
Design, Implementation and Calculation
of

Circular Programs

João Paulo Fernandes

July 9, 2009

2

Acknowledgements

Several people contributed to the work presented in this thesis in different

ways.

First of all, I would like to express my infinite gratitude to João Saraiva.

For more than 4 years now, João Saraiva has been much more than just an

advisor. Ever since the beginning of this project, he has always believed in me

and in the project itself. His confidence was very important to me, especially

in the difficult moments. João Saraiva understands research (and life itself)

in ways that I truly admire. Also when not researching, João Saraiva has

always been a true friend. You always shared your vision of things with me,

while still letting me make my own decisions. I owe you a lot!

Oege de Moor kindly accepted to keep an eye on my work. He also

provided me the unique experience of living and working at Oxford. I have

enjoyed my stays there very much and I learned a lot from working in such

an excellency environment. My sincere thanks for that. I would also like to

thank Oege’s students in the basement. A special thanks goes also to Bruno

Oliveira, who made my Oxford stays even more memorable.

Alberto Pardo played a crucial role in this project, which he entered half-

way through. Alberto is not only an exceptional researcher, but also a very

special person, that I truly admire and that I am very happy to have as

a friend. I will never forget the warm way he received me in Montevideo.

I had a wonderful time there and I look forward to going back. My stay

in Montevideo was made even more memorable by Alberto’s colleagues and

students. I would like to thank Marcos Viera and Daniel Calegari in a special

way.

I would also like to thank Janis Voigtländer and Alberto Pardo for in-

i

ii

credibly accurate and very useful comments on the work presented in this

thesis.

During this project, I had the opportunity to work in fantastic environ-

ments. I will always treasure the memories of working in the best office ever:

lab 1.08, that later moved to lab 1.06. Alexandra Silva, Jácome Cunha, José

Proença, Miguel Vilaça, Paulo Silva and Tiago Alves: you were the best of-

fice mates I could ever want. A special word goes to Miguel Vilaça, long time

friend and office mate. Our professional paths have been similar for a while

now. I sincerely wish you all the best in life. I would also like to thank all the

unnamed members of the glorious OsSemEstatuto group. Beach volleyball

in the afternoon is, I see it now, priceless.

Nuno Rodrigues, João Fernando and, again, Alexandra Silva and Miguel

Vilaça joined me in unforgettable summer schools and side-effect travels.

Thank you enormously for that. Alexandra Silva deserves a special note for

being not only the most intelligent person I know, but also for being a true

friend that deserves all the best.

I would also like to thank Alberto Mendes, Daniel Mendes, Filipe Pereira,

Miguel Eiriz and José Álvaro for a memorable undergraduate period. My

gratitude goes also to Marta Santos, whose friendship lasts ever since high-

school days.

These acknowledgments would no be complete without thanking my fam-

ily, the most important pillar of my life.

Pedro Jorge, my godchild, is an endless source of joy. Whenever we are

together, we always share great moments. You are a very special kid, and I

thank you for being so genuine.

Alice and Manuel Pinto, and Ana and Pedro Pinto have always been my

borrowed parents, sister and brother. I know that they will always be there,

come what may. Our bond is remarkable, and I am in great debt to you all

for that.

My grandparents Emı́lia and António Sousa always took care of their

grandchildren in an impressive way. They have always made me feel like I

was special and I am very grateful for that. You will always be the best. I

also want to thank my grandfather José Fernandes, that I wish I could have

iii

known better.

I would especially like to thank my parents, Angelina and Joaquim Fer-

nandes. They have always provided me the best education I could ever dream

of. I am truly inspired by the way you live your life. Thank you for your love,

for your dedication and for your hard-work in making everything possible.

You deserve the biggest credit for the work presented in this thesis.

My brother Rui believes the most in my abilities. He proudly speaks of

me in terms that I clearly do not deserve. Thank you for always being there,

for your courage and example. I am sure that life will grant you everything

you deserve.

This project had just began when I met my girlfriend Adélia. I have

several times tried to describe Adélia, and what she means to me, in words.

Even though I fail time after time, I shall try again. Adélia amazes me. She

fills my horizon with joy and happiness. We are so close to each other that

I sometimes feel myself living through her. You know best that this project

had its difficult moments. Thank you for always believing in me, even when

I did not. I hope one day you will accept becoming my wife and being the

mother of my children.

Ao avô António, cuja sabedoria seria suficiente para escrever várias teses

de doutoramento, dedico esta tese.

Several institutions also contributed to this thesis in important ways. The

research was mainly supported by Fundação para a Ciência e Tecnologia

(FCT), grant No. SFRH/BD/19186/2004. The Department of Informatics

of the University of Minho provided financial support for me to participate

in the 2007 and 2009 ACM SIGPLAN Symposiums on Partial Evaluation

and Program Manipulation. The ACM SIGPLAN Professional Activities

Committee provided financial support for me to participate in the ACM

SIGPLAN Haskell Workshop 2007 and in the ACM SIGPLAN 2009 Sympo-

sium on Partial Evaluation and Program Manipulation. The NATO Science

for Peace and Security Programme provided financial support for me to par-

ticipate in the Summer School Marktoberdorf 2007.

iv

Contents

1 Introduction 1

1.1 Contributions . 11

1.2 Structure of the thesis . 11

2 Calculation of Circular Programs 13

2.1 Introduction . 13

2.2 Circular programs . 16

2.2.1 Bird’s method . 17

2.2.2 Our method . 18

2.3 Program schemes . 22

2.3.1 Data types . 23

2.3.2 Fold . 26

2.3.3 Fold with parameters 31

2.4 The pfold/buildp rule . 34

2.4.1 Semantics of the pfold/buildp rule 38

2.5 Algol 68 scope rules . 42

2.5.1 Calculating a circular program 46

2.6 Conclusions . 50

3 Calculation of Monadic Circular Programs 53

3.1 Introduction . 53

3.2 Bit string transformation . 55

3.3 Algol 68 scope rules . 61

3.4 Calculating circular programs, generically 69

3.4.1 Extended shortcut fusion 69

v

vi CONTENTS

3.4.2 Monadic shortcut fusion 70

3.5 Conclusions . 75

4 Calculation of Higher-order Programs 77

4.1 Introduction . 77

4.2 The higher-order pfold/buildp rule 79

4.3 Calculating a higher-order program 82

4.4 Calculation of monadic higher-order programs 85

4.4.1 Bit string transformation 86

4.4.2 Algol 68 scope rules . 88

4.4.3 Calculating monadic higher-order programs, generically 92

4.5 Conclusions . 95

5 Strictification of Circular Programs 97

5.1 Introduction . 97

5.2 Notation . 99

5.2.1 The table formatter program 99

5.3 From circular to strict programs 104

5.3.1 Detection of circular definitions 105

5.3.2 Partitionable circular programs 106

5.3.3 Ordered circular programs 110

5.3.4 The visit-sequence paradigm 116

5.3.5 Computing strict functions 118

5.3.6 Deforestation by program specialisation 122

5.4 Slicing circular programs . 127

5.5 Class of programs considered 132

5.6 Conclusion . 133

6 Tools and Libraries to Model and Manipulate Circular Pro-

grams 135

6.1 Introduction . 135

6.2 Libraries and tools for circular programming 137

6.2.1 The CircLib library . 137

6.2.2 Tools for circular program manipulation 138

CONTENTS vii

6.2.3 The AG system . 140

6.3 Benchmarks . 141

6.3.1 The table formatter . 142

6.3.2 The MicroC processor 143

6.3.3 The pretty printing combinators 144

6.4 Conclusions . 147

7 Conclusions 149

7.1 Future work . 151

Bibliography 154

A The CircLib Haskell library 165

viii CONTENTS

Chapter 1

Introduction

Summary

In this chapter, we present a small introduction to the notation

and concepts that will be studied throughout this thesis. We in-

troduce the technique of circular programming by reviewing the

repmin problem. We also consider different approaches to solve

repmin: we define a naive functional program and transform it

into a circular equivalent that is later transformed into a higher-

order program. We also present the definition of repmin in terms

of an attribute grammar.

In a purely functional setting, programs are often constructed as a set of

simple and clear components, which are glued together by using intermediate

data structures. Compilers are a typical example of programs designed in this

way: a function, the parser , constructs a syntax tree that is later decorated

by another function.

There are significant advantages in structuring our programs in this way.

Considered in isolation, each function, or traversal, may be relatively simple.

Consequently, programs so defined are easier to write, to understand and are

potentially more reusable. By separating many distinct phases, it becomes

possible to focus on a single task, rather than attempting to do many things

at the same time. Furthermore, there are algorithms that rely on a multiple

traversal strategy because context information must first be collected before

1

2 1. Introduction

it can be used. That is, information flows from one traversal to a following

one. Functional programmers usually define intermediate data structures to

convey the information computed in one traversal and used in the following

one. Such intermediate data structures glue the different traversals. The

construction, traversal and destruction of a (potentially) large number of

intermediate data structures, however, may degrade the efficiency of the total

program, both in terms of runtime and memory consumption.

An alternative way to write multiple traversal programs in a lazy func-

tional setting, avoiding the definition of all redundant intermediate data

structures, is to use circular programming. Circular programs were first

proposed by Bird (1984) as an elegant and efficient technique to eliminate

multiple traversals of data structures. As the name suggests, circular pro-

grams are characterized by having what appears to be a circular definition:

arguments in a function call depend on results of that same call. That is,

they contain definitions of the form:

(..., x , ...) = f ... x ...

In order to motivate the use of circular programs, Bird introduces the

following programming problem, widely known as the repmin problem: con-

sider that we want to transform a binary leaf tree into a second tree, identical

in shape to the original one, but with all the leaf values replaced by the min-

imum leaf value. An example of this transformation is given in Figure 1.1.

In order to implement repmin, we must start by defining a representa-

tion for binary leaf trees. For this purpose, we may use the following data-

type definition, that is written in the Haskell programming language (Pey-

ton Jones et al. 1999; Peyton Jones 2003):

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

A binary leaf tree will then be represented by an element of the LeafTree

data-type. Such an element is either a leaf that holds an integer value (built

using the data-type constructor Leaf :: Int → LeafTree) or the fork of two

3

The input tree The output tree

6

3 1

1

1 1

Figure 1.1: An example of the use of repmin

leaf trees (such an element is built using the constructor function Fork ::

(LeafTree,LeafTree) → LeafTree). The input tree presented in Figure 1.1,

for example, is represented by the following LeafTree element:

tree :: LeafTree

tree = Fork (Fork (Leaf 3,

Leaf 1),

Leaf 6)

Having defined a representation for leaf trees, we may now consider dif-

ferent implementations for solving repmin. In a strict and purely functional

setting, for example, solving this problem would require a two traversal strat-

egy. First, we need to traverse the input tree in order to compute its minimum

value. This computation is performed by the function tmin, that we present

next1.

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

This function has been given the type signature tmin :: LeafTree → Int .

This means that function tmin receives as input a leaf tree, and produces as

result an integer value (which will be the minimum value of the input tree).

1The function min :: Int → Int → Int computes the minimum of two numbers.

4 1. Introduction

For example, for the input tree considered in Figure 1.1,

6

3 1

function tmin would produce the integer value 1 as result, since 1 is indeed

the minimum value of this tree.

Having traversed the input tree to compute its minimum value, we need to

traverse that tree again. We need to replace all its leaf values by the minimum

value, therefore producing the desired tree result. This is implemented in

function replace, as follows:

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

The symbol , that is used in the definition of function replace, stands for

any value. In this function, it is used to express that, no matter what value a

leaf has in the original tree, it is going to be replaced by the minimum value

computed for that tree.

If we now call function replace with the input tree considered before

and with the integer value 1 as its arguments, function replace produces, as

expected, the tree result:

1

1 1

Having implemented functions replace and tmin, we now only need, in

order to solve repmin, to combine them appropriately:

5

transform :: LeafTree → LeafTree

transform t = replace (t , tmin t)

As we have noticed, this solution to repmin traverses any input tree twice.

The original tree serves as the intermediate data structure that glues the two

traversals together. However, a two traversal strategy is not essential to solve

the repmin problem. An alternative solution can, on a single traversal, com-

pute the minimum leaf value and, at the same time, replace all values by that

minimum value. Bird showed how the single traversal program, presented

next, may be obtained by transforming the original program. Bird used the

following well known techniques: tupling, fold-unfold and local recursion2.

repmin (Leaf n,m) = (Leaf m, n)

repmin (Fork (l , r),m) = (Fork (t1, t2),min m1 m2)

where (t1,m1) = repmin (l ,m)

(t2,m2) = repmin (r ,m)

transform t = nt

where (nt , m) = repmin (t , m)

Notice the circularity in the above program: m is both an argument and

a result of the repmin call, in the transform function3. Although this circular

definition seems to induce both a cycle and non-termination of this program,

the fact is that using a lazy language, the lazy evaluation machinery is able

to determine, at runtime, the right order to evaluate this circular definition.

Bird’s work showed the power of circular programming, not only as an

optimization technique to eliminate multiple traversals of data, but also as

a powerful, elegant and concise technique to express multiple traversal algo-

rithms. Indeed, using this style of circular programming, the programmer

does not have to concern him/herself with the definition and the scheduling

of the different traversal functions, since only a single (traversal) function

has to be defined. Neither does the programmer have to define intermediate

2We will review Bird’s transformation in detail in chapter 2.
3In order to make it easier for the reader to identify circular definitions, we frame the

occurrences of variables that induce them (m in this case).

6 1. Introduction

gluing data structures to convey values computed in one traversal and needed

in following ones because there is a single traversal function only.

Due to their nice properties, circular programs are a widely used tech-

nique. In fact, circular programs have been studied in varied contexts:

• in the construction of Haskell compilers (Marlow and Peyton Jones

1999; Hinze and Jeuring 2002);

• in the implementation of aspect-oriented compilers (Moor et al. 2000);

• to express pretty printing algorithms (Swierstra et al. 1999; Swierstra

and Chitil 2009);

• to implement breadth-first traversal strategies (Okasaki 2000);

• to express type systems (Dijkstra and Swierstra 2004);

• as an optimization technique in the deforestation of accumulating pa-

rameters (Voigtländer 2004);

• in the implementation of programming environments (Michiel 2004);

• they have been studied in the context of partial evaluation (Lawall

2001) and continuations (Danvy and Goldberg 2002);

• they are used in bidirectional transformations (Mu et al. 2005).

Circular programs are also strongly related to attribute grammars (Knuth

1968; Paakki 1995). Indeed, as Johnsson (1987) and Kuiper and Swierstra

(1987) originally showed, circular programs are the natural representation of

attribute grammars in a lazy setting (Swierstra and Azero 1998; de Moor

et al. 2000; Saraiva 1999; Dijkstra 2005). This means that we can obtain

a single traversal repmin solution not only by applying Bird’s techniques to

the straightforward two traversal solution of repmin, that we presented on

page 5. Indeed, if we express repmin in terms of an attribute grammar for its

input trees, it is possible to transform it into a single traversal solution, using

the techniques presented by Kuiper and Swierstra (1987). In that paper, the

7

authors also present the attribute grammar for solving the repmin problem,

that we review next.

The construction of an attribute grammar for repmin attaches the argu-

ments and results of functions tmin and replace to the nodes of the input

LeafTree, as presented next.

Leaf : LeafTree → n :: Int

{LeafTree . tmin := n;

LeafTree . replace := Leaf (LeafTree . m)}
Fork : LeafTree → (l :: LeafTree, r :: LeafTree)

{LeafTree . tmin := min (l . tmin) (r . tmin);

LeafTree . replace := Fork (l . replace, r . replace);

l . m := LeafTree . m;

r . m := LeafTree . m }
Repmin : R → t :: LeafTree

{R . replace := t . replace;

t . m := t . tmin }

An attribute grammar is a context-free grammar augmented with seman-

tic rules. The context-free grammar corresponds to the algebraic structure

defined in the functional solution, where every non-terminal in the grammar

corresponds to a data-type in the functional program. Thus, the data-type

LeafTree of the repmin circular program is a non-terminal of the repmin at-

tribute grammar. Furthermore, every constructor in the functional program

corresponds to a production in the attribute grammar: this is the case of con-

structors Leaf and Fork of the repmin program, which consist of productions

of the repmin attribute grammar. We also add to the attribute grammar a

root non-terminal symbol and the corresponding production: notice that

non-terminal Repmin has been added to the repmin attribute grammar, and

a production has been defined for that non-terminal symbol. This corre-

sponds to adding the following data-type definition to the repmin functional

program.

8 1. Introduction

data R = Repmin LeafTree

The attribute grammar then associates a fixed set of attributes to each

non-terminal symbol in the grammar (we annotate the attribute a of non-

terminal T as T.a). Attributes may be inherited or synthesized: function

arguments, such as m, correspond to inherited attributes and function re-

sults, such as tmin and replace correspond to synthesized attributes4. For

each production of the grammar, its semantic rules specify the values of the

synthesized attributes of the left hand side nonterminal and the inherited ones

for the nonterminals of the right hand side of the production rules. Inherited

attributes of the left hand side non-terminal, and inherited and synthesized

attributes of the right hand side non-terminal can be used as arguments of

the semantic rules. In the repmin attribute grammar presented before, se-

mantic rules are written between curly braces and immediately follow the

corresponding context free production.

In (Kuiper and Swierstra 1987), the authors define a straightforward map-

ping between attribute grammars and single traversal circular programs. The

program we obtain by applying such techniques to the previously presented

attribute grammar is exactly the same circular program that we obtain by

using Bird’s technique on the straightforward repmin solution. That is to

say that the repmin attribute grammar is implemented by the repmin circu-

lar program of page 5. In fact, circular programs are a simple and natural

implementation of attribute grammars in a lazy language. Modern attribute

grammar systems, like LRC (Kuiper and Saraiva 1998), Silver (Wyk et al.

2006) or UUAG (Swierstra et al. 2004) use this approach to implement at-

tribute grammars in Haskell.

Deriving circular programs, however, is not the only way to eliminate mul-

tiple traversals of data structures. In particular, the straightforward repmin

solution of page 5 may be transformed, by the application of a well-known

technique called lambda-abstraction (Pettorossi and Skowron 1987), into a

4By definition, the root non-terminal symbol of an attribute grammar does not have
inherited attributes. This is the reason why we added the non-terminal Repmin and its
production to the repmin attribute grammar.

9

higher-order program. As a result, we obtain5:

repmin (Leaf n) = (λm → Leaf m, n)

repmin (Fork (l , r)) = (λm → Fork (t1 m, t2 m),min m1 m2)

where (t1,m1) = repmin l

(t2,m2) = repmin r

transform t = f m

where (f ,m) = repmin t

Regarding this new version of repmin, we may notice that it is a higher-

order program, since f , the first component of the result produced by the

call repmin t , is a function. Later, f is applied to m, the second component

of the result produced by that same call, therefore producing the desired

tree result. Thus, this version does not perform multiple traversals. Further-

more, it does not use any intermediate data structure: instead it constructs

an intermediate tree of function calls. This higher-order repmin solution is

equivalent to both the repmin solutions presented so far: the straightforward

solution, and the circular solution derived from it.

This thesis studies methods to model, analyze, manipulate and calculate

circular programs. In particular,

(i) we introduce new program calculation techniques to transform strict

multiple traversal programs into circular ones. Our methods are pre-

sented in the style of shortcut fusion, under generic calculation rules,

that can be instantiated for a wide class of programs. Furthermore,

the rules that we present are studied both in the context of pure and

monadic/effectful programming. Post-calculation optimizations, trad-

ing circularities for higher-order definitions, are also exploited and pre-

sented.

(ii) we use a different approach to perform the transformation in the oppo-

site direction. Indeed, we introduce a new program manipulation tech-

5In the program, we use two anonymous functions that are defined using the symbol
λ. Defining λm → Leaf m, for example, is equivalent to defining g m = Leaf m.

10 1. Introduction

nique based on attribute grammars that transforms circular programs

into strict multiple traversal ones. The execution of the derived pro-

grams is not restricted to a lazy evaluation setting as they do not rely

on circular definitions, but on intermediate data structures to glue dif-

ferent traversals together. A post-transformation optimization, based

on program specialisation, is also implemented: the intermediate data

structures are deforested and we obtain programs consisting of a set

of higher-order functions. Furthermore, we exploit the breaking up

of circularities in the original programs to perform slicing on circular

programs.

(iii) we present tools that implement our circular program manipulation

techniques. The developed tools can be used in the construction of an

attribute grammar system and they can also be used to transform cir-

cular programs into strict and strict deforested programs. Furthermore,

we also present a systematic benchmark, comparing the execution of

the different types of programs we manipulate and calculate, in this

thesis.

The following diagram summarizes the results that we present in this the-

sis.

circular programs

deforested programsstrict programs

a)

c)
d)

b)

The arrows a) and b) correspond to the attribute grammar based pro-

gram manipulation techniques described in (ii) and that we have presented

in (Fernandes and Saraiva 2007). The arrows c) and d) correspond to the

calculational methods described in (i) and that we have presented, for pure

programs, in (Fernandes et al. 2007) and, for monadic programs, in (Pardo

et al. 2008).

1.1. Contributions 11

1.1 Contributions

The main contributions of this thesis are:

• a generic program calculation rule, in the style of shortcut deforesta-

tion, to obtain circular programs from strict ones;

• a generic calculation rule, similar to the above one, but that introduces

higher-order definitions instead of circular ones;

• the formal proof that such rules are correct;

• the study of program calculation rules, developed in the same setting

as the above ones, but in the monadic context;

• the monadic rules were also proved correct;

• a strictification technique, based on well-known attribute grammar

techniques, that we have developed and applied to transform circular

programs into strict and strict deforested programs;

• a systematic benchmark comparing the performances of circular, strict

and strict deforested programs;

• a set of tools and a reusable library that can be used to model and

manipulate circular programs.

1.2 Structure of the thesis

This thesis is organized as follows. In chapter 2 we present a shortcut defor-

estation technique to calculate circular programs. The technique we propose

takes as input the composition of two functions: the first builds an inter-

mediate data structure and some additional context information which are

then processed by the second one, to produce the final result. Our trans-

formation, proposed under a generic calculation rule, achieves intermediate

structure deforestation and multiple traversal elimination. Moreover, the

calculated programs preserve the termination properties of the original ones.

12 1. Introduction

We also study the implementation of the rule we propose in the context of

an optimizing compiler.

In chapter 3, we propose an extension to the new form of fusion presented

in chapter 2, but in the context of monadic programming. The extension is

also provided in terms of generic calculation rules, that can be uniformly

defined for a wide class of data types and monads.

In chapter 4, we study an alternative transformation such that, instead

of circular programs, higher-order programs are derived. The alternative

transformation is studied in the context of both pure and monadic programs,

and it is also developed under a calculational setting.

Chapter 5 presents techniques to model circular lazy programs in a strict,

purely functional setting. Circular programs are first modeled in a functional

language, and they are then transformed, by applying attribute grammar

based techniques, into strict and strict and deforested equivalent programs.

We also propose techniques to identify sub-programs of circular programs,

using standard slicing techniques.

All the techniques proposed in chapters 2, 3, 4 and 5 are applied to

motivational examples that we introduce in each chapter.

In chapter 6, we present the implementation of the techniques formally

introduced in chapter 5 as a Haskell library: the CircLib library. Using

this library, we have constructed two tools to transform Haskell and Ocaml

based circular programs into their strict counterparts. Based on CircLib,

we have also developed a simple attribute grammar system. Furthermore,

we also present the results we obtained in the first systematic benchmarking

comparing the performances of circular, strict and higher-order programs.

Finally, in chapter 7, we draw the conclusions concerning the work pre-

sented in the thesis and suggest directions for future work.

Chapter 2

Calculation of Circular

Programs

Summary

In this chapter, we present shortcut deforestation techniques to

calculate circular programs. The techniques we propose take as

input the composition of two functions, such that the first builds

an intermediate structure and some additional context informa-

tion which are then processed by the second one, to produce the

final result. Our transformations into circular programs achieve

intermediate data structure deforestation and multiple traversal

elimination. Furthermore, the calculated programs preserve the

termination properties of the original ones.

2.1 Introduction

Circular programs provide a very appropriate formalism to model multiple

traversal algorithms as elegant and concise single traversal solutions. Us-

ing this style of programming, the programmer does not have to concern

him/herself with the definition and the scheduling of the different traversals

and does not have to define intermediate gluing data structures.

However, circular programs are also known to be difficult to write and to

understand. Besides, even for advanced functional programmers, it is easy

13

14 2. Calculation of Circular Programs

to define a real circular program, that is, a program that does not termi-

nate. Bird proposes to derive such programs from their correct and natural

strict solution. Bird’s approach is an elegant application of the fold-unfold

transformation method coupled with tupling and circular programming. His

approach, however, has a severe drawback since it preserves partial correct-

ness only. The derived circular programs are not guaranteed to terminate.

Furthermore, as an optimization technique, Bird’s method focuses on elimi-

nating multiple traversals over the same input data structure. Nevertheless,

one often encounters, instead of programs that traverse the same data struc-

ture twice, programs that construct an intermediate structure different from

the input one. Indeed, programs are often defined as the composition of two

functions: the first traverses the input data and produces an intermediate

data structure, whose type (possibly) differs from the type of the input data,

which is traversed by the second function to produce the final results.

Several attempts have successfully been made to combine such compo-

sitions of two functions into a single function, eliminating the use of the

intermediate structures (Wadler 1990; Onoue et al. 1997; Gill et al. 1993;

Ohori and Sasano 2007). In those situations, circular programs have also

been advocated suitable for deforesting intermediate structures in composi-

tions of two functions with accumulating parameters (Voigtländer 2004).

On the other hand, when the second traversal requires some additional

information in order to be able to produce its outcome, no such method

produces satisfactory results. In fact, as a side-effect of eliminating the

intermediate structure, these methods introduce multiple traversals of the

input structure. This is due to the fact that deforestation methods focus

on eliminating the intermediate structure, without taking into account the

computation of the additional information necessary for the second traversal.

Our motivation for the work presented in this chapter is then to transform

programs such as

prog = cons ◦ prod
where

prod :: a → (b, z)

cons :: (b, z)→ c

2.1. Introduction 15

into programs that construct no intermediate data-structure b and that tra-

verse the input structure a only once. That is to say, we want to perform

deforestation on those programs and, subsequently, to eliminate the multiple

traversals that deforestation introduces. These goals are achieved by trans-

forming prog into a circular program. We allow the first traversal, prod,

to produce completely general intermediate structures b and context infor-

mations z . The second traversal, cons then uses z so that, consuming the

intermediate structure b, it is able to compute the desired results.

The method we propose is based on a variant of the well-known fold/build

rule (Gill et al. 1993; Launchbury and Sheard 1995). The standard fold/build

rule does not apply to the kind of programs we wish to calculate as they need

to convey context information computed in one traversal into the following

one. The new rule we introduce, called pfold/buildp, was designed to support

contextual information to be passed between the first and the second traver-

sals and also the use of completely general intermediate structures. Like

fold/build, our rule is also cheap and pratical to implement in a compiler.

The pfold/buildp rule states that program compositions such as the one

defined in prog naturally induce circular programs. That is, we calculate

circular programs from programs such as prog . The circular programs we

derive compute the same results as prog , but they do this by performing a

single traversal over a, the input structure. Furthermore, and since that a

single traversal is performed, the intermediate structures lose their purpose.

In fact, they are deforested by our rule.

In this chapter, we not only introduce a new calculation rule, but we also

present the formal proof that this rule is correct. We also present formal

evidence that the pfold/buildp rule introduces no real circularity, i.e., that

the circular programs it derives preserve the same termination properties

as the original programs. Recall that Bird’s approach to circular program

derivation preserves partial correctness only: the circular programs it derives

are not guaranteed to terminate, even when the original programs do.

16 2. Calculation of Circular Programs

This chapter is organized as follows. In section 2.2, we review Bird’s

method for deriving circular programs in the case of the repmin problem,

and we contrast it with the (informal) derivation of the circular solution for

the same problem following the method we propose. Like fold/build, the

pfold/buildp rule will be characterized by certain program schemes, which

will be presented in section 2.3 together with the algebraic laws necessary

for the proof of the new rule. In section 2.4 we formulate and prove the

pfold/buildp rule; we also review the calculation of the circular program for

the repmin problem, now in terms of the rule. In section 2.4.1, we review

a systematic study performed by Voigtländer (2008) on the semantics of

the pfold/buildp rule. Section 2.5 illustrates the application of our method

to a realistic programming problem: the Algol 68 scope rules. Section 2.6

concludes the chapter.

2.2 Circular programs

Circular programs were proposed as a program transformation technique

to eliminate multiple traversals of data structures. As the name suggests,

circular programs are characterized by having what appears to be a circular

definition: arguments in a function call depend on results of that same call.

Recall Bird’s repmin problem of transforming a binary leaf tree into a

second tree, identical in shape to the original one, but with all the leaf values

replaced by the minimum leaf value. In a strict and purely functional setting,

solving this problem would require a two traversal strategy: the first traversal

to compute the original tree’s minimum value, and the second traversal to

replace all the leaf values by the minimum value, therefore producing the

desired tree. This straightforward solution is as follows.

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

transform :: LeafTree → LeafTree

transform t = replace (t , tmin t)

2.2. Circular programs 17

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

However, a two traversal strategy is not essential to solve the repmin prob-

lem. An alternative solution can, on a single traversal, compute the minimum

value and, at the same time, replace all leaf values by that minimum value.

2.2.1 Bird’s method

Bird (1984) proposed a method for deriving single traversal programs from

straightforward solutions, using tupling, folding-unfolding and local recur-

sion. For example, using Bird’s method, the derivation of a single traversal

solution for repmin proceeds as follows.

