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Resumen

Muchos aspectos del procesamiento de datos son de naturaleza funcional y pueden
beneficiarse con los recientes desarrollos en las áreas de cálculo y programaci ón fun-
cional.

El trabajo descripto en esta tesis es un intento de contribuir en estas lı́neas temáticas,
en particular explotando el lenguaje funcional Haskell como herramienta de soporte.

El lenguaje Haskell se utiliza basicamente para animar un modelo abstracto del
cálculo de una base de datos relacional, escrito en el estilo de una especificación formal
orientada al modelo.

El modelo incorpora un monad para capturar errores. Este monad (también
llamado el monad de Excepción) expresa la estrategia para combinar computaciones
que pueden disparar excepciones, que consiste en conducir las funciones desde el punto
donde se produjo una excepción hasta el punto en que la misma es tratada.

Se presenta una colección de funciones que capturan algunas de las funcionalidades
actualmente provistas por los productos que implementan bases de datos multidimen-
sionales. En particular, funciones que permiten clasificar y reducir relaciones (tablas),
las que convenientemente combinadas harán posible el análisis multidimensional de
una base de datos.

El estudio de temas como parametricidad y genericidad (politipismo) conduce a
otras extensiones del modelo. Se definen versiones genéricas de las operaciones rela-
cionales estándares (paramétricas sobre el constructor de tipo) y de la operación de
análisis multidimensional en lenguaje Generic Haskell.

Se sugiere una teorı́a de normalización de datos más general que la teorı́a de bases
de datos relacionales estándar (de la cual ésta parece ser un caso particular), usando
polimorfismo de orden superior y clases de constructores en Haskell 98.

Además de su animación, el modelo funcional es sometido a razonamiento y cálcu-
lo formales, preparando el camino para la eventual formulación politı́pica (genérica)
del cálculo relacional estándar.
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Artificial, Uso de Autómatas en Problemas de Decisión, por su apoyo permanente y
por permitirme desarrollar este trabajo en el proyecto investigación mencionado.

A los seres que amo, por el apoyo afectivo y emocional....

v



vi



Polytypic Data Processing

Claudia Mónica Necco

Supervisor: Prof.Ph.D. José Nuno Fonseca de Oliveira

Submitted to the
Department of Computer Sciences

Faculty of Physics-Mathematics and Natural Sciences
of the National University of San Luis
in fulfillment of the requirements

for the degree of Master in Computer Sciences

San Luis - Argentina
December 2004

vii



viii



Abstract

Many aspects of data processing are functional in nature and can take advantage of
recent developments in the area of functional programming and calculi.

The work described in this thesis is an attempt to contribute to this line of thought,
in particular exploiting the Haskell functional language as support tool.

Haskell is used mainly to animate an abstract model of the relational database cal-
culus as defined by Maier, written in the style of model-oriented formal specification.

The model uses an monad for capturing errors. This monad (also called the
monad) embodies the strategy for combining computations that can present

exceptions by passing bound functions from the point an exception is found to the point
where it is handled.

A collection of functions that capture some of the functionality currently provided
by multidimensional database products are presented. In particular, functions that per-
mit to classify and to reduce relations (tables) which, suitably combined, will permit to
carry out the multidimensional analysis of a relational database.

Parametricity and genericity (polytypism) make room for further extensions of the
model. Generic versions of relational standard (type-constructor parametric) and multi-
dimensional analysis operations are expressed in Generic Haskell.

A theory of data normalization which is more general than the standard relational
database theory (of which this appears to be a particular case) is suggested using higher-
order polymorphism and constructor classes in Haskell 98.

Besides animation, the functional model is further subjected to formal reasoning
and calculation, paving the way to the eventual polytypic (generic) formulation of the
standard relational calculus.
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Chapter 1

Introduction

1.1 Background

Productivity and scientific progress in the software development technology is often
hindered by artificial, “application domain” border-lines which prevent cross-fertiliza-
tion of results and the even spread of novelty.

Such frontiers or border-lines sometimes have an academic, social or cultural bias.
For instance, the average database programmer will regard functional programming
as too academic and perhaps useless. Conversely, many functional programmers will
regard database programming as a too specific and not sufficiently exciting topic.

However, these two research areas have more in common than it appears at first
sight. Both put an emphasis on the rôle of data structuring in software development and
both have developed their own calculus. Can these two seemingly disparate notations
and calculi be merged together? This question was the motivation of the present M.Sc.
thesis.

The relational data model and associated calculus [Mai83] (originating from e.g.
[Cod71b, Cod72a]), are today standard matters in computer science curriculæ. The
functional programming addressed toward data structuring and calculation is less well–
known. The widely accepted fact that data precede algorithms in software construction
— known since the days of structured programming in the 1970s — has been the
subject of recent research in the field of mathematics of program calculation. This has
provided further insight into the role — either real or virtual — of data structuring
in programming. A large database file stored in a disk is surely a visible, real data
structure. However, the binary search tree which controls quick-sort’s double recursion
is only evident to the software formalist who knows that real data structures may exist
at specification level which disappear (i.e. become virtual) throughout the process of
software refinement by calculation.

One of the most significant advances of the last decade has been the so-called func-
torial approach to data types which originated mainly from [MA86], was popularized
by [Mal90] and reached the textbook format in [BdM97]. A comfortable basis for
explaining polymorphism [Wad89], the “data types as functors” motto has proved ben-
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2 1.2. CONTEXT OF APPLICATION

eficial at a higher level of abstraction, giving birth to polytypism [JJ96], i.e. higher-order
polymorphism.

Polymorphism and polytypism are steps of the same ladder, that of generic pro-
gramming [Bo98]. The main target of this fast evolving discipline is to raise the level
of abstraction of the programming discourse in a way such that seemingly disparate
programming techniques, algorithms etc. are unified into idealized, kernel program-
ming notions.

1.2 Context of Application

In (relational) database programming one models real-life facts as tuples which are
recorded in large, mutually dependent persistent data-sets which are subjected to inten-
sive search and processing in order to gather knowledge about a particular application
domain. The need for larger and larger data-sets calls for the integration of disparate
data-models (data warehousing); routine data inspection gives place to data-mining,
and sophisticated on-line analytical processing (OLAP) replaces manual consolidation
of data.

