in Table 2. SdfMetz computes and reports all of them. For the two pro-
ductions of Example 3, their values are: n=15, N=27, V=99.91, D=4.375,
E=4371, L=0.2286, and T=24.28.

The theory of software science behind Halstead’s metrics has been
widely questioned. In particular, the meaningfulness and validity of the
effort (E) and time (T) metrics have been called into question [6]. Below,
we will still discuss and report values of Halstead effort for purposes of
comparison to data reported in [20].

5 Structure Metrics

Table 4 shows a list of structure metrics defined for (E)BNF in [20]. We
will discuss the adaptation of these metrics to SDF.

In contrast to the size, complexity, and Halstead metrics shown before,
structure metrics are not computed by counting simple observations in
a grammar. Rather, they presuppose the construction of an immediate

10 Metrication of SDF Grammars

Type

TypeVariableIdentifier FieldList FunctionType

Field DiscretionaryType

Fig. 2. Immediate successor graph for Example 4.

successor graph from which they are computed. This is a directed graph
which has context-free non-terminals as nodes, and which contains an
edge between two non-terminals whenever one occurs in the body of a
production that defines the other.

Example 4. Consider, as an example, the following excerpt from the VDM-
SL grammar:

Name -> Type

TypeVariableIdentifier -> Type

"@" Identifier -> TypeVariableIdentifier

"compose" Identifier "of" FieldList "end" -> Type

Field* -> FieldList

(Identifier ":")? Type -> Field

"set" "of" Type -> Type

FunctionType -> Type

DiscretionaryType "->" Type -> FunctionType

DiscretionaryType "-t>" Type -> FunctionType

Type | ("(" ")") -> DiscretionaryType

The immediate successor graph corresponding to this excerpt is shown
in Figure 2. Note that lexical non-terminals, such as Name and Identifier

do not appear as nodes in the graph. Also, multiple immediate successor
connections between the same pair of non-terminals are summarized as a
single edge.

As we will discuss below, the tree impurity metrics can be calculated
directly from the immediate successor graph or its transitive closure, while
the remaining structure metrics presuppose the transformation of the
immediate successor graph into a so-called level graph.

Figure 3 shows the level graph obtained from the immediate successor
graph of Figure 2. The level graph contains as nodes the strongly con-
nected components of the immediate successor graph, which are called

Tiago Alves and Joost Visser 11

{ TypeVariableIdentifier }

{ DiscretionaryType, Field, FieldList, FunctionType, Type }

Fig. 3. Level graph for Example 4.

the levels of the grammar. These strongly connected components are sets
of non-terminals that can be reached from each other, i.e. for which the
immediate successor graph contains a path from one to the other and vice
versa. The level graph contains an edge between two strongly connected
components whenever at least one edge exist between a non-terminal in
one component an a non-terminal in another component. By definition,
the level graph is acyclic.

SdfMetz implements construction of immediate successor graphs and level
graphs, and can export both such graphs to the dot format of GraphViz [12].

TIMP - Tree impurity of transitive successor graph (%) Fenton
et al. [6] define tree impurity (TIMP) for undirected graphs without self-
edges as 2(e−n+1)

(n−1)(n−2) × 100%, where n is the number of nodes, and e is the
number of edges. TIMP indicates to what extent the shape of a graph
deviates from a tree shape. A tree impurity of 0% means that the graph is
a tree and a tree impurity of 100% means that it a fully connected graph.

Power et al. [20] apply the tree impurity metric to the transitive
closure of the immediate successor graph, i.e. to the (non-immediate,
transitive) successor graph. Since tree impurity is defined for undirected
graphs without self-edges, this requires that self-edges and multiple edges
between non-terminals should be removed from the edge count before
applying the formula.

Since, when we ignore edge direction, a path exists between any two
non-terminals in the immediate successor graph of Example 4, its tran-
sitive closure is a fully connected graph. Correspondingly, the value of
TIMP is 100%.

TIMPi - Tree impurity of immediate successor graph (%) We
propose to apply the tree impurity metric also to the immediate successor
graph, and we call this metric TIMPi.

12 Metrication of SDF Grammars

ClassOrInterfaceType

Name

InterfaceType

Interfaces

ClassOrInterfaceType

Name

InterfaceType

Interfaces

Fig. 4. Immediate and transitive successor graphs for Example 5.

The value of TIMPi for Example 4 is 20.0%, much smaller than its
value for TIMP. In fact, even purely tree-shaped graphs will drastically
increase in tree impurity when we take their transitive closure.

Example 5. For an extreme example, consider the following fragment
from a Java grammar:

"implements" {InterfaceType ","}+ -> Interfaces

ClassOrInterfaceType -> InterfaceType

Name -> ClassOrInterfaceType

{Identifier "."}+ -> Name

{Identifier "."}+ "." "class" -> Name

The immediate and non-immediate successor graphs of this fragment
are shown in Figure 4. The tree impurity values for this fragment are
TIMPi=0% and TIMP=100%.

