
Certification of Technical Quality of Software
Products

José Pedro Correia and Joost Visser

Software Improvement Group, The Netherlands
j.p.correia@sig.nl, j.visser@sig.nl

Summary. In this paper we propose a method for certification of technical quality
of software products. The certification method employs a layered model of technical
quality, based on the ISO/IEC 9126 international standard for software product
quality. This model was developed in the context of software assessments conducted
on commercial software systems over the course of several years. Using the layered
quality model as a basis, we define a three-phase appraisal method that ends in
certification of a software product at one of five possible levels. We illustrate the
certification method by providing details of its application to twelve open source
database management systems and five open source web servers.

1 Introduction

Previously, the Software Improvement Group (SIG) has developed a method
for measuring the quality of software products in terms of the ISO/IEC 9126
standard [8]. It employs a small number of source code metrics, which are
aggregated and mapped to quality characteristics in a manner that directly
relates to the standard. The model was developed in the course of delivering
IT management consultancy services [4, 13]. In particular, it has proven to be
a pragmatic instrument in providing fact-based rapid estimates of technical
quality of scores of large software systems.

In this paper, we explore the possibility of using the previously developed
model for certification of software products. We focus on product certification,
motivated by the current lack of standards and procedures for this purpose.
We ask ourselves whether the model can be used to provide the necessary
criteria and standards. And if yes, how exactly?

We can not disclose measurement data for the systems of our clients, so
instead we have applied our method to a series of open source software (OSS)
systems. These are listed in Table 1, ordered by their overall quality score. In
the sequel, we use them to illustrate our certification approach, and we discuss
in some detail the measurement data and intermediate scores obtained.

36 José Pedro Correia and Joost Visser

System Version Functionality Main PLs LOC Rating
Axion 1.0-M2 (2003-07-11) DBMS Java 18921 ! ! !!
H2 1.0.69 (2008-03-29) DBMS Java 72102 ! ! !
CSQL 1.2 beta (2007-12-27) DBMS C/C++ 14830 ! ! !
SmallSQL 0.19 (2007-07-31) DBMS Java 18402 ! ! !
JalistoPlus 2.0 M2 (2008-04-11) DBMS Java 21943 !!
Derby 10.3.2.1 (2007-12-10) DBMS Java 307367 !!
Jaminid 0.99 (2006-04-21) Web Server Java 1120 !!
HSQLDB 1.8.0.9 (2007-09-07) DBMS Java 65378 !!
SQLite 3.5.8 (2008-04-16) DBMS C 69302 !!
AOLServer 4.5 (2006-06-27) Web Server C 45344 !!
Apache 2.2.8 (2008-01-19) Web Server C 203829 !!
Canopy 0.2 (2007-09-12) Web Server C 15570 !!
Tomcat 6.0 (2008-01-17) Web Server Java 164199 !!
PostgreSQL 8.3.1 (2008-03-17) DBMS C 497400 !!
MySQL 5.0.51a (2008-01-11) DBMS C/C++ 843175 !!
602SQL 2008-04-18 DBMS C/C++ 274938 !
Firebird 2.1.0 (2008-04-18) DBMS C/C++ 357537 !

Table 1. OSS systems appraised, ordered by overall quality score.

The paper is structured as follows. In Section 2, we provide motivation and
background to our work by discussing the position of software product quality
with respect to other software quality perspectives. In Section 3, we discuss
design choices and constraints for a possible certification method. In Section 4,
we summarize our previously developed model and its relation to ISO/IEC
9126. In Section 5, we propose a particular method for certification in which
this model is employed. We describe the method in terms of its actors, steps,
and deliverables. In Section 6, we discuss the application of the model to the
OSS systems mentioned in Table 1. In Section 8, we discuss related work. We
conclude in Section 9 with a discussion of contributions and future work.

2 Motivation

To motivate our proposal for a certification method for software product qual-
ity, we provide a brief discussion of traditional perspectives on software quality
and offer an explanation for the current lack of product certification methods.

2.1 Traditional perspectives on software quality

In IT, quality is mostly approached via three angles: process, people, and
projects. These are what could be called the environmental characteristics of
a given software product, that is, the factors that determine its development
conditions and thus are expected to influence its final quality. For each of

Certification of Technical Quality of Software Products 37

Fig. 1. Triangular representation of well-known standards and certifications in IT.

these perspectives, methods exist to improve and maintain quality, often with
associated standards and certifications (Figure 1).

