
Standardized Code Quality Benchmarking for Improving Software Maintainability

Robert Baggen
TÜV Informationstechnik GmbH

Essen, Germany
Email: r.baggen@tuvit.de

Katrin Schill
TÜV Informationstechnik GmbH

Essen, Germany
Email: k.schill@tuvit.de

Joost Visser
Software Improvement Group

The Netherlands
Email: j.visser@sig.eu

Abstract—We provide an overview of the approach devel-
oped by the Software Improvement Group (SIG) for code anal-
ysis and quality consulting focused on software maintainability.
The approach uses a standardized measurement model based
on the ISO/IEC 9126 definition of maintainability and source
code metrics. Procedural standardization in evaluation projects
further enhances the comparability of results. Individual as-
sessments are stored in a repository that allows any system
at hand to be compared to the industry-wide state of the art
in code quality and maintainability. When a minimum level
of software maintainability is reached, the certification body
of TÜV Informationstechnik GmbH (TÜViT) issues a Trusted
Product Maintainability certificate for the software product.

Keywords-Software product quality, benchmarking, certifi-
cation, standardization.

I. INTRODUCTION

The quality of source code is an important determinant
for software maintainability. However, many projects fail
to assess code quality and to control it the same way as
the other classical project management KPIs for timeline or
budget. This is often due to the fact that projects lack a
standardized frame of reference when working with source
code measurements. As a result, the quality of the product
remains unknown until the (final) testing and problem fixing
phase begins.

In this short paper, we describe an approach developed by
the Software Improvement Group (SIG) for code analysis
and quality consulting focused on software maintainability.
The approach uses a standardized measurement procedure
based on the ISO/IEC 9126 definition of maintainability
and source code metrics. Due to measurement standardiza-
tion, individual assessments can be stored in a repository.
Based on the repository, any system at hand can be com-
pared to the industry-wide state of the art in code quality
and maintainability. Procedural standardization in evaluation
projects further enhances the comparability of results. When
a minimum level of software maintainability is reached,
TÜV Informationstechnik GmbH (TÜViT) issues a Trusted
Product Maintainability certificate for the software product.
An illustration of the approach is provided in Figure 1.

The paper is organized as follows. In Section II we
start with an explanation of the measurement model and
its calibration against a benchmark database of measure-
ment results. In Section III we describe the standardized

evaluation procedure in which the model is used to arrive
at quality judgements in an evaluator-independent manner.
This evaluation procedure is used as part of the software
product certification scheme presented in Section IV. The
evaluation procedure and the certification also play a role
in software quality consulting services, as explained in
Section V. Section VI discusses related work. In Section VII
we conclude with a summary of the approach.

II. MEASURING SOFTWARE VIA CODE METRICS

The application of objective metrics for the measurement
and improvement of code quality has a tradition of more
than 40 years. Today, code measurement is seen as prag-
matic work – the goal is to find the right indicator for a
given quality aspect and a given development environment.
However, being too creative about the measurements may
preclude helpful comparisons with other projects. Therefore,
metrics have to be chosen with clear reference to an agreed
standard – e.g. the ISO/IEC 9126 international standard for
software product quality [1].

A. Software code metrics for maintainability

Conceiving maintainability as a function of code quality
leads to a number of code metrics as candidates in maintain-
ability assessments. SIG chose the code volume (“the larger
a system, the more difficult it is to maintain”), McCabe’s
complexity (“simple systems are easier to comprehend than
complex ones”), code redundancy (“duplicated code has to
be maintained in all places where it occurs”) and coupling
(“tightly coupled components are more resistent to change”)
as key metrics for the quality assessments [2]. These indica-
tors assess clearly defined aspects of maintainability. They
can be calculated at least down to the unit level. This allows
detailed analysis of the system when drilling down into the
results later on.

B. The quality model: mapping to ISO/IEC 9126 dimensions

Since software quality measurement needs a clear map-
ping to an agreed standard, the measurements are inter-
preted in the framework of a hierarchical quality model
with dimensions according to the ISO/IEC 9126. In the
ISO/IEC 9126 standard, maintainability is seen as a general
quality characteristic of a software product. Maintainability



criteria for publishstore

annual
calibration

Software system 
under evaluation

Evalu-
ation 

results

Benchmark 
repository

Software 
product 

certificate

Online 
certificate 
register

layered

quality model

Evaluation procedure Certification procedure

Figure 1. Evaluation, benchmarking and certification of software product quality.

is decomposed into the sub-characteristics analyzability,
changeability, stability and testability [1]. In the model, the
sub-characteristics are operationalized with the above source
code metrics [2]. After completing the measurement, the
model is used to calculate the sub-characteristics and the
general maintainability score for a given system from the
source code metrics [3].