Since functions replace and tmin traverse the same data structure (a

leaf tree) and given their common recursive pattern, we tuple them into

one function repmin, which computes the same results as the previous two

functions combined. Note that, in order to be able to apply such a tupling

step, it is essential that the two functions traverse the same data structure.

repmin (t ,m) = (replace (t ,m), tmin t)

We may now synthesize a recursive definition for repmin using the stan-

dard application of the fold-unfold method. Two cases have to be considered,

corresponding to the two constructors of the traversed data structure:

repmin (Leaf n,m)

= (replace (Leaf n,m), tmin (Leaf n))

= (Leaf m, n)

repmin (Fork (l , r),m)

= (replace (Fork (l , r),m), tmin (Fork (l , r)))

18 2. Calculation of Circular Programs

= (Fork (replace (l ,m), replace (r ,m)),min (tmin l) (tmin r))

= (Fork (l ′, r ′),min n1 n2)

where (l ′, n1) = repmin (l ,m)

(r ′, n2) = repmin (r ,m)

Finally, local recursion is used to couple the two components of the result

value of repmin to each other. Consequently, we obtain the following circular

definition of transform.

transform :: LeafTree → LeafTree

transform t = nt

where (nt , m) = repmin (t , m)

A single traversal is obtained because the function applied to the argu-

ment t of transform, the repmin function, traverses t only once; this single

traversal solution is possible due to the circular call of repmin: m is both

an argument and a result of that call. This circularity ensures that the in-

formation on the minimum value is being used at the same time it is being

computed.

Although circular definitions always induce cycles and non-termination

under a strict evaluation mechanism, they can sometimes be evaluated using a

lazy evaluation strategy. The lazy evaluation machinery is able to determine,

at runtime, the right order to evaluate such circular definitions, if that order

exists.

After the seminal paper by Bird, the style of circular programming be-

came widely known. However, the approach followed by Bird does not guar-

antee termination of the resulting lazy program. In fact, Bird (1984) discusses

this problem and presents an example of a non-terminating circular program

obtained using his transformational technique.

2.2.2 Our method

The calculational method that we propose in this chapter is, in particular,

suitable for calculating a circular program that solves the repmin problem.

In this section, we calculate such a program.

2.2. Circular programs 19

Our calculational method is used to calculate circular programs from

programs that consist of the composition f ◦g of a producer g and a consumer

f , where g :: a → (b, z) and f :: (b, z)→ c.

In order to be able to apply our method to repmin, we then need to

slightly change the straightforward solution presented earlier. In that solu-

tion, the consumer (function replace) fits the desired structure; however, no

explicit producer occurs, since the input tree is copied as an argument to

function replace. Thus, we define the following solution to repmin1:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

tmint :: LeafTree → (LeafTree, Int)

tmint (Leaf n) = (Leaf n, n)

tmint (Fork (l , r)) = (Fork (l ′, r ′),min n1 n2)

where (l ′, n1) = tmint l

(r ′, n2) = tmint r

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf ,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

A leaf tree (that is equal to the input one) is now the intermediate data

structure that acts with the purpose of gluing the two functions2.

Although the original solution needs to be slightly modified, so that it is

possible to apply our method to repmin, we present such a modified version,

and the circular program we calculate from it, since repmin is very intuitive,

and, by far, the most well-known motivational example for circular program-

ming. Later in this chapter we will present a realistic example (in section 2.5)

which shows that, in general, the gluing trees need to grow from traversal to

1We have used ($) :: (a → b)→ a → b in the expression replace ◦ tmint $ t to avoid the
use of parenthesis. The same expression could be defined as (replace ◦ tmint) t .

2Notice that we could have used a smaller gluing tree. Indeed, since function replace
discards the values stored in the leaves of the intermediate tree, it suffices if function
tmint generates a tree of the same shape as the input one. We will come back to this in
section 6.2.2.

20 2. Calculation of Circular Programs

traversal. This fact forces the definition of new data-structures in order to

glue the different traversals together. Therefore, our rule directly applies to

such examples.

Now we want to obtain a new version of transform that avoids the gen-

eration of the intermediate tree produced in the composition of replace and

tmint . The method we propose proceeds in two steps.

First we observe that we can rewrite the original definition of transform

as follows:

transform t = replace (tmint t)

= replace (π1 (tmint t), π2 (tmint t))

= replace ′ ◦ π1 ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

= π1 ◦ (replace ′ × id) ◦ tmint $ t

where replace ′ x = replace (x ,m)

m = π2 (tmint t)

where π1 and π2 are the projection functions π1 (x , y) = x and π2 (x , y) = y

and (f × g) (x , y) = (f x , g y). Therefore, we can redefine transform as:

transform t = nt

where (nt ,) = repmin t

repmin t = (replace ′ × id) ◦ tmint $ t

replace ′ x = replace (x ,m)

m = π2 (tmint t)

We can now synthesize a recursive definition for repmin using, for example,

the fold-unfold method, obtaining:

transform t = nt

where (nt ,) = repmin t

m = π2 (tmint t)

repmin (Leaf n) = (Leaf m, n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

2.2. Circular programs 21

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

In our method this synthesis will be obtained by the application of a partic-

ular shortcut fusion law. The resulting program avoids the generation of the

intermediate tree, but maintains the residual computation of the minimum

of the input tree, as that value is strictly necessary for computing the final

tree. Therefore, this step did eliminate the intermediate tree but introduced

multiple traversals over t .

The second step of our method is then the elimination of the multiple

traversals. Similar to Bird, we will try to obtain a single traversal function

by introducing a circular definition. In order to do so, we first observe that

the computation of the minimum is the same in tmint and repmin, in other

words,

π2 ◦ tmint = π2 ◦ repmin (2.1)

This may seem a particular observation for this specific case but it is a

property that holds in general for all transformed programs of this kind. In

fact, later on we will see that tmint and repmin are both instances of a

single polymorphic function and actually this equality is a consequence of a

free theorem (Wadler 1989) about that function. Using this equality we may

substitute tmint by repmin in the new version of transform, finally obtaining:

transform t = nt

where (nt , m) = repmin t

repmin (Leaf n) = (Leaf m , n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

This new definition not only unifies the computation of the final tree

and the minimum in repmin, but it also introduces a circularity on m. The

introduction of the circularity is a direct consequence of this unification. As

expected, the resulting circular program traverses the input tree only once.

Furthermore, it does not construct the intermediate leaf-tree, which has been

22 2. Calculation of Circular Programs

eliminated during the transformation process.

The introduction of the circularity is safe in our context. Unlike Bird,

our introduction of the circularity is always made in such a way that it is

possible to safely schedule the computations. For instance, in our example,

the essential property that makes this possible is the equality (2.1), which is

a consequence of the fact that both in tmint and repmin the computation

of the minimum does not depend on the computation of the corresponding

tree. The fact that this property is not specific to this particular example,

but is an instance of a general one, is what makes it possible to generalize

the application of our method to a wide class of programs.

In this section, we have shown an instance of our method for obtaining a

circular lazy program from an initial solution that makes no essential use of

lazyness. In the next sections we formalize our method using a calculational

approach. Furthermore, we present the formal proof that guarantees its

correctness.

2.3 Program schemes

Our method will be applied to a class of expressions that will be characterized

in terms of program schemes. This will allow us to give a generic formulation

of the transformation rule in the sense that it will be parametric in the

structure of the intermediate data type involved in the function composition

to be transformed.

In this section, we describe two program schemes which capture struc-

turally recursive functions and are relevant constructions in our transforma-

tion. Throughout the section we shall assume we are working in the context

of a lazy functional language with a cpo semantics, in which types are in-

terpreted as pointed cpos (complete partial orders with a least element ⊥)

and functions are interpreted as continuous functions between pointed cpos.

However, our semantics differs from that of Haskell in that we do not con-

sider lifted cpos. That is, unlike the semantics of Haskell we do not consider

lifted products and function spaces. As usual, a function f is said to be strict

if it preserves the least element, i.e. f ⊥ = ⊥.

2.3. Program schemes 23

2.3.1 Data types

The structure of datatypes can be captured using the concept of a functor.

A functor consists of two components: a type constructor F , and a function

mapF ::(a → b)→ (F a → F b), which preserves identities and compositions:

mapF id = id (2.2)

mapF (f ◦ g) = mapF f ◦mapF g (2.3)

A standard example of a functor is that formed by the list type constructor

and the well-known map function, which applies a function to the elements

of a list, building a new list with the results.

map :: (a → b)→ [a]→ [b]

map f [] = []

map f (a : as) = f a : map f as

Another example of a functor is the product functor, which is a case of

a bifunctor, a functor on two arguments. On types its action is given by the

type constructor for pairs. On functions its action is defined by:

(×) :: (a → c)→ (b → d)→ (a, b)→ (c, d)

(f × g) (a, b) = (f a, g b)

Semantically, we assume that pairs are interpreted as the cartesian product

of the corresponding cpos. Associated with the product we can define the

following functions, corresponding to the projections and the split function:

π1 :: (a, b)→ a

π1 (a, b) = a

π2 :: (a, b)→ b

π2 (a, b) = b

(M) :: (c → a)→ (c → b)→ c → (a, b)

(f M g) c = (f c, g c)

24 2. Calculation of Circular Programs

Among other properties, it holds that

f ◦ π1 = π1 ◦ (f × g) (2.4)

g ◦ π2 = π2 ◦ (f × g) (2.5)

f = ((π1 ◦ f) M (π2 ◦ f)) (2.6)

Another case of a bifunctor is the sum functor, which corresponds to the

disjoint union of types. Semantically, we assume that sums are interpreted

as the separated sum of the corresponding cpos.

data a + b = Left a | Right b

(+) :: (a → c)→ (b → d)→ (a + b)→ (c + d)

(f + g) (Left a) = Left (f a)

(f + g) (Right b) = Right (g b)

Associated with the sum we can define the case analysis function, which has

the property of being strict in its argument of type a + b:

(O) :: (a → c)→ (b → c)→ (a + b)→ c

(f O g) (Left a) = f a

(f O g) (Right b) = g b

Product and sum can be generalized to n components in the obvious way.

We consider declarations of datatypes of the form3:

data τ (α1, · · · , αm) = C1 (τ1,1, · · · , τ1,k1) | · · · | Cn (τn,1, · · · , τn,kn)

where each τi,j is restricted to be a constant type (like Int or Char), a type

variable αt, a type constructor D applied to a type τ ′i,j or τ (α1, · · · , αm) itself.

Datatypes of this form are usually called regular. The derivation of a functor

that captures the structure of the datatype essentially proceeds as follows:

alternatives are regarded as sums (| is replaced by +) and constructors Ci

are omitted. Every τi,j that consists of a type variable αt or of a constant

3For simplicity we shall assume that constructors in a datatype declaration are declared
uncurried.

2.3. Program schemes 25

type remain unchanged and occurrences of τ (α1, · · · , αm) are substituted

by a type variable a in every τi,j. In addition, the unit type () is placed in

the positions corresponding to constant constructors (like e.g. the empty list

constructor). As a result, we obtain the following type constructor F :

F a = (σ1,1, · · · , σ1,k1) + · · ·+ (σn,1, · · · , σn,kn)

where σi,j = τi,j[τ (α1, · · · , αm) := a]4. The body of the corresponding

mapping function mapF :: (a → b)→ (F a → F b) is similar to that of F a,

with the difference that the occurrences of the type variable a are replaced

by a function f :: a → b:

mapFf = g1,1 × · · · × g1,k1 + · · ·+ gn,1 × · · · × gn,kn

with

gi,j =



f if σi,j = a

id if σi,j = t, for some type t

or σi,j = a′, for some type variable a′ other than a

mapD g′i,j if σi,j = D σ′i,j

where mapD represents the map function mapD :: (a → b) → (D a → D b)

corresponding to the type constructor D .

For example, for the type of leaf trees

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

we can derive a functor T given by

T a = Int + (a, a)

mapT :: (a → b)→ (T a → T b)

mapT f = id + f × f

The functor that captures the structure of the list datatype needs to reflect

the presence of the type parameter:

4By s[t := a] we denote the replacement of every occurrence of t by a in s.

26 2. Calculation of Circular Programs

La b = () + (a, b)

mapLa :: (b → c)→ (La b → La c)

mapLa f = id + id × f

This functor reflects the fact that lists have two constructors: one is a con-

stant and the other is a binary operation.

Every recursive datatype is then understood as the least fixed point of

the functor F that captures its structure, i.e. as the least solution to the

equation τ ∼= F τ . We will denote the type corresponding to the least

solution as µF . The isomorphism between µF and F µF is provided by

the strict functions inF :: F µF → µF and outF :: µF → F µF , each other

inverse. Function inF packs the constructors of the datatype while function

outF packs its destructors. Further details can be found in (Abramsky and

Jung 1994; Gibbons 2002).

For instance, in the case of leaf trees we have that µT = LeafTree and

inT :: T LeafTree → LeafTree

inT = Leaf O Fork

outT :: LeafTree → T LeafTree

outT (Leaf n) = Left n

outT (Fork (l , r)) = Right (l , r)

2.3.2 Fold

Fold (Bird and de Moor 1997; Gibbons 2002) is a pattern of recursion that

captures function definitions by structural recursion. The best known exam-

ple of fold is its definition for lists, which corresponds to the foldr operator

(Bird 1998).

Given a functor F and a function h :: F a → a, fold (also called catamor-

phism), denoted by fold h :: µF → a, is defined as the least function f that

satisfies the following equation:

f ◦ inF = h ◦mapF f

2.3. Program schemes 27

Because outF is the inverse of inF , this is the same as:

fold :: (F a → a)→ µF → a

fold h = h ◦mapF (fold h) ◦ outF
A function h :: F a → a is called an F -algebra5. The functor F plays the

role of the signature of the algebra, as it encodes the information about the

operations of the algebra. The type a is called the carrier of the algebra. An

F -homomorphism between two algebras h :: F a → a and k :: F b → b is a

function f :: a → b between the carriers that commutes with the operations.

This is specified by the condition f ◦ h = k ◦mapF f . Notice that fold h is a

homomorphism between the algebras inF and h.

For example, for leaf trees fold is given by:

foldT :: (Int → a, (a, a)→ a)→ LeafTree → a

foldT (h1, h2) = fT

where fT (Leaf n) = h1 n

fT (Fork (l , r)) = h2 (fT l , fT r)

And we can express the recursive function tmin,

tmin :: LeafTree → Int

tmin (Leaf n) = n

tmin (Fork (l , r)) = min (tmin l) (tmin r)

in terms of a fold for leaf trees6:

tmin = foldT (id , uncurry min)

Fold enjoys many algebraic laws that are useful for program transforma-

tion (Augusteijn 1998). A well-known example is shortcut fusion (Gill et al.

1993; Gill 1996; Takano and Meijer 1995) (also known as the fold/build rule),

which is an instance of a free theorem (Wadler 1989).

5When showing specific instances of fold for concrete datatypes, we will write the
operations in an algebra h1O · · ·Ohn in a tuple (h1, . . . , hn).

6uncurry takes a function f :: a → b → c and produces a function f ′ :: (a, b)→ c.

28 2. Calculation of Circular Programs

Law 2.3.1 (fold/build rule) For h strict,

g :: ∀ a . (F a → a)→ c → a

⇒
fold h ◦ build g = g h

where

build :: (∀ a . (F a → a)→ c → a)→ c → µF

build g = g inF

The instance of this law for leaf trees is the following:

foldT (h1, h2) ◦ buildT g = g (h1, h2) (2.7)

where

buildT :: (∀ a . (Int → a, (a, a)→ a)→ c → a)→ c → LeafTree

buildT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears because every

algebra h1 O h2 is strict as so is every case analysis.

As an example, we can use this law to fuse the following program, that

computes the minimum value of a mirrored leaf tree.

tmm = tmin ◦mirror

mirror :: LeafTree → LeafTree

mirror (Leaf n) = Leaf n

mirror (Fork (l , r)) = Fork (mirror r ,mirror l)

To do so, first we have to express mirror in terms of buildT :

mirror = buildT g

where g (leaf , fork) (Leaf n) = leaf n

g (leaf , fork) (Fork (l , r)) = fork (g (leaf , fork) r ,

g (leaf , fork) l)

Finally, by (2.7) we have that

2.3. Program schemes 29

tmm = g (id , uncurry min)

Inlining, we have

tmm (Leaf n) = n

tmm (Fork (l , r)) = min (tmm r) (tmm l)

As expected, this function does not construct the intermediate mirror

tree.

In the same line of reasoning, we can state another fusion law for a slightly

different producer function:

Law 2.3.2 (fold/buildp rule) For h strict,

g :: ∀ a . (F a → a)→ c → (a, z)

⇒
(fold h × id) ◦ buildp g = g h

where

buildp :: (∀ a . (F a → a)→ c → (a, z))→ c → (µF, z)

buildp g = g inF

Proof From the polymorphic type of g we can deduce the following free

theorem: for f strict,

f ◦ φ = ψ ◦mapF f ⇒ (f × id) ◦ g φ = g ψ

By taking f = fold h, φ = inF , ψ = h we obtain that (fold h × id)◦g inF =

g h. The equation on the left-hand side of the implication becomes true by

definition of fold. The requirement that f is strict is satisfied by the fact

that every fold with a strict algebra is strict, and by hypothesis h is strict.

Finally, by definition of buildp the desired result follows. 2

For example, the instance of this law for leaf trees is the following:

(foldT (h1, h2) × id) ◦ buildpT g = g (h1, h2) (2.8)

30 2. Calculation of Circular Programs

where

buildpT :: (∀ a . (Int → a, (a, a)→ a)→ c → (a, z))

→ c → (LeafTree, z)

buildpT g = g (Leaf ,Fork)

The assumption about the strictness of the algebra disappears by the same

reason as for (2.7).

To see an example of the application of this law, consider the program

ssqm: it replaces every leaf in a tree by its square while computing the

minimum value of the tree; later, it sums all the (squared) elements of an

input tree.

ssqm :: LeafTree → (Int , Int)

ssqm = (sumt × id) ◦ gentsqmin

sumt :: LeafTree → Int

sumt (Leaf n) = n

sumt (Fork (l , r)) = sumt l + sumt r

gentsqmin :: LeafTree → (LeafTree, Int)

gentsqmin (Leaf n) = (Leaf (n ∗ n), n)

gentsqmin (Fork (l , r)) = let (l ′, n1) = gentsqmin l

(r ′, n2) = gentsqmin r

in (Fork (l ′, r ′),min n1 n2)

To apply Law (2.8) we have to express sumt as a fold and gentsqmin in terms

of buildpT :

sumt = foldT (id , uncurry (+))

gentsqmin = buildpT g

where g (leaf , fork) (Leaf n) = (leaf (n ∗ n), n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Hence, by (2.8), we have

2.3. Program schemes 31

ssqm = g (id , uncurry (+))

Inlining, we obtain

ssqm (Leaf n) = (n ∗ n, n)

ssqm (Fork (l , r)) = let (s1, n1) = ssqm l

(s2, n2) = ssqm r

in (s1 + s2,min n1 n2)

Finally, the following property is an immediate consequence of Law 2.3.2.

Law 2.3.3 For any strict h,

g :: ∀ a . (F a → a)→ c → (a, z)

⇒
π2 ◦ g inF = π2 ◦ g h

Proof

π2 ◦ g inF

= { (2.5) }
π2 ◦ (fold h × id) ◦ g inF

= { Law 2.3.2 }
π2 ◦ g h 2

This property states that the construction of the second component of

the pair returned by g is independent of the particular algebra that g carries;

it only depends on the input value of type c. This is a consequence of the

polymorphic type of g and the fact that the second component of its result

is of a fixed type z .

2.3.3 Fold with parameters

Some recursive functions use context information in the form of constant

parameters for their computation. The aim of this section is to analyze the

definition of structurally recursive functions of the form f :: (µF, z) → a,

32 2. Calculation of Circular Programs

where the type z represents the context information. Our interest in these

functions is because our method will assume that consumers are functions of

this kind.

Functions of this form can be defined in different ways. One alternative

consists of fixing the value of the parameter and performing recursion on the

other. Definitions of this kind can be given in terms of a fold:

f :: (µF, z)→ a

f (t , z) = fold h t

such that the context information contained in z may eventually be used in

the algebra h. This is the case of, for example, the function replace:

replace :: (LeafTree, Int)→ LeafTree

replace (Leaf n,m) = Leaf m

replace (Fork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

which can be defined as:

replace (t ,m) = foldT (λn → Leaf m,Fork) t

Another alternative is the use of currying, which gives a function of type

µF → (z → a). The curried version can then be defined as a higher-order

fold. For instance, in the case of replace it holds that

curry replace = foldT (λn → Leaf , λ(f , f ′)→ Fork ◦ (f M f ′))

This is an alternative we will study in detail in section 4.2.

A third alternative is to define the function f :: (µF, z) → a in terms

of a program scheme, called pfold (Pardo 2001, 2002), which, unlike fold, is

able to manipulate constant and recursive arguments simultaneously. The

definition of pfold relies on the concept of strength of a functor F , which is a

polymorphic function:

τF :: (F a, z)→ F (a, z)

that satisfies the coherence axioms:

mapF π1 ◦ τF = π1

2.3. Program schemes 33

mapF α ◦ τF = τF ◦ (τF × id) ◦ α
where α :: (a, (b, c)) → ((a, b), c) is the product associativity (see (Pardo

2002; Cockett and Spencer 1991; Cockett and Fukushima 1992) for further

details). The strength distributes the value of type z to the variable positions

(positions of type a) of the functor. For instance, the strength corresponding

to functor T is given by:

τT :: (T a, z)→ T (a, z)

τT (Left n, z) = Left n

τT (Right (a, a ′), z) = Right ((a, z), (a ′, z))

In the definition of pfold the strength of the underlying functor plays an

important role as it represents the distribution of the context information

contained in the constant parameters to the recursive calls.

Given a functor F and a function h :: (F a, z) → a, pfold, denoted by

pfold h :: (µF, z) → a, is defined as the least function f that satisfies the

following equation:

f ◦ (inF × id) = h ◦ (((mapF f ◦ τF) M π2))

Observe that now function h also accepts the value of the parameter. It is

a function of the form (h1 O . . . O hn) ◦ d where each hi :: (Fi a, z) → a if

F a = F1 a + · · · + Fn a, and d :: (x1 + · · · + xn , z) → (x1, z) + · · · + (xn , z)

is the distribution of product over sum. When showing specific instances of

pfold we will simply write the tuple of functions (h1, . . . , hn) instead of h.

For example, in the case of leaf trees the definition of pfold is as follows:

pfoldT :: ((Int , z)→ a, ((a, a), z)→ a)→ (LeafTree, z)→ a

pfoldT (h1, h2) = pT

where pT (Leaf n, z) = h1 (n, z)

pT (Fork (l , r), z) = h2 ((pT (l , z), pT (r , z)), z)

We can then write replace in terms of a pfold:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

The following equation shows one of the possible relationships between pfold

34 2. Calculation of Circular Programs

and fold.

pfold h (t , z) = fold k t where ki x = hi (x , z) (2.9)

Like fold, pfold satisfies a set of algebraic laws. We do not show any of them

here as they are not necessary for the calculational work presented in this

thesis. The interested reader may consult (Pardo 2001, 2002).

2.4 The pfold/buildp rule

In this section, we present a generic formulation and proof of correctness of a

transformation rule for calculating circular programs. The rule takes a com-

position of the form cons ◦ prod, composed by a producer prod :: a → (t , z)

followed by a consumer cons :: (t , z) → b, and returns an equivalent defor-

ested circular program that performs a single traversal over the input value.

The reduction of this expression into an equivalent one without intermediate

data structures is performed in two steps. Firstly, we apply standard defor-

estation techniques in order to eliminate the intermediate data structure of

type t . The program obtained is deforested, but in general contains multiple

traversals over the input as a consequence of residual computations of the

other intermediate values (e.g. the computation of the minimum in the case

of repmin). Therefore, as a second step, we perform the elimination of the

multiple traversals by the introduction of a circular definition.

The rule makes some natural assumptions about cons and prod: t is a

recursive data type µF , the consumer cons is defined by structural recursion

on t , and the intermediate value of type z is taken as a constant parameter by

cons. In addition, it is required that prod is a “good producer”, in the sense

that it is possible to express it as the instance of a polymorphic function

by abstracting out the constructors of the type t from the body of prod.

In other words, prod should be expressed in terms of the buildp function

corresponding to the type t . The fact that the consumer cons is assumed to

be structurally recursive leads us to consider that it is given by a pfold. In

summary, the rule is applied to compositions of the form: pfold h ◦ buildp g .

2.4. The pfold/buildp rule 35

Law 2.4.1 (pfold/buildp rule) For any h = (h1 O . . . O hn) ◦ d, 7

g :: ∀ a . (F a → a)→ c → (a, z)

⇒
pfold h ◦ buildp g $ c

= v

where (v , z) = g k c

k = k1 O . . . O kn

ki x̄ = hi (x̄ , z)

Proof The proof will show in detail the two steps of our method. The first

step corresponds to the application of deforestation, which is represented by

Law 2.3.2. For that reason we need first to express the pfold as a fold.

pfold h ◦ buildp g $ c

= { definition of buildp }
pfold h ◦ g inF $ c

= { (2.6) }
pfold h ◦ (((π1 ◦ g inF) M (π2 ◦ g inF))) $ c

= { (2.9) }
fold k ◦ π1 ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x̄ = hi (x̄ , z)

= { (2.4) }
π1 ◦ (fold k × id) ◦ g inF $ c

where z = π2 ◦ g inF $ c

ki x̄ = hi (x̄ , z)

= { Law 2.3.2 }
π1 ◦ g k $ c

7We denote by x̄ a tuple of values (x1, · · · , xri
).

36 2. Calculation of Circular Programs

where z = π2 ◦ g inF $ c

ki x̄ = hi (x̄ , z)

Law 2.3.2 was applicable because by construction the algebra k is strict.

Once we have reached this point we observe that the resulting program is

deforested, but it contains two traversals on c. The elimination of the mul-

tiple traversals is then performed by introducing a circular definition. The

essential property that makes possible the safe introduction of a circularity

is Law 2.3.3, which states that the computation of the second component of

type z is independent of the particular algebra that is passed to g . This is a

consequence of the polymorphic type of g . Therefore, we can replace inF by

another algebra and we will continue producing the same value z . In partic-

ular, we can take k as this other algebra, and in that way we are introducing

the circularity. It is this property that ensures that no terminating program

is turned into a nonterminating one.

π1 ◦ g k $ c

where z = π2 ◦ g inF $ c

ki x̄ = hi (x̄ , z)

= { Law 2.3.3 }
π1 ◦ g k $ c

where z = π2 ◦ g k $ c

ki x̄ = hi (x̄ , z)

= { (2.6) }
v

where (v , z) = g k c

ki x̄ = hi (x̄ , z) 2

Now, let us see the application of the pfold/buildp rule in the case of the

repmin problem. Recall the definition, presented on page 19, that we want

to transform:

transform :: LeafTree → LeafTree

2.4. The pfold/buildp rule 37

transform t = replace ◦ tmint $ t

To apply the rule, first we have to express replace and tmint in terms of pfold

and buildp for leaf trees, respectively:

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

tmint = buildpT g

where g (leaf , fork) (Leaf n) = (leaf n, n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

Therefore, by applying Law 2.4.1 we get:

transform t = nt

where (nt , m) = g (k1, k2) t

k1 = Leaf m

k2 (l , r) = Fork (l , r)

Inlining, we obtain the definition we showed previously in section 2.2.2:

transform t = nt

where

(nt , m) = repmin t

repmin (Leaf n) = (Leaf m , n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (Fork (l ′, r ′),min n1 n2)

The pfold/buildp rule (Law 2.4.1) can also be used in an automated way.

Indeed, it is possible to implement each instance of pfold/buildp using the

rewrite rules (RULES pragma) of the Glasgow Haskell Compiler (GHC).

Again, let us consider the repmin solution:

transform :: LeafTree → LeafTree

transform t = replace ◦ tmint $ t

38 2. Calculation of Circular Programs

This solution constructs an intermediate leaf tree and functions replace

and tmint have already been expressed in terms of pfold and buildp for leaf

trees, respectively. Then, in order to apply Law 2.4.1 to transform, we define

the rewrite rule:

{−# rules

"pfoldT/buildpT"

∀ c h1 h2 (g :: ∀ a . (Int → a, (a, a)→ a)→ b → (a, z)) .

pfoldT (h1, h2) (buildpT g c)

= let (v , z) = g (k1, k2) c

k1 x = h1 (x , z)

k2 (l , r) = h2 ((l , r), z)

in v

#−}

Once this rule is defined and activated, the compiler will automatically

replace all the expressions occurring in a program that match the left hand

side of the "pfoldT/builpT" rule by its right hand side. In particular, the

rule will apply to transform, which is converted into a circular program.

2.4.1 Semantics of the pfold/buildp rule

According to Danielsson et al. (2006), Law 2.4.1 is morally correct only, in

Haskell. In fact, in the formal proof of our rule, surjective pairing (Law (2.6))

is applied twice to the result of function g . However, (2.6) is not valid in

Haskell : though it holds for defined values, it fails when the result of function

g is undefined, because ⊥ is different from (⊥,⊥) as a consequence of lifted

products. Therefore, (2.6) is morally correct only and, in the same sense,

so is our rule. In (Fernandes et al. 2007), we also pointed out that, due

to the presence of seq in Haskell, additional pre-conditions may need to be

defined in our rule in order to guarantee its correctness in Haskell (Johann

and Voigtländer 2004).