More generally, all pure trees that have internal nodes (nodes with both
incoming and outgoing edges) will lose their tree impurity to some degree
after transitive closure. In Section 8 we will compare values for TIMP and
TIMPi for a range of grammars.

SdfMetz reports values for both tree impurity metrics, TIMP and TIMPi.
To compute these values, the transitive and immediate successor graphs
are constructed, and the tree impurity formula is applied after removing
direction and self-edges from each graph.

LEV - Number of levels The LEV metric represents the number of
nodes in the level graph. For Example 4, and as can be seen in Figure 3,
the value of LEV=2.

Tiago Alves and Joost Visser 13

CLEV - Normalized count of levels (%) The CLEV metric, or
normalized count of levels, expresses the number of nodes in the level
graph (LEV) as a percentage of the number of nodes in the successor
graph (VAR). A normalized count of levels of 100% means that there are
as many levels in the level graph as non-terminals in the successor graph.
In other words, there are no circular connections in the successor graph,
and the level graph only contains singleton components. A normalized
count of levels of 50% means that about half of the non-terminals of the
successor graph are involved in circularities and are grouped into non-
singleton components in the level graph. For Example 4, the value of
CLEV=33.33%.

SdfMetz reports both the absolute count of levels (LEV) and the normal-
ized count (CLEV).

NSLEV - Number of non-singleton levels The NSLEV metric in-
dicates how many of the grammar levels contain more than a single non-
terminal. SdfMetz reports both the number and, optionally, exports a
list of the non-singleton levels. For Example 4, there is exactly one non-
singleton level, containing the five non-terminals DiscretionaryType, Field,
FieldList, FunctionType, and Type. Thus, the value of NSLEV=1.

DEP - Size of largest level The DEP metric measures the depth of
the level graph as the maximum number of non-terminals per level. For
Example 4, the value of DEP is 5.

HEI - Maximum height Maximum height measures the height of the
level graph as the longest vertical path through the level graph, i.e. the
biggest path length (in number of nodes) from a source of the level graph
to a sink. In the level graph of Example 4, there is only a single path,
connecting two nodes. Thus, HEI=2.

6 Disambiguation Metrics

In SDF, disambiguation constructs are provided in the same formalism
as the syntax description itself. To quantify this part of SDF grammars,
we defined a series of metrics, which are shown in Table 5. These metrics
are simple counters for each type of ambiguity construct offered by the
SDF notation.

14 Metrication of SDF Grammars

Ambiguity metrics

FRST Number of follow restrictions
ASSOC Number of associativity attributes
REJP Number of reject productions
UPP Number of unique productions in priorities
PREF Number of preference attributes

Table 5. Disambiguation metrics for SDF grammars.

FRST - Number of follow restrictions Follow restrictions specify
that some non-terminals can not be followed by particular characters.
This can be useful, for instance, to specify the longest match of lexicals.
For example, the following restrictions appear in the VDM-SL grammar:

Identifier -/- [a-zA-Z0-9]

NumericLiteral -/- [0-9]

They specify that an Identifier can not leave trailing alpha-numeric char-
acters and that a NumericLiteral can not leave trailing digits. For the entire
VDM-SL grammar, the value of FRST=4.

ASSOC - Number of associativity attributes The associativy at-
tributes of a production specify how that production should associate
with itself. For instance consider the sum operator of an expression:

Expression "+" Expression -> Expression { left }

Because the associativity attribute is left, the expression 2 + 3 + 4 is
recognized as (2 + 3) + 4. For the entire VDM-SL grammar, the value of
ASSOC=35.

REJP - Number of reject productions Reject productions are a
disambiguation instrument commonly used to specify reserved keywords.
For example:

"let" -> Identifier { reject }

This specifies that the let keyword is not allowed as Identifier. More
generally, the body of a reject production is not necessarily a single non-
terminal, but can be any piece of syntax, which basically enables grammar
subtraction. For the entire VDM-SL grammar, the value of REJP=99.

Tiago Alves and Joost Visser 15

UPP - Number of unique productions in priorities In SDF, pri-
orities between productions are specified with chains of priority groups.
For example:

"inverse" Expression -> Expression

>

{ left:

Expression "*" Expression -> Expression

Expression "/" Expression -> Expression

}

>

{ left:

Expression "+" Expression -> Expression

Expression "-" Expression -> Expression

}

Here, the first group consists of a single production, for the inverse op-
erator. It takes higher priority than multiplication (*) and division (/),
which have equal priority to each other, and associate to the left. The
last group, of addition (+) and subtraction (-) takes lowest priority.

For the entire VDM-SL grammar, the total number of unique produc-
tions appearing in priority chains (UPP) is 72.