Regarding the software process, the most well-known certifications are
CMMI (Capability Maturity Model of the Software Engineering Institute1)
and SPICE (Software Process Improvement and Capability dEtermination,
linked to the ISO/IEC 15504 standard on IT Process Assessment). These cer-
tifications are awarded at the level of entire organizations or their departments
and deal with the quality of the software production process.

Certification of people concerns quality in the sense of skills and knowl-
edge of the individuals that carry out the software production process. Such
certificates are awarded after one concludes a training course. In some, but
not all cases, an exam needs to be passed. Examples include the Microsoft
Certified Professional, dealing with skills for particular technologies of the
software giant, or TMap certification for testers.

With regard to the quality of the projects by which the software produc-
tion process is structured, certifications can be obtained regarding project
management methodologies, such as PRINCE2 (PRojects IN Controlled En-
vironments of the UK Office of Government Commerce, OGC) or PMP
(Project Management Professional of the Program Management Institute,
PMI). Again, these certificates are awarded to individuals after appropriate
training and exams.

Thus, certification is available for the software production process itself,
the people that carry it out at the technical level, and the people that manage
the projects by which the process is structured. But what about the result of
the software production process? What certification possibilities exist for the
software product?

1 SEI uses the term ”Class A Appraisals” instead of ”certification”

38 José Pedro Correia and Joost Visser

2.2 State of the art in software product certification

Outside IT, product certification is ubiquitous. Some products receive certifi-
cation on a piece-by-piece basis, such as industrial plants or the foundations
of a house. Other products are certified on the basis of sampling, such as elec-
trical plugs. The majority of the parts from which cars are assembled have
been certified in some way.

Perhaps surprisingly, certification of software products is not a commonly
accepted practise [5]. In fact, the possibilities of software product certification
are very limited. The MISRA-C standard has been adopted in the automo-
tive domain to enforce suppliers of embedded software to abide by certain
rules for coding style. In the realm of implementation of Enterprise Resource
Planning (ERP) and Customer Relationship Management (CRM) packages,
the possibility exist of certifying the compatibility of custom code with the
main product. This means for instance, that only SAP-endorsed technologies
have been used for the ERP integration. Beyond such technology-specific or
vendor-specific certificates with limited scope, software product certification
is absent from current practise.

2.3 No certification without normative standard

Can we identify any fundamental reasons why software product certification
is absent from current IT practises?

The very notion of certification presupposes the existence of a standard
against which the object of certification can be measured and evaluated. At
this moment, no widely accepted standard sets concrete, actionable norms for
software product quality [5].

The closest thing is the ISO/IEC 9126 international standard for soft-
ware product quality [10]. This standard answers the question of how the
multi-faceted concept of software product quality can be defined. By breaking
this concept down into 6 characteristics, which are further split into 27 sub-
characteristics (see Figure 2), the ISO/IEC 9126 provides a terminological
basis for thinking and communicating about software quality. In the technical
reports that accompany the ISO/IEC 9126 standard, some metrics are sug-
gested to measure each sub-characteristic. Unfortunately, no concrete thresh-
olds are given for these suggested metrics, nor do their definitions clarify how
to measure them in practical situations (for a more elaborate critique see [8]).

A related standard, the ISO/IEC 14598, defines an evaluation process of
software product quality, including guidelines on how to plan and design the
evaluation, as well as about its execution. This is useful as a basis to define
a certification process, but does not solve the issue of how to measure soft-
ware product quality or how to compare measurement values to a normative
standard.

analysability
changeability
stability
testability

maintainability

maturity
fault tolerance
recoverability

reliability

external and internal quality

suitability
accuracy

interoperability
security

functionality

adaptability
installability
co-existence
replacability

portability

understandability

learnability
operability

attractiveness

usability

time behaviour

resource
utilisation

efficiency

Fig. 2. Breakdown of the notions of internal and external software product quality
into 6 main characteristics and 27 sub-characteristics. The 6 so-called compliance
sub-characteristics of each of the 6 main characteristics have been suppressed in this
picture. In addition, ISO/IEC 9126 provides a breakdown of the notion of ‘quality
in use’ of a software product into four sub-characteristics.