A validation study on open source systems has shown that
ratings as awarded by the quality model correlate positively
with the speed with which defects are resolved by the
system’s maintainers [4].

As depicted in Figure 1, the layered quality model pro-
vides the criteria for the evaluation procedure.

C. The role of a software benchmark repository

Even with quality dimensions derived from an interna-
tional standard, quality indices calculated from source code
measurements remain arbitrary as long as no comparison
with other systems is available. To provide such information,
SIG maintains a benchmark repository [5] holding the results
from several hundreds of standard system evaluations carried
out so far. As shown in Figure 1, the benchmark database
is updated with the results of each evaluation that is carried
out.

Currently (February 2010), the benchmark repository
holds results for over 500 evaluations. These pertain mostly
to proprietary systems (about 75%) but also to open source
systems. In these systems, a total of 45 different computer
languages is used, with Java, C, COBOL, C#, C++, and
ABAP as largest contributors in terms of lines of code. Some
average values for key metrics are listed per represented
programming paradigm in Table I.

With this extensive statistical basis, SIG can compare any
system to the whole repository or to similar products in
terms of size, technology or industry branch. Furthermore,
interpreting the ranking, an evaluator can guide his scrutiny
to parts of the code really needing improvement rather than
curing minor symptoms. Such comparisons and interpreta-

tions are performed in the context of the quality consultancy
services described in Section V.

The evaluation data accumulated in the benchmark repos-
itory are also used for calibrating the quality model. This is
indicated in Figure 1 with a backward arrow. Calibration
is performed by selecting the raw metric results from a
large number of modern systems and tuning the thresholds
of the quality model in such a way that for each lowest-
level quality attribute a desired symmetrical distribution of
systems over quality ratings is achieved. Concretely, the
model is calibrated such that systems have a 〈5, 30, 30, 30, 5〉
percentage-wise distribution over 5 levels of quality.

Such calibration is performed with an updated set of
systems at least once per year. This ensures that the quality
model remains a reflection of the state of the art in software
engineering.

The high number of included systems and the heterogene-
ity in terms of domains, languages, architectures, owners
and/or producers (SIG’s clients and their suppliers, as well
as open source communities), help to guard the representa-
tiveness of the calibration set and to prevent abupt model
changes due to re-calibration.

III. STANDARDIZED EVALUATION PROCEDURE

A standard evaluation procedure has been defined in
which the SIG quality model is applied to software prod-
ucts [6]. The procedure consists of several steps, starting
with the take-in of the source code by secure transmission

Table I
AVERAGE VALUES FOR REDUNDANCY AND COMPLEXITY

Paradigm redundant decision density
or group lines (McCabe / LOC)

OOP (e.g. Java, C#) 11.8 % 20.0 %
Web (e.g. JSP,ASP,PHP) 30.1 % 5.7 %
4GL (e.g. Accell, Informix) 32.1 % 6.5 %
SQL-like (e.g. T-SQL) 28.6 % 7.9 %
C/C++ 16.2 % 12.9 %



Figure 2. The quality mark Trusted Product - Maintainability.

to the evaluation laboratory. In subsequent steps, the scope
of the evaluation is determined and documented, source code
analysis tools are applied to obtain measurement results,
the quality ratings in accordance with the quality model
are determined, and finally the evaluation results are doc-
umented in an evaluation report. The procedure conforms to
the guidelines of the ISO/IEC 14598 standard for software
product evaluation [7], which is a companion standard to the
ISO/IEC 9126.

To further ensure the objectivity and traceability of the
evaluation, the evaluation laboratory of the SIG that carries
out the procedure conforms to the guidelines of the ISO/IEC
17025 international standard for evaluation laboratories [8].
Among other things, this standard requires to have a quality
management system in place that strictly separates the role
of evaluator (who operates source code analysis tools and
applies the quality model to produce an evaluation report)
and the role of quality officer (who performs independent
quality control on the activities and results of the evaluator).