Following our work, Voigtländer (2008) performed a rigorous study on

various shortcut fusion rules, for languages like Haskell. In particular, the

2.4. The pfold/buildp rule 39

author presents semantic and pragmatic considerations on Law 2.4.1. As a

first result, pre-conditions are added to our rule, so that its total correctness

can be established.

The definition of Law 2.4.1 becomes:

Law 2.4.2 (Haskell valid pfold/buildp rule) For any

h = (h1 O . . . O hn) ◦ d,

∀ i ∈ {1, . . , n }. hi ((⊥, ...,⊥),⊥) 6= ⊥

g :: ∀ a . (F a → a)→ c → (a, z)

⇒
pfold h ◦ buildp g $ c

= v

where (v , z) = g k c

k = k1 O . . . O kn

ki x̄ = hi (x̄ , z)

It is now possible to prove total correctness of Law 2.4.2 (Voigtländer

2008). However, although Law 2.4.2 is the one that guarantees totally correct

transformations, in the semantics of Haskell, it is somewhat pessimistic.

By this we mean that even if the newly added pre-condition is violated,

it does not necessarily imply that the Law gets broken. In fact, Voigtländer

(2008) presents an example where such pre-condition is violated, causing no

harm in the calculated equivalent program. We review here such an example.

Consider the following programming problem: from the initial part of

an input list before a certain predicate holds for the first time, return those

elements that are repeated afterwards. The specification of a natural solution

to this problem is as follows:

repeatedAfter :: Eq b ⇒ (b → Bool)→ [b]→ [b]

repeatedAfter p bs = (pfilter elem) ◦ (splitWhen p) $ bs

pfilter :: (b → z → Bool)→ ([b], z)→ [b]

pfilter ([],) = []

pfilter p (b : bs , z) = let bs ′ = pfilter p (bs , z)

40 2. Calculation of Circular Programs

in if p b z

then b : bs ′

else bs ′

splitWhen :: (b → Bool)→ [b]→ ([b], [b])

splitWhen p bs

= case bs of []→ ([], bs)

b : bs ′ → if p b

then ([], bs)

else let (xs , ys) = splitWhen p bs ′

in (b : xs , ys)

This definition uses a list as the intermediate structure that serves the

purpose of gluing the two composed functions. This intermediate list can

be eliminated using Law 2.4.1. However, in order to apply that law to the

repeatedAfter program, pfilter and splitWhen p must first be given in terms

of pfold and buildp for lists (the type of the intermediate structure), respec-

tively. The definition of pfold and buildp for lists is as follows.

buildpL :: (∀ b . (b, (a, b)→ b)→ c → (b, z))→ c → ([a], z)

buildpL g = g ([], uncurry (:))

pfoldL :: (z → b, ((a, b), z)→ b)→ ([a], z)→ b

pfoldL (hnil , hcons) = pL

where pL ([], z) = hnil z

pL (a : as , z) = hcons ((a, pL (as , z)), z)

Now, we write pfilter and splitWhen p in terms of them:

splitWhen p = buildpL go

where go (nil , cons) bs

= case bs of []→ (nil , bs)

b : bs ′ → if p b

then (nil , bs)

else let (xs , ys)

2.4. The pfold/buildp rule 41

= go (nil , cons) bs ′

in (cons (b, xs), ys)

pfilter p = pfoldL (hnil , hcons)

where hnil = []

hcons ((b, bs), z) = if (p b z) then (b : bs) else bs

Regarding this example, we may notice that hcons ((⊥,⊥),⊥) = ⊥,

given that (if elem ⊥ ⊥ then ⊥ :⊥ else ⊥) equals ⊥. This means that the

pre-condition ∀ i . hi ((⊥, ...,⊥),⊥) 6= ⊥, newly added to Law 2.4.1, fails.

However, it is still possible to use Law 2.4.1 to calculate a correct circular

program equivalent to the repeatedAfter program presented earlier:

repeatedAfter p bs = a

where (a, z) = go ′ bs

go ′ bs = case bs of []→ ([], bs)

b : bs ′ → if p b

then ([], bs)

else let (xs , ys) = go ′ bs ′

in (if elem b z

then b : xs

else xs , ys)

It is in this sense that we say Law 2.4.2 is pessimistic. However, this Law

is the most general one can present, so far, in terms of total correctness.

In chapter 4, we will present an alternative way to transform compo-

sitions between pfold and buildp such that, instead of circular programs,

higher-order programs are obtained as result. A good thing about the new

transformation is that its total correctness can be established defining fewer

pre-conditions than the ones defined in Law 2.4.2.

42 2. Calculation of Circular Programs

2.5 Algol 68 scope rules

In the previous section we have introduced new calculation rules and applied

them to small, but illustrative examples. In this section, we consider the

application of the calculational methods we have introduced in this chapter

to a real example: the Algol 68 scope rules. These rules are used, for example,

in the Eli system8 (Kastens et al. 1998; Waite et al. 2007) to define a generic

component for the name analysis task of a compiler.

The problem we consider is as follows: we wish to construct a program

to deal with the scope rules of a block structured language, the Algol 68. In

this language a definition of an identifier x is visible in the smallest enclosing

block, with the exception of local blocks that also contain a definition of x .

In this case, the definition of x in the local scope hides the definition in the

global one. In a block an identifier may be declared at most once. We shall

analyze these scope rules via our favorite (toy) language: the Block language,

which consists of programs of the following form:

[use y ; decl x ;

[decl y ; use y ; use w ;]

decl x ; decl y ;]

In Haskell we may define the following data-types to represent Block

programs.

type Prog = [It] data It = Use Var

| Decl Var

type Var = String | Block Prog

Such programs describe the basic block-structure found in many lan-

guages, with the peculiarity however that declarations of identifiers may also

occur after their first use (but in the same level or in an outer one). Accord-

ing to these rules the above program contains two errors: at the outer level,

the variable x has been declared twice and the use of the variable w , at the

inner level, has no binding occurrence at all.

8A well known compiler generator toolbox.

2.5. Algol 68 scope rules 43

We aim to develop a program that analyses Block programs and computes

a list containing the identifiers which do not obey to the rules of the language.

In order to make the problem more interesting, and also to make it easier

to detect which identifiers are being incorrectly used in a Block program, we

require that the list of invalid identifiers follows the sequential structure of

the input program. Thus, the semantic meaning of processing the example

sentence is [w , x].

Because we allow a use-before-declare discipline, a conventional implemen-

tation of the required analysis naturally leads to a program which traverses

the abstract syntax tree twice: once for accumulating the declarations of

identifiers and constructing the environment, and once for checking the uses

of identifiers, according to the computed environment. The uniqueness of

names can be detected in the first traversal: for each newly encountered

declaration it is checked whether that identifier has already been declared

at the current level. In this case an error message is computed. Of course

the identifier might have been declared at a global level. Thus we need to

distinguish between identifiers declared at different levels. We use the level

of a block to achieve this. The environment is a partial function mapping an

identifier to its level of declaration. In Haskell we represent the environment

as follows.

type Env = [(Var , Int)]

Semantic errors resulting from duplicate definitions are then computed

during the first traversal of a block and errors resulting from missing dec-

larations in the second one. In a straightforward implementation of this

program, this strategy has two important effects: the first is that a “glu-

ing” data structure has to be defined and constructed to pass explicitly the

detected errors from the first to the second traversal, in order to compute

the final list of errors in the desired order; the second is that, in order to

be able to compute the missing declarations of a block, the implementation

has to explicitly pass (using, again, an intermediate structure), from the first

traversal of a block to its second traversal, the names of the variables that

are used in it.

44 2. Calculation of Circular Programs

Observe also that the environment computed for a block and used for

processing the use-occurrences is the global environment for its nested blocks.

Thus, only during the second traversal of a block (i.e., after collecting all its

declarations) the program actually begins the traversals of its nested blocks;

as a consequence the computations related to first and second traversals

are intermingled. Furthermore, the information on its nested blocks (the

instructions they define and the blocks’ level) has to be explicitly passed

from the first to the second traversal of a block. This is also achieved by

defining and constructing an intermediate data structure. In order to pass

the necessary information from the first to the second traversal of a block,

we define the following intermediate data structure:

type Prog2 = [It2] data It2 = Block 2 (Int , P rog)

| Dupl2 Var

| Use2 Var

Errors resulting from duplicate declarations, computed in the first traver-

sal, are passed to the second, using constructor Dupl2. The level of a nested

block, as well as the instructions it defines, are passed to the second traver-

sal using constructor Block 2’s pair containing an integer and a sequence of

instructions.

According to the strategy defined earlier, computing the semantic errors

that occur in a block sentence consists of:

semantics :: Prog → [Var]

semantics = missing ◦ (duplicate 0 [])

The function duplicate detects duplicate variable declarations by collecting

all the declarations occurring in a block. It is defined as follows:

duplicate :: Int → Env → Prog → (Prog2,Env)

duplicate lev ds [] = ([], ds)

duplicate lev ds (Use var : its)

= let (its2, ds ′) = duplicate lev ds its

in (Use2 var : its2, ds ′)

2.5. Algol 68 scope rules 45

duplicate lev ds (Decl var : its)

= let (its2, ds ′) = duplicate lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then (Dupl2 var : its2, ds ′)

else (its2, ds ′)

duplicate lev ds (Block nested : its)

= let (its2, ds ′) = duplicate lev ds its

in (Block 2 (lev + 1, nested) : its2, ds ′)

Besides detecting the invalid declarations, the duplicate function also com-

putes a data structure, of type Prog2, that is later traversed in order to detect

variables that are used without being declared. This detection is performed

by function missing , that is defined such as:

missing :: (Prog2,Env)→ [Var]

missing ([],) = []

missing (Use2 var : its2, env)

= let errs = missing (its2, env)

in if (var ∈ map π1 env) then errs

else var : errs

missing (Dupl2 var : its2, env)

= var : missing (its2, env)

missing (Block 2 (lev , its) : its2, env)

= let errs1 = missing ◦ (duplicate lev env) $ its

errs2 = missing (its2, env)

in errs1 ++ errs2

The construction and traversal of an intermediate data structure, how-

ever, is not essential to implement the semantic analysis described. Indeed,

in the next section we will transform semantics into an equivalent program

that does not construct any intermediate structure.

46 2. Calculation of Circular Programs

2.5.1 Calculating a circular program

In this section, we calculate a circular program equivalent to the semantics

program presented in the previous section. In our calculation, we will use the

specific instance of Law 2.4.1 for the case when the intermediate structure

gluing the consumer and producer functions is a list:

Law 2.5.1 (pfold/buildp rule for lists)

pfoldL (hnil , hcons) ◦ buildpL g $ c

= v

where (v , z) = g (knil , kcons) c

knil = hnil z

kcons (x , y) = hcons ((x , y), z)

where the schemes pfoldL and buildpL have already been defined as:

buildpL :: (∀ b . (b, (a, b)→ b)→ c → (b, z))→ c → ([a], z)

buildpL g = g ([], uncurry (:))

pfoldL :: (z → b, ((a, b), z)→ b)→ ([a], z)→ b

pfoldL (hnil , hcons) = pL

where pL ([], z) = hnil z

pL (a : as , z) = hcons ((a, pL (as , z)), z)

Now, if we write missing in terms of pfoldL,

missing = pfoldL (hnil , hcons)

where hnil = []

hcons ((Use2 var , errs), env)

= if (var ∈ map π1 env) then errs

else var : errs

hcons ((Dupl2 var , errs), env)

= var : errs

hcons ((Block 2 (lev , its), errs), env)

2.5. Algol 68 scope rules 47

= let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ errs

and duplicate in terms of buildpL,

duplicate lev ds = buildpL (g lev ds)

where g lev ds (nil , cons) [] = (nil , ds)

g lev ds (nil , cons) (Use var : its)

= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Use2 var , its2), ds ′)

g lev ds (nil , cons) (Decl var : its)

= let (its2, ds ′) = g lev ((var , lev) : ds) (nil , cons) its

in if ((var , lev) ∈ ds) then (cons (Dupl2 var , its2), ds ′)

else (its2, ds ′)

g lev ds (nil , cons) (Block nested : its)

= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Block 2 (lev + 1, nested), its2), ds ′)

we can apply Law 2.5.1 to the program semantics = missing◦(duplicate 0 []),

since this program has just been expressed as an explicit composition between

a pfoldL and a buildpL. We obtain a deforested circular definition, which,

when inlined, gives the following program:

semantics p = errs

where

(errs , env) = gk 0 [] p

gk lev ds [] = ([], ds)

gk lev ds (Use var : its)

= let (errs , ds ′) = gk lev ds its

in (if (var ∈ map π1 env) then errs

else var : errs , ds ′)

gk lev ds (Decl var : its)

48 2. Calculation of Circular Programs

= let (errs , ds ′) = gk lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds) then (var : errs , ds ′)

else (errs , ds ′)

gk lev ds (Block nested : its)

= let (errs2, ds ′) = gk lev ds its

in (let errs1 = missing ◦ (duplicate (lev + 1) env) $ nested

in errs1 ++ errs2, ds ′)

We may notice that the above program is a circular one: the environment

of a Block program (variable env) is being computed at the same time it is

being used. The introduction of this circularity made it possible to eliminate

some intermediate structures that occurred in the program we started with:

the intermediate list of instructions that was computed in order to glue the

two traversals of the outermost level of a Block sentence has been eliminated

by application of Law 2.5.1. We may also notice, however, that, for nested

blocks, in the definition

gk lev ds (Block nested : its)

= let (errs2, ds ′) = gk lev ds its

in (let errs1 = missing ◦ (duplicate (lev + 1) env) $ nested

in errs1 ++ errs2, ds ′)

an intermediate structure is still being used in order to glue functions missing

and duplicate together. This intermediate structure can easily be eliminated,

since we have already expressed function missing in terms of pfoldL, and

function duplicate in terms of buildpL. Therefore, by direct application of

Law 2.5.1 to the above function composition, we obtain:

gk lev ds (Block nested : its)

= let (errs2, ds ′) = gk lev ds its

in (let (errs1, env2) = g (lev + 1) env (knil , kcons) nested

where knil = hnil env2

kcons x = hcons (x , env2)

in errs1 ++ errs2, ds ′)

2.5. Algol 68 scope rules 49

Again, we could inline the definition of function g into a new function,

for example, into function gk ′. However, the definition of gk ′ would exactly

match the definition of gk , except for the fact that where gk searched for

variable declarations in the environment env , gk ′ needs to search for them in

the environment env2.

In order to use the same function for both gk and gk ′, we add an extra

argument to function gk . This argument will make it possible to use circular

definitions to pass the appropriate environment variable to the appropriate

block of instructions (the top level block or a nested one).

We should notice that, in general, this extra effort is not necessary. In this

particular example, this manipulation effort was made since it is possible to

calculate two circular definitions from the straightforward solution and both

circular functions share almost the same definition. In all other cases, inlining

the calculated circular program is enough to derive an elegant and efficient

lazy program from a function composition between a pfold and a buildp.

We finally obtain the program:

semantics p = errs

where (errs , env) = gk 0 [] env p

gk lev ds env [] = ([], ds)

gk lev ds env (Use var : its)

= let (errs , ds ′) = gk lev ds env its

in (if (var ∈ map π1 env) then errs

else var : errs , ds ′)

gk lev ds env (Decl var : its)

= let (errs , ds ′) = gk lev ((var , lev) : ds) env its

in if ((var , lev) ∈ ds) then (var : errs , ds ′)

else (errs , ds ′)

gk lev ds env (Block nested : its)

= let (errs2, ds ′) = gk lev ds env its

in (let (errs1, env2) = gk (lev + 1) env env2 nested

50 2. Calculation of Circular Programs

in errs1 ++ errs2, ds ′)

Regarding the above program, we may notice that it has two circular

definitions. One such definition occurs in the semantics function, and makes

it possible for the environment of the outer level of a block program to be

used while still being constructed. For the example sentence that we have

considered before,

[use y ; decl x ;

[decl y ; use y ; use w ;]

decl x ; decl y ;]

this circularity makes the environment [("x", 0), ("x", 0), ("y", 0)] available

to the function that traverses the outer block. The other circular definition,

occurring in the last definition of function gk , is used so that, for every traver-

sal of a nested sequence of instructions, its environment may readily be used.

This means that the function traversing the nested block in the above ex-

ample sentence may use the environment [("x", 0), ("x", 0), ("y", 0), ("y", 1)]

even though it still needs to be constructed.

The introduction of these circularities, by the application of our calcu-

lational method, completely eliminated the intermediate lists of instructions

that were used in the straightforward semantics solution we started with.

Furthermore, the derivation of this circular program made it possible to ob-

tain a semantics program that computes the list of errors that occur in a

Block program by traversing it only once.

2.6 Conclusions

In this chapter we have presented a new program transformation technique

for intermediate structure elimination. The programs we are able of dealing

with consist of the composition of a producer and a consumer function. The

producer constructs an intermediate structure that is later traversed by the

consumer. Furthermore, we allow the producer to compute additional values

that may be needed by the consumer. This kind of compositions is general

2.6. Conclusions 51

enough to deal with a wide number of practical examples. Our approach is

calculational, and proceeds in two steps: we apply standard deforestation

methods to obtain intermediate structure-free programs and we introduce

circular definitions to avoid multiple traversals that are introduced by de-

forestation. Since in the first step we apply standard fusion techniques, the

expressive power of our rule is then bound by deforestation.

We introduce a new calculational rule conceived using a similar approach

to the one used in the fold/build rule: our rule is also based on parametricity

properties of the functions involved. Therefore, it has the same benefits

and drawbacks of fold/build since it assumes that the functions involved

are instances of specific program schemes. Therefore, it could be used, like

fold/build, in the context of a compiler. In fact, we have used the rewrite

rules (RULES pragma) of the Glasgow Haskell Compiler (GHC) in order to

obtain a prototype implementation of our fusion rule.

In the next chapter, we will extend the applicability scope of our rule to

programs relying on monadic computations.

52 2. Calculation of Circular Programs

Chapter 3

Calculation of Monadic

Circular Programs

Summary

In the previous chapter, we have extended standard shortcut fusion

to programs that rely on both an intermediate structure and an ad-

ditional context parameter. This is achieved by transforming the

original function composition into a circular program. This new

technique, however, has been studied in the context of purely func-

tional programs only. In this chapter, we propose an extension

to this new form of fusion, but in the context of monadic pro-

gramming: we derive monadic circular programs from strict ones,

maintaining the global effects.

An important feature of our extensions is that they can be uni-

formly defined for a wide class of data types and monads, using

generic calculation rules.

3.1 Introduction

In the previous chapter, we have shown how circular programs can be used

to achieve intermediate structure deforestation in programs such as prog =

cons ◦ prod , where prod :: a → (t , z) and cons :: (t , z)→ b. This means that

the producer function may generate, besides the intermediate structure t , an

53

54 3. Calculation of Monadic Circular Programs

additional value, of type z , that the consumer function may need to compute

its result. Later, a calculation rule is applied to prog , which is transformed

into an equivalent circular program. The circular program we derive does

not construct any intermediate structure and traverses the input data (of

type a) only once. The rule applied to prog is generic in the sense that it

can be applied to a wide range of programs and datatypes. However, it does

not handle monadic functional programs, that is, programs that, for example,

rely on a global state or perform I/O operations. Thus, the rule has a limited

applicability scope since several programs, like compilers, pretty-printers or

parsers do rely on global effects.

Our motivation for the work presented in this chapter is to extend short-

cut fusion to the kind of programs we studied in chapter 2, but in the context

of monadic programming. Our approach follows the recent studies conducted

by Ghani and Johann (2008); Manzino and Pardo (2008), that proposed

monadic extensions to standard shortcut fusion. Our goal is to achieve fu-

sion of monadic programs, maintaining the global effects. We study two

cases: the case where the producer function is monadic and the consumer is

given by a pure function, and the case where both functions are monadic.

For both cases, fusion is achieved by transforming the original program into

a circular one. We do not consider the case where the producer is given by

a pure function (and the consumer is given by a monadic one) since it can

already be fused using the pfold/buildp fusion rule presented before.

This chapter is organized as follows. Sections 3.2 and 3.3 present two

motivating examples that serve to illustrate the applicability of our tech-

niques. Indeed, for each of the examples, we will derive an equivalent monadic

circular program. All the programs presented in this chapter (both the exam-

ple programs we start with and their calculated equivalents) will be monadic.

The generic constructions that give rise to the specific laws presented in those

examples are developed in section 3.4. We present the generic formulation

of the laws for calculating monadic circular programs in section 3.4. Finally,

in section 3.5, we conclude the chapter.

3.2. Bit string transformation 55

3.2 Bit string transformation

To illustrate our techniques to derive circular monadic programs we first

consider an example based on a simple bit string conversion that has appli-

cations in cryptography (Baier et al. 2007). Suppose we want to transform a

sequence of bits into a new one, of the same length, by applying the exclusive

or between each bit and the binary sum (sum modulo 2) of the sequence. We

will consider that the input sequence is given as a string of bits, which will

be parsed into a list and then transformed. It is in the parsing phase that

computational effects will come into play, as we will use a monadic parser.

Suppose we are given the string "101110110001". To transform this

string of bits, we start by parsing it, computing as result a list of bits

[1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1], and its binary sum (1 in this case). Having the

list and the binary sum, the original sequence is transformed into this one

[0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0] after applying the exclusive or of each bit with 1

(the binary sum).

To construct the parser, we will define a function that relies on a monad.

In general, a monad is a triple (M , return, >>=) consisting of a type construc-

tor M and two polymorphic functions:

return :: a → M a

(>>=) :: M a → (a → M b)→ M b

that obey the following laws

m >>= return = m

return x >>= f = f x

(m >>= f)>>= g = m >>= (λx → f x >>= g)

In Haskell, we can capture the definition of a monad as a type class.

class Monad m where

return :: a → m a

(>>=) :: m a → (a → m b)→ m b

56 3. Calculation of Monadic Circular Programs

To implement the parser for bit strings, we will adopt the usual definition

of parser monad (see (Hutton and Meijer 1998) for more details):

newtype Parser a = P (String → [(a, String)])

instance Monad Parser where

return a = P (λcs → [(a, cs)])

p �= f = P (λcs → concat [parse (f a) cs ′ | (a, cs ′)← parse p cs])

parse :: Parser a → String → [(a, String)]

parse (P p) = p

(]) :: Parser a → Parser a → Parser a

(P p)] (P q) = P (λcs → case p cs ++ q cs of [] → []

(x : xs)→ [x])

pzero :: Parser a

pzero = P (λcs → [])

item :: Parser Char

item = P (λcs → case cs of [] → []

(c : cs)→ [(c, cs)])

Alternatives are represented by a deterministic choice operator (]), which

returns at most one result. The parser pzero is a parser that always fails.

The item parser returns the first character in the input string.

We can use these simple parser combinators to define parsers for bits and

bit strings. The binary sum is calculated as the exclusive or of the bits of

the parsed sequence. We write ⊕ to denote exclusive or over the type Bit .

data Bit = Zero | One
bit :: Parser Bit

bit = do c ← item

case c of ’0’→ return Zero

’1’→ return One

→ pzero

3.2. Bit string transformation 57

bitstring :: Parser ([Bit],Bit)

bitstring = (do b ← bit

(bs , s)← bitstring

return (b : bs , b ⊕ s))

] return ([], Zero)

Now, we implement the transformation function:

transform :: ([Bit],Bit)→ [Bit]

transform ([],) = []

transform (b : bs , s) = (b ⊕ s) : transform (bs , s)

In summary, our bit string transformer consists of:

shift :: Parser [Bit]

shift = do (bs , s)← bitstring

return (transform (bs , s))

Regarding the above solution, we may notice that function bitstring con-

structs an intermediate list of bits (variable bs), that is later consumed by

function transform in order to produce the desired result (the transformed

list of bits). The construction of this intermediate structure may result in in-

efficiency of the presented program. We, therefore, would like to eliminate it;

following the same strategy that we have used in the previous chapter, such

elimination will be achieved by applying a specific fusion law to shift . The

fusion law to be used is a law in the style of shortcut fusion, similar to the

ones conceived in chapter 2 for the derivation of purely functional programs,

but with the difference that now we are dealing with monadic functions. In

this section, we present the specific instance of our law for lists (which is

the type of the intermediate structure used in our running example), and in

section 3.4 we show that the law is an instance of a generic one that can be

formulated for several datatypes.

Like in standard shortcut fusion (Gill et al. 1993), our law assumes that

the producer and the consumer (bitstring and transform in our case) are

expressed in terms of certain program schemes. In our law, we also require

58 3. Calculation of Monadic Circular Programs

the consumer to be given by a structural recursive definition, but in terms of

a pfold, which admits as input an additional constant parameter to be used

along the recursive calls. The generic definition of pfold has been presented

in section 2.3.3, and the specific case of pfold for lists, that we will use in

the calculations presented in this section, has been given in sections 2.4.1

and 2.5.1.

Like in standard shortcut fusion, we require the producer to be able to

show that the list constructors can be abstracted from the process that gen-

erates the intermediate list. The difference with the standard case is that

we consider producers that generate the intermediate list as part of a pair

which in turn is the result of a monadic computation. This is expressed by

a function called mbuildpL:

mbuildpL :: Monad m

⇒ (∀ b . (b, (a, b)→ b)→ m (b, z))→ m ([a], z)

mbuildpL g = g ([], uncurry (:))

Having stated the forms required to the producer and the consumer it is

now possible to formulate our laws and to use them in the calculation of a

circular monadic program equivalent to the program shift .

We start by introducing a Law, similar to Law 2.5.1, but that applies to

monadic program compositions. As Law 2.5.1, the new Law achieves pro-

gram fusion and intermediate structure deforestation by calculating circular

programs.

Law 3.2.1 (pfold/mbuildp for lists) Let m be a recursive monad.

do (xs , z)← mbuildpL g

return (pfoldL (hnil , hcons) (xs , z))

=

mdo (v , z)← let knil = hnil z

kcons (x , y) = hcons ((x , y), z)

in g (knil , kcons)

return v

3.2. Bit string transformation 59

This law transforms a monadic composition, where the producer is an

effectful function but the consumer may not necessarily be, into a single

monadic function with a circular argument z . Indeed, z is a value computed

by g (knil , kcons) but in turn used by knil and kcons . An interesting feature

of this law is the fact that the introduction of the circularity needs the use

of a recursive binding within a monadic computation, and therefore requires

the monad to be recursive (Erkök and Launchbury 2002). A recursive do

(mdo-notation) is supported by Haskell for those monads that are declared

an instance of the MonadFix class.

class Monad m ⇒ MonadFix m where

mfix :: (a → m a)→ m a

The monadic fixed-point operator mfix needs to obey the following se-

mantic laws1:

f ⊥ = ⊥ ⇔ mfix f = ⊥

mfix (return ◦ h) = return (fix h) (3.1)

mfix (λx → q >>= λy → f x y) = q >>= (λy → mfix (λx → f x y)),

if x does not appear free in q

The parsing monad presented earlier can be declared an instance of the

MonadFix class, for example, as follows:

instance MonadFix Parser where

mfix f = P (λcs → mfixL (λ̃ (x , y)→ parse (f x) cs))

where

mfixL f = case fix (f ◦ head) of

[] → []

(x :)→ x :mfixL (tail ◦ f)

To see Law 3.2.1 in action, we write transform and bitstring in terms of

1fix is the usual fixed-point operator for pure functions fix :: (a → a) → a,
fix f = f (fix f).

60 3. Calculation of Monadic Circular Programs

pfoldL and mbuildpL, respectively:

transform = pfoldL (hnil , hcons)

where hnil = []

hcons ((b, r), s) = (b ⊕ s) : r

bitstring = mbuildpL g

where g (nil , cons) = (do b ← bit

(bs , s)← g (nil , cons)

return (cons (b, bs), b ⊕ s)

] return (nil , Zero))

Then, by applying the law we obtain:

shift = mdo (bs , s)← g ([], λ(b, r)→ (b ⊕ s) : r)

return bs

Inlining, we get the following circular monadic program:

shift = mdo (bs , s)← let gk = (do b ← bit

(bs ′, s ′)← gk

return ((b ⊕ s) : bs ′, b ⊕ s ′)

] return ([], Zero))

in gk

return bs

The above program avoids the construction of the intermediate list of

bits, by introducing a circular definition. Indeed, we may notice that s (the

modulo 2 sum of an input sequence of bits) is used (in b ⊕ s) in the function

call to gk . However, s is also a result of that same call, hence the circularity.

In this section and in the previous one, we have calculated a circular

program equivalent to the original shift program. This program consists of

the composition of an effectful producer and a consumer given by a pure

function. In the next section, we study fusion of monadic programs where

both the consumer and the producer functions are effectful.

3.3. Algol 68 scope rules 61

3.3 Algol 68 scope rules

In this section we consider an improvement on the semantic analyzer for the

Algol 68 scope rules that we have been studying in this thesis.

We are still interested in developing a semantic function that analyzes a

sequence of instructions and computes a list containing the variable identifiers

of the instructions which do not obey to the scope rules of the Algol 68

language. However, when such an instruction is found, we now also want to

output an error message explaining the programming error encountered, in

order to make it easier to detect which identifiers are incorrect.

So, for example, if we consider the sentence presented earlier:

[use y ; decl x ;

[decl y ; use y ; use w ;]

decl x ; decl y ;]

we still want to compute the list [w , x]: at the inner level, the use of variable

w has no binding occurrence at all and the variable x has been declared twice,

at the outer level. But, as a side-effect of computing this list, the following

error messages must also be displayed:

Duplicate: decl x

Missing: decl w

The error messages must be displayed in a certain order: errors resulting

from duplicate declarations are displayed first and only then we show the

errors that result from missing declarations. Errors of the same type must

be displayed in order of appearance. Furthermore, the errors occurring in

nested blocks are displayed only after the errors occurring in the outer ones.