3 Towards certification of software products

When proposing a method for software product certification, several design
decisions need to be made. We first discuss what the precise target of certifi-
cation would be. Then we discuss prerequisites on a certification method to
make it viable for broad acceptance in the IT industry.

3.1 Possible targets of product certification

The target of certification is the quality of the software product. But which
perspective on quality should be taken into account? On first consideration,
several perspectives may seem likely candidates:

Functionality : Does the software product satisfy its functional requirements?
Performance: Does the product perform its required operations fast enough?
Usability : Is using the product easy and effective?

These aspects indeed represent valid views on software product quality. In
fact, in the ISO/IEC 9126 quality model (see again Figure 2), these aspects
can be recognized as the suitability, efficiency (time behaviour), and usabil-
ity (operability) characteristics of internal and external quality, and as the
effectiveness characteristics of quality-in-use.

Note, however, that all of the aforementioned aspects are tightly connected
to a system’s functionality and to the perspective of the end-user. This means
that only systems that share certain functionality could be certified against a
shared norm, and that a norm against which to certify would only be appli-
cable to a limited set of systems.

In fact, functional quality aspects may be problematic as a target for
certification for several reasons:

• Functional requirements may be unavailable, unclear, or instable.

Certification of Technical Quality of Software Products 39

40 José Pedro Correia and Joost Visser

• Functional requirements are rarely shared across systems.
• Functional requirements that are shared across systems typically concern

only a subset of the functionality, such as particular interoperability fea-
tures, GUI guidelines, or performance demands.

Due to these reasons, certification methods that target functional quality nec-
essarily have restricted applicability.

In this paper, we choose technical quality as an alternative target of certifi-
cation. The technical view on a software product’s quality concerns how well-
constructed it is. In terms of the ISO/IEC 9126, the focus of technical quality
is primarily on the maintainability characteristic and its sub-characteristics.
Other characteristics and sub-characteristics, such as reliability and portabil-
ity, may also play a role.

Technical quality of a software product is interesting, not from an end-
user’s perspective, but from the perspective of those who maintain and modify
the source code. The technical quality of a software product determines how
difficult it is to keep the system evolving to remain aligned with the continuous
changes in the functional requirements, whatever these are. In the longer term,
technical quality may actually be the largest contributor to the total cost of
ownership of a software system, because software with high technical quality
can evolve with low cost and low risk to keep meeting functional and non-
functional requirements.

3.2 Requirements for a certification method

Based on the preceding discussion, some prerequisites and desired traits can
be laid out for a software product certification method, as we envision it.

• The method should target technical quality.
• The method should conform to accepted standards for software product

qualty, such as ISO/IEC 9126 (quality model) and ISO/IEC 14598 (quality
evaluation procedure).

• The method should be based on objective evaluation criteria and clear
thresholds.

• The method should follow a transparent and repeatable procedure.
• The method should have wide applicability.

In the sequel we first describe the quality model we developed previously
which conforms with ISO/IEC 9126 and sets clear criteria and thresholds for
technical quality. Then we propose a certification process that conforms to
ISO/IEC 14598 which is transparent and repeatable.

4 Summary of the quality model

The SIG has developed a layered model for measuring and rating the tech-
nical quality of a software system in terms of the quality characteristics of

system property
e.g. complexity

ISO/IEC 9126 (sub-)characteristic
e.g. changeability

source code measure
e.g. cyclomatic complexity

influences

indicates

can be measured by

can be caused by

Fig. 3. The relation between source code metrics and system sub-characteristics of
maintainability, as established by the SIG model.

ISO/IEC 9126 [8]. The layered structure of the model is illustrated in Fig-
ure 3. Source code metrics are used to collect facts about a software system.
The measured values are combined and aggregated to provide information on
properties at the level of the entire system, which are then mapped into higher
level appraisals that directly relate to the ISO/IEC 9126 standard.