In the past, textual data has, by-and-large, been out of this data processing trend,
due to its lack of structure and a too strong technology bias 1. This has changed re-
cently when, with the advent of the INTERNET, open mark-up textual standards eventu-
ally gained wide acceptance and world-wide prominence. Text processing has always
been a privilege of the grammar theorist, the language analyst or compiler writer, as
well as fertile ground for PERL and AWK scripting. However, how does one combine
this with “flat” data mining and OLAP technologies, which we want to scale-up to arbi-
trarily structured textual documents? Is there room for a single, generic theory of data
calculation able to cope with such heterogeneous data sources (e.g.text, tabular data,
etc.)?

These questions call for the unification of (from the relational side) normalization,
browsing, analytical processingwith the universal-morphismapproachwhich underlies
the calculation theory of generic programming. For instance, the relational join/unjoin
operators can be seen as relational instances of the polytypic functions and ,
respectively ([JJ98] and [Oli98, NSO99]).

However heterogeneous a data source may happen to be, if it is “structured” this
means that it has the shape of an inductive finite data structure (e.g. a finite set or list, a
finitely branching tree or a combination of these two). Inductive data types are express-
ible in generic programming as fix-points of appropriate (regular) functors [BdM97].
So the main task appears to be that of generalizing the functorial constructs which
describe relational database types to arbitrary regular functors and see what happens.
Of course we have to broaden our view of functional programming to that of generic
(polytypic) programming [Bo98].

Altogether, the following benefits are targets in the “going functional” approach to
data processing:

1Think of the variety of text editors in existence today.
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Animation: development of new formal specification animation standards
through the use of advanced functional languages such as Haskell

Calculation: to exploit the functional programming calculus, in particular with
respect to parametric polymorphism, “theorems for free” [Wad89], etc

Genericity: higher-order polymorphism which makes for truly generic software
models and solutions.

Foundations: search for new foundations for the relational database calculus.

1.3 Related Work
Formal models of relational databases. The interest in formal models of the re-
lational database systems is not new and dates back to (at least) the work of [BJ82],
where a formalization of relational data model is given using the “Vienna Development
Method” (VDM). The authors consider two possible representations of a row (tuple):
as a list of values and as a mapping from attribute names to values. They illustrate
the differences of choosing one over the other by exemplifying both alternatives in the
definition of the relational operations. The preconditions of the relational operations,
required for syntactic well-formedness, do not include all conditions that should be sat-
isfied by the relational operations. The specification of the relational data model does
not include concepts like key, integrity rule and manipulative operations.

The formal specification and design of a program implementing simple update op-
erations on a binary relational database called NDB is described in [Wal90]. This single
level description of NDB is the starting point of [FJ90], where a case study in the mod-
ular structuring of this “flat” specification is presented. The authors present a second
specification which makes use of an -ary relation module, and a third one which uses
an -ary relation module with type and normalization constraints. They demonstrate
the reusability of their modules, and also outline specifications of an -ary relational
database with normalization constraints, and an -ary relational database with a two-
level type hierarchy and no normalization constraints. However, their emphasis is on
the modularization techniques adopted to organize VDM specifications into modules.

Samson and Wakelin [SW92] present a comprehensive survey about the use of
algebraic methods to specify databases. They compare a number of approaches ac-
cording to the features covered and enumerate some features not normally covered by
such methods.

The purpose of Baluta [Bal95] is to define, in a rigorous and precise manner, the
basic features of the relational data model version 2 (RM/V2) as defined by Codd
[Cod90], using the Z specification language.

There have also been efforts to model multidimensional databases. In [AGS97],
a model for multidimensional databases is introduced. The model provides for sym-
metric treatment of dimensions and measures. A set of minimal (but rather elaborate)
operators is also introduced dealing with the construction and destruction of cubes, join
and restriction of cubes and merging of cubes through direct dimensions.



4 1.3. RELATEDWORK

In [LW96] a multidimensional data model is introduced based on relational ele-
ments. Dimensions are modeled as “dimension relations”, in practice annotating at-
tributes with dimension names. Cubes are modeled as functions from the Cartesian
product of the dimensions to the measure and are mapped to “grouping relations”
through an applicability definition. A grouping algebra is presented, extending ex-
isting relational operators and introducing new ones, such as ordering and grouping, to
prepare cubes for aggregations. Furthermore, a multidimensional algebra is presented,
dealing with the construction and modification of cubes as well as with aggregations
and joins.

In [GL97] -dimensional tables are defined and a relational mapping is provided
through the notion of completion. An algebra and calculus for restructuring, classifi-
cation and summarization is defined with classical relational operators as well as new
operators. The expressive power of the algebra is demonstrated through the definition
of operators such as the data cube operator and monotone roll-up.

Data processing by calculation The work described in this thesis finds its roots in
[Oli01b], where abstract data-modeling is based on a calculus of data combinators
which exhibit universal properties. These properties help in reasoning, transforming
and calculating about them. Data-model calculation is shown to encompass not only
data refinement but also data transformation, data-mining and data-migration.

Based on set-theory (and a modest use of category theory), reference [RO97] pre-
sents a constructive approach to relational database normalization theory. A set of
laws which prevent from the violation of normal forms caused by partial dependencies,
transitive dependencies and multi-valued dependencies are presented.

Boiten and Hoogendijk [BH95] sketch an approach to calculi for databases which
provide multiple data types. They present a first layer of calculus with operations on
basic values that correspond to the traditional tuples of relational databases. These
operations are provided by a category with special products. The labels of the tuples
are provided by the categorical typing. Then, in a second layer, these operations are
lifted to operations on sets, resulting in the traditional relational algebra operators.

Haskell as a formal model animation tool Despite its expressive power and gener-
icity, HASKELL has seldom been used mainly to animate abstract models in a explicit
way. Mukherjee’s translation of VDM specifications into GOFER is among the first
experiments in the field [Muk97].

Edison [Oka00] is a library of functional data structures implemented Haskell. It
supports three main families of abstractions: sequences, collections (e.g., sets and pri-
ority queues), and associative collections (e.g., finite maps).

HaskellDB [LM99] is a combinator library for expressing queries and other op-
erations on relational databases in a type safe and declarative way. All the queries
and operations are completely expressed within Haskell, that is to say, no embedded
(SQL) commands are needed. At the time of writing, HaskellDB is not yet finished:
documentation should be written and the implementation is not yet complete.
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1.4 Structure of the Dissertation
This dissertation is organized as follows. Chapter 2 summarizes some basic concepts
which are central to the thesis. Chapter 3 presents a relational data model expressed
in Haskell notation. Chapter 4 extends the relational algebra with the OLAP operator

and illustrates its expressive power via examples.
Chapters 5 and 6 are the core of this work. They show two different approaches to

generic data processing. Chapter 7 discusses these two approaches to genericity and
presents the main conclusions. It also points out directions for future research.
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Chapter 2

Background

2.1 Formal Methods
A formal method for software development is a method that provides a formal language
for describing a software artifact (for example, specifications, designs, or source code)
such that reasoning and formal proofs are possible, in principle, about properties of
the artifact so expressed. At the heart of a formal method there always is a formal
language, that is, a set of strings over some well-defined alphabet. Rules are given for
distinguishing strings in the language from those outside.