The original semantics program needs to be changed in order to accom-

modate the side-effect computations:

semantics :: Prog → IO [Var]

semantics p = do (p ′, env)← duplicate 0 [] p

missing (p ′, env)

The function duplicate detects duplicate variable declarations by collecting all

62 3. Calculation of Monadic Circular Programs

the declarations occurring in a program. It is now a monadic function since

it needs to output error messages resulting from the errors it detects. The

definition of this function, that closely follows the effect-free implementation

presented in section 2.5, is as follows2:

duplicate :: Int → Env → Prog → IO (Prog2,Env)

duplicate lev ds [] = return ([], ds)

duplicate lev ds (Use var : its)

= do (its2, ds ′)← duplicate lev ds its

return (Use2 var : its2, ds ′)

duplicate lev ds (Decl var : its)

= if ((var , lev) ∈ ds)

then do put ("Duplicate: decl " ++ var)

(its2, ds ′)← duplicate lev ((var , lev) : ds) its

return (Dupl2 var : its2, ds ′)

else duplicate lev ((var , lev) : ds) its

duplicate lev ds (Block nested : its)

= do (its2, ds ′)← duplicate lev ds its

return (Block 2 (lev + 1, nested) : its2, ds ′)

Besides detecting the invalid declarations, function duplicate also computes

a data structure, of type Prog2, that is later traversed in order to detect

variables that are used without being declared. This detection is performed

by function missing , which has been transformed into a monadic function as

it also outputs error messages:

missing :: (Prog2,Env)→ IO [Var]

missing ([],) = return []

missing (Use2 var : its2, env)

= if (var ∈ map π1 env)

then missing (its2, env)

2We abbreviate putStrLn as put .

3.3. Algol 68 scope rules 63

else do put ("Missing: decl " ++ var)

errs ← missing (its2, env)

return (var : errs)

missing (Dupl2 var : its2, env)

= do errs ← missing (its2, env)

return (var : errs)

missing (Block 2 (lev , its) : its2, env)

= do errs2 ← missing (its2, env)

errs1 ← do (p2, env 2)← duplicate lev env its

missing (p2, env 2)

return (errs1 ++ errs2)

Now, we want to eliminate the intermediate structure of type Prog2 gen-

erated by function duplicate and consumed by function missing . We may

notice that, if we attempted to directly apply Law 3.2.1 for that aim, then

we would see that in this case the result of the law is a function that returns

a monadic computation which in turn yields a monadic computation (and

not a value) as result, that is, something of type m (m a), for some a. This

is because the consumer is also monadic. To obtain a value and not a com-

putation as final result, it is simply necessary to run the computation. This

gives the following shortcut fusion law, which requires the same schemes for

consumer and producer as Law 3.2.1 but is able to fuse effectful functions.

Law 3.3.1 (Effectful pfold/mbuildp for lists) Let m be a recursive

monad.

do (xs , z)← mbuildpL g c

pfoldL (hnil , hcons) (xs , z)

=

mdo (m, z)← let knil = hnil z

kcons (x , y) = hcons ((x , y), z)

in g (knil , kcons) c

m

64 3. Calculation of Monadic Circular Programs

Observe that, in this case, hnil ::z → m b and hcons ::((a,m b), z)→ m b,

for some monad m, and therefore pfoldL (hnil , hcons) :: ([a], z)→ m b. Also,

notice that,

mbuildpL :: Monad m ⇒ (∀ b . (b, (a, b)→ b)→ c → m (b, z))

→ c → m ([a], z)

mbuildpL g = g ([], uncurry (:))

that is, mbuildpL g is a function of type c → m ([a], z). It is in this way that

it will be considered in section 3.4 when we will define the generic formulation

of the laws. However, in section 3.2 it was defined as a value of type m ([a], z)

because that form is more appropriate for writing monadic parsers.

For the present example we do not need to provide the instance of the

MonadFix class for the IO monad as it is automatically provided by the

Glasgow Haskell Compiler (GHC), which is the reference compiler we are

using.

Now, if we write the monadic version of function missing in terms of

pfoldL,

missing = pfoldL (hnil , hcons)

where hnil = return []

hcons ((Use2 var ,merrs), env)

= if (var ∈ map π1 env)

then merrs

else do put ("Missing: decl " ++ var)

errs ← merrs

return (var : errs)

hcons ((Dupl2 var ,merrs), env)

= do errs ← merrs

return (var : errs)

hcons ((Block 2 (lev , its),merrs), env)

= do errs2 ← merrs

errs1 ← do (p2, env 2)← duplicate lev env its

3.3. Algol 68 scope rules 65

missing (p2, env 2)

return (errs1 ++ errs2)

and the monadic version of duplicate in terms of mbuildpL,

duplicate lev ds = mbuildpL (g lev ds)

where g lev ds (nil , cons) []

= return (nil , ds)

g lev ds (nil , cons) (Use var : its)

= do (its2, ds ′)← g lev ds (nil , cons) its

return (cons (Use2 var , its2), ds ′)

g lev ds (nil , cons) (Decl var : its)

= if ((var , lev) ∈ ds)

then do put ("Duplicate: decl " ++ var)

(its2, ds ′)← g lev ((var , lev) : ds) (nil , cons) its

return (cons (Dupl2 var , its2), ds ′)

else g lev ((var , lev) : ds) (nil , cons) its

g lev ds (nil , cons) (Block nested : its)

= do (its2, ds ′)← g lev ds (nil , cons) its

return (cons (Block 2 (lev + 1, nested), its2), ds ′)

we can apply Law 3.3.1 to semantics obtaining a deforested circular defini-

tion, which, when inlined, gives the following definition:

semantics p

= mdo (merrs, env)

← let gk lev ds [] = return (return [], ds)

gk lev ds (Use var : its)

= do (its2, ds ′)← gk lev ds its

return (if (var ∈ map π1 env)

then its2

else

66 3. Calculation of Monadic Circular Programs

do put ("Missing:decl" ++ var)

errs ← its2

return (var : errs), ds ′)

gk lev ds (Decl var : its)

= if ((var , lev) ∈ ds)

then do put ("Duplicate:decl" ++ var)

(its2, ds ′)← gk lev

((var , lev) : ds)

its

return (do errs ← its2

return (var : errs), ds ′)

else gk lev ((var , lev) : ds) its

gk lev ds (Block nested : its)

= do (its2, ds ′)← gk lev ds its

return

(do errs2 ← its2

errs1

← do (p2, env 2)

← duplicate (lev + 1)

env

nested

missing (p2, env 2)

return (errs1 ++ errs2), ds ′)

in gk 0 [] p

merrs

The calculations performed so far made it possible to eliminate some of

the intermediate structures that were constructed by the original semantics

program. We may notice, however, that an intermediate data structure is still

constructed. Indeed, when traversing nested blocks, the calculated program

defines:

3.3. Algol 68 scope rules 67

gk lev ds (Block nested : its)

= do (its2, ds ′)← gk lev ds its

return (do errs2 ← its2

errs1 ← do (p2, env 2)

← duplicate (lev + 1) env nested

missing (p2, env 2)

return (errs1 ++ errs2), ds ′)

In order to deforest this intermediate structure as well, we may apply

Law 3.3.1 again. Notice that the construction of such intermediate structure

serves the purpose of gluing a composition between functions missing and

duplicate, and that these functions have already been expressed in terms of

the program schemes required by that law.

Additionally, we may apply the same strategy that we have applied in

section 2.5.1 in order to use the definition of function gk to unify the two

circular programs we obtain.

We finally obtain the program:

semantics p

= mdo (merrs, env)

← let gk lev ds env [] = return (return [], ds)

gk lev ds env (Use var : its)

= do (its2, ds ′)← gk lev ds env its

return (if (var ∈ map π1 env)

then its2

else

do put ("Missing:decl"

++ var)

errs ← its2

return (var : errs), ds ′)

gk lev ds env (Decl var : its)

= if ((var , lev) ∈ ds)

68 3. Calculation of Monadic Circular Programs

then do put ("Duplicate:decl" ++ var)

(its2, ds ′)← gk lev ((var , lev) : ds)

env its

return (do errs ← its2

return (var : errs), ds ′)

else gk lev ((var , lev) : ds) env its

gk lev ds env (Block nested : its)

= do (its2, ds ′)← gk lev ds env its

return

(do errs2 ← its2

errs1

←mdo (merrs1 , env2)

← gk lev ds

env2 nested

merrs1

return (errs1 ++ errs2), ds ′)

in gk 0 [] env p

merrs

Regarding the above program we may notice that it does not construct

the intermediate Prog2 structure that was used in the original semantics

program to glue the functions duplicate and missing together. The defor-

estation of that structure was achieved introducing two circular definitions.

The first one makes it possible to use the global environment of an input

Block program while it is still being constructed. This is achieved with the

circular definition on variable env . The second circular definition, defined

over variable env 2, makes the environment of every nested sequence of Block

instructions available while it is still under construction.

The calculated semantics program, as expected, produces the same re-

sults as the semantics program we started with. Furthermore, the monadic

computations that come as side-effects of computing such results are also the

same, for both versions of semantics and the same input Block program.

3.4. Calculating circular programs, generically 69

3.4 Calculating circular programs, generically

In this section, we show that the definition of Laws 3.2.1 and 3.3.1, presented

in the previous sections, are instances of generic definitions valid for a wide

class of data types and monads.

3.4.1 Extended shortcut fusion

Shortcut fusion laws for monadic programs can be obtained as a special

case of an extended form of shortcut fusion that captures the case when the

intermediate data structure is generated as part of another structure given by

a functor (Manzino and Pardo 2008; Ghani and Johann 2008). This extension

is based on an extended form of build: Given a functor F (signature of a

datatype) and another functor N , we can define

buildN :: (∀ a . (F a → a)→ c → N a)→ c → N µF

buildN g = g inF

This is a natural extension of the standard build. In fact, build can be

obtained from buildN by considering the identity functor as N . Moreover,

buildp is also a particular case obtained by considering the functor N a =

(a, z).

Using buildN it is possible to state an extended form of shortcut fusion

(see (Manzino and Pardo 2008; Ghani and Johann 2008) for a proof):

Law 3.4.1 (extended fold/build) For strict h and strictness preserving

N 3

mapN (fold h) ◦ buildN g = g h

Similarly, we can also consider an extension for buildp:

buildpN :: (∀ a . (F a → a)→ c → N (a, z))

→ c → N (µF, z)

buildpN g = g inF

3The strictness-preserving assumption on the functor means that mapN preserves strict
functions, i.e., if f is strict, then so is mapN f .

70 3. Calculation of Monadic Circular Programs

with the following shortcut fusion law:

Law 3.4.2 (extended fold/buildp) For strict h and strictness-preserving

N ,

mapN (fold h × id) ◦ buildpN g = g h

Proof By considering N ′ a = N (a, z), we have that buildpN g = buildN ′ g

and mapN ′ f = mapN (f × id). Then, the left-hand side of the equation can

be rewritten as: mapN ′ (fold h) ◦ buildN ′ g . Finally, we apply Law 3.4.1. 2

3.4.2 Monadic shortcut fusion

We are interested in studying Law 3.4.2 for the case when the functor N is

the composition of a monad m with a product: For some type z ,

N a = m (a, z) and mapN f = mmap (f × id)

where

mmap :: Monad m ⇒ (a → b)→ (m a → m b)

mmap f m = do {a ← m; return (f a)}
is the map function for the monad m. The producer then corresponds to a

monadic version of buildp:

mbuildp :: Monad m

⇒ (∀ a . (F a → a)→ c → m (a, z))→ c → m (µF, z)

mbuildp g = g inF

A monadic shortcut fusion law can be directly obtained as an instance of

Law 3.4.2. We unfold the definition of mmap so that we get a formulation

in terms of do-notation:

Law 3.4.3 (fold/mbuildp) For strict k and strictness preserving mmap,

do {(t , z)← mbuildp g c; return (fold k t , z)} = g k c

3.4. Calculating circular programs, generically 71

This is a version for mbuildp of the shortcut fusion law introduced by Manzino

and Pardo (2008).

Using this law we can state a first monadic extension of the pfold/buildp

rule, that we have presented in section 2.4, and that applies to effect-free

programs only. This extension provides the generic definition of Law 3.2.1,

that was used to calculate a circular version of the bit string transformer.

Law 3.4.4 (pfold/mbuildp) Let m be a recursive monad with strictness-

preserving mmap. For h with components (h1, . . . , hn) and strict,

do {(t , z)← mbuildp g c; return (pfold h (t , z))}
=

mdo{(v , z)← let ki x̄ = hi (x̄ , z) in g k c; return v }

Proof

do {(t , z)← mbuildp g c; return (pfold h (t , z))}
= { (2.9) }

do (t , z)← mbuildp g c

let ki x̄ = hi (x̄ , z) in return (fold k t)

= { definition of π1 }
do (t , z)← mbuildp g c

let ki x̄ = hi (x̄ , z) in return (π1 (fold k t , z))

=

do (t , z) ← mbuildp g c

(v , z ′)← let ki x̄ = hi (x̄ , z) in return (fold k t , z)

return v

= { Law 3.4.5 }
mdo (t , z)← mbuildp g c

(v , z′)← let ki x̄ = hi (x̄ , z′) in return (fold k t , z)

72 3. Calculation of Monadic Circular Programs

return v

= { Law 3.4.3 }
mdo{(v , z)← let ki x̄ = hi (x̄ , z) in g k c; return v } 2

The introduction of a circular definition requires the monad to be recur-

sive (Erkök and Launchbury 2002) as it requires the use of a circular binding

within a monadic computation. In Haskell terms, this can be expressed using

the mdo-notation provided that the monad is an instance of the MonadFix

class. The definition of mdo in terms of do is as follows.

mdo{x ← e; e ′} = do {x ← mfix (λx → e); e ′} (3.2)

The circularity introduced in Law 3.4.4 is safe and therefore computations

can be ordered under lazy evaluation. In order to prove this, we first need

to prove the following property.

∀ z f . fix (λ(v , z ′)→ (f z ′, z)) = (f z , z) (3.3)

Proof

We prove this property by fixed-point induction with admissible predicate

P (x , y) = (x , y) 6= ⊥ ⇒ (x , y) = (f z , z)

Let us define φ (x , y) = (f y , z). The proof needs to consider two cases:

Base case

P (⊥) is trivially true since the antecedent of P fails.

Inductive case

Assume that P (x , y) holds. The inductive hypothesis is, therefore, that

(x , y) = (f z , z). We will prove that P (φ (x , y)) holds.

3.4. Calculating circular programs, generically 73

φ (x , y)

= { definition of φ }
(f y , z)

= { inductive hypothesis }
(f z , z) 2

Now, we can state and prove the following law, that guarantees the safe

introduction of circular definitions in Law 3.4.4.

Law 3.4.5 (Monadic Local Recursion) Let m be a recursive monad

with strictness-preserving mmap. For h with components (h1, . . . , hn) and

strict,

do (v , z ′)← let ki x̄ = hi (x̄ , z) in return (fold k t , z)

return v

=

mdo (v , z′)← let ki x̄ = hi (x̄ , z′) in return (fold k t , z)

return v

Proof

mdo (v , z′)← let ki x̄ = hi (x̄ , z′) in return (fold k t , z)

return v

= { (3.2) }
do (v , z ′)← mfix (λ(v , z ′)→ let ki x̄ = hi (x̄ , z ′)

in return (fold k t , z))

return v

= { (3.1) }
do (v , z ′)← return (fix (λ(v , z ′)→ let ki x̄ = hi (x̄ , z ′)

in (fold k t , z)))

return v

74 3. Calculation of Monadic Circular Programs

= { (3.3) }
do (v , z ′)← return (let ki x̄ = hi (x̄ , z) in (fold k t , z))

return v

=

do (v , z ′)← let ki x̄ = hi (x̄ , z) in return (fold k t , z)

return v 2

Laws 3.4.3 and 3.4.4 handle monadic producers and purely functional

consumers. When the consumer is also an effectful function, it is possible

to state two other fusion laws. The formulation of these laws follows the

approach presented by Chitil (2000) and Ghani and Johann (2008).

Law 3.4.6 (effectful fold/mbuildp) For strict k :: F (m a) → m a

and strictness preserving mmap,

do {(t , z)← mbuildp g c; v ← fold k t ; return (v , z)}
=

do {(m, z)← g k c; v ← m; return (v , z)}

Proof

do {(t , z)← mbuildp g c; v ← fold k t ; return (v , z)}
= do (t , z) ← mbuildp g c

(m,)← return (fold k t , z)

v ← m

return (v , z)

= do (m, z)← do (t , z)← mbuildp g c

return (fold k t , z)

v ← m

return (v , z)

= do {(m, z)← g k c; v ← m; return (v , z)} 2

Using this law we can now state a shortcut fusion law for the derivation

3.5. Conclusions 75

of monadic circular programs in those cases where both the producer and

consumer are effectful functions. Again, like in Law 3.4.4, the monad is

required to be recursive because of the introduction of a recursive binding

within the monadic computation.

Law 3.4.7 (effectful pfold/mbuildp) Let m be a recursive monad with

strictness-preserving mmap. For h :: (F (m a), z) → m a with components

(h1, . . . , hn) and strict,

do {(t , z)← mbuildp g c; pfold h (t , z)}
=

mdo{(m, z)← let ki x̄ = hi (x̄ , z) in g k c; m }

Proof

do {(t , z)← mbuildp g c; pfold h (t , z)}
=

do (t , z)← mbuildp g c

m ← return (pfold h (t , z))

m

= { Law 3.4.4 }
mdo{(m, z)← let ki x̄ = hi (x̄ , z) in g k c; m } 2

Law 3.3.1 is the specific instance of Law 3.4.7, for the case where the

intermediate structure is a list.

3.5 Conclusions

In this chapter, we have presented shortcut fusion rules for the derivation

of circular monadic programs. Indeed, using an extension to shortcut fusion

that captures the cases when the intermediate structures are generated as

part of another structure given by a functor, we obtained shortcut fusion

76 3. Calculation of Monadic Circular Programs

rules that transform compositions of monadic programs into monadic circular

programs. This extends to monadic programs the work we have presented,

for pure programs, in the previous chapter.

The rules we present are generic, as they can be instantiated for a wide

class of algebraic data types and monads. We have also shown two example

applications which demonstrate the practical interest of the rules.

Like for non-monadic programs, it is possible to obtain a prototype im-

plementation of the rules using the rewrite rules (RULES pragma) of the

Glasgow Haskell Compiler (GHC). The current implementation of the rewrite

rules, however, does not allow matching on do blocks. Indeed, the left hand

side of a rule must have the form f x ... z , where f is a function (and not a

language construction like do). So, in order to implement our rules in GHC,

we first need to encapsulate the parts to be matched on in functions (using,

for example, the mmap function).

In the next chapter we will study an alternative solution to achieve inter-

mediate structure deforestation for programs such as the ones we have been

considering, by transforming them into higher-order programs.

Chapter 4

Calculation of Higher-order

Programs

Summary

In this chapter, we present shortcut deforestation techniques to cal-

culate higher-order programs. The techniques we propose have the

same applicability scope and goals as the techniques we presented

in the previous chapters. However, the elimination of the interme-

diate structures in the programs we transform will be achieved by

introducing higher-order definitions instead of circular ones. We

consider both pure and effectful programs.

4.1 Introduction

In the previous chapters we have studied calculational techniques to achieve

intermediate structure deforestation in programs such as prog = cons ◦ prod ,

where prod :: a → (t , z) and cons :: (t , z)→ b. Deforestation was achieved by

transforming prog into a circular program, and was studied in the context of

both pure programs, in chapter 2, and of monadic ones, in chapter 3.

An alternative solution to achieve intermediate structure deforestation for

programs such as prog is to transform them into higher-order programs using

a well-known program transformation technique called lambda-abstraction

77

78 4. Calculation of Higher-order Programs

(Pettorossi and Skowron 1987). In our particular context, the idea of the

transformation is to derive a new function prog ′ :: a → (z → b, z), which

returns a function and the same value of type z that would be generated

by prod , such that prog a = f z where (f, z) = prog ′ a. Based on this

idea, Voigtländer (2008) introduced a shortcut fusion rule for the derivation

of pure, higher-order programs from compositions like prog when lists are the

intermediate structure. In this chapter, we extend this result in two ways.

First, we present a generic formulation of the shortcut fusion rule for the

derivation of pure higher-order programs that can be applied to a wide range

of datatypes as intermediate data structures. Second, we extend the generic

rule to the context of monadic programming, obtaining shortcut fusion rules

for the derivation of monadic higher-order programs. The rules we present

in this chapter consider three cases: the case where the producer and the

consumer are both pure functions, the case where the producer function is

monadic and the consumer is given by a pure function, and the case where

both functions are monadic.

Obtaining higher-order programs is interesting since their execution is

not restricted to a lazy evaluation setting as it happens with the execution

of the circular ones. Furthermore, experimental benchmarks that we have

conducted and that we present in chapter 6 show that the performance of the

higher-order programs derived from programs like prog is significantly better

than the performance of their circular or original equivalents, both in terms

of time and memory consumption.

This chapter is organized as follows. Section 4.2 introduces the higher-

order pfold/buildp rule, that we will use to calculate higher-order versions of

pure programs. In that section, we also show how that rule can be used

to obtain a higher-order version of the repmin program. In section 4.3, we

transform the semantic analyzer presented in section 2.5 into a higher-order

program, by direct application of the new rule. In section 4.4, we calculate

monadic higher-order programs: in sections 4.4.1 and 4.4.2 we calculate

higher-order versions of the bit string transformer (see section 3.2) and of

the improved (monadic) version of the semantic analyzer (see section 3.3),

4.2. The higher-order pfold/buildp rule 79

respectively. The generic constructions that give rise to the specific program

schemes and laws presented in those examples are developed in section 4.4.3.

Finally, in section 4.5, we conclude the chapter.

4.2 The higher-order pfold/buildp rule

In section 2.4, we have presented the generic formulation of a calculation rule

for deriving circular programs. The rule applies to programs consisting of the

composition of a pfold and a buildp, and that do not rely on monadic compu-

tations. There exists, however, an alternative way to transform compositions

between pfold and buildp. Indeed, in this section we derive higher-order pro-

grams from such compositions, instead of the circular programs we derived

before.

The alternative transformation presented in this section is based on the

fact that every pfold can be expressed in terms of a higher-order fold: For

h :: (F a, z)→ a,

pfold h = apply ◦ (fold ϕh × id) (4.1)

where ϕh :: F (z → a)→ (z → a) is given by

ϕh = curry (h ◦ ((mapF apply ◦ τF) M π2))

and apply :: (a → b, a)→ b by apply (f, x) = f x . Therefore, fold ϕh ::µF →
(z → a) is the curried version of pfold h.

With this relationship at hand we can state the following shortcut fusion

law, which is the instance to our context of a more general program transfor-

mation technique called lambda abstraction (Pettorossi and Skowron 1987).

The specific case of this law when lists are the intermediate structure was

recently introduced by Voigtländer (2008).

Law 4.2.1 (higher-order pfold/buildp) For left-strict h,1

pfold h ◦ buildp g = apply ◦ g ϕh

1By left-strict we mean strict on the first argument, that is, h (⊥, z) = ⊥.

80 4. Calculation of Higher-order Programs

Proof

pfold h ◦ buildp g

= { (4.1) }
apply ◦ (fold ϕh × id) ◦ buildp g

= { Law 2.3.2 }
apply ◦ g ϕh 2

Like in the derivation of circular programs, g ϕh returns a pair, but now

composed of a function of type z → a and an object of type z . The final

result then corresponds to the application of the function to the object. That

is,

pfold h (buildp g c) = let (f, z) = g ϕh c in f z

To see an example of the application of Law 4.2.1, we consider again the

straightforward solution to the repmin problem:

transform t = replace ◦ tmint $ t

replace = pfoldT (Leaf ◦ π2,Fork ◦ π1)

tmint = buildpT g

where g (leaf , fork) (Leaf n) = (leaf n, n)

g (leaf , fork) (Fork (l , r)) = let (l ′, n1) = g (leaf , fork) l

(r ′, n2) = g (leaf , fork) r

in (fork (l ′, r ′),min n1 n2)

In order to apply Law 4.2.1 to transform, we need the expression of the

algebra of the higher-order fold which corresponds to the curried version of

replace:

replaceho :: LeafTree → (Int → LeafTree)

replaceho = foldT (ϕh1 , ϕh2)

where ϕh1 = λz → Leaf z

ϕh2 (l , r) = λz → Fork (l z , r z)

4.2. The higher-order pfold/buildp rule 81

Then, by direct application of Law 4.2.1 to transform, we obtain:

transform = apply ◦ g (ϕh1 , ϕh2)

Inlining the above definition, we obtain the higher-order solution to repmin

that we had already presented in chapter 1 (page 9):

transform t = nt m

where

(nt ,m) = repmin t

repmin (Leaf n) = (λz → Leaf z , n)

repmin (Fork (l , r)) = let (l ′, n1) = repmin l

(r ′, n2) = repmin r

in (λz → Fork (l ′ z , r ′ z),min n1 n2)

The transformation of the straightforward repmin solution into a higher-

order program can easily be implemented under GHC. Indeed, like we have

done for the calculation of circular programs, in section 2.4, we may express

Law 4.2.1, that can be used for calculating higher-order programs, in terms

of rewrite rules. The specific RULES pragma that applies to programs such

as transform, that construct an intermediate leaf tree, is as follows:

{−# rules

"ho_pfoldT/buildpT"

∀ c h1 h2 (g :: ∀ a . (Int → a, (a, a)→ a)→ b → (a, z)) .

pfoldT (h1, h2) (buildpT g c)

= let (f, z) = g (ϕh1 , ϕh2) c

ϕh1 x = λz → h1 (x , z)

ϕh2 (l , r) = λz → h2 ((l z , r z), z)

in f z

#−}

82 4. Calculation of Higher-order Programs

4.3 Calculating a higher-order program

In this section we study the application of Law 4.2.1 to a real example: the

Algol 68 scope rules, that we have introduced in detail in section 2.5. In

that section, we defined the semantic analyzer for the scope rules of Algol as

follows:

semantics = missing ◦ (duplicate 0 [])

The definition we presented constructs an intermediate list of instructions,

that we woud like to eliminate with fusion. For this purpose, we will now

use the specific instance of Law 4.2.1 for the case where the intermediate

structure is a list:

Law 4.3.1 (higher-order pfold/buildp for lists)

pfoldL (hnil , hcons) ◦ buildpL g = apply ◦ g (ϕhnil , ϕhcons)

where (ϕhnil , ϕhcons) is the algebra of the higher-order fold which corresponds

to the curried version of pfoldL (hnil , hcons).

In section 2.5, we have already expressed function missing in terms of

pfoldL,

missing = pfoldL (hnil , hcons)

where hnil = []

hcons ((Use2 var , errs), env)

= if (var ∈ map π1 env) then errs

else var : errs

hcons ((Dupl2 var , errs), env)

= var : errs

hcons ((Block 2 (lev , its), errs), env)

= let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ errs

and function duplicate in terms of buildpL.

4.3. Calculating a higher-order program 83

duplicate lev ds = buildpL (g lev ds)

where g lev ds (nil , cons) [] = (nil , ds)

g lev ds (nil , cons) (Use var : its)

= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Use2 var , its2), ds ′)

g lev ds (nil , cons) (Decl var : its)

= let (its2, ds ′) = g lev ((var , lev) : ds) (nil , cons) its

in if ((var , lev) ∈ ds) then (cons (Dupl2 var , its2), ds ′)

else (its2, ds ′)

g lev ds (nil , cons) (Block nested : its)

= let (its2, ds ′) = g lev ds (nil , cons) its

in (cons (Block 2 (lev + 1, nested), its2), ds ′)

Therefore, in order to apply Law 4.3.1 to the semantics program, we now

only need the expression of the algebra (ϕhnil , ϕhcons) of the curried version

of missing :

missingho = foldL (ϕhnil , ϕhcons)

where ϕhnil = λ → []

ϕhcons (Use2 var , ferrs)

= λenv → if (var ∈ map π1 env) then ferrs env

else var : (ferrs env)

ϕhcons (Dupl2 var , ferrs)

= λenv → var : (ferrs env)

ϕhcons (Block 2 (lev , its), ferrs)

= λenv → let errs1 = missing ◦ (duplicate lev env) $ its

in errs1 ++ (ferrs env)

After inlining the definition that we calculate by directly applying Law 4.3.1

to the semantics program, we obtain the program presented in the next page.

84 4. Calculation of Higher-order Programs

semantics p = ferrs env

where (ferrs , env) = gϕ 0 [] p

gϕ lev ds [] = (λenv → [], ds)

gϕ lev ds (Use var : its)

= let (ferrs , ds ′) = gϕ lev ds its

in (λenv → if var ∈ map π1 env

then ferrs env

else var : (ferrs env), ds ′)

gϕ lev ds (Decl var : its)

= let (ferrs , ds ′) = gϕ lev ((var , lev) : ds) its

in if ((var , lev) ∈ ds)

then (λenv → var : (ferrs env), ds ′)

else (ferrs , ds ′)

gϕ lev ds (Block nested : its)

= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let errs1 = missing

◦ (duplicate (lev + 1)

env) $ nested

in errs1 ++ ferrs2 env , ds ′)

Notice that the first component of the result produced by the call gϕ 0 [] p

is now a function, instead of a concrete value. When this function is applied

to env , it produces the list of variables that do not obey to the semantic rules

of the language. The program we have calculated is, therefore, a higher-order

program.