To aggregate metrics at the source code level to properties at the system
level, we make use of so-called quality profiles. As an example, let’s take a look
at how unit complexity is calculated. First the McCabe complexity index
is calculated for each code unit (where a unit is the smallest piece of code
that can be executed and tested individually, for example a Java method
or a C function). The values for individual units are then aggregated into
four risk categories, as indicated in the following table (following a similar
categorization of the Software Engineering Institute):

mcc Risk evaluation
1-10 without much risk
11-20 moderate risk
21-50 high risk
> 50 very high risk

For each category, the relative volumes are computed by summing the lines
of code of the units of that category and dividing by the total lines of code in
all units. These percentages are finally ranked using the following thresholds:

maximum relative loc
rank moderate high very high
++ 25% 0% 0%
+ 30% 5% 0%
o 40% 10% 0%
- 50% 15% 5%
-- - - -

Other properties have similar evaluation schemes relying on different catego-
rization and thresholds. Such quality profiles have as advantage over other
kinds of aggregation, such as taking the average, that sufficient information is
retained to make significant quality differences between systems detectable.

Certification of Technical Quality of Software Products 41

42 José Pedro Correia and Joost Visser

For the appraisal of test quality, the model does not rely on static source
code analysis only. Instead we apply a structured review which takes into ac-
count the use of testing frameworks, estimates of the level of coverage achieved,
and the amount of test documentation available.

The rating of system properties is first done separately for each different
technology, and subsequently aggregated into a single technology-independent
property rating by weighted average according to each technology’s relative
volume in the system.

Property ratings are mapped to ratings of sub-characteristics, following
the relations summarised in the following table:

IS
O

91
26

m
ai

nt
ai

na
bi

lit
y

properties

du
pl

ic
at

io
n

te
st

qu
al

ity
un

it
co

m
pl

ex
ity

un
it

si
ze

vo
lu

m
e

analysability × × ×
changeability × ×
stability ×
testability × × × ×

For example, duplication is mapped onto both analysability and changeabil-
ity. For each sub-characteristic a straightforward averaging approach is taken.
Finally, all sub-characteristic ratings are averaged to provide the top main-
tainability rating.

5 The certification method

On top of SIG’s quality model, we now propose an appraisal method for
carrying out software product certification. The method consists of three steps,
namely scoping, measurement and rating. Depending on the appraisal results,
the software product will be certified at one out of five possible levels of
quality. These are represented using a five stars system, with the following
interpretation:

rating quality
! ! ! ! ! excellent

! ! !! good
! ! ! fair

!! poor
! very poor

We start by explaining the roles of various actors in the certification pro-
cedure, and follow by describing the procedure itself.

Certification of Technical Quality of Software Products 43

certification client

certification institute

system producer system
source
code

certification laboratory

certification
board certificate

Fig. 4. Product certification roles.

5.1 Roles

Software product certification is carried out through a procedure where tasks
and responsibilities are divided over various players. The roles of the various
actors in the certification procedure are depicted in Figure 4.

The system producer is the organization that has built the software prod-
uct for which certification is sought. This organization is responsible for mak-
ing the source code and possibly other artefacts available to the certification
institute. In case of open source software, this is the community of program-
mers that develops, maintains, and releases the software. For closed source
software, this is the organization that ordered the system to be built and that
holds property rights over the software.

The certification client is the organization that seeks certification of the
software product. In the case of closed source software, this is typically the
organization that has ordered the system to be built or that is considering to
acquire the system. In case of open source software, this may be an organiza-
tion that intends to adopt the software as application to support its business
processes, as library in application development, or for other purposes. The
certification client may work with the certification institute to determine the
desired scope of the certificate.

The certification institute oversees the certification procedure and issues
the certificates. The certification institute is responsible for brokering the rela-
tion between certification client, system producer, and certification laboratory,
and for performing the scoping and rating steps.

The certification laboratory carries out the measurement step, in which
measurement values are produced for all system units. The laboratory may
also assist in defining the certification scope, if required.

The certification board provides oversight over the entire certification pro-
gram and offers arbitration in case of disputes about application of the certi-
fication norms.

44 José Pedro Correia and Joost Visser

Scope Measure Rate

Request Scope Result

Create scope
definition

and
configure

tools

Run analysis
tools and
validate
results

Appraise
measured
values and

create report

Publish

 Issue

Issue the
quality

certificate

Fig. 5. Steps of the certification procedure.