IV. CERTIFICATION OF MAINTAINABILITY

The availability of a benchmark repository provides the
means for an objective comparison of software systems in
terms of their maintainability. It is thus possible to assign
an objective measure of maintainability to every system
that undergoes the standardized evaluation procedure. This
measure reflects the relative status of the system within the
population of all systems evaluated so far.

Based on this system rating, TÜViT set up a certification
scheme. In this scheme, systems with maintainability scores
above a certain threshold are eligible for the certificate called
TÜViT Trusted Product Maintainability [9] (see Figure 2).
To achieve a certificate, a system must score at least with
2 stars on all sub-characteristics and at least 3 stars on the
overall maintainability score. Besides reaching these mini-
mal rankings, a system description is required to document at
least the top-level components. The SIG software laboratory
was accredited by the TÜViT certification body to function
within this scheme as an evaluation laboratory for software
code quality according to ISO/IEC Guide 65 [10].

As indicated in Figure 1, the issued certificates are
published in an online registry1. For full traceability, the
certificates and the underlying evaluation reports are always

1http://www.tuvit.de/english/Maintainability.asp

annotated with the version of the quality model and source
code analysis tools that were used for evaluation.

V. STANDARDIZED CONSULTING APPROACH

Based on experience from its assessment and monitoring
projects in code quality and maintainability [11, 12], SIG
developed standardized procedures to collect complementary
information about a system under evaluation [13]. Usually,
the projects start with submitting the source code via a
secure transmission path. Next, a technical session is held
together with the development staff of the customer to find
out how the code is organized, what decisions were taken
during development and so on. During the second, strategic
session, SIG collects information from the management, i.e.
the reason for the evaluation, history of the system, future
plans etc. With a method of structured business scenarios for
the future use of the system, together with the customer, SIG
attaches risk figures to the various development options the
management has for the system under test. This information
can be used later on to prioritize investments in code quality
linking the quality assessment and the business plan for the
system.

In parallel to these session, code analysis is performed.
The results of the analysis are communicated to the cus-
tomers in several ways. To begin with, a validation session
is scheduled to resolve results that may contradict the
initial briefings. When the results are consolidated, SIG
presents its findings in a management session. Finally, an
assessment report is provided with the detailed results and
all recommendations for improvement established during the
assessment.

Thus, the standardized procedure for measuring the main-
tainability of source code is used both in evaluation projects
leading to certification, and in consultancy projects leading
to (management-level) recommendations.

Standardized software evaluations have further applica-
tions. The evaluation of software maintainability provides
managers in development projects with valuable information
about the quality of the code they are producing. Deciders
purchasing software will reach better decisions when the
code quality is evaluated for the products on their shortlist.
In tendering or outsourcing procedures, software providers
may prove the quality of their product with a certificate.
Reaching a certifiable level of maintainability may become
part of development contracts and thus raise the quality level
of individual software projects.

VI. RELATED WORK

The idea of improving software quality with the use of
source code metrics has a long history. An interesting recent
work is the Code Quality Management (CQM) framework
proposed by Simon, Seng and Mohaupt [14]. Besides ap-
plying code metrics in large software projects, the authors
introduce the idea of a benchmark repository for comparing

http://www.tuvit.de/english/Maintainability.asp


between projects and identifying the best practices across
the software industry. However, current emphasis in CQM
is given to the definition of new creative quality indicators
for object oriented programming rather than to setting up
a universal benchmark standard for comparison across the
different software development paradigms.

Software benchmarking is usually associated to productiv-
ity rather than code quality. Jones [15] provides a treatment
of benchmarking software projects. The focus is not on the
software product, though the functional size of systems in
terms of function points and the technical volume in terms
of lines of code, are taken into account.

The International Software Benchmarking Standards
Group (ISBSG) [16] collects data about software produc-
tivity and disseminates the collected data for benchmarking
purposes. Apart from function points and lines of code, no
software product measures are taken into account.

VII. CONCLUDING REMARKS

We have provided an overview of the standardized mod-
els and procedures used by SIG and TÜViT for evalua-
tion, benchmarking, and certification of software products.
Standardization is achieved by following terminology and
requirements of several relevant international standards. We
have explained the role of a central benchmark repository in
which evaluation results are accumulated to be used in an-
nual calibration of the measurement model. Such calibration
enables comparison of software products against industry-
wide levels of quality. In combination with standardized
procedures for evaluation, the calibrated model is a stable
basis for the presented software product certification scheme.