Regarding the above program, we may notice that it maintains the con-

struction of an intermediate structure. This situation already occurred in

sections 2.5.1 and 3.3, when different fusion rules were applied to differ-

ent versions of the semantics program. Again, an intermediate structure is

constructed whenever a nested sequence of instructions is traversed, in the

definition presented next.

4.4. Calculation of monadic higher-order programs 85

gϕ lev ds (Block nested : its)

= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let errs1 = missing

◦ (duplicate (lev + 1)

env) $ nested

in errs1 ++ ferrs2 env , ds ′)

The missing ◦duplicate composition in the above definition, however, may

be eliminated by direct application of Law 4.3.1. This is due to the fact that

functions missing and duplicate have already been expressed in terms of the

appropriate program schemes. We obtain:

gϕ lev ds (Block nested : its)

= let (ferrs2, ds ′) = gϕ lev ds its

in (λenv → let (ferrs1, env 1) = gϕ (lev + 1) env nested

in ferrs1 env 1 ++ ferrs2 env , ds ′)

The higher-order version of semantics that we calculate in this section,

by applying Law 4.3.1, twice, to the original semantics program avoids the

construction of any intermediate structure. Furthermore, in this program,

the appropriate (local or global) environment is passed to the correct block

of instructions. Notice that, in order for this to happen, it was not necessary

to post-process the calculated program, as it was in sections 2.5.1 and 3.3.

The execution of the higher-order semantics program is not restricted to a

lazy execution setting. Recall that the intermediate structure free program

that we calculated in section 2.5.1 may only be executed in a lazy setting: it

holds two circular definitions.

4.4 Calculation of monadic higher-order pro-

grams

In the previous sections, we have studied the use of generic calculation rules

in the derivation of higher-order programs. The rules we presented, however,

86 4. Calculation of Higher-order Programs

do not consider monadic functional programs. In the same way that we did

for circular program derivation, we now wish to extend higher-order fusion

to monadic programs. This is the purpose of this section.

We start by reviewing the two monadic examples we presented in chap-

ter 3: the bit string transformer (see section 3.2) and the improved version of

the Algol 68 semantic analyzer that outputs error messages (see section 3.3).

Later, we present the formal definition of the constructions that give rise to

the specific laws presented in those examples.

4.4.1 Bit string transformation

To illustrate our technique for deriving monadic higher-order programs, we

first review the bit string transformer that we have defined before. Recall

that we wanted to transform a sequence of bits into a new one, of the same

length, by applying the exclusive or between each bit and the binary sum

(sum modulo 2) of the sequence. We considered that the input sequence was

given as a string of bits, which was parsed into a list and then transformed.

Recall also that, for the parsing phase, we have used a monadic parser. In

section 3.2, we defined the following solution to this problem:

shift = do (bs , s)← bitstring

return (transform (bs , s))

This solution constructs an intermediate list of bits, that can be eliminated

using a specific fusion rule that handles monadic programs. Indeed, the elim-

ination of the intermediate list of bits that is constructed by bitstring and

consumed by transform is going to be achieved by transforming shift into

a higher-order program. This transformation closely follows the ideas intro-

duced in section 4.2, except that, now, as we deal with monadic functions,

we will obtain higher-order monadic programs.

The specific calculation rule that applies for programs such as shift , that

construct an intermediate list, is as follows2.

2In this Law, and in this section, we use the version of mbuildpL presented on page 58.

4.4. Calculation of monadic higher-order programs 87

Law 4.4.1 (higher-order pfold/mbuildp for lists)

do {(t , z)← mbuildpL g ;

return (pfoldL (hnil , hcons) (t , z))}
=

do {(f, z)← g (ϕhnil , ϕhcons);

return (f z)}

In this law, we use (ϕhnil , ϕhcons) as the algebra of the higher-order fold

that corresponds to the curried version of pfoldL (hnil , hcons).

Since the functions transform and bitstring have already been expressed

in terms of pfoldL and mbuildpL, respectively,

transform = pfoldL (hnil , hcons)

where hnil = []

hcons ((b, r), s) = (b ⊕ s) : r

bitstring = mbuildpL g

where g (nil , cons) = (do b ← bit

(bs , s)← g (nil , cons)

return (cons (b, bs), b ⊕ s))

] return (nil , Zero)

we only need to express transform as a higher-order fold, in order to apply

the law to the program shift :

transformho :: [Bit]→ (Bit → [Bit])

transformho = foldL (ϕhnil , ϕhcons)

where ϕhnil = λ → []

ϕhcons (b, r) = λs → (b ⊕ s) : r s

Then, we may apply Law 4.4.1 to shift , obtaining the higher-order monadic

program:

shift = do (f, s)← g (ϕhnil , ϕhcons)

return (f s)

88 4. Calculation of Higher-order Programs

Inlining the above definition, we obtain

shift = do (f, s)← gϕ

return (f s)

where gϕ = (do b ← bit

(f, s)← gϕ

return (λs ′ → (b ⊕ s ′) : f s ′, b ⊕ s))

] return (λ → [], Zero)

The shift program that we have just derived is a higher-order program

in the sense that f , one of the results produced by function gϕ, is itself a

function. Once applied to s , function f produces, for the same input string,

the same transformed list of bits produced by the original shift program.

4.4.2 Algol 68 scope rules

In this section, we calculate a higher-order monadic program that is equiva-

lent to the improved version of the semantic analyzer for the Algol 68 scope

rules that we presented in section 3.3. In that section, we defined the follow-

ing program:

semantics :: Prog → IO [Var]

semantics p = do (p ′, env)← duplicate 0 [] p

missing (p ′, env)

In order to transform semantics , we use a calculation rule that is an

instance of a more general law that we will introduce in section 4.4.3. The

law we use is very similar to Law 4.4.1, that we have used to calculate a

higher-order version of the program shift , which transforms bit strings. In

that program, the producer is monadic but the consumer is given by a pure

function. In the semantics program, however, both the consumer and the

producer are monadic, so Law 4.4.1 does not (directly) apply. The new rule,

that applies to programs such as semantics , is as follows3.

3In this Law, and in this section, we use the version of mbuildpL presented on page 64.

4.4. Calculation of monadic higher-order programs 89

Law 4.4.2 (effectful higher-order pfold/mbuildp for lists)

do {(t , z)← mbuildpL g c;

pfoldL (hnil , hcons) (t , z)}
=

do {(f, z)← g (ϕhnil , ϕhcons) c;

f z }

Now, we want to apply Law 4.4.2 to the semantics program. In sec-

tion 3.3, we have already expressed functions duplicate and missing in terms

of mbuildpL and pfoldL, respectively. In particular, we have expressed missing

as:

missing = pfoldL (hnil , hcons)

where hnil = return []

hcons ((Use2 var ,merrs), env)

= if (var ∈ map π1 env)

then merrs

else do put ("Missing: decl " ++ var)

errs ← merrs

return (var : errs)

hcons ((Dupl2 var ,merrs), env)

= do errs ← merrs

return (var : errs)

hcons ((Block 2 (lev , its),merrs), env)

= do errs2 ← merrs

errs1 ← do (p2, env 2)← duplicate lev env its

missing (p2, env 2)

return (errs1 ++ errs2)

In order to apply Law 4.4.2 to semantics , we need to express missing

in terms of a higher-order fold equivalent to the above pfold. Indeed, the

90 4. Calculation of Higher-order Programs

algebra (ϕhnil , ϕhcons) of such a higher-order fold is necessary to apply the

law.

We define:

missingho :: Prog2 → (Env → IO [Var])

missingho = foldL (ϕhnil , ϕhcons)

where ϕhnil = λ → return []

ϕhcons (Use2 var , ferrs)

= λenv → if (var ∈ map π1 env)

then ferrs env

else do put ("Missing: decl " ++ var)

errs ← ferrs env

return (var : errs)

ϕhcons (Dupl2 var , ferrs)

= λenv → do errs ← ferrs env

return (var : errs)

ϕhcons (Block 2 (lev , its), ferrs)

= λenv → do errs2 ← ferrs env

errs1 ← do (p2, env 2)← duplicate lev env its

missing (p2, env 2)

return (errs1 ++ errs2)

Then, by Law 4.4.2, we obtain:

semantics p = do (ferrs , env)← gϕ 0 [] p

ferrs env

where

gϕ lev ds [] = return (λ → return [], ds)

gϕ lev ds ((Use var) : its)

= do (ferrs , ds ′)← gϕ lev ds its

return (λenv → if (var ∈ map π1 env)

4.4. Calculation of monadic higher-order programs 91

then ferrs env

else do put ("Missing: decl " ++ var)

errs ← ferrs env

return (var : errs), ds ′)

gϕ lev ds ((Decl var) : its)

= if ((var , lev) ∈ ds)

then do put ("Duplicate: decl " ++ var)

(ferrs , ds ′)← gϕ lev ((var , lev) : ds) its

return (λenv → do errs ← ferrs env

return (var : errs), ds ′)

else gϕ lev ((var , lev) : ds) its

gϕ lev ds ((Block nested) : its)

= do (ferrs2, ds ′)← gϕ lev ds its

return (λenv → do errs2 ← ferrs2 env

errs1 ← do (p2, env 2)

← duplicate (lev + 1)

env nested

missing (p2, env 2)

return (errs1 ++ errs2), ds ′)

Regarding the program we have just calculated we may notice that still

it defines a composition between functions duplicate and missing . Indeed,

one such composition occurs in the definition:

gϕ lev ds ((Block nested) : its)

= do (ferrs2, ds ′)← gϕ lev ds its

return (λenv → do errs2 ← ferrs2 env

errs1 ← do (p2, env 2)

← duplicate (lev + 1)

env nested

missing (p2, env 2)

return (errs1 ++ errs2), ds ′)

92 4. Calculation of Higher-order Programs

This composition, however, may be fused into a single function by direct

application of Law 4.4.2 (like in section 4.3, no post-processing is required).

We obtain:

gϕ lev ds ((Block nested) : its)

= do (ferrs2, ds ′)← gϕ lev ds its

return (λenv → do errs2 ← ferrs2 env

errs1 ← do (ferrs1, env 1)← gϕ (lev + 1)

env nested

ferrs1 env 1

return (errs1 ++ errs2), ds ′)

In this section, we have calculated higher-order programs from the com-

position of particular monadic functions. In the next section we show that

the laws we have used in our calculations are specific instances of more gen-

eral ones. Indeed, the laws we present next are applicable to a wide range of

data types and monads.

4.4.3 Calculating monadic higher-order programs, gener-

ically

In this section, we study the use of calculation laws to derive higher-order

monadic programs. The laws we introduce may be considered as an extension

to monadic programs of the law presented in section 4.2, that we review here:

Law 4.2.1 (higher-order pfold/buildp) For left-strict h,

pfold h ◦ buildp g = apply ◦ g ϕh

Recall that this law is based on the fact that every pfold can be expressed

in terms of a higher-order fold: For h :: (F a, z)→ a,

pfold h = apply ◦ (fold ϕh × id)

where ϕh :: F (z → a)→ (z → a) is given by

4.4. Calculation of monadic higher-order programs 93

ϕh = curry (h ◦ ((mapF apply ◦ τF) M π2))

and apply :: (a → b, a)→ b by apply (f, x) = f x . Therefore, fold ϕh ::µF →
(z → a) is the curried version of pfold h.

Law 4.2.1 can be generalized in the sense of extended shortcut fusion.

Law 4.4.3 For left-strict h and strictness-preserving N ,

mapN (pfold h) ◦ buildpN g = mapN apply ◦ g ϕh

Proof

mapN (pfold h) ◦ buildpN g

= { (4.1), (2.3) }
mapN apply ◦mapN (fold ϕh × id) ◦ buildpN g

= { Law 3.4.2 }
mapN apply ◦ g ϕh 2

Like in section 3.4.2, we can consider the particular case when N is the

functor of a monad. Unlike the transformation to circular programs, now

we do not need to require the monad to be recursive. Again, in first place

we state the case when the pfold is a pure function. This is the case of, for

example, the bit string transformer that we have presented in section 4.4.1.

Indeed, Law 4.4.1 that was used in that section to calculate a higher-order

program that transforms bit strings is an instance of the following law:

Law 4.4.4 (higher-order pfold/mbuildp) For left-strict h and

strictness-preserving mmap,

do {(t , z)← mbuildp g c; return (pfold h (t , z))}
=

do {(f, z)← g ϕh c; return (f z)}

94 4. Calculation of Higher-order Programs

Notice that mbuildp g is a function of type mbuildp g :: c → m (a, z).

However, in section 4.4.1, it was defined as a value of type m (a, z), where a

is a list, because this form is more appropriate for writing monadic parsers.

Finally, we present the fusion rule that is able to deal with programs where

the consumer is also an effectful function. One example of such a program is

the analyzer of the Algol 68 scope rules that was presented in section 4.4.2.

In that section we have used Law 4.4.2 to transform the original semantic

analyzer into a higher-order program. Now, we present the definition of the

generic rule that Law 4.4.2 is an instance of.

Law 4.4.5 (effectful higher-order pfold/mbuildp) For left-strict

h :: (F (m a), z)→ m a and strictness-preserving mmap,

do {(t , z)← mbuildp g c; pfold h (t , z)}
=

do {(f, z)← g ϕh c; f z }

Proof

do {(t , z)← mbuildp g c; pfold h (t , z)}
=

do (t , z)← mbuildp g c

m ← return (pfold h (t , z))

m

= { Law 4.4.4 }
do m ← do {(f, z)← g ϕh c; return (f z)}

m

=

do {(f, z)← g ϕh c; f z } 2

4.5. Conclusions 95

4.5 Conclusions

In this chapter we have studied the derivation of higher-order programs using

generic calculation rules. We have generalized the shortcut fusion rule for

deriving pure higher-order programs presented in (Voigtländer 2008) so that

it can be applied to compositions of programs with an arbitrary data type as

intermediate structure. We have also presented an extension of the above rule

for the derivation of higher-order programs to the case of monadic programs.

We considered programs consisting of the composition between a monadic

producer and a pure consumer and programs where both the producer and

the consumer functions are monadic.

96 4. Calculation of Higher-order Programs

Chapter 5

Strictification of Circular

Programs

Summary

This chapter presents techniques to model circular lazy programs

in a strict, purely functional setting. Circular lazy programs model

any algorithm based on multiple traversals over a recursive data

structure as a single traversal function. Circular programs are de-

fined in a (strict or lazy) functional language and they are trans-

formed into efficient strict and deforested, multiple traversal pro-

grams by using attribute grammar-based techniques. Moreover, we

use standard slicing techniques to slice circular programs.

5.1 Introduction

Circular lazy programs elegantly and concisely model multiple traversal al-

gorithms in a lazy language. On the contrary, defining multiple traversal

programs within a strict, purely functional setting can be a complex task:

additional data structures have to be defined and constructed/destructed to

explicitly pass values computed in one traversal and needed in following ones.

Furthermore, there are algorithms that rely on a large number of traversals

whose scheduling is not a trivial one. As a result, expressing such algorithms

97

98 5. Strictification of Circular Programs

in a strict setting may lead to longer solutions which are harder to write,

understand and maintain.

In this chapter we present techniques to model and transform circular

lazy programs into strict multiple traversal (equivalent) ones. This refac-

toring of circular programs is expressed in terms of attribute grammar tech-

niques (Knuth 1968). The presented techniques analyze the circular program

and construct a dependency graph that records how each program variable

depends on the others. Our analysis then builds a set of new relations be-

tween the program variables, breaking up the circular dependencies and es-

tablishing a new evaluation order for the program. The new order is finally

translated into a strict multiple traversal program. Moreover, we use program

specialisation techniques to derive deforested versions of the strict programs.

Because our techniques break up circular definitions into several strict

functions, we can directly apply standard slicing techniques to slice circular

lazy programs. Slicing is a program manipulation technique, that also relies

on a program dependency graph (Horwits and Reps 1992; Tip 1995), and that

is used to identify sub-programs of a program under study. Standard slicing

techniques, however, do not directly apply to circular programs: they would

construct a circular dependency graph, and the slicing operations performed

on that graph could result in non-termination. Given a circular program,

we will then derive a program that performs the computations needed to

produce some of its results (backward slicing), or the computations that use

some of its arguments (forward slicing).

In order to motivate the use of our techniques, we will define a circular

program to format HTML style tables. Using our strictification technique,

that circular program will initially be transformed into a two traversal pro-

gram: the first traversal of the derived program will compute an intermediate

data structure to be used by the second traversal to produce the desired for-

matting. Later, that intermediate data structure will be deforested, by the

application of standard program specialisation techniques. We obtain a table

formatter program consisting of the composition of two higher-order, data

structure free, functions. Finally, we will present a fragment (or slice) of the

original program that only computes the width of an input table. This frag-

5.2. Notation 99

ment will be obtained by performing backward slicing on the original circular

program using as slicing criteria the width of a table.

This chapter is organized as follows. Section 5.2 presents the notation

and the running example used throughout the chapter. Section 5.3 presents

the derivation of strict programs from circular ones. Section 5.4 presents the

slicing of circular programs. In section 5.5 we discuss the class of circular

programs considered. Section 5.6 shows our conclusions.

5.2 Notation

In order to make it easier to demonstrate our strictification techniques, we

introduce the programming language given in Fig. 5.1. The rules of the lan-

guage will be used, for example, in section 5.3, to infer dependency relations

between the arguments and the results of a function call. Such relations

are the building blocks of our method to analyze and eliminate the circular

definitions that occur in a program.

A program in our language consists of a sequence of definitions. The

language natively incorporates integers (0,1,...), with the usual operators,

characters (’a’,’b’,...,’z’) and strings (character sequences). It also

makes use of lists, the empty list being represented by [], the insertion

of an element x in the head of a list l being represented by x:l and the

concatenation of two lists, l1 and l2, being represented by l1 ++ l2. The

semantics of the language is that of standard lazy functional languages.

5.2.1 The table formatter program

In this thesis, we have already presented several examples that demonstrate

the power of circular programming. In this chapter, we consider the devel-

opment of a circular program to solve a new programming problem.

Let us consider that we want to define a program that formats HTML

style tables. Fig. 5.2 shows an example of a possible input (left) and corre-

spondent output (right).

100 5. Strictification of Circular Programs

Expressions
e ::= v variables

| n constants
| (e1, ..., en) tuples
| C (v1, ..., vn) constructors

Attributions
a ::= v1 = v2 variable copying

| v1 = C (v2, ..., vn) contructor value
| v1 = f e function application
| v = n constant value
| (v1, ..., vn) = vm e recursive calls

Function and Data-Types definitions
Decl ::= v e1 = e2 function definition,

| v e1 = e2 where a1 ... an with a where clause
| data T = C1 t1 | ... | Cn tn data type definition

t ::= () | (t1, ..., tn) | Int | Char | String | T

Figure 5.1: Abstract syntax

〈TR〉〈TD〉 The first line 〈/TD〉〈TD〉 of a 〈/TD〉〈/TR〉
〈TABLE〉

〈TR〉〈TD〉〈TABLE〉
〈TR〉〈TD〉 This 〈/TD〉〈TD〉 is 〈/TD〉〈/TR〉

〈TR〉〈TD〉 another 〈/TD〉〈TD/〉〈/TR〉

〈TR〉〈TD〉 table 〈/TD〉〈TD/〉〈/TR〉
〈/TABLE〉
〈/TD〉〈TD〉 table 〈/TD〉〈/TR〉

〈/TABLE〉

7

14

1

4

24

5

1 1

1

7

1

12

5

1

1

|--------------------|
The first line	of a			
	----------		table	
	This	is		

	another			

	table			

Figure 5.2: HTML Table Formatting

The straightforward solution to construct such a program is to compute

the heights and widths of each element in the table, before we define the

formatting. They can be computed as follows: the height of an element is

the height of a data element (i.e., a string with height 1) or the height of

a nested table. The height of a row is the maximum height of its elements.

5.2. Notation 101

And, the height of a table is the sum of the heights of its rows plus the line

separators. The width of an element is the length of the data element, or the

width of the nested table. Like for the height of a row, the width of a column

is the maximum width of the elements in that column, and the width of a

table is the sum of the widths of its columns (plus the column separators).

In the input HTML example, we have annotated tag TD with the height of

the element (superscript) and its width (subscript).

Having defined the heights and widths of the elements in a table, the

next step is to perform the formatting. Obviously, we will need to add some

vertical and horizontal glue (spaces) so that we can obtain the desired output.

In our example, in the first column of the second row we need to add 2 spaces

of horizontal glue (the element has width 14 whilst the nested table has 12:

see associated subscripts). Such two spaces have to be used 7 times as vertical

glue since that column has that height.

The immediate implementation of this algorithm would rely on a two

traversal strategy. First we traverse the HTML tree to compute the correct

heights and widths of each element, and in a second traversal we produce the

formatting using those values. Note, however, that in order to compute the

width of our outermost table, we need to compute the width of each column

first. Thus, we need to know the width of the nested table. According to this

approach, that table has to be traversed twice as well. As a result, in the first

traversal of an outermost table we need to perform the two traversals to its

nested tables. So, the computations related to the first and second traversals

are intermingled. Moreover, the values of the height and width of the nested

table have to be passed to the second traversal of the outermost table: they

are needed to define the necessary vertical and horizontal glue. That is to

say that in a straightforward implementation of this program an intermediate

data structure has to be defined and constructed to pass explicitly the height

and width of a nested table from the first to the second traversal.

Next, we present the elegant and concise Table circular program that relies

on a single traversal to format tables. Note that to construct such a circular

program the programmer does not have to define and construct/destruct

gluing data structures nor to schedule the different traversals. Such data

102 5. Strictification of Circular Programs

structures and the scheduling of computations will be defined by the static

analysis and transformations we present in this chapter.

HTML like tables are defined by the following recursive data type defini-

tions:

data Table = RootTable Rows

data Rows = EmptyRows

| ConsRows (Row ,Rows)

data Row = OneRow Elems

data Elems = EmptyElems

| ConsElems (Elem,Elems)

data Elem = OneStr String

| OneTable Table

Next, we present the single traversal circular program. As referred before,

for each table the program computes the desirable format (lines), its height

(mh) and width (mw). The function that processes the rows returns three

things: the format of the rows, the height of those rows and the list of widths

of the columns (in our example, this list will be [14, 5]). Thus, the width of

the table is the sum of those widths plus the separators (22 in our example).

Each row needs to know the available width of each column, to add glue in

the format, if necessary. Thus, this function receives as an argument the list

of available widths of the columns. This list is the computed list of widths.

As we can see next, a circular dependency is defined.

evalTable :: Table → ([String], Int , Int)

evalTable (RootTable rows) = (lines ,mh,mw)

where (lines1,mh1, mws) = evalRows (rows , mws)

mh = mh1 + 2

mw = (sum mws) + (length mws) + 1

lines = sepLine (mws , lines1)

When processing the rows, we accumulate the heights of each row (mh),

5.2. Notation 103

and we zip the widths of the columns with the maximum values of the rows.

In our example, the two rows produce the following two lists of widths [14, 4]

(first) and [12, 5] (second). The result of zipwithMax is the list [14, 5], that

is, the maximum width of each column.

evalRows (ConsRows (row , rows), aws) = (lines ,mh,mws)

where (lines1,mh1,mws1) = evalRow (row , aws)

(lines2,mh2,mws2) = evalRows (rows , aws)

mh = mh1 +mh2 + 1 -- + 1 is for the separator

mws = zipwithMax (mws1,mws2)

lines = addSep (aws , lines1, lines2)

evalRows (EmptyRows , aws) = ([],−1, [])

For each individual row, we receive as argument the available widths of

its columns, and we have to compute its format, height and the widths (that

will be used to compute the widths of the table elements). One result of the

function evalElems is the maximum height (mh) of the elements in the row.

We need to pass it to those same elements, in order to add vertical glue.

Once again we use a circular definition: the height computed is the height

passed as argument.

evalRow (OneRow elems , aws) = (lines ,mh,mws)

where (lines1, mh ,mws) = evalElems (elems , mh , aws)

lines = addBorder lines1

The elements of one row receive as argument the available height of the

row and the list of maximum widths. They return the format, the height of

the row and the widths.

evalElems (ConsElems (elem, elems), ah, aws) = (lines ,mh,mws)

where aws2 = tail aws

(lines1,mh1,mw1) = evalElem elem

(lines2,mh2,mws2) = evalElems (elems , ah, aws2)

mws = mw1 :mws2

mh = max (mh1,mh2)

104 5. Strictification of Circular Programs

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

evalElems (EmptyElems , ah, aws) = ([], 0, [])

Finally, the function that processes individual elements, returns their

format, height and width.

evalElem (OneStr str) = ([str], 1, length str)

evalElem (OneTable table) = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = evalTable table

The functions addSep, sepLine, addBorder and glue, add line separators,

horizontal and vertical borders, and glue table lines, respectively. We omit

their (simple) definition here.

This table formatter is a circular program: circular definitions occur twice

as we can see in the program. The lazy engine, however, will be able to sched-

ule the computations and convey values between different traversal functions

at execution time. In the next sections, we will show how to transform this

circular program into a strict multiple traversal program that relies on in-

termediate structure to glue the different traversals. We will also show how

such redundant data structures can be deforested.

5.3 From circular to strict programs

In this section, we will describe a program transformation technique to derive

a strict program from its lazy circular definition. A strict evaluation setting is

attractive not only because we obtain implementations that are not restricted

to a lazy semantics execution model, but also because we obtain very efficient

implementations in terms of memory and time consumption. The resulting

program can be correctly executed under both a strict and a lazy execution

model.

5.3. From circular to strict programs 105

5.3.1 Detection of circular definitions

Let us analyze in detail one of the most intricate function alternatives of

the Table Formatter program: the function evalTable applied at the node

RootTable, where a circular definition occurs.

evalTable (RootTable rows) = (lines ,mh,mw)

where (lines1,mh1, mws) = evalRows (rows , mws)

mh = mh1 + 2

mw = (sum mws) + (length mws) + 1

lines = sepLine (mws , lines1)

Figure 5.3 shows the induced dependency relation (represented as a graph),

which follows from a flow analysis of the total program.

RootTable:

Table

Rows

lines

aws mhlines

mh mw

mws

Figure 5.3: Dependency graph of function evalTable

For each alternative function definition a dependency graph is induced.

Such graphs are labeled with the data type constructor that the alternative

definition refers to. Furthermore, in these graphs we use undirected (solid)

lines to connect the types involved in a tree-like structure: result type on

top and arguments at the bottom. The variable names representing formal

arguments (results) of the function definition are displayed at the left (right)

of the resulting type. Such variable names are displayed in all occurrences

of that data type in the different induced graphs. Notice, for example, that

the results produced by evalTable: lines (the formatted lines of the table),

mh (the minimal height of the table) and mw (the table’s minimal width),

are drawn to the right of Table’s position. Arrows are used in the graphs

106 5. Strictification of Circular Programs

to represent dependencies between variables. For example, the arrow with

origin in the variable mws and destination in the variable aws represents that

mws is used to compute aws (indeed, a circular definition ensures that mws

is copied to the second argument of function evalRows , i.e., copied to aws).

We use black lines to represent direct dependencies and dashed-black lines

to represent indirect dependencies. In Figure 5.3, the dashed arrow with

origin in the variable aws and destination in the variable lines represents

an induced dependency that is inferred in the definition of evalTable for

constructor ConsRows , in a way that we will describe later. The formal

process to calculate both direct and indirect dependencies is presented in the

next sections.

As we can easily see in Figure 5.3, there is an evaluation order to evaluate

the so-called circular definition, since no value depends directly nor indirectly

on itself. Dependencies from a result to an argument, however, induce ad-

ditional traversals to the tree: they correspond to circular definitions in the

program. The detection of circular definitions in the abstract syntax tree of

the programs under consideration then corresponds to detecting dependen-

cies, in one of the functions defined in the program, from one of its results

to one of its arguments.

5.3.2 Partitionable circular programs

This section discusses the class of circular programs for which strict pro-

grams can be derived. That is, circular programs whose circularity may be

eliminated, by statically analyzing the dependencies induced by them. These

dependencies are established in the program’s functions, between function ar-

guments and function results, and the static analysis consists in determining

an alternative evaluation order for them. The analysis we present adapts the

static analysis that has already been proposed for attribute grammars (Kas-

tens 1980).

The algorithms that compute the alternative evaluation order establish

the number of visits and an interface for every data-type X of the circu-

lar program. We denote the interface of data-type X by Interface (X).

5.3. From circular to strict programs 107

Interface (X), as computed by these algorithms, usually has the following

shape:

Interface (X) = [(args1, results1), . . . , (argsn , resultsn)]

where

args i = {arguments of the ith function defined over X }

results i = {results of the ith function defined over X }

Thus, by computing Interface (X), for every data-type X , the scheduling

algorithms specify, for every visit i to X , which arguments are used and

which results are computed. Roughly speaking, Interface (X) fixes the types

for every one of the traversal functions for type X . Interface Interface (X)

induces a partial order on the arguments and results of the functions defined

over X .

The largest class of circular programs for which strict multiple traversal

programs can be derived is the class of partitionable circular programs. In-

formally, a circular program is partitioned if for each data-type there is an

interface, such that in any function defined over the data-type, its results are

computable in an order which is included in the partial order induced by the

interface.

For every constructor C of a circular program, let DP (C) be the relation

of direct dependencies, between variable occurrences, defined in the function

of the circular program that traverses elements built using C (defined in C ,

for short). Formally, let DP (C) be the relation:

DP (C) = {Var 1 → Var 2 | Var 2 depends on Var 1 in C }

A program variable (directly) depends on another if the latter is used to

compute the former (whether this computation requires complex processing

of the latter, or simply be the copy of its value). These dependencies are

easily inferred from the circular program. Indeed, if we consider the abstract

108 5. Strictification of Circular Programs

syntax of our programs (Figure 5.1), we may define: in the first attribution

rule (v1 = v2), the variable v1 depends on the variable v2, in the second

attribution rule (v1 = C (v2, ..., vn)), v1 depends on the variables v2 ... vn

and in the third (v1 = f e), v1 depends on all the variables that occur in e.