5.2 Procedure

The certification procedure leads to attribution of a quality certificate in three
steps, as illustrated in Figure 5.

Scope

In the first step, the scope of the certification study is determined. As a result
of this step, an unambiguous description will be available of which software
artefacts are covered by the evaluation.

This scope description includes the release version of the software system,
a listing of file names, dates, and sizes, and a characterisation of the technol-
ogy footprint of the system (which programming languages, database man-
agement system, persistence and GUI frameworks, configuration languages,
communication protocols). When appropriate the description will also sep-
arate documentation from code, test code from production code, generated
code from manually written code, and library from application code.

Measure

In the second step, a range of measurement values is determined for the soft-
ware artefacts that fall within the evaluation scope. Each measure is deter-
mined automatically by processing the software artefacts with an appropriate
algorithm.

Rate

In the third step, the raw metric values obtained in the measurement step are
aggregated, weighted, combined, and subsequently compared against target

Certification of Technical Quality of Software Products 45

Establish
evaluation

requirements

Establish purpose of evaluation

Identify types of products

Specify quality model

Specify the
evaluation

Select metrics

Establish rating levels for metrics

Establish criteria for assessment

Design the
evaluation

Produce evaluation plan

Execute the
evaluation

Take measures

Compare with criteria

Assess results

ISO/IEC 9126

SIG Quality Model

Scope

Measure

Rate

Issue

Any software product

Certification

IS
O

/I
EC

 1
4

5
9

8

Fig. 6. Correspondance of our certification method to the ISO/IEC 14598 standard.

values in order to determine quality sub-scores and final score for the system
under evaluation.

The result consists of a layered set of appraisals, namely the appraisal for
the only characteristic now considered, maintainability, traceable to the sub-
characteristics’ appraisals which in turn are traceable to property appraisals
and finally those can be related to the source code measurements that were
considered.

Appraisals are represented in a 5 star system, directly correspondent to the
++,+,o,-,-- system used in the SIG quality model, being 1 star representative
of very poor quality and so forth. Internally, a fractional value is used in order
to maintain precision in the calculations.

Issuance

Finally, based on the rating results, a certificate is issued. The certificate is
published in an online registry if the certification client so wishes.

5.3 Compliance with ISO/IEC 14598

The ISO/IEC 14598 international standard for software product evaluation [9]
provides an overview of software product evaluation processes and is intended
to give guidance and requirements for software evaluation.

Figure 6 depicts the overal structure of the software evaluation process ac-
cording to this standard and highlights its correspondance to the certification
procedure proposed in this paper. The left hand side of the picture shows the
various evaluation phases and the constituent evaluation steps defined by the
standard. The right hand side indicates how each step is made concrete by

46 José Pedro Correia and Joost Visser

Unit testing Functional testing
System Framework Coverage Framework Coverage Documentation Appraisal
Axion JUnit 81% JUnit unknown almost none ! ! !!
H2 custom 83% custom high none ! ! !!
CSQL - - none high none !!
SmallSQL - - JUnit 79% almost none ! ! !
JalistoPlus JUnit low JFunc low none !!
Derby JUnit 71% custom high almost none ! ! !
Jaminid - - - - none !
HSQLDB JUnit low custom unknown yes !!
SQLite - - custom very high almost none ! ! !
AOLServer - - rudimentary almost none almost none !
Apache - - custom high good !!
Canopy - - - - none !
Tomcat JUnit very low - - almost none !
PostgreSQL - - custom high good !!
MySQL custom very low custom high extensive ! ! !
602SQL - - - - none !
Firebird - - TCS & QMTest high extensive ! ! !

Table 2. Ratings of test quality based on structured review.

our certification method. For example, the concrete purpose of evaluation is
certification. The metrics, rating levels, and criteria are chosen in accordance
to the SIG quality model. The evaluation design is carried out in the scoping
step of our procedure, and the execution of the evalation are covered by our
measurement, rating, and issuance steps.

6 Application to open source software

To put the proposed certification method to the test, we conducted appraisals
of some well-known open source systems. For now, 12 relational database
systems, including MySQL and PostgreSQL have been examined, as well as
5 web servers, including Tomcat and Apache HTTP Server. The results are
presented in this section, preceded by some remarks.