Formal methods aim at driving software production into good engineering stan-
dards by splitting software production into a specification phase, in which a mathemat-
ical model is built from contractor requirements, followed by an implementation phase
in which such a model is somehow converted into a runnable software artifact. For-
mal methods research shows that implementations can be effectively calculated from
specifications [Mor90, Oli90, Oli92]. So, in a sense, software technology is becoming
a mature discipline in its adoption of the “universal problem solving” strategy which
one is taught at school:

understand the problem

build a mathematical model of it

reason in such a model

upgrade it, wherever necessary

calculate a final solution and implement it.

The sophistication of this strategy is only dependent on the underlying mathematics.
In the context of software calculi, data manipulation is based on solving systems of
(recursive) equations on domain spaces, up to isomorphism. This entails the defini-
tion of data transformations which can be expressed functionally and animated using a
functional programming language such as HASKELL [Tho96].

7



8 2.1. FORMAL METHODS

2.1.1 Reasoning, Proofs and Verification
We consider validation as the process of increasing the confidence that a model is an
accurate representation of the system under consideration.

One aspect of validation is checking the internal consistency of a model. If we
use a formal modeling language, we can check the syntax and at least some semantics
aspects with the aid of tools (c.f. syntax checker and type checker in a programming
language compiler).

The other aspect of validation is checking the accuracy with which the model
records the desired system behavior. One wants an implementation to behave exactly
in the way prescribed by its specification. The relationship between specifications and
implementations is one-to-many, that is, specifications are more abstracts than imple-
mentations. The “epistemological gap” between specifications and implementations is
far from being a “smooth” one and is the major concern of the so-called reification (or
refinement) technology, a recent branch of software engineering using formal methods.

In software engineering, we distinguish between constructive and analytical means
of validation.
Constructive means to prevent the occurrence of errors in the process of develop-

ment, e.g., by the use of less error-prone programming languages (like Java instead of
C++) or through automated generation of implementations from high-level models. In
the well-known constructive style for software development [Jon80, Jon86] design is
factored into as many “mind-sized” design steps as required. Every intermediate design
is first proposed and then proved to follow from its antecedent. Despite improving the
primitive approach to correctness (full implementation prior to the overall correctness
argument), such an “invent-and-verify” style is often impractical due to the complexity
of the mathematical reasoning involved in real-life software problems.

Recent research seems to point at alternatives reification styles. The idea is to de-
velop a calculus allowing programs to be actually calculated from their specifications.
In this approach, an intermediate design is drawn from a previous design according to
some law available in the calculus, which must be structural in order for the compo-
nents of an expression to be refined in isolation (i.e.pre-existing refinement result can
be “re-used”). Proof discharge is achieved by performing structural calculation instead
of proof from first principles. This is the point of a calculus, as witnessed elsewhere in
the past (cf. the differential and integral calculi, linear algebra, etc.).
Analytical means are used to detect errors in models or implementations. There

are a number of analyses that can be performed in order to increase our confidence that
the model is complete and captures the key properties needed by the proposed system.
Three known approaches to do that are:

Animating the model- works well with clients unfamiliar with the modeling no-
tation but requires a good interface.

Testing the model- can asses coverage but limited to the quality of the tests and
the model must be executable.

Proving properties of the model - provides excellent coverage and does not re-
quire executability, but is not well supported by tools.
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2.1.2 Model Animation and Support Tools

Declarative languages, e.g.the functional language HASKELL [Jon03], state what is
to be computed in a form that is largely independent of how the computation is per-
formed. Declarative languages are based on sound mathematical foundations, have
well-defined semantics, permit descriptions at a very high level of abstraction, and are
referentially transparent. Thus declarative languages are specially suitable as specifi-
cation languages, they add the following advantage: an executable specification rep-
resents not only a conceptual, but also a behavioral model of the software system to
be implemented. The behavior of the system interacting with its environment can be
demonstrated and observed before it actually exists in its final form.

Furthermore, executable specifications can serve as prototypes which allow to ex-
periment with different requirements, or to use an evolutionary approach for software
development.

These considerations bring us to the section which follows.

2.2 Functional Programming
Almost two decades ago John Backus read, in his Turing Award Lecture, a revolu-
tionary paper [Bac78] proclaiming conventional command-oriented programming lan-
guages obsolete because of their inefficiency arising from retaining, at a high-level,
the so-called “memory access bottleneck” of the underlying computation model — the
well-known Von Neumann architecture. Alternatively, the (at the time already mature)
functional programming style was put forward for two main reasons. First, because of
its potential for concurrent and parallel computation. Second, and Backus emphasis
was really put on this, because of its strong algebraic basis.

Backus algebra of (functional) programs was providential in alerting computer
programmers that computer languages alone are insufficient, and that only languages
which exhibit an algebra for reasoning about the objects they purport to describe will
be useful in the long run.

The impact of Backus first argument in the computing science and computer archi-
tecture communities was considerable, in particular if assessed in quality rather than
quantity and in addition to the almost contemporary structured programming trend 1.

By contrast, his second argument for changing computer programming was by and
large ignored, and only the so-called algebra of programming research minorities pur-
sued in this direction. However, the advances in this area throughout the last two
decades are impressive and can be fully appreciated by reading a textbook written rel-
atively recently by Bird and de Moor [BdM97].

Functional programming literally means “programmingwith functions”. Program-
ming languages such as LISP [Gra96] or HASKELL [Jon03] allow us to program with
functions. However, the functional intuition is far more reaching than producing code
which runs on a computer. The idea of producing programs by calculation, that is to

1Even the C programming language and the UNIX operating system, with their implicit functional flavor,
may be regarded as subtle outcomes of the “going functional” trend.



10 2.2. FUNCTIONAL PROGRAMMING

say, that of calculating efficient programs out of abstract, inefficient ones has a long
tradition in functional programming [BD77].

Functional programming can moreover support the use of formal methods in de-
veloping executable specifications and prototype implementations. In this thesis the
HASKELL functional programming language will be used for both purposes, animation
and calculation. This calls for an introduction to the theory of functional programming
in general, and to the syntax of HASKELL in particular.