We present the direct dependencies induced by the abstract table formatter

program in Figure 5.4 (solid directed lines were used to represent this type

of dependencies). Next, we also present the derived DP relation, for the

constructor RootTable of that same program.

DP (RootTable) = {(RootTable, 1, lines) → (RootTable, 0, lines),

(RootTable, 1,mh) → (RootTable, 0,mh),

(RootTable, 1,mws) → (RootTable, 0,mw),

(RootTable, 1,mws) → (RootTable, 1, aws),

(RootTable, 1,mws) → (RootTable, 0, lines)}

Each dependency is established between two program variables, each of

which is represented by a tuple with three components: the first component

represents the constructor, say C , where the dependency is detected and

the third component represents the variable name. The second component

contains an integer value, say i; this value represents the data-type Xi , in

C :: (X1,X2, . . . ,Xn) → X0, that is an argument of the traversal function

that induces the dependency.

For example, constructor RootTable has type RootTable :: Rows → Table,

and the tuple (RootTable, 1, lines) states the occurrence of a variable, named

lines , computed by traversing an element of type Rows , which is the first

argument of the constructor RootTable.

Furthermore, the dependency (RootTable, 1, lines)→ (RootTable, 0, lines)

states that, in the definition of the function that traverses elements built using

the constructor RootTable (let such an element be RootTable x), the result

value lines is computed by traversing x (i.e., using the lines value computed

by traversing a value of type Rows). In other words, the result value lines ,

represented by (RootTable, 0, lines), depends on the lines value produced by

traversing the first argument of RootTable, this value being represented by

(RootTable, 1, lines).

5.3. From circular to strict programs 109

Having defined the relation DP (C), we are now ready to give the defini-

tion of partitionable circular program.

Definition 5.3.1 (Partitionable Circular Program) Let PO(X) be

the partial order induced by Interface (X). A circular program is a partition-

able circular program if for every constructor C :: (X1,X2, . . . ,Xn)→ X0, the

relation

DP (C) ∪
n⋃

i=0

PO (〈C , i〉)

such that 〈C , i〉 = Xi , is non-circular.

In this case we say that the interfaces are compatible.

A relation of dependencies between variables is non-circular if its tran-

sitive closure does not include, at the same time, a dependency between a

variable a and a variable b, and a dependency between the variable b and the

variable a, i.e., by a non-circular relation we mean a cycle-free relation.

The concept of partitionable circular programs is inspired by the similar

concept for attribute grammars. In the literature, one finds a slightly differ-

ent class of attribute grammars, the so-called L-ordered attribute grammars.

The classes of partitionable and L-ordered attribute grammars are equal for

attribute grammars in Backus Naur form (BNF). We may define a class of

circular programs similar to the class of L-ordered attribute grammars.

Definition 5.3.2 (L-Ordered Circular Program) A circular program

is an L-ordered circular program if there exist total orders TO (X) for every

data-type X such that for every constructor C :: (X1,X2, . . . ,Xn)→ X0, the

relation

DP (C) ∪
n⋃

i=0

TO (〈C , i〉)

such that 〈C , i〉 = Xi , is cycle free.

The total orders TO (X) are easily converted into interfaces, by cutting

them into maximal segments of function arguments and function results.

However, Engelfriet and Filé (1982) proved that deciding whether an at-

tribute grammar is L-ordered or not is an NP-complete problem. Kastens

110 5. Strictification of Circular Programs

(1980) defined a subclass of L-ordered attribute grammars, the so-called Or-

dered attribute grammars, that can be checked by an algorithm that depends

polynomially in time on the size of the attribute grammar. In the next

section, we adapt Kastens’ algorithm to work on circular programs.

5.3.3 Ordered circular programs

In this section we present an adaptation of Kastens’ attribute scheduling

algorithm (Kastens 1980; Reps and Teitelbaum 1989; Pennings 1994) to cir-

cular programs. The basic idea of this algorithm is the following: for each

data-type X defined in the program, a partial order DS (X) over the program

variables that occur in the function defined on X is computed. It determines

an evaluation order for values in X , applicable in any context where X may

occur. As a result, an element X .a → X .b ∈ DS (X) indicates that a must

be computed before b in any node that is an instance of X .

The existence of such an order is a sufficient but not necessary condition

for the well-definedness of circular programs. Note that Kastens’ ordering

algorithm makes a worst case assumption by merging all (indirect) dependen-

cies on variables of a data-type, in any context the data-type may occur, into

a single dependency graph. This pessimistic approach, however, is crucial for

L-ordered programs: it must always be possible to compute the variables of

X in the order specified by DS (X), irrespective of the actual context of X .

Our adaptation of Kasten’s algorithm proceeds in three steps. First, we

compute the direct dependencies between variable occurrences in the pro-

gram. Next, we calculate the relation of induced dependencies. Finally, the

interfaces for the data-type symbols are defined. These steps are presented

in detail next.

Step 1: DP =
⋃

C∈Constructors

DP (C), where Constructors is the set of the

program’s constructors, is computed; this is the relation of direct dependen-

cies between variable occurrences in the program.

The circular program is not ordered if DP is cyclic.

Step 2: IDP =
⋃

C∈Constructors

IDP (C) is computed; this is the relation

of induced dependencies between variable occurrences. IDP projects indi-

5.3. From circular to strict programs 111

rect dependencies into dependencies between variable occurrences as follows:

every dependency between variables of one occurrence of a symbol, say X ,

induces a dependency between corresponding variables of all occurrences of

X . Formally it is defined as follows:

IDP (C) = DP (C)

∪ {(C , i , a) → (C , i , b) | (C ′, j , a)→ (C ′, j , b) ∈ IDP+

∧ 〈C , i〉 = 〈C ′, j 〉}

The circular program is not ordered if IDP is cyclic.

Figure 5.4 shows the IDP relation (dashed lines were used to represent

it) induced by the Table formatter circular program1.

[]

mh
Rows

EmptyRows:

aws lines

Rows

Rows

ConsRows:

OneStr: Elem

str

EmptyElems:

Elems
ah aws mhlines

mhlines

RootTable:

Table

Rows

lines

aws mhlines

mh mw

mws

mws

[]0

OneRow:

Row

Elems

lines

aws mhlines

mh mws

ah

aws

mws

mhlines mwsaws

Row
aws awsmhlines mws mhlines mws

mws

[] []0

Elems

Elems

ConsElems:

mhlines mwsaws

Elem
awsmhlines mw mhlines mws

ah

ah

mw

1

OneTable:
Elem

Table

mhlines mw

lines mh mw

Figure 5.4: Dependency graph DP (solid arrows), IDP (dashed arrows)

1In fact, for simplicity and readability, Figure 5.4 omits the representation of the de-
pendencies established, in IDP, between two argument variables and between two result
variables, e.g., the dependency (RootTable, 1,mws) → (RootTable, 1, lines) is omitted.

112 5. Strictification of Circular Programs

Next, we compute the relation IDS =
⋃

X∈DataTypes

IDS (X), where

DataTypes is the set of the program’s data-types, that defines the Induced

Dependencies among variables:

IDS (X) = {X .a → X .b | (C , i , a) → (C , i , b) ∈ IDP

∧ 〈C , i〉 = X }

The IDS relation, for the Table formatter program, is presented next.

IDS (Table) = { }
IDS (Rows) = {Rows .aws → Rows .lines ,

Rows .mws → Rows .aws ,

Rows .mws → Rows .lines }
IDS (Row) = {Row .aws → Row .lines ,

Row .mws → Row .aws ,

Row .mws → Row .lines }
IDS (Elems) = {Elems .ah → Elems .lines ,

Elems .aws → Elems .lines ,

Elems .mh → Elems .ah,

Elems .mh → Elems .lines ,

Elems .mws → Elems .aws ,

Elems .mws → Elems .lines }
IDS (Elem) = { }

Step 3: the “interfaces” for the data-type symbols are determined. That

is, the algorithm statically establishes the number of visits to a data-type X

and for each of those visits it defines which arguments are used to compute

which results. Several orders are possible. Kastens’ algorithm maximizes the

size of the interfaces so that the number of visits is minimized. In order to

compute such interfaces we define successively

AX,1 = Results (X)− {X .a | X .a → X .b ∈ IDS+}

5.3. From circular to strict programs 113

AX,2n = {X .a | X .a ∈ Arguments (X)

∧ ∀ X .b : X .a → X .b ∈ IDS+

⇒ ∃ m < 2 n : X .b ∈ AX,m }

−
2n−1⋃
k=1

AX,k

AX,2n+1 = {X .a | X .a ∈ Results (X)

∧ ∀ X .b : X .a → X .b ∈ IDS+

⇒ ∃ m < 2 n + 1 : X .b ∈ AX,m }
−

2n⋃
k=1

AX,k

where Arguments (X) is the set of argument variables of the function de-

fined over X , and Results (X) is the set of result variables of that same

function. The sets AX,k , with 1 ≤ k ≤ m form a disjoint partition of

Arguments (X) ∪ Results (X). The algorithm uses a “backward” sort,

hence, the evaluation order corresponds to a decreasing order of index k .

Thus, the subsets are in such a way that AX,k contains the arguments which

contribute directly to the computation of results in AX,k−1.

Having computed the disjoint partitions of Arguments (X) ∪ Results (X)

for each data-type X , the graphs DS (X) are defined as follows:

DS (X) = IDS (X)

∪ {X .a → X .b | X .a ∈ AX,k ∧ X .b ∈ AX,k−1

∧ 2 ≤ k ≤ m }
We are now ready to give the definition of ordered circular program.

Definition 5.3.3 (Ordered Circular Program) A circular program is

an ordered circular program if the relation

EDP =
⋃

C∈Constructors

DP (C)⋃ {(C , i , a) → (C , i , b) | X .a → X .b ∈ DS (X) ∧ 〈C , i〉 = X }
is cycle free.

If the constructed relation is circular, the program is rejected, although

114 5. Strictification of Circular Programs

circularities also arise for some programs that are not truly circular. We

will return to this subject in section 5.5. On the contrary, if the constructed

relation is not circular, it can be topologically sorted in order to determine

a total order on the variable occurrences of a constructor. That is, on the

variables that occur in the program’s part that specifies how to compute

results when the input matches a constructor. This order can be interpreted

as a sequence of abstract computations to be performed on that constructor.

Moreover, the fact that a circular program is ordered also proves that it

always terminates for all possible finite inputs2.

A circularity can originate from two sources. Either the program is

not partitionable (i.e., it is indeed not possible to determine an alterna-

tive evaluation order for the circular program) and no interface exists, or

it is partitionable (therefore it would be possible to transform the circular

program into a strict one), but Step 3 selected a non-compatible inter-

face. In this case, one could try to enforce a different disjoint partition

of Arguments (X) ∪ Results (X) by adding artificial dependencies. If a

circular program is ordered, it is always possible to transform it into a strict,

multiple traversal one. The scheduling algorithm defines the interfaces of

data-types X as follows:

Interface (X) = [(AX,m , AX,m−1), . . . , (AX,2, AX,1)]

This is the crucial step of Kastens’ algorithm and it is this that makes

the algorithm polynomial. Many partial orders comply with an IDS relation,

but Step 3 fixes a particular choice: the one that maximizes the interfaces.

Let us now prove that the Table formatter circular program is an ordered

circular program. First, we define the sets AX,k of disjoint partitions of

variables for all data-type symbols X of the program. We obtain

ATable,1 = {Table.lines ,Table.mh,Table.mw }
ATable,2 = { }
ARows,1 = {Rows .lines ,Rows .mh }

2Provided that the auxiliary functions used in the program also terminate.

5.3. From circular to strict programs 115

ARows,2 = {Rows .aws }
ARows,3 = {Rows .mws }
ARows,4 = { }
ARow ,1 = {Row .lines ,Row .mh }
ARow ,2 = {Row .aws }
ARow ,3 = {Row .mws }
ARow ,4 = { }
AElems,1 = {Elems .lines }
AElems,2 = {Elems .ah,Elems .aws }
AElems,3 = {Elems .mh,Elems .mws }
AElems,4 = { }
AElem,1 = {Elem.lines ,Elem.mh,Elem.mw }
AElem,2 = { }

Next, we compute the partial orders DS (X) over the variables of

Arguments (X) ∪ Results (X). As a result we have

DS (Table) = { }
DS (Rows) = {Rows .aws → Rows .lines ,

Rows .mws → Rows .aws ,

Rows .mws → Rows .lines ,

Rows .aws → Rows .mh }
DS (Row) = {Row .aws → Row .lines ,

Row .mws → Row .aws ,

Row .mws → Row .lines ,

Row .aws → Row .mh }
DS (Elems) = {Elems .ah → Elems .lines ,

Elems .aws → Elems .lines ,

Elems .mh → Elems .ah,

Elems .mh → Elems .lines ,

Elems .mws → Elems .aws ,

Elems .mws → Elems .lines ,

116 5. Strictification of Circular Programs

Elems .mh → Elems .aws ,

Elems .mws → Elems .ah }
DS (Elem) = { }

As we can easily notice, all the DS dependency relations are cycle free.

Furthermore, we can observe the graphs shown in Figure 5.4 to notice that

the dependency relations DP of the constructors are also cycle free. So, the

Table program is ordered. We have the following partitions for the data-type

symbols:

Interface (Table) = [({ }, {Table.lines ,Table.mh,Table.mw })]

Interface (Rows) = [({ }, {Rows .mws),

({Rows .aws }, {Rows .lines ,Rows .mh })]

Interface (Row) = [({ }, {Row .mws }),
({Row .aws }, {Row .lines ,Row .mh })]

Interface (Elems) = [({ }, {Elems .mh,Elems .mws }),
({Elems .ah,Elems .aws }, {Elems .lines })]

Interface (Elem) = [({ }, {Elem.lines ,Elem.mh,Elem.mw })]

It is worthwhile to note that the scheduling algorithm just broke up the

circular definitions of the Table circular program into two partitions (or

traversals). That is the case of evalRows ’ circular invocation, inside func-

tion evalTable: the algorithm schedules a two traversal strategy, where the

first traversal computes the minimum widths of the table rows mws and the

second traversal computes the table’s height mh and, using the mws infor-

mation (passed to the aws argument of the second traversal function), the

formatted table lines (lines).

5.3.4 The visit-sequence paradigm

The result of the circular program scheduling algorithm is a set of interfaces,

that can be interpreted as a sequence of abstract computations that have to be

performed by a multiple traversal program. In the context of attribute gram-

5.3. From circular to strict programs 117

mars, such abstract computations are usually called visit-sequences. They are

constructed according to the following idea: for every constructor C a fixed

sequence of abstract computations is associated. They abstractly describe

which computations have to be performed in every visit of the program to a

particular type of node in the tree. Such nodes are the instances of C .

Two kinds of abstract computations or instructions are used: eval (x)

that computes variable x and visit (X , v) that visits data-type X for the vth

time. In a visit-sequence program, the number of visits to a data-type X is

fixed: it corresponds to the number of elements in Interface (X). We denote

the number of visits of data-type X by v(X). Furthermore, each visit v to

X , with 1 ≤ v ≤ v(X), has a fixed interface: the element in position v of

sequence Interface (X). This interface consists of a set of argument variables

that may be used during the visit v and another set of result variables that

are guaranteed to be computed by the visit v to X . We denote these two

sets by Argsv(X) and Resv(X), where

Argsv(X) = AX,2∗(v(X)−v+1)

and

Resv(X) = AX,2∗(v(X)−v)+1

The visit-sequence of a constructor is usually presented as a list of the

two basic instructions. Visit-sequences, however, are the input of our tech-

niques to derive purely functional programs. Thus, they are divided into

visit-sub-sequences vss (C , v), delimited by begin v and end v , containing

the instructions to be performed on visit v to the constructor C , where C is a

constructor of X , and 1 ≤ v ≤ v(X). In order to simplify the presentation,

visit-sub-sequences are also annotated with define and usage variable direc-

tives. Every visit-sub-sequence vss (C , v) is annotated with the interface of

visit v to X . Therefore vss (C , v) is annotated with arg (Argsv(X)) and

res (Resv(X)).

Every instruction eval (x) is annotated with the directive uses (bs)

that specifies the list of variable occurrences used to evaluate x , i.e., the

118 5. Strictification of Circular Programs

occurrences that x depends on. The instruction visit (Xi , v) causes child

i of constructor C , where C :: (X1,X2, . . . ,Xn) → X0, to be visited for the

vth time. The visit uses the variable occurrences of Argsv(Xi) as arguments

and returns the variable occurrences of Resv(Xi). Thus visit (Xi , v) is

annotated with inp and out where inp is the list of the elements of Argsv(Xi)

and out is the list of elements of Resv(Xi).

Figure 5.5 presents the annotated visit-sub-sequences derived from the

Table circular program. The boxed variables correspond to values that are

defined in one visit-sub-sequence and used in a different one. An implementa-

tion of these visit-sequences has to have a special mechanism to handle such

occurrences: they induce values that have to be passed between different

traversals of the evaluator.

As we have discussed in section 5.2, in the multiple traversal evaluator

of the table formatter, the height, the width and the formatted lines of the

nested tables have to be passed from the first to the second traversal of the

outer table. This can be seen in the visit-sub-sequences of ConsElems : those

values are computed in the first sub-sequence and used in the second one.

5.3.5 Computing strict functions

In imperative programming the implementation of visit sequences is straight-

forward: values needed in later visits are stored in the nodes of the original

tree. Thus no problem arises when a later visit uses values computed in

previous ones. In a purely functional setting values cannot be stored in the

original tree. As a consequence, values needed in future traversals must be

explicitly passed around.

The rules to transform visit-sequences into pure strict functions are de-

scribed in (Saraiva 1999). Such strict functions mimic the imperative ap-

proach: values needed later are stored in a new tree, called a visit tree. Such

values have to be preserved from the traversal that creates them until the

last traversal that uses them. Thus, each traversal builds a new visit tree

containing in its nodes the values needed in future visits. The functions that

5.3. From circular to strict programs 119

plan RootTable
begin1 arg(),

visit (Rows, 1)
inp()
out(Rows.mws),

eval (Table.mw)
uses(Rows.mws),

eval (Rows.aws)
uses(Rows.mws),

visit (Rows, 2)
inp(Rows.aws)
out(Rows.lines, Rows.mh),

eval (Table.lines)
uses(Rows.mws, Rows.lines),

eval (Table.mh)
uses(Rows.mh),

end1 res(Table.lines, Table.mh, Table.mw)

plan OneRow
begin1 arg()
visit (Elems, 1)

inp()

out(Elems.mws, Elems.mh),

eval (Row.mws)
uses(Elems.mws),

end1 res(Row.mws)
begin2 arg(Row.aws)
eval (Row.mh)

uses(Elems.mh),
eval (Elems.ah)

uses(Elems.mh),

visit (Elems, 2)
inp(Elems.ah, Elems.aws)
out(Elems.lines),

eval (Elems.aws)
uses(Row.aws),

eval (Row.lines)
uses(Elems.lines),

end2 res(Row.mh, Row.lines)

plan OneStr
begin1 arg()
eval (Elem.mh)

uses()
eval (Elem.lines)

uses(str)
eval (Elem.mw)

uses(str)
end1 res(Elem.lines, Elem.mh, Elem.mw)

plan EmptyRows
begin1 arg()
eval (Rows.mws)

uses()
end1 res(Rows.mws)
begin2 arg(Rows.aws)
eval (Rows.mh)

uses()
eval (Rows.lines)

uses()
end2 res(Rows.mh, Rows.lines)

plan EmptyElems
begin1 arg(),

eval (Elems.mws)
uses(),

eval (Elems.mh)
uses(),

end1 res(Elems.mh, Elems.mws)
begin2 arg(Elems.ah, Elems.aws),

eval (Elems.lines)
uses(),

end2 res(Elems.lines)

plan OneTable
begin1 arg()
visit (Table, 1)

inp()
out(Table.lines, Table.mh, Table.mw),

eval (Elem.mh)
uses(Table.mh)

eval (Elem.mw)
uses(Table.mw)

eval (Elem.lines)
uses(Table.lines)

end1 res(Elem.lines, Elem.mh, Elem.mw)

plan ConsRows
begin1 arg()
visit (Rows2, 1)

inp()
out(Rows2.mws),

visit (Row, 1)
inp()
out(Row.mws),

eval (Rows1.mws)
uses(Row.mws, Rows2.mws),

end1 res(Rows1.mws)

begin2 arg(Rows1.aws)
eval (Row.aws)

uses(Rows1.aws),
visit (Row, 2)

inp(Row.aws)
out(Row.lines, Row.mh),

eval (Rows2.aws)
uses(Rows1.aws),

visit (Rows2, 2)
inp(Rows2.aws)
out(Rows2.lines, Rows2.mh),

eval (Rows1.mh)
uses(Row.mh, Rows2.mh)

eval (Rows1.lines)
uses(Rows1.aws, Row.lines, Rows2.lines)

end2 res(Rows1.lines, Rows1.mh)

plan ConsElems
begin1 arg()
visit (Elems2, 1)

inp()
out(Elems2.mh, Elems2.mws),

visit (Elem, 1)
inp()

out(Elem.lines , Elem.mh , Elems.mw),

eval (Elems1.mh)
uses(Elem.mh, Elems2.mh),

eval (Elems1.mws)
uses(Elem.mw, Elems2.mws)

end1 res(Elems1.mh, Elems1.mws)
begin2 arg(Elems1.ah, Elems1.aws)
eval (Elems2.ah)

uses(Elems1.ah),
eval (Elems2.aws)

uses(Elems1.aws),
visit (Elems2, 2)

inp(Elems2.ah, Elems2.aws)
out(Elems2.lines),

eval (Elems1.lines)

uses(Elems1.aws, Elem.mw , Elem.mh ,

Elems1.ah, Elem.lines , Elems2.lines),

end2 res(Elems1.lines)

Figure 5.5: The visit-sub-sequences induced by the Table circular program.

represent the subsequent traversals find the values they need either in their

arguments or in the tree nodes, exactly as in the imperative approach. A set

of visit tree types is defined, one per traversal. Subtrees that are not needed

in future traversals are discarded from the visit trees concerned. As result

any data no longer needed is indeed no longer referenced. Next, we present

the Table program that is obtained by applying these rules.

120 5. Strictification of Circular Programs

The type for the first visit of the strict program is the type of the original

tree. The tree type for the second traversal is:

data Rows2 = ConsRows2 (Row 2,Rows2)

| EmptyRows2

data Row 2 = OneRow 2 (Int ,Elems2)

data Elems2 = ConsElems2 ([String], Int , Int ,Elems2)

| EmptyElems2

Note, for example, that the type of the ConsElems2 constructor includes

now references to the values that have to be passed from the first to its second

traversal: the formatted list of strings of the element (string or nested table),

its height and width. There is no reference to the Table or the Elem types

because they induce a single traversal subtree. Next, we show the strict,

multiple traversal program.

The sequence of abstract computations scheduled for the constructor

RootTable, shown in Figure 5.5, is mapped to function visitTable.

visitTable :: Table → ([String], Int , Int)

visitTable (RootTable rows) = (lines ,mw ,mh)

where (rows2,mws) = visitRows1 rows

(lines1,mh1) = visitRows2 (rows2,mws)

mw = (sum mws) + (length mws) + 1

lines = sepLine (mw , lines1)

mh = mh1 + 2

Notice that all the function calls in visitTable are non-circular. Remem-

ber that this was not the case of evalRows ’ function call, inside function

evalTable, in the program presented in section 5.2. In this sense, the calls

visitRows1 and visitRows2 are now both strict in their arguments. They are

defined as follows, according to the sequence of abstract computations sched-

uled for the constructors they traverse, i.e., for the constructors ConsRows

and EmptyRows .

5.3. From circular to strict programs 121

visitRows1 (ConsRows (row , rows)) = (ConsRows2 (row 2, rows2),mws)

where (rows2,mws2) = visitRows1 rows

(row 2 ,mws1) = visitRow 1 row

mws = zipwithMax (mws1,mws2)

visitRows1 EmptyRows = (EmptyRows2, [])

visitRows2 (ConsRows2 (row , rows), aws) = (lines ,mh)

where (lines1,mh1) = visitRow 2 (row , aws)

(lines2,mh2) = visitRows2 (rows , aws)

lines = addSep (aws , lines1, lines2)

mh = mh1 +mh2 + 1

visitRows2 (EmptyRows2, aws) = ([],−1)

As for constructor OneRow , recall Figure 5.5 to notice the two visit-sub-

sequences scheduled over it. The first one is mapped to function visitRow 1

and the second one to function visitRow 2.

visitRow 1 (OneRow elems) = (OneRow 2 (mh1, elems2),mws1)

where (elems2,mws1,mh1) = visitElems1 elems

visitRow 2 (OneRow 2 (mh1, elems), aws) = (lines ,mh1)

where lines1 = visitElems2 (elems ,mh1, aws)

lines = addBorder lines1

Constructors ConsElems and EmptyElems have also been scheduled two

visit-sub-sequences, that we translate to the strict functions visitElems1 and

visitElems2. Notice that this scheduling breaks up evalElems ’ circular invo-

cation, inside function evalRow , into a two traversal strategy.

visitElems1 (ConsElems (elem, elems))

= (ConsElems2 (mh1,mw1, lines1, elems2),mh,mws)

where (lines1,mh1,mw1) = visitElem elem

(elems2,mh2,mws2) = visitElems1 elems

mh = max mh1 mh2

mws = mw1 :mws2

122 5. Strictification of Circular Programs

visitElems1 EmptyElems = (EmptyElems2, 0, [])

visitElems2 (ConsElems2 (lines1,mh1,mw1, elems), ah, aws) = lines

where aws2 = tail aws

lines2 = visitElems2 (elems , ah, aws2)

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

visitElems2 (EmptyElems2, ah, aws) = []

A single traversal to constructors OneStr and OneTable is, as we have

seen and as computed by the scheduling algorithm, enough to compute a

single element’s formatted list of strings, height and width.

visitElem (OneStr str) = ([str], 1, length str)

visitElem (OneTable table) = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = visitTable table

5.3.6 Deforestation by program specialisation

The strict programs derived using the techniques presented in the previous

section rely on a (possibly) large number of gluing intermediate data struc-

tures to convey information between different traversals. Such redundant

structures can, however, be eliminated by using program specialisation tech-

niques (Peyton Jones 2007). Indeed, they are static parameters (i.e., known

at compile time) of the visit-functions. Thus, we can specialize the functions

with these arguments. As a result, we obtain a complete data structure free

program (Saraiva and Swierstra 1999). Such programs consist of a set of

partially parameterized functions, each performing the computations sched-

uled for the traversal they represent. The functions return, as one of their

results, the function for the next traversal. The main idea is that for each

visit-sub-sequence we construct a function, that besides computing the ex-

pected results, also returns the function that defines the following traversal.

Any state information needed in future visits is passed on by partially pa-

rameterizing a more general function.

5.3. From circular to strict programs 123

Next, we show the strict, deforested Table program obtained by program

specialisation of the strict one. Function visitTable is transformed into the

following higher-order function:

rootTable :: ([Int]→ ([String], Int), [Int])→ ([String], Int , Int)

rootTable rows = (lines ,mw ,mh)

where (rows2,mws) = rows

(lines1,mh1) = rows2 mws

mw = (sum mws) + (length mws) + 1

lines = sepLine (mw , lines1)

mh = mh1 + 2

Notice that the calls visitRows1 rows and visitRows2 (rows2,mws) in

the strict program have been replaced, respectively, by the calls rows and

rows2 mws in the above definition. This means that both rows and rows2

are now functions, instead of concrete values, as before (actually, rows is

a special function, since it has no arguments. However, it returns a pair,

whose first component, rows2, is itself a function). This also means that

the intermediate structure computed in the strict program, represented by

variable rows2, is no longer constructed: it has been deforested by program

specialization.

Next, functions consRows1, emptyRows1, consRows2 and emptyRows2 are

presented. Functions consRows1 and emptyRows1 specialize the definition of

function visitRows1 over the constructors ConsRows and EmptyRows , respec-

tively, while functions consRows2 and emptyRows2 specialize the definition

of visitRows2 over constructors ConsRows2 and EmptyRows2.

consRows1 (row , rows) = (consRows2 (row 2, rows2),mws)

where (rows2,mws2) = rows

(row 2,mws1) = row

mws = zipwith max (mws1,mws2)

emptyRows1 = (emptyRows2, [])

consRows2 (row , rows , aws) = (lines ,mh)

124 5. Strictification of Circular Programs

where (lines1,mh1) = row aws

(lines2,mh2) = rows aws

lines = addSep (aws , lines1, lines2)

mh = mh1 +mh2 + 1

emptyRows2 aws = ([],−1)

Next we present functions oneRow 1 and oneRow 2, obtained from the

definitions of visitRow 1 and visitRow 2, respectively.

oneRow 1 elems = (oneRow 2 (mh1, elems2),mws1)

where (elems2,mws1,mh1) = elems

oneRow 2 (mh1, elems , aws) = (lines ,mh1)

where lines1 = elems (mh1, aws)

lines = addBorder lines1

Functions visitElems1 and visitElems2 of the strict Table program are

mapped into the following definitions.

consElems1 (elem, elems)

= (consElems2 (lines1,mh1,mw1, elems2),mh,mws)

where (lines1 ,mh1,mw1) = elem

(elems2,mh2,mws2) = elems

mh = max mh1 mh2

mws = mw1 :mws2

emptyElems1 = (emptyElems2, 0, [])

consElems2 ((lines1,mh1,mw1, elems2), ah, aws) = lines

where aws2 = tail aws

lines2 = elems2 (ah, aws2)

lines = glue (aws ,mw1, ah,mh1, lines1, lines2)

emptyElems2 (ah, aws) = []

Functions oneStr and oneTable consist of a simple specialization of func-

tion visitElem, for constructors OneStr and OneTable, respectively.