6.1 Systems under study

We were looking for systems with similar functionality, if possible of different
volume and using different languages. We selected projects from two func-
tionality groups, namely database systems and web server applications. Some
systems were included for their popularity and the remaining by doing a search
on SourceForge2. The latest release versions, at the time of analysis, were se-
lected for each system. An overview was already presented in Table 1, showing
systems ranging from very small to large and covering the programming lan-
guages of Java, C and C++.

2 http://sourceforge.net

Certification of Technical Quality of Software Products 47

S
y
st

em

M
ai
nt
ai
na

bi
lit
y

A
n
al

y
sa

b
il
it
y

C
h
an

ge
ab

il
it
y

S
ta

b
il
it
y

T
es

ta
b
il
it
y

D
u
p
li
ca

ti
on

T
es

t
q
u
al

it
y

C
om

p
le

x
it
y

U
n
it

si
ze

V
ol

u
m

e

Axion ! ! !! (+0.54) ! ! ! ! ! !! ! ! !! ! ! ! ! ! ! ! ! !! ! ! !! !! ! ! ! ! !
H2 ! ! ! (+0.08) ! ! ! ! ! ! ! ! !! !! ! ! !! ! ! !! !! ! ! ! !!
CSQL ! ! ! (−0.13) ! ! ! ! ! !! !! ! ! ! ! ! ! !! ! ! !! ! ! ! ! ! !
SmallSQL ! ! ! (−0.38) ! ! ! !! ! ! ! !! ! ! !! ! ! ! ! ! ! ! ! ! !
JalistoPlus !! (−0.54) ! ! ! !! !! !! ! ! ! !! !! !! ! ! ! ! !
Derby !! (−0.54) !! !! ! ! ! !! ! ! ! ! ! ! !! ! ! ! !
Jaminid !! (−0.63) ! ! !! ! ! !! ! ! ! ! ! ! ! ! !! ! ! ! ! ! !
HSQLDB !! (−0.70) ! ! ! !! !! ! ! ! !! !! ! ! ! ! ! ! !
SQLite !! (−0.79) ! ! ! !! ! ! ! !! !! ! ! ! ! ! ! ! ! ! !
AOLServer !! (−0.83) ! ! !! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! !
Apache !! (−1.00) ! ! ! !! !! ! ! ! ! !! ! ! ! ! !!
Canopy !! (−1.04) ! ! ! !! ! ! ! ! !! ! ! ! ! ! ! ! !
Tomcat !! (−1.08) ! ! ! ! ! ! ! ! ! ! ! ! !! ! ! ! !!
PostgreSQL !! (−1.08) !! !! !! ! ! ! ! !! ! ! ! ! !
MySQL !! (−1.16) ! ! ! ! ! !! ! ! ! ! ! ! !!
602SQL ! (−1.21) ! ! ! !! ! ! ! ! !! ! ! ! ! ! !
Firebird ! (−1.25) ! ! ! ! ! !! ! ! ! ! ! ! !!

Table 3. Appraisals of technical quality for the selected OSS systems, ordered by
overall score.

6.2 Conducting the appraisals

The scoping of the mentioned systems was done by us, either by inspecting
the available documentation, browsing through the source code or using some
automatic heuristics (for example searching for specifc patterns in files to de-
termine and exclude the generated code). This makes the process less accurate
than in the ideal situation, when this is done jointly by the certification in-
stitute, the certification client and the system producer. On average we spent
about 4 hours on the scoping step for each system.

Source code measurements were performed using SIG’s software analysis
toolkit. The scope definition served as the basis for the configuration of the
toolkit. To conduct the rating step, the measurement results were fed into
SIG’s rating engine. This second tool implements a subset of the SIG quality
model. The structured review of test quality is summarized in Table 2.

6.3 Results

The appraisal values can be found in Table 3 ordered by overall maintainability
value. The sorting is done according to the fractional representation of quality
appraisals used internally by the rating tool, thus systems with the same
number of stars do have different internal values. These are shown for the
maintainability appraisal and range from -2 (one star) to 2 (five stars).