The following sections provide such as an introduction in a light-weight style. The
main emphasis is on explaining how to construct new functions out of other functions
using a minimal set of predefined functional combinators. This leads to a programming
style which is point free in the sense that functions descriptions dispense with variables
(“definition points”). Examples will be provided in concrete HASKELL syntax.

2.2.1 Introducing Functions and Types
The definition of a function

can be regarded as a kind of “process” abstraction: it is a “black box” which pro-
duces an output once it is supplied with an input:

From another viewpoint, can be regarded as a kind of “contract”: it commits itself
to producing a -value provided it is supplied with an -value. How is such a value
produced? In many situations one wishes to ignore it because one is just using function
. In others, however, one may want to inspect the internals of the “black box” in order
to know the function’s computation rule. For instance,

expresses the computation rule of the successor function — the function which
finds “the next natural number” — in terms of natural number addition and of natural
number 1. What was above meant by a “contract” corresponds to the signature of the
function, which is expressed by arrow in the case of and which, by the
way, can be shared by other functions, e.g. .

In programming terminology one says that and have the same “type”.
Types play a prominent rôle in functional programming (as they do in other pro-
gramming paradigms). Informally, they provide the “glue”, or interfacing material,
for putting functions together to obtain more complex functions. Formally, a “type
checking” discipline can be expressed in terms of compositional rules which check for
functional expression well-formedness.

It has become standard to use arrows to denote functions signatures or function
types. In this work the following variants will be used interchangeably to denote the
fact that the function accepts arguments of type and produces results of type :
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!! , !! . This corresponds to writing f :: a -> b in the
HASKELL functional programming language, where type variables are denoted by low-
ercase letters. will be referred to as the domain of and will be referred to as the
co-domain of . Both and are symbols which denote sets of values, very often
called types. In others words, and are the source and target types associated with
a function .

The ability to introduce new data types and to define functions that manipulate
their values is the essence of functional programming. Data types can be introduced by
simple enumeration of their elements; for example:

data Bool = False | True
data Char = Ascii0 | Ascii1 | ... | Ascii127

The type consist of two values and consist of 128. The various identifiers,
, and so on, are called constructors and the vertical bar “ ” is interpreted

as the operation of disjoint union. Thus, distinct constructors are associated with dis-
tinct values.

Data types can be defined in terms of other data types; for example:

data BoolOrChar = Bool Bool | Char Char
data Both = Tuple (Bool, Char)

The type consists of 130 values:
, and so on. The type consists of 256 values, one for each combina-

tion of a value in with a value in . In these data types the constructors
, and denote functions; for example, produces a value of type

given a value of type .
Given the assurance about different constructors producing different values, we can

define functions on data types by pattern matching; for example,

defines the negation operator , and

defines a function .
Functions of more than one argument can be defined in one of two basic styles:

either by pairing the arguments, as in

or by “currying”, as in
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The difference between and is just one of type:

More generally, a function of two arguments can be defined by choosing any of the
types

With the first type we would write ; with the second, ; and with the third,
. For obvious reasons, the first and third seem more natural companions. The

function , with type:

converts a non-curried function into a curried one:

One can also define a function that goes the other way round. Functional
programmers prefer to curry their functions as a matter of course, one reason being
that it usually leads to fewer brackets.

Returning to data types, they can be parameterised by other data types; for example,
the definition

introduces a type in terms of a type parameter . For example,
has type , while has type . Another example
of a type constructor in HASKELL is the finite-list type -constructor .

Data types can also be defined recursively; for example,

introduces the type of natural numbers. Nat is the union of an infinite number of distinct
values: Zero, Succ Zero, Succ (Succ Zero), and so on.

In the sequel, it will be useful to know the HASKELL syntax for algebraic data type
declaration. In general, this has the form [Jon03]:

where is the so-called context. A context consists of zero or more class assertions,
and has the general form , where are class identifiers,
and each of the is either a type variable or the application of type variable to
one or more types. We write to indicate the type restricted by the context
. The context must only contain type variables referenced in .
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This declaration introduces a new type constructor with one or more constituent
data constructors . The types of the data constructors are given by

where is the largest subset of constraining only those type variables free in the
types . The type variables through must be distinct and may appear in
both and the . It is a static error for any other type variable to appear in or on the
right-hand-side. The new type constant has a kind 2 of the form ,
where the kinds of the argument variables are determined by kind inference.
This means that may be used in type expressions with anywhere between and
arguments.

2.3 Haskell 98
Haskell is a non-strict, pure functional language, named after the mathematician
Haskell Brooks Curry 3. Haskell is a member of the ML family of languages. Other,
more-or-less similar languages in this family are Standard ML [Mil84], Hope and
Miranda 4 [Tur85], which are some of the most immediate predecessors of Haskell.
Haskell has been developed with the purpose to serve as a vehicle for teaching, re-
search and application of the functional programming paradigm. All languages in the
ML-family incorporate features such as pattern matching, a strong polymorphic type
system and higher order functions. Haskell has evolved continuously since it was in-
troduced in 1987. At the 1997 Haskell workshop in Amsterdam, it was decided that
a stable variant of Haskell was needed. As a result of this, the latest version of the
language was released in February 1999 and it is called “Haskell 98” [Jon03].

Hugs is a portable Haskell interpreter written in C which runs on almost any ma-
chine. Hugs is best used as a Haskell program development system: it boasts ex-
tremely fast compilation, supports incremental compilation, and has the convenience
of an interactive interpreter (within which one can move from module to module to
test different portions of a program). However, being an interpreter, it does not nearly
match the run-time performance of, for example, GHC, nhc98, or HBC (see http:
//www.haskell.org/libraries/). It is certainly the best system for newcom-
ers to learn Haskell. Hugs 98 is in conformity with Haskell 98 and it is available for
all Unix platforms including Linux, DOS, Windows 3.x, and Win 32 (Windows 95,
Win32s, NT) and Macintosh. It has many libraries includingWin32 libraries, a foreign
interface mechanism to facilitate inter-operability with C and the Windows version has
a simple graphical user interface.

2Type expressions are classified into different Kinds, which take one of two possible forms:
The symbol represents the kind of a nullary type constructors.

If and are kinds, then is the kind of types that take a type of kind and return a
type of kind .

3Haskell B. Curry (1900-1982) was a pioneer of modern mathematical logic. His research led to, among
others results, the development of combinatory logic.