5.3. From circular to strict programs 125

oneStr str = ([str], 1, length str)

oneTable table = (lines1,mh1,mw1)

where (lines1,mh1,mw1) = table

As a result of specialising the Table strict program presented in the previ-

ous section, we obtain a deforested program consisting of a set of higher-order

functions. We should notice, however, that the execution of this higher-order

program is different than that of the strict one. Indeed, in the strict Table

program, function visitTable is applied to a concrete element of type Table

to produce its formatting. One such element is as follows:

table = RootTable

(ConsRows (OneRow (ConsElems (OneStr "simon",

ConsElems (OneStr "mary",

EmptyElems))),

ConsRows (OneRow (ConsElems (OneStr "richard",

ConsElems (OneTable nested ,

EmptyElems))),

EmptyRows)))

nested = RootTable

(ConsRows (OneRow (ConsElems (OneStr "john",

ConsElems (OneStr "steve",

EmptyElems))),

EmptyRows))

In order to format the same table using the higher-order Table program

derived in this section, we would now simply have to run table, where

table = rootTable

(consRows1 (oneRow 1 (consElems1 (oneStr "simon",

consElems1 (oneStr "mary",

emptyElems1))),

consRows1 (oneRow 1 (consElems1 (oneStr "richard",

126 5. Strictification of Circular Programs

consElems1 (oneTable nested ,

emptyElems1))),

emptyRows1)))

nested = rootTable

(consRows1 (oneRow 1 (consElems1 (oneStr "john",

consElems1 (oneStr "steve",

emptyElems1))),

emptyRows1))

Alternatively, we can define a simple set of combinators for constructing

tables. This works for both the strict and the higher-order versions of the

Table program. For the higher-order version of that program we can define,

for example, the following combinators:

table rows = rootTable (f rows)

where f [] = emptyRows1

f (h : t) = consRows1 (oneRow 1 (g h), f t)

g [] = emptyElems1

g (h : t) = consElems1 (h, g t)

txt str = oneStr str

nested t = oneTable $ table t

We may now use this combinators to format the table that we have been

considering. Indeed, we may define:

t = table [[txt "simon", txt "mary"],

[txt "richard", nested [[txt "john", txt "steve"]]]]

By running t , we obtain the expected formatting for this table, that we

present in Figure 5.6.

Although we have used a first-order circular program as the running ex-

ample, the techniques introduced by the higher-order extension to attribute

grammars (Swierstra and Vogt 1991) directly apply to the transformation of

higher-order circular functions, as well. Circular programs modelling algo-

5.4. Slicing circular programs 127

|--------------------|

|simon |mary |

|--------------------|

|richard||----------||

| ||john|steve||

| ||----------||

|--------------------|

Figure 5.6: The formatted table.

rithms that rely on a large number of traversals tend to have functions with

a large number of arguments and results. Such programs, however, can be

easily expressed in Haskell as a first class attribute grammar (de Moor et al.

2000). Our techniques directly apply to such Haskell -definitions.

The transformation presented in this section constructs standard strict

multiple traversal programs. These programs can be now further transformed

using other well-known techniques. For example, we can use the Hylo system

(Onoue et al. 1997) to refactor the derived strict program (which uses explicit

recursion) into an hylomorphism. That is to say that we can express a

circular program as an hylomorphism. The calculation techniques that we

have presented in chapter 2 may also be applied to some of the strict programs

derived in this section. These programs are then transformed back into

circular programs and into higher-order deforested programs. In the next

section we present the use of program slicing techniques to slice circular

programs.

5.4 Slicing circular programs

Although the programming language community has done a considerable

amount of work on program slicing (Horwits and Reps 1992; Tip 1995), there

is little work done on slicing of lazy functional languages. In this section,

we use standard slicing techniques to perform static slicing of circular lazy

programs. Note that the standard techniques for static slicing do not directly

handle circular definitions due to potential copy-back conflicts as explicitly

128 5. Strictification of Circular Programs

mentioned in (Horwits and Reps 1992).

The transformations presented in the previous sections break up the circu-

larities that occur in a circular program. They produce a sequence of abstract

computations, very suitable for further analysis and manipulation. Indeed,

in the abstract computation setting, it is easy to compute forward, backward

or chopping slices of the total program; only then the instructions selected

are mapped into a Haskell program. We will illustrate how we manipulate

abstract computations in order to achieve slicing of circular programs.

Suppose that, from the Table program, we are interested in computing

the table’s width only. This is equivalent to saying that we want to perform

bacward slicing of the Table program, using as criteria the variable mw . The

result of the backward slicing is the sub-program that includes the definitions

of the original one that contribute to computing the width of the table. All

other definitions are sliced-out.

We start by considering the top level constructor of that program, i.e., the

RootTable constructor. From the total visit sequence plan scheduled for this

constructor (presented in Figure 5.5), we select the following instructions:

plan RootTable

begin1 arg(),

visit (Rows, 1)

inp()

out(Rows.mws),

eval (Table.mw)

uses(Rows.mws),

end1 res(Table.mw)

The eval instruction is filtered in since we are precisely interested in

computing the result mw . However, that instruction states that, in order

to compute Table.mw (the result mw), we must use Rows .mws ; this value

then has to be computed. The visit instruction is selected, since it produces

exactly that value. For this constructor, slicing stops here: the visit instruc-

tion filtered in needs no extra arguments in order to compute Rows .mws .

5.4. Slicing circular programs 129

Slicing proceeds by visiting data-type Rows in order to produce mws , as

scheduled by the previous visit instruction. Constructors ConsRows and

EmptyRows are then considered and the following instructions are selected,

using the strategy described before.

plan ConsRows

begin1 arg()

visit (Rows2, 1)

inp()

out(Rows2.mws),

visit (Row, 1)

inp()

out(Row.mws),

eval (Rows1.mws)

uses(Row.mws, Rows2.mws),

end1 res(Rows1.mws)

plan EmptyRows

begin1 arg()

eval (Rows.mws)

uses()

end1 res(Rows.mws)

Now, the instruction visit (Row , 1) tells us to traverse data-type Row ,

in order to produce the result mws . We obtain the following visit sequence

plan for constructor OneRow .

plan OneRow

begin1 arg()

visit (Elems, 1)

inp()

out(Elems.mws),

eval (Row.mws)

uses(Elems.mws),

end1 res(Row.mws)

Notice that, in the original program, the instruction visit (Elems , 1)

also produced the result Elems .mh. However, that result has been sliced

out, since we are no longer interested in producing it.

130 5. Strictification of Circular Programs

The instruction visit (Elems , 1) induces visits to constructors ConsElems

and EmptyElems .

plan ConsElems

begin1 arg()

visit (Elems2, 1)

inp()

out(Elems2.mws),

visit (Elem, 1)

inp()

out(Elems.mw),

eval (Elems1.mws)

uses(Elem.mw, Elems2.mws)

end1 res(Elems1.mws)

plan EmptyElems

begin1 arg(),

eval (Elems.mws)

uses(),

end1 res(Elems.mws)

Finally, in order to compute Elem.mw , the instruction visit (Elem, 1)

induces the following sequence of abstract computations, for constructors

OneStr and OneTable.

plan OneStr

begin1 arg()

eval (Elem.mw)

uses(str)

end1 res(Elem.mw)

plan OneTable

begin1 arg()

visit (Table, 1)

inp()

out(Table.mw),

eval (Elem.mw)

uses(Table.mw)

end1 res(Elem.mw)

Next, we present the result of a backward slicing of the circular table for-

matter. This program is obtained by directly mapping, for every constructor

of the program, the sequence of abstract computations just presented into

valid Haskell definitions.

visitTable :: Table → Int

5.4. Slicing circular programs 131

visitTable (RootTable rows) = mw

where mws1 = visitRows rows

mw = (sum mws1) + (length mws1) + 1

visitRows (ConsRows (row , rows)) = mws

where mws2 = visitRows rows

mws1 = visitRow row

mws = zipwith max mws1 mws2

visitRows EmptyRows = []

visitRow (OneRow els) = mws

where mws = visitElems1 els

visitElems (ConsElems (el , els)) = mw1 :mws2

where mws2 = visitElems els

mw1 = visitElem el

visitElems EmptyElems = []

visitElem (OneStr str) = length str

visitElem (OneTable table) = mw1

where mw1 = visitTable table

In this simple example, the resulting program performs a single tree

traversal. For more complicated programs, however, the result of a slice

may be a program that performs multiple tree traversals. In this case we can

generate one of the three implementations presented in this chapter, that is

circular, strict or deforested programs. This is the case if we consider, in our

example, as the slicing criteria the result that computes the table (lines).

The resulting programs are very similar to the ones we have presented, with

the exception that the top function returns one result only: the formatted

table.

132 5. Strictification of Circular Programs

5.5 Class of programs considered

In the previous sections we have studied the Table language and processor in

great detail. It should be noticed that this running example is just a simple

two traversal program. Things get much more complicated if we consider

more practical examples. For example, Swierstra et al. (1999) presented an

optimal pretty printing algorithm that performs four traversals over the ab-

stract syntax tree describing the program to print. As a consequence, the

strict version of that program needs three gluing intermediate data struc-

tures to convey information between the different traversals. Moreover, the

scheduling of the four traversals is not trivial at all. Like in the Table exam-

ple, it has several subtrees that have to be traversed in different visits to the

parents. Indeed, we believe that it would be extremely difficult to hand-write

such a program in a strict setting. In (Swierstra et al. 1999), however, the

authors have expressed the pretty printing as an attribute grammar and de-

rived its strict implementation. In the next chapter, we will use this complex

four traversal pretty printing algorithm to benchmark the different strict and

lazy programs.

Although we can derive strict implementations from circular definitions,

our techniques do not consider all possible well-formed circular programs. By

well-formed circular programs we mean the set of circular programs that can

be evaluated without inducing non-termination. It is well-known that the

attribute grammar scheduling algorithm performs an approximation on the

dependencies to compute the evaluation order. As a consequence, there are

programs that are considered circular by the scheduling algorithm, although

no circularity really exists. Moreover, there are other circular programs that

do rely on dynamic scheduling (lazy evaluation) to compute the evaluation

order. One example of such circular programs is the breadth-first numbering

algorithm presented in (Okasaki 2000).

Nevertheless, most algorithms needed in practical examples belong to

the class of ordered circular programs. Thus, they can be analyzed and

transformed by our techniques. The single example we found in the literature

that cannot be (directly) considered is the breadth-first numbering. However,

5.6. Conclusion 133

the tricky example presented by Okasaki can be slightly modified and then

expressed as an ordered circular program3.

5.6 Conclusion

This chapter presented techniques and tools to model and manipulate cir-

cular programs. These techniques transform circular programs into strict,

purely functional programs. Program specialisation and slicing techniques

are used to improve the performance of the evaluators and to slice circu-

lar lazy programs, respectively. The presented slicing techniques allow the

programmer to extract different aspects of a circular program.

The techniques presented in this chapter have been implemented in the

first Haskell based library to express attribute grammars functionally. Fur-

thermore, we have used this library to construct new tools to manipulate and

transform circular programs. Both the library and the tools are described in

chapter 6.

3In fact, the definition of breadth-first numbering in a strict setting was proposed by
Okasaki as an exercise in one IFIP WG 2.8 meeting.

134 5. Strictification of Circular Programs

Chapter 6

Tools and Libraries to Model

and Manipulate Circular

Programs

Summary

The techniques presented in the previous chapter were imple-

mented in a reusable library, that we present here. We use this li-

brary to construct other tools, that we also describe in this chapter,

and that incoporate circular programming. The tools we developed

are used to transform circular programs that solve real program-

ming problems into strict and strict deforested programs. The per-

formance of these three types of programs was then benchmarked,

and the results obtained are also presented here.

6.1 Introduction

In the previous chapter, we have presented techniques to transform a circu-

lar lazy program into a strict, multiple traversal program. In this chapter,

we present the implementation of these techniques as a reusable and concise

Haskell library: the CircLib library. Using this library, we have developed a

simple attribute grammar based system and two strictification tools: HaCirc

135

136 6. Tools and Libraries to Model and Manipulate Circular Programs

and OCirc. The HaCirc tool accepts as input a Haskell circular program and

generates the two different types of strict programs presented in chapter 5:

the strict multiple traversal program that uses intermediate gluing structures

to convey information between different traversals and the deforested, higher-

order strict program that performs multiple traversals without building such

gluing structures. The second tool, OCirc, is an Ocaml version of HaCirc.

Instead of Haskell circular programs, it accepts as input a circular program

written in Ocaml notation. It produces a correct strict multiple traversal

Ocaml program. In this way, we make the concise and elegant style of ex-

pressing multiple traversal algorithms also available to non-lazy functional

programmers. Circular lazy functional programs perform the scheduling of

the computations at execution time. In a strict, multiple traversal program-

ming setting, the scheduling is performed statically. Moreover, the strict

programs rely on additional mechanisms (gluing data structures or partially

parameterized functions) to convey information between traversals, while

the circular programs do not. In order to compare the performance of these

equivalent programs, we perform the first systematic benchmark of circular,

strict and higher-order programs. The results show that for algorithms re-

lying on a large number of traversals the strict, higher-order programs are

more efficient than the lazy ones, both in terms of runtime and memory

consumption.

The attribute grammar system processes attribute grammars written in

a notation similar to one used in the definition of the attribute grammar

presented on page 7, and it generates strict (deforested or not) and lazy

attribute evaluators.

This chapter is organized as follows. In section 6.2.1 we present the

CircLib library; in section 6.2.2 we describe the HaCirc and OCirc tools and

in section 6.2.3 we present the attribute grammar system that we have built

on top of CircLib. In section 6.3 we describe in detail the benchmark exper-

iments we have conducted and we present the results obtained. Section 6.4

concludes the chapter.

6.2. Libraries and tools for circular programming 137

6.2 Libraries and tools for circular program-

ming

In this section we present the library and the tools that we have constructed

and that incorporate circular programming.

6.2.1 The CircLib library

We have implemented the techniques presented in chapter 5 in a reusable

library, the CircLib library. CircLib is the first concise, easy to maintain and

extend Haskell based library implementing attribute grammar techniques,

namely the static scheduling of computations based on the well-known Kas-

tens (1980) algorithm. The API of CircLib is presented in appendix.

The library introduces two data types to model circular programs and

visit sequences in Haskell, and defines functions that implement all the formal

definitions presented in chapter 5. The Haskell code in CircLib very much

resembles its formal definition. As an example, recall the formal definition

of the relation DP , given on page 110:

DP =
⋃

C∈Constructors

DP (C)

In this definition, Constructors is the set of the underlying circular pro-

gram’s constructors, and DP establishes dependency relations between the

variables of the program. In CircLib, this definition has been implemented

as follows:

dp :: CP → Rel Var Var

dp cp = let cs = constrs cp

dps c = lookup c (deps cp)

in Set .union (map (λc → dpc (dps c)) cs)

We can see that dp is obtained by translating, in a straightforward fashion,

the relational notation used in the definition of DP , into Haskell notation.

The CircLib library is generic and reusable. Indeed, we have used it to

build several tools, that we present in the next section.

138 6. Tools and Libraries to Model and Manipulate Circular Programs

6.2.2 Tools for circular program manipulation

The CircLib library was used as the building block of several tools that

incorporate circular programming. The library was used to implement tools,

such as HaCirc and OCirc, that transform circular programs into strict ones

and in the construction of a simple attribute grammar system. These three

tools are briefly described next.

The HaCirc tool

The HaCirc tool is a Haskell refactor. It refactors circular programs into their

strict counterparts. The tool accepts as input Haskell circular programs and

produces as output strict Haskell programs. Furthermore, it is also possible

to obtain strict programs that use no explicit intermediate data structures.

HaCirc is also a slicer of circular programs. Indeed, the tool is able to

compute circular programs’ slices, which can be obtained in two different

programming styles: as multiple traversal strict programs that use interme-

diate data structures and as higher-order deforested programs (i.e., programs

with no intermediate, traversal gluing, structures).

We may use the HaCirc tool, for example, to transform the circular ver-

sion of the semantic analyzer of Algol 68 derived in chapter 2 or the abstract

tables formatter introduced in chapter 5 into strict and strict deforested

equivalent programs. We may also use HaCirc to transform the repmin cir-

cular program presented in chapter 1 into the following program:

data LeafTree = Leaf Int

| Fork (LeafTree,LeafTree)

data ShapeTree = SLeaf

| SFork (ShapeTree, ShapeTree)

transform :: LeafTree → LeafTree

transform t = replace (tminst t)

tminst :: LeafTree → (ShapeTree, Int)

tminst (Leaf n) = (SLeaf , n)

6.2. Libraries and tools for circular programming 139

tminst (Fork (l , r)) = let (sl ,m1) = tminst l

(sr ,m2) = tminst r

in (SFork (sl , sr),min m1 m2)

replace :: (ShapeTree, Int)→ LeafTree

replace (SLeaf ,m) = Leaf m

replace (SFork (l , r),m) = Fork (replace (l ,m), replace (r ,m))

In the generated program, a shape tree is used to glue functions tminst

and replace together. Indeed, a shape tree is the minimal intermediate data

structure that the strict repmin can use. The techniques presented in chap-

ter 5 always try to derive the minimal intermediate structures that can be

used in the strict programs they derive.

The OCirc tool

In order to allow Ocaml programmers to write advanced and complex mul-

tiple traversal algorithms as elegant and concise circular programs, we have

implemented a tool similar to HaCirc that transforms circular programs

written in the Ocaml notation, into correct strict Ocaml programs.

We can use OCirc for example, to transform the repmin circular program

expressed in Ocaml notation:

type tree = Leaf of int

| Fork of tree*tree

and r = Root of tree

let rec transform t = match t with

Root t -> let (replace,m) = repmin (t,m) in

replace

and repmin (t,m) = match t with

Leaf n -> (Leaf m, n)

| Fork (t1,t2) -> let (replace1,m1) = repmin (t1,m) in

let (replace2,m2) = repmin (t2,m) in

(Fork (replace1,replace2),min (m1, m2));;

140 6. Tools and Libraries to Model and Manipulate Circular Programs

into a correct and executable Ocaml program that solves repmin:

type tree = Leaf of int

| Fork of tree*tree

and r = Root of tree

type tree2 = Fork2 of tree2*tree2

| Leaf2

let rec visit_t1 t = match t with

Fork (t1, t2) -> let (t1’, m1) = visit_t1 t1 in

let (t2’, m2) = visit_t1 t2 in

let m = min m1 m2 in

(Fork2 (t1’, t2’), m)

| Leaf n -> (Leaf2, n)

and visit_t2 t m = match t with

Fork2 (t1, t2) -> let t1’ = visit_t2 t1 m in

let t2’ = visit_t2 t2 m in

Fork (t1’, t2’)

| Leaf2 -> Leaf m

and transform t = match t with

Root t1 -> let (t2, m) = visit_t1 t1 in

let replace = visit_t2 t2 m in

replace

There are two versions of the HaCirc and OCirc tools: a batch ver-

sion that given as input a circular Haskell (Ocaml) program generates its

strict/deforested Haskell (Ocaml) program; a web-based interactive tool(s)

that allows the tool(s) to be used online1. The execution of such interactive

versions of the tool(s) requires no further installation.

6.2.3 The AG system

The CircLib library was also used to construct a simple attribute grammar

system. This system was implemented as briefly described next. First, at-

1The tools are available online at http://www.di.uminho.pt/~jpaulo

http://www.di.uminho.pt/~jpaulo

6.3. Benchmarks 141

tribute grammars were modelled by a Haskell data-type. Then, we have

constructed a generalized LR parser, using the HaGlr tool (Fernandes et al.

2004), to parse concrete attribute grammars into instances of the previously

defined attribute grammar abstract data-type. Once attribute grammars are

constructed, they can easily be transformed into elements of the CP data-

type defined in CircLib. This means that it is then possible to transform

them into Haskell and Ocaml based strict multiple traversal programs and

Haskell lazy programs. Assembling all these components together, we obtain

a very simple attribute grammar system.

In fact, the Haskell and Ocaml programs presented in the two previous

sections are also the result of processing the attribute grammar of page 7.

6.3 Benchmarks

In this thesis, we have presented three different approaches to solve pro-

gramming problems in a functional setting: using circular programs, strict

multiple traversal programs and higher-order programs. Indeed, in chap-

ters 2 and 3, strict programs were transformed, by calculation, into circular

programs; in chapter 4, we studied the transformation of strict programs into

higher-order ones and in chapter 5 circular programs were transformed into

strict multiple traversal programs and into higher-order ones.

Circular programs are elegant and concise and do not use intermediate

data structures. However, their computations need to be scheduled dynami-

cally, at runtime, by the lazy engine. Strict programs use data structures to

convey information between traversals and the scheduling of their computa-

tions is done statically. Higher-order programs are also scheduled statically,

but they do not use intermediate structures. Instead, they use higher-order

definitions to construct intermediate trees of function calls.

In this section, we present the first detailed benchmark comparing the

execution performance of these three types of programs. Our benchmarks

considered three examples that differ in the number of traversals they execute

and also in the computational effort required to schedule their computations.

We compared the running performance of the circular Table formatter in-

142 6. Tools and Libraries to Model and Manipulate Circular Programs

troduced in chapter 5 with the running performances of the strict and higher-

order programs we derived from it. The Table circular program induces a

two traversal program, that may be considered as a simple one. The details

of the comparison and the results we obtained are presented in section 6.3.1.

We have also tested the performance of a circular program that processes

a tiny subset of the C language, called MicroC, against the performance of

the derived strict and higher-order programs. The MicroC processor induces

a six traversal program, that is more demanding on the scheduling of com-

putations than the Table formatter. The description of the conducted test

and the results obtained are presented in detail in section 6.3.2.

Furthermore, we also compared circular, strict and higher-order versions

of the pretty-printing combinators defined by Swierstra et al. (1999). The

combinators offer the possibility of defining multiple printing layouts, and

finding the optimal one may be an extremely hard-working task, as we will

see in section 6.3.3. The performance benchmarks for this example are also

presented in that section.

The results presented in sections 6.3.1 and 6.3.2 were obtained by running

the programs in an Intel Centrino 1.4GHz with 512MB of RAM memory,

under a Linux Mandrake 10.0 Operative System, and using the GHC 6.4

Haskell compiler. The results presented in section 6.3.3 were obtained in an

Intel Core 2 Duo 1.83GHz with 1GB of RAM memory, running the Ubuntu

Operative System and using the GHC 6.8.2 Haskell compiler.

6.3.1 The table formatter

The three Table formatters presented in chapter 5 were tested with three

different input tables: a table with depth 150 (a typical 3x3 matrix, with

one nested table, with depth 149), one with depth 250 and another with

depth 350. The results obtained are presented in Table 6.1. The runtimes

(in seconds) correspond to the accumulation of 5 executions. The memory

consumption refers to the memory used in one run, and it was obtained with

the built-in GHC memory profiler.

The results show that the three implementations have similar running

6.3. Benchmarks 143

Circular Strict Higher-Order
Table Mem Time Mem Time Mem Time
depth (Kb) (sec) (Kb) (sec) (Kb) (sec)
150 260 72.85 140 71.6 130 68.55

Haskell 250 450 266.69 240 260.00 220 255.65
350 600 677.04 320 646.95 300 642.93

Table 6.1: Performance results of the three different Table formatters

times, although the higher-order programs are always slightly faster than

the others. In terms of memory consumption, the higher-order programs

consume half of the memory needed by the circular programs. A two traversal

program, however, does not forces the lazy mechanism to keep a large set of

suspended computations. Next, we consider a more complex example, that

relies on a six traversal strategy.

6.3.2 The MicroC processor

The MicroC language processor generates assembly for a simple stack-based

machine and it includes an advanced pretty-printing algorithm. As input

we consider typical MicroC programs, with 1360, 2720 and 4080 lines. The

runtimes (in seconds) are the accumulation of 10 executions. The memory

consumption refers to the memory used in one run, and it was obtained with

the built-in GHC memory profiler.

Circular Strict Higher-Order
Input Mem Time Mem Time Mem Time
size (Kb) (sec) (Kb) (sec) (Kb) (sec)
1360 1600 17.63 3400 16.41 900 5.9

Haskell 2720 2800 36.06 6100 32.44 1600 12.21
4080 4400 54.48 12000 47.75 3000 18.49

Table 6.2: Performance results of the three MicroC processors.

The results presented in Table 6.2 show that the higher-order programs

have the best running times of the different implementations of the MicroC

144 6. Tools and Libraries to Model and Manipulate Circular Programs

processor: they are 2.8 times faster than the lazy equivalents. The higher-

order implementations are also always more efficient than the strict ones: 2.6

times faster. One would expect, however, that the aggressive optimizations

performed by GHC would be able to perform deforestation of the interme-

diate structures used in the strict implementations automatically. Indeed,

several deforestation techniques, like the standard fold/build rule, are imple-

mented in GHC. However, as one can see, for example, in the definition of

the strict Table program, the function that builds the intermediate structure

also returns additional results. Thus, the fold/build rule does not apply and

the compiler is not able to perform such optimizations. In chapter 4, we have

introduced a new rule, Law 4.2.1, defined in the style of fold/build, and that

applies to programs whose consumer can be expressed in terms of a pfold .

These programs may now get automatically transformed under GHC.

6.3.3 The pretty printing combinators

In this section, we benchmark different versions of the pretty printing com-

binators presented in (Swierstra et al. 1999). Pretty printing is a relevant

problem in the compiler construction task, and consists in representing tree-

based structures in a width-bounded area. The representation is performed

in a top-down, left to right order, and is done in such a way that the layout

clearly represents the logical structure of the tree. An example of this is

presented next.

Suppose we want to pretty-print an if then else structure. This simple

structure may be displayed with different layouts, depending on the page

width. A layout is said to be optimal, or prettiest, if it takes the least

number of lines, while still not overflowing the right page margins. Thus,

with page width at least 18, the prettiest representation for the conditional

structure is:

if c then t else e

If the page width is between 11 and 18, the prettiest representation for

the same structure is now:

6.3. Benchmarks 145

if c then t

else e

Notice that it is impossible to display the else branch besides the then

branch in less than 18 characters. If the page width is between 6 and 11, it is

still possible to find a representation for the if then else structure. Indeed,

it may be displayed as follows.

if c

then t

else e

The above representation, however, is the only one we can find for that

structure, with such a page width. This also means that the conditional

structure cannot be displayed on pages less than 6 characters wide.

In (Swierstra et al. 1999), the authors define a set of combinators for

describing such layouts. We may use them to represent the three possible

layouts for the conditional structure, defining:

pp = if c ⇔ then t ⇔ elsee∨
if c ⇔ then t m elsee∨
if c m then t m elsee

where

if c = txt "if c"

then t = txt "then t"

elsee = txt "else e"

The function txt converts strings into layouts,⇔ places its two arguments

beside each other, m places them above each other and
∨

combines two

possible layouts. The implementation of such combinators receives as input

a structure to display and the width of the page where the structure is to be

displayed in. Then, it finds the prettiest representation for the structure in

that page.

In our benchmarks, we have tested different implementations of these

combinators: the circular lazy version and its strict multiple traversal and

146 6. Tools and Libraries to Model and Manipulate Circular Programs

higher-order equivalents. We have used these different implementations to

pretty-print the Haskell module List.hs. Every data-type and function de-

fined in that module are pretty-printed using a strategy similar to the one

we presented for the conditional structure. The definition of a function is

displayed beside or below its type definition. Furthermore, the specification

of a function (its type and its definition) is also displayed beside or below the

specification of the function that precedes it in the module. This means that

the implementation of the combinators, in order to resolve which layout is

the prettiest, needs to consider the representation of the entire module. This

is indeed a very hard-working task.

Our benchmark considered the pretty-printing of the first 11, 12 and 13

functions of List.hs. The results we obtained are presented in Table 6.3, where

execution times are shown in seconds.

Number of Circular Strict Higher
functions Order

11 8.2 3.99 1.51
Haskell 12 129 26.89 3.85

13 4216 67.02 6.31

Table 6.3: Performance results of the three implementations of the pretty
printing combinators.

The results confirm that higher-order programs are more efficient than

equivalent circular versions (up to 668 times!) and strict ones as well (up

to 10.5 times). The results also show that the circular programs are the

slowest among the three different implementations. Furthermore, the results

obtained with this benchmark show an exponential growth of the running

times of circular programs: pretty printing 12 functions is 16 times slower

than doing it for 11 functions, and pretty printing 13 functions is 33 times

slower than doing it for 12 functions. In fact, results also show that the

circular implementation of the pretty printing combinators is the only one

that exhibits this exponential growth.

The results presented in Table 6.3 also illustrate well the combinatorial

6.4. Conclusions 147

explosion of possible layouts for representing the list module. Indeed, if we

restrict the number of possible layouts by forcing the specification of a func-

tion to be displayed below the specification of the function that precedes it,

the different implementations of the pretty printing combinators can deter-

mine the optimal layout in a straighforward way. This can be seen in the

performance results presented in Table 6.4 (execution times are presented in

seconds).

Number of Circular Strict Higher
functions Order

11 0.03 0.03 0.02
Haskell 12 0.04 0.04 0.02

13 0.04 0.04 0.02

Table 6.4: Performance results of the three implementations of the pretty
printing combinators on a simple example.