48 José Pedro Correia and Joost Visser

Fig. 7. Boxplot of the maintainability values per language. The Y axis is divided
into 5 sections, corresponding to the star system.

6.4 Observations

The overall technical quality of the systems, as appraised by our method,
is low. A rating of three stars is considered to represent medium quality.
By inspecting the results one can observe that one system is rated as good
(Axion), three as medium (H2, CSQL, SmallSQL), and most systems were
appraised as having (very) poor quality.

We do not claim this sample to be statistically significant or representative
of the population of open source systems, so it would be interesting to further
investigate some trends observed here. For example, one of the most striking
observations is that almost all systems rank very low regarding unit size and
relatively low regarding complexity. This could be due to the model being too
strict, but the definition of these particular properties, as with the others,
was done based on our experience with proprietary systems, and for those a
broader distribution of values is observed.

In Figure 7 one can observe the boxplots of the maintainability values
per main programming language. The main conclusion one can take from
this chart is that Java systems tend to rank higher. Although there are some
outliers, the bulk of these systems rank around the border between two and
three stars, whereas for the other languages the bulk ranks in the two stars
area but closer to the border between one and two stars.

7 Relation to other quality instruments

Software product certification is a new instrument for software quality man-
agement that can be used in combination with other instruments.

Various kinds of software testing, such as unit testing, functional testing,
integration testing, and acceptance testing are essential for software product

Certification of Technical Quality of Software Products 49

quality, both functional and technical. Certification does not replace testing,
but operates on a higher level, is less labour-intensive, and can be performed
independently. Note that certification also takes test quality into account.

Methodologies for software process improvement (SPI), such as the capa-
bility-maturity model (CMM) concern the production process, rather than
the product. SPI works under the assumption that better processes lead to
better products, which is true to a limited degree. Product certification con-
cerns only the product, independently of its organizational context. These two
instruments can thus be used independently or simultaneously.

A software risk assessment [4] is an in-depth, one-off investigation into the
technical quality of a software system as well as into the strategic risks that it
harbours. Each assessment is necessarily specific to the investigated software
system as well as to its organizational context. By contrast, software product
certification is not situational and enables objective comparison to common
norms and standards applicable across systems.

Monitoring a software system or an entire software portfolio [12] is a con-
tinuous activity aimed at real-time progress tracking and detection of prob-
lems as they occur. Software monitoring provides increased control over the
development and maintenance processes. Software product certification is a
low-frequency activity providing control at the level of governance rather then
at the tactical level.

Software benchmarking consists of comparing software products against
each other according to desired characteristics [2]. This can be used to rank
a system with respect to a group of peers, thus differing from certification
where one is interested in establishing a norm to which to compare systems.

8 Related work

For a discussion of work related to the employed quality model we refer to
Heitlager et al [8]. Here we briefly discuss work related to our certification
method. A more elaborate discussion of various approaches to software certi-
fication is provided by Fabbrini et al [5].

Certification of functional quality

To our knowledge, no comprehensive proposals have been made so far for
certification methods that target technical quality. However, some proposals
have been made for software product certification targeting functional quality.

Heck et al [7] have developed a method for software certification where
five levels of verification are distinguised. At the highest level, the software
product is verified using formal methods where not only properties are proven
about an abstract model, but about the software itself. To date, one certificate
has been awarded, on the one-but-highest level.

ISO/IEC 9126 lists security as one of the subcharacteristics of functional-
ity. The most well-known standard regarding security is the ISO/IEC 15408

50 José Pedro Correia and Joost Visser

standard on evaluation of IT security criteria [11] which has also been pub-
lished under the title Common Criteria for Information Technology Security
Evaluation. This standard does not specify concrete security requirements.
Rather, it defines a framework for specification, implementation, and evalua-
tion of security aspects.

Quality assessment methodologies

Various methodologies have been proposed for the assessment of open source
products, including OSMM [6], QSOS [1] and OpenBRR [14]. A comparison
of the latter two can be found in [3]. These methods mainly focus on the com-
munity contribution, activity and other “environmental” characteristics of the
product. Although these approaches usually include assessment of technical
quality, no concrete definition of measurements or norms are provided.