4Miranda is a trademark of Research Software Ltd.
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2.3.1 Monads
An advantage of the pure functional programming style is the absence of side-effects.
But in many cases it could be very laborious to have all such effects (inc. I/O) defined
in an explicit way. One possible way is to let a global state represent the world out-
side of the program, which is passed and updated as the computations proceed. But
– again — passing this state around can make the “main” computation indistinct and
difficult to follow. HASKELL provides a way of dealing with side-effects by use of the
mathematical concept of a monad [Wad92].

A monad is a concept which arises from category theory. In a computational con-
text, a monad represents a computation: if is a monad identifier, then a object of
type represents a computation which produces a result of type . Monads are
incorporated in HASKELL by means of a so-called Monad class.

Haskell uses a traditional Hindley-Milner polymorphic type system to provide a
static type semantics, but the type system has been extended with type classes that
provide a structured way to introduce overloaded functions.

We can use adjectives ad-hoc an parametric to distinguish two varieties of poly-
morphism.

Ad-hoc polymorphism occurs when a function is defined over several different
types, acting in a different way for each type. A typical example is overloaded mul-
tiplication: the same symbol may be used to denote multiplication of integers and
multiplication of floating point values.

Parametric polymorphism occurs when a function is defined over a range of types,
acting in the same way for each type. A typical example is the length function, which
acts in the same way on a list of integers and a list of floating point numbers.

A class declaration introduces a new type class and the overloaded operations
that must be supported by any type that is an instance of that class 5.

An instance declaration declares that a type is an instance of a class and includes
the definitions of the overloaded operations —called class methods— instanced on the
named type.

Using the Haskell type class system, we can define functions that be:

polymorphic: its use is not restricted to values of any single type.

overloaded: its interpretation is determined by the types of its arguments.

extendible: the definition of well-formation can be extended to include new
data-types.

The class monad in Haskell is defined:

class Monad m where
(>>=) :: m a -> (a -> m b) -> m b
(>>) :: m a -> m b -> m b
return :: a -> m a

5Haskell type class is not a type, types are separate, they “join” classes.
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This class is an example of a constructor class, which is a class whose members
are type constructors. As we have seen above, type constructors are functions which
build types from types. The ( ) operation combines computations when a
value is passed from one computation to another. is defined in terms of
to combine two computations when the second computation does not need the result
of the first one. The operation takes a value and returns the corresponding
“monadic” value of type . A simple example of these operations is the following
I/O program which reads a line of input, parses the string and returns the value as a “
monadic” integer:

getInt :: IO Int
getInt =

getLine >>= \line ->
return (read line::Int)

Function getLine reads a line from stdin, the operator sequences the in-
teraction by passing the result of getLine to a function . In the example, the
parameter of this function is line, which is expecting an argument of type String
and whose body is the application of the return function. The read function parses
line into an integer, which is then returned as a monadic integer.

Monadic expressions can adopt the so-called do-syntax, which provides a more
conventional syntax for monadic programming. It allows an expression such as in the
program above to be written as:

getInt :: IO Int
getInt = do

line <- getLine
return (read line::Int)

The differences between the two programs are just syntactic sugar.

2.3.2 Point free Notation
There are two basic styles for expressing functions: the point wise style and the point
free style. In the point wise style one describes a function by describing its application
to arguments. By contrast, in the point free style one describes a function exclusively in
terms of functional combinators, among which functional composition is a basic one.

Some people will argue that such compact “point free” notation (that is, the nota-
tion which hides variables, or function “definition points”) is too cryptic to be useful
as a practical programming medium. In fact, point free programming languages such
as Iverson’s APL or Backus’ FP have been more respected than loved by the program-
mers community [Oli99]. Virtually all commercial programming languages require
variables and so they implement the more traditional “point wise” notation.

The main purpose of the point free notation is to make reasoning easier to perform
6. Chapter 6 will serve to illustrate how a point-free style leads to a very simple method

6The move from the point wise level (involving operators as well as variable symbols, logical connectives,
quantifiers, etc.) to the point free one is compared elsewhere [Oli01a] to the Laplace transformation. The
former is more intuitive but harder to reason about, the latter is less descriptive but more algebraic and
compact. As in traditional mathematics, there is room for both in formal specification.
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for reasoning about functions.

2.4 Generic Programming
The ability to name and reuse common patterns of computation as higher-order func-
tions is at the heart of the power of functional languages. Higher-order functions like
maps and catamorphisms (see [BdM97]) capture very general programming idioms
that are useful in many contexts. This kind of polymorphic functions enable us to ab-
stract away from the unimportant details of an algorithm and concentrate on its essential
structure.

The type of a polymorphic function has type parameters, but all monomorphic in-
stances of the function can use identical code. A generalization is to parameterize
also the functional definition on types. Functions that are parameterized in this way
are called polytypic functions [Jeu95]. Equality functions, pretty printers and parsers,
traversals functions and other recursion combinators are all examples of polytypic func-
tions.

While a normal polymorphic function is an algorithm that is independent of the type
parameters, the class of instances of a polytypic function contains functions that are dif-
ferent, but which share a common structure. Any algorithm in the class can be obtained
by instancing a template algorithmwith (the structure of) a data type. Other terms used
denoting polytypism in the literature are structural polymorphism [Rue92], generic
programming [RBH96], type parametric programming [SN95], shape polymorphism
[Jay95b], polynomial polymorphism [Jay95a] and type-indexed functions [Hin99].

Polytypic or generic programming offers a number of benefits:

Reusability: Polytypism extends the power of polymorphic functions to allow classes
of related algorithms to be described in one single definition. For example, the
class of printing functions for different data types can be expressed as one poly-
typic function — cf. eg. the show function in HASKELL. Thus polytypic func-
tions are very well suited for building program libraries.

Adaptability: Polytypic programs automatically adapt to changing data types. This
adaptability reduces the need for time consuming and boring rewrites of trivial
functions and reduces the associated risk of making mistakes.

Closure and orthogonality: Currently some polytypic functions can be used but not
defined in some functional languages (for instance, inML 7 [Mil84] , the equality
function(s)).

This asymmetry can be removed by extending these languages with polytypic
definitions.

7ML has introduced the notion of parametric polymorphism in languages. ML types contain type vari-
ables which are instanced to different types in different contexts. Hence it is possible to partially specify type
information and to write programs based on partially specified types which can be used on all the instances
of those types.
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Applications: Some problems are polytypic by nature: maps and traversals, pretty
printing and parsing, data compression, matching, unification, term rewriting,
etc.