6.4 Conclusions

In this chapter, we have presented the implementation of the techniques in-

troduced in chapter 5 as a Haskell library: the CircLib library. CircLib

consists of a generic and reusable library, and it was used to construct two

tools, HaCirc and OCirc that manipulate circular programs, and to imple-

ment an attribute grammar system. HaCirc manipulates Haskell circular

programs and OCirc manipulates circular programs expressed in Ocaml no-

tation. Both tools transform circular programs into strict multiple traversal

programs and into higher-order programs. The relationship between circular,

strict and higher-order programs was also explored in other chapters of this

thesis: indeed, in chapters 2, 3 and 4, we have studied the transformation, by

calculation, of strict programs into circular and into higher-order programs.

In this chapter, we have also presented the performance results of the

experimental benchmark conducted comparing the three type of programs

studied in this thesis. For this purpose, we have compared the execution

148 6. Tools and Libraries to Model and Manipulate Circular Programs

performances of circular, strict and multiple traversal equivalent solutions to

several programming problems. The results we obtained show that higher-

order programs are more efficient than their strict multiple traversal and

circular equivalents.

Chapter 7

Conclusions

Summary

In this chapter, we briefly review the work presented in this thesis

and we draw our conclusions. We also discuss possible directions

for future research in areas related to the work described in the

thesis.

This thesis discussed the design, implementation and calculation of circu-

lar programs. In chapter 2, we have presented a new program transformation

technique for intermediate structure elimination. The programs we are able

of dealing with are defined as the composition of a producer with a consumer

function. The producer constructs an intermediate structure that is later

traversed by the consumer. Furthermore, we allow the producer to compute

additional values that may be needed by the consumer. This kind of compo-

sitions is general enough to deal with a wide number of practical examples.

Our approach is calculational, and proceeds in two steps: we apply standard

deforestation methods to obtain intermediate structure-free programs and we

introduce circular definitions to avoid multiple traversals that are introduced

by deforestation. Since in the first step we apply standard fusion techniques,

the expressive power of our rule is then bound by deforestation.

We introduce a new calculational rule conceived using a similar approach

to the one used in the fold/build rule: our rule is also based on parametricity

properties of the functions involved. Therefore, it has the same benefits

149

150 7. Conclusions

and drawbacks of fold/build since it assumes that the functions involved

are instances of specific program schemes. Therefore, it could be used, like

fold/build, in the context of a compiler. In fact, we have used the rewrite

rules (RULES pragma) of the Glasgow Haskell Compiler (GHC) in order to

obtain a prototype implementation of our fusion rule.

The rule that we propose is easy to apply: in this thesis, we have presented

a real example that shows that our rule is effective in its aim. Other examples

may be found in (Fernandes et al. 2007).

In chapter 3, we have presented rules to calculate monadic circular pro-

grams from the composition of monadic functions. The rules presented are

generic, as they can be instantiated for several algebraic data types and mon-

ads. Our rules are also generally applicable. We have shown two examples

that demonstrate their practical interest: our rules were used to calculate

single traversal, circular programs in the context of monadic parsing and in

the context of a programming environment.

In chapter 4, we have studied an alternative solution to achieve inter-

mediate structure deforestation and multiple traversal elimination such that

higher-order definitions are introduced instead of the circular definitions in-

troduced in chapters 2 and 3. The programs we obtain are, therefore, higher-

order programs, and they are obtained by the application of generic calcu-

lation rules. We have generalized the shortcut fusion rule for deriving pure

higher-order programs presented in (Voigtländer 2008) so that it can be ap-

plied to compositions of programs with an arbitrary data type as interme-

diate structure. We have also presented an extension of the above rule for

the derivation of higher-order programs to the case of monadic programs.

We considered programs consisting of the composition between a monadic

producer and a pure consumer and programs where both the producer and

the consumer functions are monadic.

In chapter 5, we have presented techniques to model and manipulate

circular programs. These techniques transform circular programs into strict,

purely functional programs. Program specialisation and slicing techniques

are used to improve the performance of the evaluators and to slice circular

lazy programs, respectively.

7.1. Future work 151

The techniques presented in chapter 5 have been implemented to build

the Haskell library CircLib which has been used to construct two tools to

model and manipulate circular programs in Haskell and Ocaml. As a result,

we can model in a strict or lazy setting a multiple traversal algorithm as a

single traversal circular function without the need of additional redundant

intermediate data structures and without having to define complex traversal

scheduling strategies. Circular definitions are well-known and heavily used

in the attribute grammar community. With this work we make this powerful

style of programming available to other programming paradigms, namely

the non-lazy functional one. CircLib was also used to construct a simple and

purely functional attribute grammar system.

Finally, the first experimental benchmarks comparing the execution per-

formance of circular, strict and higher-order programs have also been con-

ducted. The results show that higher-order Haskell programs are more effi-

cient than circular and strict equivalents. This is more evident for increas-

ingly complex algorithms and for programs that rely on multiple traversal

strategies and that define several intermediate data structures.

The CircLib library, the HaCirc and OCirc tools, the attribute grammar

system and the benchmark results were presented in chapter 6.

7.1 Future work

The work presented in this thesis may be summarized by the following dia-

gram:

circular programs

deforested programsstrict programs

a)

c)
d)

b)

The arrow c) corresponds to the calculational methods we presented in

chapter 2, for pure programs, and in chapter 3, for monadic ones. The

arrow d) corresponds to the methods for calculating higher-order programs

152 7. Conclusions

presented in chapter 4, for both pure and monadic programs. Arrows a)

and b) correspond to the attribute grammar based program manipulation

techniques presented in chapter 5.

Various aspects of the ideas presented in this thesis deserve further elab-

oration.

Multiple intermediate structure elimination The examples we pre-

sented for motivating the calculational methods described in this thesis con-

sist of compositions of a single producer and a single consumer function. We

would like, however, to be able to achieve the same fusion goals for programs

consisting of an arbitrary number of function compositions. Indeed, we are

now studying how to generalize our work in order to optimize programs of the

form fn ◦ ...◦f1 such that in each composition a data structure ti and a value

zi are produced. We will describe such a generalization in a forthcoming

paper, already under preparation.

Relation with Attribute Grammars Circular programs and attribute

grammars (AGs) are closely related (Swierstra 2003). Indeed, AG techniques

are used to model and manipulate circular programs in order to derive effi-

cient non-lazy equivalent programs (Fernandes and Saraiva 2007), and sev-

eral circular-based AG systems have been developed (Swierstra et al. 2004;

Wyk et al. 2006). In particular, we would like to express the transforma-

tions presented in chapter 5 (arrows a) and b) in the diagram above) in a

calculational form, so that their correctness can be proved. Indeed, although

these techniques are largely used by the AG community, their correctness re-

mains to be formally proved! The techniques studied in this thesis also serve

the purpose of increasing the knowledge on the relationship between circular

programs and AGs, and, therefore, bring us close to our goal of building a

proved correct AG system.

Incremental Lazy Functional Programming Incremental computation

is about maintaining the input-output relationship of a program, as the input

undergoes changes. The changes in the input may be such that one cannot

7.1. Future work 153

avoid a complete recomputation of the output. However, in many cases, one

can reuse results of the previous computation to update the output more

efficiently than by performing a complete recomputation from scratch. Ob-

viously, incremental computation is more efficient for cases where changes in

the input cause small changes in the output.

The investigation field of incremental computation has proven to be an ex-

citing one, as, over the years, several researchers have studied and proposed

techniques to reuse previously computed results, in order to improve effi-

ciency of computer programs. Incremental Computation is, indeed, essential

to the implementation of programming environments (Reps and Teitelbaum

1989; Michiel 2004) or spreadsheets, for example.

Change Propagation (Reps 1982), Adaptive Programming (Acar et al.

2002, 2006b,a) and Function Memoization (Hughes 1985; Pugh and Teit-

elbaum 1989; Saraiva et al. 2000) are among the techniques proposed to

achieve Incremental Computation. However, the Change Propagation and

Function Memoization approaches do not handle circular programs. Further-

more, Reps’ techniques do not handle circular attribute grammars. Thus, the

incremental functional implementations derived from incremental attribute

grammars will never be circular programs.

Acar’s ingenious Adaptive Programming technique is proposed in the

strict functional setting ML and its implementation in Haskell (Carlsson

2002) does not support lazyness. Thus, his technique also does not allow to

combine incrementality with the circular definitions that may occur in a lazy

setting.

As for Memoization, Hughes’ lazy memo-functions are especially suitable

to manipulate circular (infinite) structures. However, these circularities are

not of the same kind as the ones we want to be able to deal with: we exploit

the use of function call results as some of the same call’s arguments with the

purpose of eliminating multiple traversals over data structures. It is still not

clear how to memoize such circular function calls.

In the future, we aim to develop techniques that make it possible to

combine incrementality with circular programming.

154 7. Conclusions

Circular Bidirectional Transformations There are many situations in

which one data structure, called source, is transformed to another, called

view, in such a way that changes on the view can be transformed back to

those on the original data structure. This is called Bidirectional Transfor-

mation (BT), and practical examples include synchronization of replicated

data in different formats (Foster et al. 2005), presentation-oriented structured

document development (Hu et al. 2004; Michiel 2004), interactive user inter-

face design (Meertens 1998), and the well-known view updating mechanism

which has been intensively studied in the database community (Bancilhon

and Spyratos 1981; Dayal and Bernstein 1982; Gottlob et al. 1988; Lecht-

enbörger and Vossen 2003).

Bidirectional transformations can also benefit from the properties of cir-

cular programs. Indeed, circular programs may provide an ideal setting to

compute a new source, given the original one and it’s view, but submitted

to a particular change.

In the future, we intend to fully explore this promising research direction.

Our plan is to formally establish how circular programs can be integrated

within bidirectional transformations, namely how circular programs can be

used in the backward transformation of BTs.

Bibliography

Samson Abramsky and Achim Jung. Domain theory. In Handbook of Logic

in Computer Science, pages 1–168. Clarendon Press, 1994.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional

programming. In POPL’02: Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 247–

259, New York, NY, USA, 2002. ACM.

Umut A. Acar, Guy E. Blelloch, Matthias Blume, and Kanat Tangwongsan.

An experimental analysis of self-adjusting computation. In PLDI’06: Pro-

ceedings of the 2006 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, pages 96–107, New York, NY, USA,

2006a. ACM.

Umut A. Acar, Guy E. Blelloch, and Robert Harper. Adaptive functional

programming. ACM Transactions on Programming Languages and Sys-

tems (journal version of the POPL’02 article), 28(6):990–1034, 2006b.

Lex Augusteijn. Sorting morphisms. In Doaitse Swierstra, Pedro Henriques,

and José Oliveira, editors, Third Summer School on Advanced Functional

Programming, volume 1608 of LNCS, pages 1–27. Springer-Verlag, Septem-

ber 1998.

Harald Baier, Dennis Kugler, and Marian Margraf. Elliptic Curve Cryptog-

raphy Based on ISO 15946. Technical Report TR-03111, Federal Office for

Information Security, 2007.

155

156 BIBLIOGRAPHY

François Bancilhon and Nicolas Spyratos. Update semantics of relational

views. ACM Transactions on Database Systems (TODS), 6(4):557–575,

1981.

Richard Bird. Introduction to Functional Programming using Haskell, 2nd

edition. Prentice-Hall, UK, 1998.

Richard Bird. Using circular programs to eliminate multiple traversals of

data. Acta Informatica, 21:239–250, 1984.

Richard Bird and Oege de Moor. Algebra of Programming, volume 100

of Prentice-Hall Inernational Series in Computer Science. Prentice-Hall,

1997.

Magnus Carlsson. Monads for incremental computing. In ICFP’02: Proceed-

ings of the seventh ACM SIGPLAN International Conference on Func-

tional Programming, pages 26–35, New York, NY, USA, 2002. ACM.

Olaf Chitil. Type-inference based deforestation of functional programs. PhD

thesis, RWTH Aachen, October 2000.

Robin Cockett and Tom Fukushima. About Charity. Technical Report

92/480/18, University of Calgary, June 1992.

Robin Cockett and Dwight Spencer. Strong Categorical Datatypes I. In

R.A.C. Seely, editor, International Meeting on Category Theory 1991, vol-

ume 13 of Canadian Mathematical Society Conference Proceedings, pages

141–169, 1991.

Nils Anders Danielsson, John Hughes, Patrik Jansson, and Jeremy Gibbons.

Fast and loose reasoning is morally correct. In POPL’06: Conference

record of the 33rd ACM SIGPLAN-SIGACT Symposium on Principles of

Programming Languages, pages 206–217, New York, NY, USA, 2006. ACM.

Olivier Danvy and Mayer Goldberg. There and back again. In ICFP’02:

Proceedings of the seventh ACM SIGPLAN International Conference on

Functional Programming, pages 230–234, New York, NY, USA, 2002. ACM

Press.

BIBLIOGRAPHY 157

Umeshwar Dayal and Philip A. Bernstein. On the correct translation of

update operations on relational views. ACM Transactions on Database

Systems (TODS), 7(3):381–416, 1982.

Oege de Moor, Kevin Backhouse, and S. Doaitse Swierstra. First-class at-

tribute grammars. Informatica (Slovenia), 24(3), 2000.

Atze Dijkstra. Stepping through Haskell. PhD thesis, Department of Com-

puter Science, Utrecht University, The Netherlands, November 2005.

Atze Dijkstra and Doaitse Swierstra. Typing haskell with an attribute gram-

mar (part i). Technical Report UU-CS-2004-037, Institute of Information

and Computing Sciences, Utrecht University, 2004.

Joost Engelfriet and Gilberto Filé. Simple multi-visit Attribute Grammars.

Journal of Computer and System Sciences, 24(3):283–314, 1982.

Levent Erkök and John Launchbury. A Recursive do for Haskell. In

Haskell’02: Proceedings of the ACM SIGPLAN Haskell Workshop, pages

29–37. ACM, 2002.

João Fernandes, João Saraiva, and Joost Visser. Generalized LR parsing

in Haskell. In Informal Proceedings of the Summer School on Advanced

Functional Programming, students’ presentation, pages 24-37, 2004.

João Paulo Fernandes and João Saraiva. Tools and Libraries to Model and

Manipulate Circular Programs. In PEPM’07: Proceedings of the ACM

SIGPLAN 2007 Symposium on Partial Evaluation and Program Manipu-

lation, pages 102–111. ACM Press, 2007.

João Paulo Fernandes, Alberto Pardo, and João Saraiva. A shortcut fusion

rule for circular program calculation. In Haskell’07: Proceedings of the

ACM SIGPLAN Haskell Workshop, pages 95–106, New York, NY, USA,

2007. ACM Press.

Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.

Pierce, and Alan Schmitt. Combinators for bi-directional tree transfor-

mations: a linguistic approach to the view update problem. In POPL’05:

158 BIBLIOGRAPHY

Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Prin-

ciples of Programming Languages, pages 233–246, New York, NY, USA,

2005. ACM.

Neil Ghani and Patricia Johann. Short Cut Fusion of Recursive Programs

with Computational Effects. In Symposium on Trends in Functional Pro-

gramming (TFP 2008), 2008.

Jeremy Gibbons. Calculating Functional Programs. In Algebraic and Coalge-

braic Methods in the Mathematics of Program Construction, LNCS 2297,

pages 148–203. Springer-Verlag, January 2002.

Andrew Gill. Cheap Deforestation for Non-strict Functional Languages. PhD

thesis, Department of Computing Science, University of Glasgow, UK,

1996.

Andrew Gill, John Launchbury, and Simon L. Peyton Jones. A short cut to

deforestation. In Conference on Functional Programming Languages and

Computer Architecture, pages 223–232, June 1993.

Georg Gottlob, Paolo Paolini, Roberto Zicari, and Roberto Zicari. Properties

and update semantics of consistent views. ACM Transactions on Database

Systems (TODS), 13(4):486–524, 1988.

Ralf Hinze and Johan Jeuring. Generic Haskell: Practice and theory. In

Summer School on Generic Programming, 2002.

Susan Horwits and Thomas Reps. The Use of Program Dependence Graphs

in Software Engineering. In 14th International Conference on Software

Engineering, pages 392–411, Melbourne, Australia, may 1992. ACM.

Zhenjiang Hu, Shin-Cheng Mu, and Masato Takeichi. A programmable editor

for developing structured documents based on bidirectional transforma-

tions. In PEPM’04: Proceedings of the 2004 ACM SIGPLAN Symposium

on Partial Evaluation and Program Manipulation, pages 178–189, New

York, NY, USA, 2004. ACM.

BIBLIOGRAPHY 159

John Hughes. Lazy memo-functions. In Jean-Pierre Jouannaud, editor, Func-

tional Programming Languages and Computer Architecture, volume 201 of

LNCS, pages 129–146. Springer-Verlag, September 1985.

Graham Hutton and Erik Meijer. Monadic Parsing in Haskell. Journal of

Functional Programming, 8(4):437–444, July 1998.

Patricia Johann and Janis Voigtländer. Free theorems in the presence of seq.

In POPL’04: Proceedings of the 31st ACM SIGPLAN-SIGACT Sympo-

sium on Principles of Programming Languages, pages 99–110, New York,

NY, USA, 2004. ACM.

Thomas Johnsson. Attribute grammars as a functional programming

paradigm. In Functional Programming Languages and Computer Archi-

tecture, pages 154–173, 1987.

Uwe Kastens. Ordered attribute grammars. Acta Informatica, 13:229–256,

1980.

Uwe Kastens, Peter Pfahler, and Matthias T. Jung. The eli system. In CC

’98: Proceedings of the 7th International Conference on Compiler Con-

struction, pages 294–297, London, UK, 1998. Springer-Verlag.

Donald E. Knuth. Semantics of Context-free Languages. Mathematical Sys-

tems Theory, 2(2):127–145, June 1968. Correction: Mathematical Systems

Theory 5, 1, pp. 95-96 (March 1971).

Matthijs Kuiper and João Saraiva. Lrc - A Generator for Incremental

Language-Oriented Tools. In Kay Koskimies, editor, 7th International

Conference on Compiler Construction, volume 1383 of LNCS, pages 298–

301. Springer-Verlag, April 1998.

Matthijs Kuiper and Doaitse Swierstra. Using attribute grammars to derive

efficient functional programs. In Computing Science in the Netherlands

CSN’87, November 1987.

160 BIBLIOGRAPHY

John Launchbury and Tim Sheard. Warm fusion: Deriving build-

catas from recursive definitions. In Conference Record 7th ACM SIG-

PLAN/SIGARCH International Conference on Functional Programming

Languages and Computer Architecture, FPCA’95, La Jolla, San Diego,

CA, USA, 25–28 June 1995, pages 314–323. ACM Press, New York, 1995.

Julia L. Lawall. Implementing Circularity Using Partial Evaluation. In Pro-

ceedings of the Second Symposium on Programs as Data Objects (PADO),

volume 2053 of LNCS. Springer-Verlag, May 2001.

Jens Lechtenbörger and Gottfried Vossen. On the computation of relational

view complements. ACM Transactions on Database Systems (TODS), 28

(2):175–208, 2003.

Cecilia Manzino and Alberto Pardo. Short Cut Fusion of Monadic Programs.

In Brazilian Symposium on Programming Languages (SBLP 2008), 2008.

Simon Marlow and Simon Peyton Jones. The new GHC/Hugs Runtime

System. 1999.

Lambert Meertens. Designing constraint maintainers for user interaction.

http://www.cwi.nl/∼lambert, 1998.

Martijn Michiel. Proxima : a presentation-oriented editor for structured doc-

uments. PhD thesis, Department of Computer Science, Utrecht University,

The Netherlands, 2004.

Oege de Moor, Simon L. Peyton Jones, and Eric Van Wyk. Aspect-oriented

compilers. In GCSE ’99: Proceedings of the First International Symposium

on Generative and Component-Based Software Engineering, pages 121–

133, London, UK, 2000. Springer-Verlag.

Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. Bidirectional scripting

for structured documents. In Japanese Society for Software Science and

Technology, 22th Taikai, 2005.

BIBLIOGRAPHY 161

Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point promotion.

In POPL’07: Proceedings of the 34th annual ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 143–154, New

York, NY, USA, 2007. ACM Press.

Chris Okasaki. Breadth-first numbering: lessons from a small exercise in

algorithm design. ACM SIGPLAN Notices, 35(9):131–136, 2000.

Yoshiyuki Onoue, Zhenjiang Hu, Hideya Iwasaki, and Masato Takeichi. A

Calculational Fusion System HYLO. In IFIP TC 2 Working Conference on

Algorithmic Languages and Calculi, Le Bischenberg, France, pages 76–106.

Chapman & Hall, February 1997.

Jukka Paakki. Attribute grammar paradigms—a high-level methodology in

language implementation. ACM Comput. Surv., 27(2):196–255, 1995.

Alberto Pardo. Generic Accumulations. In IFIP WG2.1 Working Conference

on Generic Programming, Dagstuhl, Germany, July 2002.

Alberto Pardo. A Calculational Approach to Recursive Programs with Effects.

PhD thesis, Technische Universität Darmstadt, October 2001.

Alberto Pardo, João Paulo Fernandes, and João Saraiva. Shortcut fusion

rules for the derivation of circular and higher-order monadic programs. In

PEPM’09: Proceedings of the 2009 ACM SIGPLAN Symposium on Partial

Evaluation and Program Manipulation, pages 81–90, New York, NY, USA,

2008. ACM Press.

Maarten Pennings. Generating Incremental Evaluators. PhD thesis, Depart-

ment of Computer Science, Utrecht University, The Netherlands, Novem-

ber 1994.

Alberto Pettorossi and Andrzej Skowron. The lambda abstraction strategy

for program derivation. In Fundamenta Informaticae XII, pages 541–561,

1987.

162 BIBLIOGRAPHY

Simon Peyton Jones, editor. Haskell 98 Language and Libraries: The Revised

Report. Cambridge University Press, 2003. Also in Journal of Functional

Programming, 13(1).

Simon Peyton Jones. Call-pattern specialisation for haskell programs. In

ICFP’07: Proceedings of the the twelveth ACM SIGPLAN International

Conference on Functional Programming, pages 327–337, New York, NY,

USA, 2007. ACM.

Simon Peyton Jones, John Hughes, Lennart Augustsson, et al. Report on

the programming language Haskell 98. Technical report, February 1999.

William Pugh and Tim Teitelbaum. Incremental computation via function

caching. In POPL’89: Proceedings of the 16th ACM SIGPLAN-SIGACT

Symposium on Principles of Programming Languages, pages 315–328, New

York, NY, USA, 1989. ACM.

Thomas Reps. Optimal-time incremental semantic analysis for syntax-

directed editors. In POPL’82: Proceedings of the 9th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages 169–

176, New York, NY, USA, 1982. ACM.

Thomas Reps and Tim Teitelbaum. The Synthesizer Generator. Springer,

1989.

João Saraiva. Purely Functional Implementation of Attribute Grammars.

PhD thesis, Department of Computer Science, Utrecht University, The

Netherlands, December 1999.

João Saraiva and Doaitse Swierstra. Data Structure Free Compilation. In

Stefan Jähnichen, editor, 8th International Conference on Compiler Con-

struction, CC/ETAPS’99, volume 1575 of LNCS, pages 1–16. Springer-

Verlag, March 1999.

João Saraiva, Doaitse Swierstra, and Matthijs Kuiper. Functional Incre-

mental Attribute Evaluation. In David Watt, editor, 9th International

BIBLIOGRAPHY 163

Conference on Compiler Construction, CC/ETAPS’2000, volume 1781 of

LNCS, pages 279–294. Springer-Verlag, March 2000.

Doaitse Swierstra. Tutorial on attribute grammars. In Second Interna-

tional Conference on Generative Programming and Component Engineer-

ing (GPCE’03), September 2003.

Doaitse Swierstra and Pablo Azero. Attribute grammars in a functional style.

In Systems Implementation 2000, Berlin, 1998. Chapman & Hall.

Doaitse Swierstra and Olaf Chitil. Linear, bounded, functional pretty-

printing. Journal of Functional Programming, 19(01):1–16, January 2009.

Doaitse Swierstra and Harald Vogt. Higher order attribute grammars. In

H. Alblas and B. Melichar, editors, International Summer School on At-

tribute Grammars, Applications and Systems, volume 545 of LNCS, pages

48–113. Springer-Verlag, 1991.

Doaitse Swierstra, Pablo Azero, and João Saraiva. Designing and Implement-

ing Combinator Languages. In Doaitse Swierstra, Pedro Henriques, and

José Oliveira, editors, Third Summer School on Advanced Functional Pro-

gramming, volume 1608 of LNCS Tutorial, pages 150–206. Springer-Verlag,

September 1999.

Doaitse Swierstra, Arthur Baars, and Andres Löh. The UU-AG attribute

grammar system, 2004. http://www.cs.uu.nl/groups/ST.

Akihiko Takano and Erik Meijer. Shortcut deforestation in calculational

form. In In Proc. Conference on Functional Programming Languages and

Computer Architecture, pages 306–313. ACM Press, 1995.

Frank Tip. A survey of program slicing techniques. Journal of Programming

Languages, 3:121–189, 1995.

Janis Voigtländer. Semantics and pragmatics of new shortcut fusion rules. In

FLOPS ’08: Proceedings of the 2008 International Symposium on Func-

tional and Logic Programming, pages 163–179. Springer-Verlag, 2008.

http://www.cs.uu.nl/groups/ST

164 BIBLIOGRAPHY

Janis Voigtländer. Using circular programs to deforest in accumulating pa-

rameters. Higher-Order and Symbolic Computation, 17:129–163, 2004. Pre-

vious version appeared in ASIA-PEPM 2002, Proceedings, pages 126–137,

ACM Press, 2002.

Philip Wadler. Theorems for free! In 4th International Conference on Func-

tional Programming and Computer Architecture, London, 1989.

Philip Wadler. Deforestation: transforming programs to eliminate trees.

Theoretical Computer Science, 73:231–248, 1990.

William Waite, Uwe Kastens, and Anthony M. Sloane. Generating Software

from Specifications. Jones and Bartlett Publishers, Inc., USA, 2007.

Eric Van Wyk, Lijesh Krishnan, Derek Bodin, Eric Johnson, August Schw-

erdfeger, and Phil Russell. Tool Demonstration: Silver Extensible Com-

piler Frameworks and Modular Language Extensions for Java and C. In

SCAM, page 161, 2006.

Appendix A

The CircLib Haskell library

In this section we present the API of the Haskell library that implements the

re-schedulling of the circular definitions. We start by defining a data-type

CP , to represent circular programs, and the functions that manipulate it1:

data CP = CP{constrs :: [Constr],

types :: [DT],

prods :: Map Constr [DT],

args :: Map DT [VarName],

results :: Map DT [VarName],

deps :: Map Constr [Dep]

semantics :: Map Constr (Map VarName Function)}
type Var = (Constr , Int , String)

type Dep = ((Int ,Name), (Int ,Name))

where Constr , DT , VarName and Function are of type String .

dp :: CP → Rel Var Var

idp :: CP → Rel Var Var

ids :: CP → Rel (DT ,Name) (DT ,Name)

1These functions correspond to the Haskell versions of the formal definitions presented
in Section 5.3.3.

165

166 A. The CircLib Haskell library

a :: CP → DT → Int → Set (DT ,Name)

ds :: CP → DT → Rel (DT ,Name) (DT ,Name)

edp :: CP → Rel Var Var

isOrdered :: CP → Bool

interface :: CP → DT → Interface

type Interface = [(Set (DT ,Name), Set (DT ,Name))]

We model visit-sequences we the following data-structures and function.

data VisitSequences = VS (Map Constr [VisitSubSequence])

data VisitSubSequence = VSS{n :: Int ,

prod :: [DT],

arg :: [VarName],

res :: [VarName],

instructions :: [Instruction]}
data Instruction = Eval {variable :: Var ,

uses :: [Var]}
| Visit{visit :: (Int , Int),

inp :: [Name],

out :: [Name]}
visit sequences :: CP → VisitSequences

The slicing of circular programs is perfomed by the functions:

backward slice :: CP → Criteria → VisitSequences

forward slice :: CP → Criteria → VisitSequences

type Criteria = [VarName]

	Introduction
	Contributions
	Structure of the thesis

	Calculation of Circular Programs
	Introduction
	Circular programs
	Bird's method
	Our method

	Program schemes
	Data types
	Fold
	Fold with parameters

	The pfold/buildp rule
	Semantics of the pfold/buildp rule

	Algol 68 scope rules
	Calculating a circular program

	Conclusions

	Calculation of Monadic Circular Programs
	Introduction
	Bit string transformation
	Algol 68 scope rules
	Calculating circular programs, generically
	Extended shortcut fusion
	Monadic shortcut fusion

	Conclusions

	Calculation of Higher-order Programs
	Introduction
	The higher-order pfold/buildp rule
	Calculating a higher-order program
	Calculation of monadic higher-order programs
	Bit string transformation
	Algol 68 scope rules
	Calculating monadic higher-order programs, generically

	Conclusions

	Strictification of Circular Programs
	Introduction
	Notation
	The table formatter program

	From circular to strict programs
	Detection of circular definitions
	Partitionable circular programs
	Ordered circular programs
	The visit-sequence paradigm
	Computing strict functions
	Deforestation by program specialisation

	Slicing circular programs
	Class of programs considered
	Conclusion

	Tools and Libraries to Model and Manipulate Circular Programs
	Introduction
	Libraries and tools for circular programming
	The CircLib library
	Tools for circular program manipulation
	The AG system

	Benchmarks
	The table formatter
	The MicroC processor
	The pretty printing combinators

	Conclusions

	Conclusions
	Future work

	Bibliography
	The CircLib Haskell library