PREF - number of preference attributes The preference attributes
prefer and avoid can be placed on a production to specify that it takes
preference over all other productions, or conversely that all other pro-
ductions take preference over the attributed production. The VDM-SL
grammar, for example, contains the following production:

PatternBind "=" Expression -> EqualsDefinition {prefer}

PatternBind "=" CallStatement -> EqualsDefinition

Some call statements in VDM can also be parsed as expressions, and both
can occur in the right-hand side of an equals definition. Thus, in this case,
the prefer attribute serves to resolve an ambiguity between Expression and
CallStatement that occurs in the specific context of an EqualsDefinition.

7 Coverage Metrics

To determine how well a given grammar has been tested, a commonly
used indicator is the number of non-empty lines in the test suites. A
more reliable instrument to determine grammar test quality is coverage
analysis. We have adapted the BNF rule coverage (RC) metric [21] for

16 Metrication of SDF Grammars

this purpose. The RC metric simply counts the number of production
rules used during parsing of a test suite, and expresses it as a percentage
of the total number of production rules of the grammar.

RC, NC - rule and non-terminal coverage In the case of SDF,
several interpretations of RC are possible, due to the fact that a single
non-terminal may be defined by multiple productions. One possibility is
to count each of these alternative productions separately. We will reserve
the RC name for this form of rule coverage. Another possibility is to count
different productions of the same non-terminal as one. For this metric,
we introduce the name non-terminal coverage (NC). RC gives a more
accurate indication than NC of how extensively a grammar is covered by
a given test suite. However, for comparison with rule coverage for BNF
grammars, NC is more appropriate.

An even more accurate indication of coverage can be obtained with
context-dependent rule coverage [13] (CDRC). This metric takes into ac-
count not just whether a given production is used, but also whether it is
used in each context where it can actually occur. However, implementa-
tion, and especially computation, of this metric is more involved.

We have implemented the tool SdfCoverage to compute RC and NC
for SDF. The tools takes parse trees produced by the SGLR parser as
input. The nodes of these parse trees are labeled with ASTs of the SDF
productions that were involved in creating them. In addition, the SdfCov-
erage tool receives the original SDF grammar as input. It simply collects
all productions from the given parse trees into a set of used productions,
and all productions from the grammar into a set of defined productions.
Subsequently, the RC percentage is computed by dividing the cardinal-
ity of the first set (used) by the cardinality of the second (defined). To
compute the NC percentage, these sets are first transformed into sets of
defined non-terminals. Then, again the quotient of their cardinalities is
computed.

Table 6 lists the various coverage metrics for (E)BNF and SDF. In [2],
we report on measured values of NC and RC during all 48 steps of our
VDM-SL grammar development project.

8 Data collection

We have sampled a series of grammars with our SdfMetz tool. In this
section, we present the collected data and provide some observations re-
garding their interpretation. A full statistical analysis of the collected
data is beyond the scope of this report.

Tiago Alves and Joost Visser 17

Coverage metrics (E)BNF SDF

RC Rule coverage x
RC Rule coverage per production x
NC Rule coverage per non-terminal x

CDRC Context-dependent rule coverage x

Table 6. Coverage metrics for grammars. The last two columns indicate which are
defined elsewhere for (E)BNF, and which were introduced specifically for SDF by us.

8.1 Sampled grammars

We have used SdfMetz to collect metrics data for a series of SDF gram-
mars from various origins. From the Grammar Base (an online repository
of SDF grammars [7]), we obtained SDF grammars for Yacc, BibTex, For-
tran 77, Toolbus, Stratego, SDF itself, Java, AT&T SDL, C, and Cobol.
From the Software Improvement Group [24], we obtained grammars for
DB2/SQL and PL/SQL. From source distributions of SDF-related tools,
PGEN [19] and Strafunski [16], we obtained grammars for Risla, Casl, and
again Cobol. Finally, from local projects, we took grammars for VDM-SL
and VB.Net.

We collected data also from grammars written in the syntax notation
of the Design Management System (DMS) toolkit [4] of Semantic De-
signs [23]. The DMS toolkit supports GLR parsing, which makes gram-
mars written in its syntax notation interesting for comparison to SDF
grammars. For this purpose, we adapted the front-end of SdfMetz to ac-
cept DMS grammars as well as SDF grammars. The DMS notation has a
minimal design. Similar to basic BNF, the DMS notation lacks operators
for repetition or optionals. In fact, it even dispenses with the alternative
operator. Instead, the DMS notation allows several productions for a sin-
gle non-terminal, as does SDF. Semantic Designs allowed us to perform
measurements on their DMS grammars for Java, ECMAScript, PHP 5,
C++, and Verilog 2001.

Apart from the data collected by us on SDF and DMS grammars, we
will reproduce, for comparison purposes, some data from the paper from
which we adopted the various grammar metrics [20]. This data concerns
grammars for C, Java, C++, and C#, which were developed in BNF-like
notation. Note that for these grammars, the AVSn and AVSp metrics
are always equal, since the number of productions and non-terminals is
always equal in BNF grammars.