Probability: The more general a function, the more general proofs are about it. In a
polytypic context, each of the earlier benefits acquires an additional interpre-
tation: one gets reusable proofs, adaptable proofs, less ad hoc semantics of
programming languages and new proofs of properties of printing and parsing,
packing, term rewriting, and so on.

There are various ways to implement polytypic programs in a typed language, in
particular:

using a universal data type;

using higher-order polymorphism and constructor classes;

using a special syntactic construct.

Polytypic functions can be implemented by defining a universal data type, on which
we define the functions we want to have available for large classes of data types. These
polytypic functions can be used on a specific data type if we provide translation func-
tions to and from the universal data type. An advantage of using a universal data type
for implementing polytypic functions is that we do not need a language extension for
writing polyytpic programs. However, using universal data types has several disadvan-
tages: type information is lost in the translation phase to the universal data type, and
type errors can occur when programs are run. Furthermore, different people will use
different universal data types, which will make program reuse more difficult.

Should higher-order polymorphism and constructor classes be used for defining
polytypic functions, then type information is preserved, and we can use a functional
language such as HASKELL for implementing polytypic functions. In this style, all
regular data types [Hin00a] are represented by type

data Mu f a = In ( f a (Mu f a))

and the class system is used to overload functions like and . However, writing
such programs is rather cumbersome: programs become cluttered with instance decla-
rations, and type declarations become cluttered with contexts. And the user still has to
write all translation functions.

The third solution, to extend the language with a syntactic construct for defining
polytypic functions is based on the initial algebra semantics of data types (see details
in eg. [Bac95].) Examples of this approach are the POLYP system [Jan00], Generic
H SKELL [HJ03], derivable type classes [HJ00], etc.

In this thesis, genericity will be approached in two different ways. We will ex-
periment with Generic H SKELL in chapter 5 , and chapter 6 will exploit the use of
higher-order polymorphism and constructor classes.
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2.5 The Relational Data Model
The first theoretical contributions to the so-called relational data model, were pub-
lished in the early seventies, among which the contributions of Codd [Cod70, Cod71a,
Cod71b, Cod72a] were outstanding.

The information system community is indebted to Codd for his pioneering work
on the very foundation of the relational data model theory [Cod70]. Relational alge-
bra was defined in [Cod72b], which includes operators from set theory and specific
operators from the relational model. (Some of the relational operators were already
introduced in [Cod70].) the concept of a functional dependency is already present in
[Cod70], in the form of keys. Functional dependencies that do not follow from keys
were introduced in [Cod72a] , for the purpose of normalization, that is, of information
redundancy elimination. In [Cod71b, Cod72a] the so-called second and third normal
forms of relational databases were introduced. Finally, the so-called Boyce-Codd nor-
mal form was introduced in [Cod74].

In 1983 a book by Maier [Mai83] was published which became a standard in the
literature on the mathematics of relational database design.

In the following sections we will review the main concepts of the relational data
model. Our main reference will be the textbook of David Maier [Mai83]

2.5.1 Standard Relational Algebra
A relation scheme R is a finite set of attribute names . Corresponding to
each attribute name is a set , i n, called the domain of by dom .
Attribute names are sometimes called attribute symbols or simply attributes, particu-
larly in the abstract. The domains are arbitrary, non-empty sets, finite or countably
infinite. A relation on scheme is written or .

Definition 1 (Relation) Given , a relation on relation
sche-me is a finite set of mappings from to with the restric-
tion that for each mapping must be in , . These mappings are
called tuples.

Definition 2 (key, superkey) A key of a relation is a subset
of such that for any distinct tuples and in , there is a such that

. That is, no two tuples have the same value on all attributes in . We
could write this condition as and no proper subset of shares this
property. is a super key of if contains a key of .

Two relations on the same scheme can be considered sets over the same universe,
the set of all possible tuples on the relation scheme. Thus, Boolean operations can be
applied to two such relations.

Definition 3 (Boolean operators) If and are relations on the scheme , then
is the relation containing all tuples that are in both and , is the relation

containing all tuples that are in either r or s and is the relation
containing those tuples that are in but not in .
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Definition 4 (Complement) Let be the set of all tuples over attributes of
and their domains. The complement of a relation is defined as
(it can be infinite).

Definition 5 (Active domain) If is a relation and
, the active domain of relative to is the set

Definition 6 (Active complement) Let be the set of all tuples over the
attributes of and their active domains relative to r. The active complement of is

.

Definition 7 (Select operator) Let be a relation on scheme , an attribute in ,
and an element of . Using mapping notation, (“select equal to
on ”) is the relation

Definition 8 (Project operator) Let be a relation on scheme , and let be a sub-
set of . The projection of onto , written , is the relation obtained
by striking out columns corresponding to attributes in and removing duplicate
tuples in what remains. In mapping notation, is the relation

Definition 9 (Natural join operator) Let be a relation on scheme , and let be a
relation on scheme , with . The join of and written , is the relation

of all tuples over such that there are tuples and with
and . Since is a subset of both and , as a consequence of the
definition . Thus, every tuple in is a combination of a tuple
from and a tuple from with equal -values.

Definition 10 (Divide operator) Let and be relations, with . Let
. Then divided by , written , is the relation

Definition 11 (Renaming operator) Let be a relation on scheme , where is an
attribute in and is an attribute not in . Let . Then with
renamed to , denoted , is the relation
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2.5.2 Functional Dependences and Normalization
Relational database design starts from the so-called database relation scheme defi-
nition. Since relational databases are collections of n-ary relations, such a scheme,
consisting in a set of attribute names, records the common format of all the elements
(tuples) of each individual relation.

Concerning each relation scheme, there may be explicitly listed subsets of its at-
tribute name set (the so-called “designated keys”) which uniquely identify the tuples
of relations with that scheme, that is, which exhibit the “property of key”.

Designated keys with a minimum number of attributes are simply called keys. By
contrast, sets of attributes containing more than one key are called super keys 8. Des-
ignated keys are a way of prescribing semantics to relational data in the sense that they
impose restrictions to the admissible relations with a certain scheme. So-called func-
tional dependencies are generalizations of (designated) keys. The formal definition of
a functional dependency follows.

Definition 12 (Functional dependency) Let be a relation on scheme , with and
subsets of . Relation satisfies the functional dependency (FD) if for

every -value , as at most one tuple.

One way to interpret this expression is to look at two tuples, and , in . If
, then .

In relational database design practice, starting relation schemes tend often to be too
large, unstructured and affected by functional dependencies. The goal of normaliza-
tion is to find a set of relations schemes –also called a database scheme which is free
of information redundancy (i.e.“is normalized”) and free of explicit functional depen-
dencies, and yet able to represent the same information as the initial relation scheme.

