
Arent Janszoon Ernststraat 595-H
NL-1082 LD Amsterdam
info@sig.nl
www.sig.nl

May 29, 2008

Static Estimation of Test Coverage
Tiago Alves & Joost Visser

Introduction

Background
• 2004 - Computer Science and Systems Engineering, University of Minho, Braga
• 2006 - MSc in Informatics

• Grammar engineering (ISO VDM-SL Grammar in SDF)
• SdfMetz: Metrication of syntax formalisms (SDF, DMS, Antlr, and Bison)
• VooDooM: model transformation and code generation (VDM-SL -> SQL)
• Teaching compiler course 3rd year students

• 2006 - European Space Operations Center (ESA), Damstadt, Germany
• Team member responsible for managing development of a prototype system
• Requirements specification for new software system
• Acceptance test of a communication system.

• 2007 - PhD at University of Minho and Software Improvement Group
• 2LT Extensions: Contraint-aware transformations
• Static estimation of test coverage

3

Static estimation of test coverage

Measuring testing coverage

Pros:
• Indicator for test quality
• Indicator for quality of the software under test

• Higher coverage => better software quality (in principle)

Cons:
• Tied with software development process

• Full installation required (sources + libraries)
• Instrumentation of source/byte code (problematic in embedded systems)
• Execution (Hardware or time constraints)

• Not appropriate to compute in the context of software quality assessment!!

4

Static estimation of test coverage

Research Challenge

13th Testdag, Delft, November 2007
• I. Heitlager, T. Kuipers, J. Visser “Observing unit test maturity in the wild”

Research questions:
• Is it possible to determine test coverage without running tests?
• What trade-offs can be made between sophistication and accuracy?

Requirements
• Use only static analysis
• Scale to large systems
• Robust against incomplete systems

5

Static estimation of test coverage

Solution sketch

1. Extract
• Extract structural and call information
• Determine set of test classes

2. Slice (modified)
• Slice graph starting from the test

methods
• Set of methods reached from test code
• Take into account class initializer calls

3. Count (per class)
• Determine number of defined methods
• Determine number of covered methods

4. Estimate
• Class coverage
• Package coverage
• System coverage

Modified slicing

Binary relational expression SemmleCode implementation

predicate isTestCovered() {
 exists(TestClass tc, Callable tm

| tc.contains(tm) and
 tm.polyCalls+(this))

 or
 exists(Callable m |m.hasName("<clinit>")

 and m.polyCalls+(this))
 }

7

Static estimation of test coverage

What can go wrong?
(Sources of imprecision)

Java language
• Control flow

• Conditional statements (if-then, if-then-else)
• Switch statements (switch, case)
• Looping statements (for, while, do-while)
• Branching statements (break, continue, return)

• Dynamic dispatching
• Inheritance

• Overloading

General issues
• Frameworks / Libraries call backs
• Identification of test code

• Test code is recognized by determining JUnit dependencies
• ///CLOVER:OFF flags

Dealing with imprecision

Pessimistic approach
• Report only what can be determined to be true
• False negatives
• Estimates lower bound for coverage

Optimistic approach
• Report everything that might be true
• False positives
• Estimates upper bound for coverage

Pessimistic vs. Optimistic (software assessment context)
• Pessimistic will always report low coverage
• Optimistic will be sensitive to lack of coverage




9

Static estimation of test coverage

Experimental design

Data set selection and characterization
• Open-source and proprietary Java systems
• Available clover report (XML or HTML)

Execution of experiment
• SemmleCode execution (text file export + scripts for CSV conversion)
• XML Clover extraction (XSLT transformations to CSV conversion)
• HTML Clover extraction (grep, sed, awk, wc scripts to CSV conversion)
• Custom built java tool to read CSV files and XLS creation

Statistical analysis
• Histograms (distribution)
• Scatter charts (correlation)
• Spearman (correlation)
• Inter-quartile ranges (dispersion)

10

Static estimation of test coverage

Data set characterization

System name LOC #Packages #Classes #Methods

Pacman 2987 2 20 181

G System 6265 15 53 385

Utils 23604 35 260 2571

Dom4j 42863 14 144 2481

PMD 51219 40 455 3398

Architect 58477 17 220 2781

DepFinder 73861 12 261 4686

R System 79776 62 600 5620

11

Static estimation of test coverage

Statistical analysis
(System coverage comparison)

System Static Clover Diff

Pacman 84.53% 90.61% -6.08%

G System 88.37% 94.81% -6.44%

Utils 72.95% 68.73% 4.22%

Dom4j 60.69% 45.20% 15.49%

PMD 77.77% 65.50% 12.27%

Architect 48.98% 35.30% 13.68%

DepFinder 62.14% 70.08% -7.94%

R System 64.54% 72.46% -7.92%

12

Static estimation of test coverage

Statistical Analysis
(Class and package coverage comparison)

System name
Spearman Median Inter-quartile range

Class Package Class Package Class Package

Pacman 0.275 1 0 -0.086 0.093 -

G System 0.777** 0.694** 0 0 0 0.046

Utils 0.737** 0.825** 0 0.01 0.038 0.109

Dom4j 0.557** 0.625* 0.17 0.099 0.373 0.243

PMD 0.702** 0.693** 0 0.066 0.128 0.189

Architect 0.504** 0.5* 0 0.064 0.28 0.197

DepFinder 0.659** 0.396 0 -0.004 0.13 0.132

R System 0.752** 0.652** 0 -0.1 0.01 0.186

13

Static estimation of test coverage

R System: detailed statistical analysis
(Class coverage histograms comparison)

Clover Static

R System: detailed statistical analysis
(Class coverage comparison + differences)

14

Static estimation of test coverage

R System: detailed statistical analysis
(Package coverage histograms comparison)

15

Static estimation of test coverage

Clover Static

R System: detailed statistical analysis
(Package coverage comparison + differences)

16

Static estimation of test coverage

17

Static estimation of test coverage

Conclusion

Is it possible to determine test coverage without running tests?
• Yes!!!
• Spearman: high correlation between static and clover coverage
• In general static coverage identifies the same values as clover

What trade-offs can be made between sophistication and accuracy?
• Average absolute difference for system coverage: 9%
• Class and Package coverage needs further improvement

Implementation
• SemmleCode: 92 LOC = 76 LOC (extensions) + 16 LOC (3 Queries)
• SIG Monitor: 265 LOC = 136 + 56 + 22 + 23 + 14 + 15 (6 classes)

18

Static estimation of test coverage

Future work

Implementation:
• Add analysis to production at SIG (done)
• Add tests (in progress)

Research:
• Use LOC as a weight for better estimation of coverage
• Compute static levels of testing

• T. Kanstrén. Towards a deeper understanding of test coverage
• Investigate the use of McCabe + #Tests + #asserts + Test(LOC) / Code(LOC)

19

Static estimation of test coverage

Questions?