Table 7 lists the various grammars that were sampled, together with
some of their properties. Two versions of the same Cobol grammar are

18 Metrication of SDF Grammars

Language Origin Notation Purpose Paradigm

Yacc gb SDF specify syntax declarative
BibTex gb SDF specify bibliographic data declarative
Fortran 77 gb SDF programming procedural
Toolbus gb SDF specify protocols declarative
Stratego gb SDF programming declarative
SDF 2.4 gb SDF specify syntax declarative
SDF 2.3 gb SDF specify syntax declarative
Java gb SDF programming object-oriented
AT&T SDL gb SDF specification declarative
C gb SDF programming procedural
Cobol (alt) gb SDF programming procedural

DB2/SQL sig SDF querying declarative
PL/SQL sig SDF programming & querying procedural

Risla pgen SDF specify financial products declarative
Casl pgen SDF specification declarative

Cobol sfi SDF programming procedural

VDM-SL ta SDF specification declarative
VB.net jv SDF programming object-oriented

ECMAScript sd DMS web programming scripting
PHP 5 sd DMS web programming scripting
Java 5 sd DMS programming object-oriented
Verilog 2001 sd DMS hardware description mixed
C++ sd DMS programming object-oriented

C pm BNF programming procedural
Java pm BNF programming object-oriented
C++ pm BNF programming object-oriented

C# pm BNF programming object-oriented

gb = The online Grammar Base [7].
sig = Software Improvement Group [24].
pgen= Parsetable Generator source distribution [19].
sfi = Strafunski source distribution [16].

jv = Joost Visser.
ta = Tiago Alves.
sd = Semantic Designs [23].
pm= Power and Malloy [20].

Table 7. Sampled grammars and some of their properties.

listed: the one marked alt, from the Grammar Base, makes heavy use of
nested alternatives, while in the other one, such nested alternatives have
been folded into new non-terminals.

8.2 Comparing size, complexity, and structure metrics

Size, complexity, and structure data have been obtained for all sampled
grammars, as shown in Table 8. Data for the Halstead effort metric (E)
is also listed, and the grammars are sorted by their value for that metric.

Tiago Alves and Joost Visser 19

Grammar term var prod mcc avsn avsp e timpi timp lev clev nslev dep hei

Yacc 25 13 26 34 5.1 2.5 8.4 4.5 42.4 11 84.6 2 2 6
BibTex 20 6 16 21 12 4.4 8.9 20 100 6 100 0 1 6
Fortran 41 16 41 32 8.8 3.4 19 4.8 42.9 15 93.8 1 2 7
Toolbus 44 23 59 47 7.3 2.9 21 4.8 64.1 22 95.7 1 2 10
C (pm) 86 65 149 5.9 51 64.1 22 33.8 3 38 13
Stratego 66 25 106 112 13 3.2 75 4.7 94.9 13 54.2 1 12 7
Sdf (2.4) 70 43 131 107 6.9 2.3 79 2.3 68.3 38 90.5 3 3 21
ECMAScript 144 90 344 254 9.6 2.5 81 1.6 83.7 29 32.2 3 57 10
Risla 71 53 106 87 7.7 3.9 82 3.3 41.9 47 92.2 2 4 12
Sdf (2.3) 74 44 137 108 6.9 2.2 83 2.4 68.1 38 88.4 3 4 21
Casl 79 95 222 190 6.0 2.6 94 2.2 65.6 68 72.3 4 13 24
Java (pm) 100 149 213 4.1 95 32.7 89 59.7 4 33 23
PHP 159 112 418 306 8.8 2.4 97 1.6 76.1 55 49.1 2 37 15
Java (sfi) 101 105 239 197 5.0 2.2 132 1.6 83.6 44 41.9 1 62 14
AT&T SDL 89 91 174 170 5.0 2.6 133 1.1 39.8 76 83.5 2 13 14
Java (sd) 99 144 460 316 7.8 2.5 138 1.3 93.9 41 28.5 2 87 17
C (gb) 91 73 190 190 6.1 2.3 143 2.8 89.9 30 41.7 2 39 11
C++ (pm) 116 141 368 6.1 173 85.8 21 14.9 1 121 4
DB2/SQL 214 98 292 311 7.9 2.6 185 1.0 42.6 69 71.1 1 29 16

C# 138 245 466 4.7 228 29.7 159 64.9 5 44 28
VDM-SL 143 71 227 232 10 3.3 248 2.8 78.7 35 49.3 3 27 13
VB.Net 169 233 473 469 4.7 2.3 294 0.84 48.4 156 67.0 6 43 26
Cobol (sfi) 338 493 829 739 3.2 1.9 306 0.24 12.6 465 94.3 3 20 26
Verilog 232 488 1248 760 6.6 2.6 456 0.45 46.1 266 54.5 10 117 19
Cobol (gb) 379 185 231 1158 10.4 8.3 578 1.2 22.1 150 81.1 5 21 14
PL/SQL 456 499 1094 888 4.5 2.1 711 0.34 24.5 434 87.0 2 38 29
C++ (sd) 173 436 2122 1686 12 2.5 1301 0.67 96.3 42 9.63 2 393 10

Table 8. Values of size, complexity, and structure metrics. The slanted grammars are
in BNF, whose values are reproduced from [20], except LEV, which is computed by
us as VAR×CLEV. The remaining grammars are in SDF and DMS. Rows have been
sorted by Halstead effort (E), which is reported in thousands.