The first step of standard normalization consist of eliminating the structure of the
relation scheme, i.e.of decomposing attributes with structured domain. Each time this
first step is applied, the relevant relation scheme is decomposed into two or more re-
lation schemes. The result is a relation scheme which is said to be in the first normal
form (1NF). Normalization proceeds via one of two alternative procedures: normal-
ization through decomposition or normalization through synthesis. The first option
is chosen more often. Proceeding by relation schema decomposition the aim is to
eliminate “undesirable” properties, namely those which contradict the aphorism: every
attribute which does not occur in the relation scheme key should depend on the key,
the whole key and nothing but the key. The second step consists of eliminating partial
dependencies on the key in order to attain the so-called second normal form (2NF).

Finally, the third step eliminates transitive dependencies on the key. Transitive
dependencies often correspond to functional dependencies involving attributes not oc-
curring in the key. By eliminating them one obtains a database scheme which is said to
be in the so-called third normal form (3NF), usually referred to simply as normalized
form.

The notion of decomposition was explained so far admitting that the relation sche-
me has a single key. In the general case, one has to admit the possibility of many

8Super keys verify the property of key but their number of attributes can be reduced without affecting
that property.
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different keys. The two later normalization steps above are easily generalized to this
case, by introducing the concept of a non prime attribute, that is, an attribute that does
not occur in any key.

Normalization via decomposition has some well-known inconveniences, namely:
it does enforce the absence of explicit functional dependencies, and it does not enforce
a database scheme with a minimum number of relation schemes.

The so-called synthesis algorithm [Mai83] is free of these problems. However,
known objections to its practical usefulness are: it is less intuitive, and it is not grad-
ual. There are further normal forms which, in practice, are not so often considered in
database design. Such is the case of the so-called Boyce-Codd normal form (4FN). The
latter involves another type of dependencies: multi-valued dependencies.

2.6 On Line Analytical Processing
On-Line Analytical Processing (OLAP) is a category of software technology that en-
ables live ad hoc data access and analysis. While the more familiar On-Line transaction
Processing (OLTP) generally relies solely on relational databases, OLAP has become
synonymous with multidimensional views of business data. These multidimensional
views provide the technical basis for the calculation and analysis required by Business
Intelligence applications.

OLTP applications are characterized bymany users creating, updating, or retrieving
individual records. Therefore, OLTP databases are optimized for transaction updating.
OLAP applications are used by analysts and managers who frequently want a higher-
level aggregated view of the data, such as total sales by product line, by region, and so
forth. The OLAP database is usually updated in batch, often frommultiple sources, and
provides a powerful analytical back-end to multiple user applications. Hence, OLAP
databases are optimized for analysis.

OLAP functionality is characterized by dynamicmulti-dimensional analysis of con-
solidated enterprise data supporting end user analytical and navigational activities.

Two are the basic architectures for storing data in an OLAP database: ROLAP
and MOLAP. ROLAP (Relational OLAP) [CD97] is based on a relational database
server, extended with capabilities such as extended aggregation and partitioning of
data [GCB 97]. The scheme of the database can be a star, snowflake, or fact constella-
tion scheme [CD97]. On the other hand, MOLAP (Multidimensional OLAP) is based
on ”pure” Multidimensional Databases (MDDs), which logically store data in multidi-
mensional arrays, which are heavily compressed and indexed, in the physical level, for
space and performance reasons.

OLAP is implemented in a multi-user client/server mode. An OLAP server is a
high-capacity, multi-user data manipulation engine specifically designed to support
and operate on multi-dimensional data structures. A multi-dimensional structure is
arranged so that every data item is located and accessed based on the intersection of
the dimension members which define that item. The design of the server and the struc-
ture of the data are optimized for rapid ad-hoc information retrieval in any orientation,
as well as for fast, flexible calculation and transformation of raw data based on for-
mulaic relationships.The OLAP server may either physically stage the processed multi-
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dimensional information to deliver consistent and rapid response times to end users, or
it may populate its data structures in real-time from relational or other databases, or
offer a choice of both.

2.6.1 Basic Relational OLAP Operations
The multidimensional view of data considers that information is stored in a multi-
dimensional array (sometimes called a Hyper cube, or Cube). A Cube is a group of
data cells arranged by the dimensions of the data [Cou97]. A dimension is defined in
[Cou97] as ”a structural attribute of a cube that is a list of members, all of which are of
a similar type in the user’s perception of the data”. Each dimension has an associated
hierarchy of levels of aggregated data i.e. it can be viewed from different levels of
detail (for example, Time can be detailed as Year, Month, Week, or Day). Measures
(which are also known as variables, metrics, or facts) represent the real measured values
[ABNO97].

Navigation is a term used to describe the processes employed by users to explore
a cube interactively, by manipulating the multidimensionally viewed data [ABNO97],
[Cou97]. Possible operations which can be applied are: Aggregation (or Consolida-
tion, or Roll-up) which corresponds to summarization of data for the higher level of
a hierarchy, Roll Down (or Drill down, or Drill through) which allows for navigation
among levels of data ranging from higher level summary (up) to lower level summary
or detailed data (down), Selection (or Screening, or Filtering or Dicing) whereby a
criterion is evaluated against the data or members of a dimension in order to restrict
the set of retrieved data, Slicing which allows for the selection of all data satisfying
a condition along a particular dimension and Pivoting (or Rotation) throughout which
one can change of the dimensional orientation of the cube, e.g. swapping the rows
and columns, or moving one of the row dimensions into the column dimension, etc.
([ABNO97], [Cou97]).

Relational and SQL data extraction How do traditional relational databases fit into
this multi–dimensional data analysis picture?. How can 2D flat files (SQL tables)
model an N–dimensional problem?. Furthermore, how do the relational systems sup-
port operations over N–dimensional representations that are central to visualization and
data analysis programs?

The answer to the first question is that relational systems model N–dimensional
data as a relation with N–attribute domains. For example, 4–dimensional (4D) earth
temperature data is typically represented by a Weather table (table 2.1). The first four
columns represent the four dimensions: latitude,longitude, altitude and time. Addi-
tional columns represent measurements at the 4D points such as temperature, pressure,
humidity, and wind velocity. Each individual weather measurement is recorded as a
new row in this table. Often these measured values are aggregates over time (the hour)
or space (a measurement area centered on the point).