REFERENCES

[1] International Organization for Standardization,
“ISO/IEC 9126-1: Software engineering - product
quality - part 1: Quality model,” Geneva, Switzerland,
2001.

[2] I. Heitlager, T. Kuipers, and J. Visser, “A practical
model for measuring maintainability,” in 6th Int. Conf.
on the Quality of Information and Communications
Technology (QUATIC 2007). IEEE Computer Society,
2007, pp. 30–39.

[3] J. P. Correia, Y. Kanellopoulos, and J. Visser, “A
survey-based study of the mapping of system prop-
erties to iso/iec 9126 maintainability characteristics,”
in 25th IEEE International Conference on Software
Maintenance (ICSM 2009), September 20-26, 2009,
Edmonton, Alberta, Canada. IEEE, 2009, pp. 61–70.

[4] B. Luijten and J. Visser, “Faster defect resolution with
higher technical quality of software,” in 4th Interna-
tional Workshop on Software Quality and Maintain-
ability (SQM 2010), March 15, 2010, Madrid, Spain,
2010.

[5] J. Correia and J. Visser, “Benchmarking technical qual-
ity of software products,” in WCRE ’08: Proceedings
of the 2008 15th Working Conference on Reverse
Engineering. Washington, DC, USA: IEEE Computer
Society, 2008, pp. 297–300.

[6] J. P. Correia and J. Visser, “Certification of tech-
nical quality of software products,” in International
Workshop on Foundations and Techniques bringing
together Free/Libre Open Source Software and For-
mal Methods (FLOSS-FM 2008) & 2nd International
Workshop on Foundations and Techniques for Open
Source Certification (OpenCert 2008), L. Barbosa,
P. Breuer, A. Cerone, and S. Pickin, Eds. United
Nations University - International Institute for Software
Technology (UNU-IIST), Research Report 398, 2008,
pp. 35–51.

[7] International Organization for Standardization,
“ISO/IEC 14598-1: Information technology - software
product evaluation - part 1: General overview,”
Geneva, Switzerland, 1999.

[8] ——, “ISO/IEC 17025: General requirements for the
competence of testing and calibration laboratories,”
Geneva, Switzerland, 2005.

[9] Software Improvement Group (SIG) and TÜV Informa-
tionstechnik GmbH (TÜViT), “SIG/TÜViT evaluation
criteria – Trusted Product Maintainability, version 1.0,”
2009.

[10] International Organization for Standardization,
“ISO/IEC Guide 65: General requirements for bodies
operating product certification systems,” Geneva,
Switzerland, 1996.

[11] A. van Deursen and T. Kuipers, “Source-based soft-
ware risk assessment,” in ICSM ’03: Proc. Int. Con-
ference on Software Maintenance. IEEE Computer
Society, 2003, p. 385.

[12] T. Kuipers and J. Visser, “A tool-based methodology
for software portfolio monitoring.” in Proc. 1st Int.
Workshop on Software Audit and Metrics, (SAM 2004),
M. Piattini and M. Serrano, Eds. INSTICC Press,
2004, pp. 118–128.

[13] E. Bouwers, J. Visser, and A. van Deursen, “Crite-
ria for the evaluation of implemented architectures,”
in 25th IEEE International Conference on Software
Maintenance (ICSM 2009), September 20-26, 2009,
Edmonton, Alberta, Canada. IEEE, 2009, pp. 73–82.

[14] F. Simon, O. Seng, and T. Mohaupt, Code Quality
Management: Technische Qualität industrieller Soft-
waresysteme transparent und vergleichbar gemacht.
Heidelberg, Germany: dpunkt-Verlag, 2006.

[15] C. Jones, Software Assessments, Benchmarks, and Best
Practices. Addison-Wesley, 2000.

[16] “International Software Benchmarking Standards
Group,” www.isbsg.org.


	Introduction
	Measuring software via code metrics
	Software code metrics for maintainability
	The quality model: mapping to ISO/IEC 9126 dimensions
	The role of a software benchmark repository

	Standardized evaluation procedure
	Certification of maintainability
	Standardized consulting approach
	Related work
	Concluding remarks