The value of McCabe’s cyclomatic complexity (MCC) is below 500 for
22 of our 27 grammars. From the remaining ones, the two highest scoring
grammars are the Cobol grammar from the Grammar base (MCC=1158)
and the C++ grammar from Semantic Designs, which double and triple
this value, respectively. An interest observation about MCC can be made
when we divide it by the number of non-terminals (VAR) or by the num-
ber of productions (PROD). Most grammars turn out to fall within a
small bandwidth with respect to these ratios (0.6 ≤ MCC

PROD ≤ 1.4 and
1.5 ≤ MCC

VAR ≤ 3.5). Only the Cobol grammar from the Grammar Base ex-
ceeds by several factors the upper bounds of these intervals (MCC

PROD = 5.0
and MCC

VAR = 6.3), which is again due to its style of alternative usage.

20 Metrication of SDF Grammars

Fig. 5. Scatter plot that shows the two tree impurity metrics, TIMP and TIMPi, not
to be correlated.

Note that the average size of production body per production (AVSp)
is remarkably constant throughout all of the SDF and DMS grammars,
viz. mostly between 2 and 4. Apparently, most grammar writers tend to
organize their grammars in such a way that production size averages to
such a value. A notable outlier in this respect is the Cobol grammar from
the Grammar Base (AVSp=8.3), which makes heavy use of nested alter-
natives. This tends to increase the size of production bodies. The Cobol
grammar from the Strafunski bundle, where such nested alternatives have
been removed, actually has a value at the low end (AVSp=1.9).

The ranges of values of the two tree impurity metrics are quite dif-
ferent. For immediate successor graphs (TIMPi), the values lie between
0.24% and 4.8%, with the exception of the smallest grammar (in terms
of TERM, VAR, and PROD), i.e. BibTex (TIMPi=20%). For transitive
successor graphs (TIMP), the values range between 12.6% and 96.3%,
again excluding BibTex (TIMP=100%). One may also observe that there
is no clear correlation between the two, as illustrated by the scatter plot
in Figure 5.

The two C++ grammars exhibit the lowest values for the normalized
count of levels metric (CLEV), indicating a high degree of circularity in
their immediate successor graphs. The BNF and DMS grammars tend to
have lower CLEV values (all below 65), then the SDF grammars (most
above 65). This may be due to SDF’s larger repertoire of repetition opera-
tors, which allows to prevent various kinds of recursion in grammars. The
absolute count of levels shows that most grammars score below 100, ex-
cept for 6 grammars, that have values between 150 and 465. The number
of non-singleton grammars is quite limited for most grammars (NSLEV
≤ 5), except for the VB.Net grammar (6) and the Verilog grammar(10).

The size of the largest grammar level (DEP) tends to be smaller for
SDF grammars (most below 30) than for BNF and DMS grammars (all

Tiago Alves and Joost Visser 21

above 30). We can hypothesize that this is due to the different approaches
to disambiguation, in particular of expression syntax. In SDF, the typ-
ical approach is to have a single non-terminal for expressions, and use
priority chains to disambiguate the various productions that define this
non-terminal. In BNF, the typical approach is to divide expressions over
as many non-terminals as there are priority distinctions, and to build
disambiguation into the syntax itself by appropriately nesting these non-
terminals in each other’s productions. Inspection of the grammars could
shed light on this hypothesis, but only the SDF grammars are available
to us, at least in non-obfuscated form. Grammar height (HEI) seems to
be fairly evenly distributed between 4 and 29.

8.3 Comparing Halstead metrics

For the SDF and DMS grammars we have computed the full range of
Halstead metrics, not just the effort metric. Table 9 shows the values.
Rows are again sorted by Halstead effort (E).

Note that the value of n1 is 2 for all DMS grammars, which reflects
the fact that the only operators of this notation are sequencing and pro-
duction construction (cf. -> in SDF). For SDF grammars the value of
n1 lies between 4 and 9, indicating that not all grammar authors take
advantage of SDF’s full operator repertoire. Among these, the grammars
for AT&T SDL and C from the Grammar Base score highest (n1=9), by
using nested sequences and alternatives, optionals, and four operators for
separated and non-separated repetition. None of the SDF grammars use
the epsilon operator (()), repetition with an explicit lower bound (e.g. A 2+

or {A ";"}3+), sets, pairs, functions, or permutations (cf. Table 3). The to-
tal number of operators and operands (N), seems significantly correlated
with the number of non-terminals (VAR), as illustrated by Figure 6. Se-
mantic Designs’ C++ grammar scores highest, with a value of 12670, and
seems to be an outlier regarding this correlation.

8.4 Comparing disambiguation metrics

Disambiguation metrics have been computed for the SDF grammars only.
The data is shown in Table 10, again ordered by Halstead effort (E),
though this metric is not shown.