Open source quality research

Currently there are several research projects related to quality of open source
software, e.g. FLOSSMetrics, QualOSS, or SQO-OSS 3. Each of these three
projects aims to provide a platform for gathering information regarding open
source projects and possibly to provide some automated analysis of quality.

9 Concluding remarks

In this paper we motivated the need for certification for software products. We
identified technical quality (how well the system is built) as the appropriate
target, and formulated further requirements for a certification method.

We presented our certification method, based on a previously developed
quality model which relates to the ISO/IEC 9126 standard for software prod-
uct quality. The model provides objective evaluation criteria and is widely
applicable because it is programming-language independent. The certification
procedure itself conforms to the ISO/IEC 14598 standard.

We illustrated our certification method by applying it to a group of OSS
products. The conclusion from applying certification to the OSS systems is
that technical quality, especially length and complexity of units, tends to be
low. Of course, this does not imply that functional quality of these systems,
as experienced by end users, is low as well.

9.1 Future work

We are currently starting to apply the certification method to closed source
systems in our consultancy practise. Also, we intend to apply the method
to more open source systems, such as operating system kernels and office
3 http://flossmetrics.org, http://www.qualoss.eu, http://www.sqo-oss.org

Certification of Technical Quality of Software Products 51

applications. We are collaborating with the Software Quality Observatory for
Open Source Software (SQO-OSS) to make the certification results for OSS
software available to the community.

The certification method introduced in this paper is light-weight, prag-
matic, and broadly applicable. Over time, we expect to develop it into an
increasingly sophisticated method to meet rising demands. We intend to vali-
date and improve the method in various ways. For example, we are currently
conducting benchmark studies and statistical analysis to provide further cal-
ibration of the underlying quality model [2]. We also intend to broaden the
range of source code metrics and evaluated quality characteristics, including
for example reliability.

References

1. Atos Origin. Method for qualification and selection of open source software
(QSOS), version 1.6, April 2006.

2. J.P. Correia and J. Visser. Benchmarking technical quality of software products.
To appear, 2008.

3. J.-C. Deprez and S. Alexandre. Comparing assessment methodologies for
free/open source software: OpenBRR and QSOS. In PROFES, 2008.

4. A. van Deursen and T. Kuipers. Source-based software risk assessment. In Proc.
Int. Conf. Software Maintenance, page 385. IEEE Computer Society, 2003.

5. F.Fabbrini, M.Fusani, and G.Lami. Basic concepts of software certification. In
S.Gnesi, T. Maibaum, and A. Wassyng, editors, Proc. First Int. Workshop on
Software Certification (CertSoft 2006), Software Quality Research Laboratory.
McMaster University, Canada, 2006. Report no. 37.

6. B. Golden. Making open source ready for the enterprise: The open source ma-
turity model. Whitepaper available from www.navicasoft.com, 2005.

7. P.M. Heck and M.C.J.D. van Eekelen. The LaQuSo software product certifica-
tion model: (LSPCM). Technical Report 08-03, Tech. Univ. Eindhoven, 2008.

8. I. Heitlager, T. Kuipers, and J. Visser. A practical model for measuring main-
tainability. In 6th Int. Conf. on the Quality of Information and Communications
Technology (QUATIC 2007), pages 30–39. IEEE Computer Society, 2007.

9. International Organization for Standardization. ISO/IEC 14598-1: Information
technology - software product evaluation - part 1: General overview, 2001.

10. International Organization for Standardization. ISO/IEC 9126-1: Software en-
gineering - product quality - part 1: Quality model, 2001.

11. International Organization for Standardization. ISO/IEC 15408: Information
technology - security techniques - evaluation criteria for IT security, 2005.

12. T. Kuipers and J. Visser. A tool-based methodology for software portfolio
monitoring. In Mario Piattini et al., editors, Proc. 1st Int. Workshop on Software
Audit and Metrics, (SAM 2004), pages 118–128. INSTICC Press, 2004.

13. T. Kuipers, J. Visser, and G. de Vries. Monitoring the quality of outsourced
software. In J. van Hillegersberg et al., editors, Proc. Int. Workshop on Tools for
Managing Globally Distributed Software Development (TOMAG 2007). Center
for Telematics and Information Technology, Netherlands, 2007.

14. OpenBRR.org. Business readiness rating for open source, request for comment
1, 2005.