The VB.Net grammar we measured is from a project in progress, and
has not been fully disambiguated yet. This explains the absence of asso-
ciativity attributes and the low number of follow restrictions (FRST=1)
and reject productions (REJP=3).

22 Metrication of SDF Grammars

Grammar u1 u2 n1 n2 n N V D E L T

Yacc 7 37 85 92 44 177 966 8.70 8.4 0.11 467
BibTex 6 24 79 87 30 166 815 10.88 8.9 9.2e-2 492
Fortran 6 57 148 182 63 330 1973 9.58 19 0.10 1050
Toolbus 5 67 174 228 72 402 2480 8.51 21 0.12 1172
C (pm) 51
Stratego 6 91 346 440 97 786 5188 14.51 75 6.9e-2 4180
Sdf (2.4) 7 137 379 496 144 875 6274 12.67 79 7.9e-02 4417
ECMAScript 2 250 879 1211 252 2090 16673 4.84 81 0.21 4487
Risla 6 124 424 516 130 940 6601 12.48 82 8.0e-2 4578
Sdf (2.3) 7 141 389 512 148 901 6496 12.71 83 7.9e-2 4586
Casl 4 174 582 794 178 1376 10287 9.13 94 0.11 5216
Java (pm) 95
PHP 2 286 1005 1403 288 2408 19673 4.91 97 0.20 5362
Java (gb) 7 206 565 759 213 1324 10241 12.90 132 7.8e-2 7337
AT&T SDL 9 182 504 626 191 1130 8562 15.48 133 6.5e-2 7363
Java (sd) 2 251 1142 1588 253 2730 21794 6.33 138 0.19 7660
C (gb) 9 166 486 632 175 1118 8330 17.13 143 5.8e-02 7929
C++(pm) 173
DB2/SQL 7 326 872 1063 333 1935 16214 11.41 185 8.8e-2 10280

C# 228
VDM-SL 8 214 788 968 222 1756 13687 18.09 248 5.5e-2 13758
VB.Net 6 402 1324 1571 408 2895 25107 11.72 294 8.5e-2 16353
Cobol (sfi) 5 831 1971 2397 836 4368 42402 7.21 306 0.14 16987
Verilog 2 734 3341 4487 736 7828 74550 6.11 456 0.16 25318
Cobol (gb) 7 565 2573 2155 572 4728 43308 13.35 578 7.5e-2 32119
PL/SQL 7 955 2512 3343 962 5855 58022 12.25 711 8.2e-2 39493
C++(sd) 2 676 5292 7378 678 12670 119163 10.91 1301 9.2e-02 72254

Table 9. Values of all the Halstead metrics for SDF and DMS grammars. The values
of the Halstead effort metric E for BNF grammars are reproduced from [20].

With large margins, our VDM-SL grammar scores highest in terms of
associativity attributes (ASSOC=35) and priorities (UPP=72). This can
be explained from the exceptionally large range of built-in operators of
the VDM-SL language, which need disambiguation. The absence of as-
sociativity attributes and priorities (ASSOC=UPP=0) in the two Cobol
grammars and the C grammar is due to the adoption of Yacc-style disam-
biguation, where as many hierarchically layered expression non-terminals
are introduced as there are operator precedences. In the Yacc grammar,
which is quite small, the absence of all disambiguation constructs except
follow restrictions is explained simply by the lack of nestable operators
in the language.

Tiago Alves and Joost Visser 23

Fig. 6. Scatter plot that shows likely correlation between the number of non-terminals
(VAR) and Halstead’s total number of operators and operands (N).

Grammar FRST ASSOC REJP UPP PREF

Yacc 8 0 0 0 0
BibTex 4 1 3 0 0
Fortran 1 5 0 10 4
Toolbus 2 4 0 4 1
Stratego 6 8 27 15 0
Sdf (2.4) 6 8 40 13 2
Risla 4 11 15 17 0
Sdf (2.3) 6 8 46 13 1
Casl 5 1 23 4 1
Java (gb) 9 12 48 24 4
AT&T SDL 6 7 49 2 0
C (gb) 8 0 33 0 1
DB2/SQL 9 7 3 7 8
VDM-SL 4 35 99 72 4
VB.Net 1 0 3 10 0
Cobol (sfi) 5 0 320 0 0
Cobol (gb) 7 0 701 0 0
PL/SQL 16 9 414 8 31

Table 10. Values of disambiguation metrics for SDF grammars.

The large values for the number of reject productions (REJP) for
the two Cobol grammars and the PL/SQL grammars indicate that these
languages contain high numbers of reserved keywords. The difference of
rougly a factor two in values (REJP=320 and 701) between the two Cobol
grammars is due to a simple refactoring. The version from the Grammar
Base rejects each keyword for two non-terminals, leading to two reject pro-
ductions for each reserved keyword. The refactored version from the Stra-
funski distribution defines on of the non-terminals in question in terms of
the other, and therefore needs only a single reject per keyword.

24 Metrication of SDF Grammars

The prefer and avoid attributes of SDF are most intensively used in the
PL/SQL grammar. Many of these are placed on context-free productions
that introduce keywords which are explicitly rejected from identifier non-
terminals at the lexical level. A possible motivation for this encoding
could be that it facilitates recognition of these keywords in the abstract
syntax tree produced after parsing.

9 Related work

As said, the starting point of our work has been the 10 grammar metrics
formally defined by Power et al. in [20]. We have adapted their met-
rics to SDF where appropriate, and we have introduced further SDF-
specific metrics, for measuring disambiguation constructs in particular.
We have adopted their tree impurity metric for transitive successor graphs
(TIMP), and we have proposed a second tree impurity metric, for immedi-
ate successor graphs (TIMPi). They presented values of their 10 grammar
metrics for 4 grammars. We provided values for 29 grammar metrics of
23 additional grammars. Whereas the grammars sampled by them all fall
within the family of C-like programming languages, our grammars cover
a wider variety of languages, including mainframe legacy languages, spec-
ification languages, scripting languages, and domain-specific languages.

Power et al. implemented the SynQ tool to measure the metrics. They
present the tool’s architecture and some implementation details. The im-
plementation language is C++, using the visitor design pattern for AST
walking. The graph algorithms use a matrix representation of graphs.
The architecture of our tool SdfMetz is similar, though very different on
the implementation level. We implemented SdfMetz in the functional pro-
gramming language Haskell, using strategic programming techniques [17].
The underlying graph representation is a finite map-based set of pairs.
Since grammar graphs are generally sparse, these implementation choices
have proven to allow excellent performance.

Malloy et al. have applied various software engineering techniques
during the development of a LALR parser for C# [18]. Their techniques
include versioning, testing, and the grammar size, complexity, and struc-
ture metrics that we adopted [20]. They do not measure coverage. We
have used a similar suite of techniques, including grammar metrication,
for metrics-based monitoring of a grammar development project for the
VDM-SL language. We report on this elsewhere [2, 3].

Lämmel et. al. have advocated derivation of grammars from lan-
guage reference documents through a semi-automatic transformational

Tiago Alves and Joost Visser 25

process [15, 14]. In particular, they have applied their techniques to re-
cover the VS COBOL II grammar from railroad diagrams in an IBM
reference manual. They use metrication on grammars, though less exten-
sive than we. Coverage measurement nor unit tests are reported.

Klint et. al. provide an survey over grammar engineering techniques
and a agenda for grammar engineering research [11]. Our work fits into
this agenda.

10 Concluding remarks

We have shown that the grammar metrics of Power et al. [20] and the
coverage metrics of Purdom [21] can be generalized to richer syntax no-
tations, and to SDF in particular. In addition, we have defined some
SDF-specific metrics, for measuring disambiguation constructs. We have
implemented these generalized grammar metrics in the SdfMetz and Sdf-
Coverage tools. We have applied these tools to perform measurements on
a suite of medium to large-sized grammars from various academic and
industrial origins, and we have presented the collected data side by side
with previously published data for BNF grammars.

10.1 Future work

The validation of grammar metrics, their connection to external grammar
attributes (e.g. quality, modifiability, modularizability), and the embed-
ding of their use in grammar engineering processes are important topics
that go beyond the scope of this report. Definition of metrics and data
collection, as presented here, are initial steps to enable addressing these
issues. An important next step is comprehensive statistical analysis of
measurement results. Such analysis should shed light on questions re-
garding how well-behaved the metrics are and to what extent they are
independent of each other. The suite of sampled grammars should be
further extended to ensure the validity and representativeness of such
statistical analysis.

Our SdfMetz tool currently accepts two grammar notations: SDF and
DMS. We intend to add front-ends for common grammar notations, such
as Yacc, ANTLR, and various BNF dialects commonly employed in lan-
guage reference documents. Apart from grammar notations per se, we
consider providing front-ends for grammar-like schema notations, such as
XSD.

Quantitative data about grammars should be related to nominal data
to guide the interpretation of metrics values. In table 7, nominal data is

26 Metrication of SDF Grammars

presented for a tentative initial set of nominal external attributes (gram-
mar origin, the purpose and paradigm of the language they generate) and
a nominal internal attribute (notation). It could be worthwhile to elab-
orate this set into a more comprehensive questionnaire to be used in a
wider ‘grammar census’.

Lämmel generalized the notion of rule coverage and advocates the
uses of coverage analysis in grammar development [13]. SDF tool support
for his context-dependent rule coverage metric has yet to be developed.

Availability Source code distributions of the SdfMetz and SdfCoverage
tools are freely available from the web pages of the authors. From the
same pages, all data presented in Section 8 is available in raw form.

Acknowledgments We thank Tobias Kuipers of the Software Improve-
ment Group and Ira Baxter of Semantic Designs for graciously allowing
us to perform measurement on grammars developed by their respective
companies.

References

1. A. Abran, J.W. Moore, P. Bourque, and R. Dupuis (eds.). Guide to the Soft-
ware Engineering Body of Knowledge - SWEBOK, Version 2004. IEEE Computer
Society, www.swebok.org.

2. T. Alves and J. Visser. Development of an industrial strength grammar for VDM.
Technical Report DI-PURe-05.04.29, Universidade do Minho, 2005.

3. T. Alves and J. Visser. Grammar engineering applied for development of a VDM
grammar. Manuscript in preparation, 2005.

4. I. Baxter, P. Pidgeon, and M. Mehlich. DMS: Program transformations for practi-
cal scalable software evolution. In Proceedings of the International Conference on
Software Engineering. IEEE Press, 2004.

5. R. Dumke. Software metrics - a subdivided bibliography. http://irb.cs.uni-
magdeburg.de/sw-eng/us/bibliography/bib main.shtml.

6. N. Fenton and S.L. Pfleeger. Software metrics: a rigorous and practical approach.
PWS Publishing Co., Boston, MA, USA, 1997. 2nd edition, revised printing.

7. The online Grammar Base. http://www.cs.uu.nl/ mdejonge/grammar-base/.

8. M.H. Halstead. Elements of Software Science, volume 7 of Operating, and Pro-
gramming Systems Series. Elsevier, New York, NY, 1977.

9. J. Heering, P.R.H. Hendriks, P. Klint, and J. Rekers. The syntax definition for-
malism SDF — Reference manual. SIGPLAN Notices, 24(11):43–75, 1989.

10. M. de Jonge and J. Visser. Grammars as contracts. In Proceedings of the Second
International Conference on Generative and Component-based Software Engineer-
ing (GCSE 2000), volume 2177 of Lecture Notes in Computer Science, pages 85–99.
Springer, 2000.

Tiago Alves and Joost Visser 27

11. P. Klint, R. Lämmel, and C. Verhoef. Towards an engineering discipline for gram-
marware. Draft, Submitted for journal publication; Online since July 2003, 42
pages, July11 2004.

12. E. Koutsofios. Drawing graphs with dot. Technical report, AT&T Bell Laborato-
ries, Murray Hill, NJ, USA, November 1996.

13. R. Lämmel. Grammar Testing. In Proc. of Fundamental Approaches to Software
Engineering (FASE) 2001, volume 2029 of LNCS, pages 201–216. Springer-Verlag,
2001.

14. R. Lämmel. The Amsterdam toolkit for language archaeology (Extended Ab-
stract). In Proceedings of the 2nd International Workshop on Meta-Models,
Schemas and Grammars for Reverse Engineering (ATEM 2004), October 2004.

15. R. Lämmel and C. Verhoef. Semi-automatic Grammar Recovery. Software—
Practice & Experience, 31(15):1395–1438, December 2001.

16. R. Lämmel and J. Visser. Strafunski home page. http://www.cs.vu.nl/Strafunski/.
17. R. Lämmel and J. Visser. A Strafunski Application Letter. In V. Dahl

and P. Wadler, editors, Proc. of Practical Aspects of Declarative Programming
(PADL’03), volume 2562 of LNCS, pages 357–375. Springer-Verlag, January 2003.

18. B.A. Malloy, J.F. Power, and J.T. Waldron. Applying software engineering tech-
niques to parser design: the development of a C# parser. In SAICSIT ’02: Pro-
ceedings of the 2002 annual research conference of the South African institute of
computer scientists and information technologists on Enablement through technol-
ogy, pages 75–82. South African Institute for Computer Scientists and Information
Technologists, 2002.

19. PGEN: Parse table generator home page. http://www.cwi.nl/projects/MetaEnv/pgen.
20. J.F. Power and B.A. Malloy. A metrics suite for grammar-based software. In

Journal of Software Maintenance and Evolution, volume 16, pages 405–426. Wiley,
November 2004.

21. P. Purdom. Erratum: “A Sentence Generator for Testing Parsers” [BIT 12(3),
1972, p. 372]. BIT, 12(4):595–595, 1972.

22. J. Rekers. Parser Generation for Interactive Environments. PhD thesis, University
of Amsterdam, 1992.

23. Semantic Designs, Inc., home page. http://www.semdesigns.com/.
24. Software Improvement Group home page. http://www.sig.nl/.
25. M.G.J. van den Brand, J. Scheerder, J. Vinju, and E. Visser. Disambiguation

filters for scannerless generalized LR parsers. In N. Horspool, editor, Compiler
Construction (CC’02), volume 2304 of Lecture Notes in Computer Science, pages
143–158, Grenoble, France, April 2002. Springer-Verlag.

26. E. Visser. Syntax Definition for Language Prototyping. PhD thesis, University of
Amsterdam, 1997.

27. A.H. Watson and T.J. McCabe. Structured testing: A testing methodology using
the cyclomatic complexity metric. Technical Report 500-235, NIST Computer
Systems Laboratory, 1996.