Visualization and data analysis tools extensively use dimensional reduction (aggre-
gation) for better comprehensibility. Often data along the other dimensions that are not
included in a “2–D” representation are summarized via aggregation in the form of his-
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Weather
Time(UCT) Latitude Longitude Altitude(m) Temp. (c) Pres. (mb)
96/6/1:1500 37:58:33N 122:45:28W 102 21 1009

. . . . . .
96/6/7:1500 34:16:18N 27:05:55W 10 23 1024

Table 2.1: Weather Table. Example of 4–dimensional (4D) earth temperature data

togram, cross–tabulation, subtotals, etc. In the SQL Standard, we depend on aggregate
functions and the GROUP BY operator to support aggregation.

The SQL Standard (IS 9075 International Standard for Database Language SQL,
1992) provides five functions to aggregate the values in a table: COUNT(), SUM(),
MIN(), MAX(), and AVG(). For example, the average of all measured tempera-
tures is expressed as:

SELECT AVG(Temp)
FROM Weather;

In addition, SQL allows aggregation over distinct values. The following query
counts the distinct number of reporting times in the Weather table:

SELECT COUNT(DISTINCT Time)
FROM Weather;

Aggregate functions return a single value. Using the GROUP BY construct, SQL
can also create a table of many aggregate values indexed by a set of attributes. For
example, the following query reports the average temperature for each reporting time
and altitude:

SELECT Time, Altitude, AVG(Temp)
FROM Weather
GROUP BY Time, Altitude;

GROUP BY is an unusual relational operator: It partitions the relation into disjoint
tuple sets and then aggregates over each set.
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Chapter 3

The Relational Data Model in
Haskell

The main purpose of this chapter is to build a precise model, expressed in Haskell, of
the basic operations of the relational data model as defined by Maier [Mai83].

This chapter is split into six sections. In the first section we developHaskell support
for some basic concepts arising from category theory [Bac95] which will be thoroughly
use in the modeling. In the second section we introduce and model the concept of a
constrained data type. Thereafter the third describes two families of abstractions in-
cluding collective data types such as finite power sets ( ) and finite partialmappings
( ), while section four considers the specification of tuples and basic relation
operations leading to relation algebra. The fifth section deals with monads and their
application to capturing errors.

Finally, a sixth section describes the definition of the relational database level
(RDB) where concepts such as key and integrity rule are integrated to complete the
definition of the invariant property of the adopted relational data model.

3.1 Categorical Basis
This section presents the module Cat Impl.hs (see Appendix A.1) which models a
few basic generic concepts borrowed from category theory.

Categories. A category consists of a collection of objects and a collection of arrows.
Each arrow has a source object and a target object . Two arrows and
can be composed to form a new arrow , if has the same target object as the source
object of . This composition operation is associative. Furthermore, for each object
there is a so-called identity arrow , which is the unit of composition.

Our base category is called and has types as objects and functions as arrows.
Arrow composition is function composition (.) and the identity arrows are represented
by the polymorphic function .

25
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Functors. Functors are structure-preservingmappings between categories. Polymor-
phic data types are functors from to . In Haskell, functors can be defined
by a type constructor of kind (recall section 2.2.1) mapping objects to ob-
jects, together with a higher-order function , mapping arrows to arrows. This is
provided as a constructor class in the Haskell Prelude (the standard file of primitive
functions) as follows:

class Functor f where
fmap :: (a -> b) -> (f a -> f b)

The arrow action of a functor must preserve identity arrows and distribute over
arrow composition. For functors from to , this means that the following
equations must hold:

Bifunctors. The product category consists of pairs of types and pairs
of functions. We can define functors from to the base category
in Haskell. These functors are called bifunctors. A (curried) bifunctor in Haskell is a
type constructor of kind , together with a function . The constructor
class Bifunctor is made available as follows:

class Bifunctor f where
bmap :: (a -> c) -> (b -> d) -> (f a b -> f c d)

Products. Categorical products are provided in Haskell by the type constructor for
pairs (usually written as Cartesian product in mathematics) and projections

and (resp. and in standard mathematical notation). Type constructor
is extended to a bifunctor in the obvious way:

instance BiFunctor ( ,) where
bmap f g = f >< g

where

(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
(f >< g) = split (f . fst) (g . snd)

and combinator behaves as follows:
. Outfix notation is often used instead of .

Sums. Categorical sums (or coproducts) are defined in the Haskell Prelude by means
of type constructor

data Either a b = Left a | Right b
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where Left and Right constructors correspond to left and right injections (resp.
and in standard mathematical notation), together with a function

satisfying the following equations:

Type constructor Either is extended to a bifunctor by providing the following in-
stance of bmap:

(-|-)::(a -> b) ->(c -> d) ->Either a c ->Either b d
(f -|- g) (Left a) = Left (f a)
(f -|- g) (Right b) = Right (g b))

instance BiFunctor Either where
bmap f g = f -|- g

Out-fix notation is often used instead of .

Isos. Isomorphisms are very important functions because they convert data from one
“format” to another format without losing information. These formats contain the same
“amount” of information, although the same datum adopts a different “shape” in each
of them. Isomorphic data domains are regarded as “abstractly” the same.

The module contains isomorphisms useful in data manipulation that
reflect properties of functorial operations. For instance, the swap function

is defined by and establishes the commutative prop-
erty of product, . In Haskell syntax it is written as follows:

swap :: (a , b)-> (b , a)
swap (a , b) = (b , a)

Another well-known isomorphism, known as the associative property of product
is:

This is established by !! which is defined by

assoc = split (p1 . p1) (split (p2 .p1) p2)

Other useful functions related with this property are:

assocr (a, b , c) = (a,(b , c))
unassocr(a,(b , c))= (a, b , c)

assocl (a , b , c) = ((a , b) , c)
unassocl ((a , b) , c) = (a , b , c)
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McCarthy’s Conditional. The point free version of conditional expressions of the
form

for some given predicate !! (Bool is the primitive data type containing

truth values FALSE and TRUE), some “then”-function !! and some “else”-

function !! is given by the cond combinator, which is defined in Haskell as
follows,

cond :: (a -> Bool) -> (a -> b) -> (a -> b) -> a -> b
cond p f g = (either f g) . (grd p)

where grd implements the guard associated to a given predicate !! :

grd :: (a -> Bool) -> a -> Either a a
grd p x = if p x then Left x else Right x

This combinator is the well-known “McCarthy conditional” functional, which is
often written as follows: .

Table 3.1 summarizes the mathematical and Haskell notations which will be used
interchangeably in the rest of this thesis.

f

Table 3.1: Mathematics notation versus Haskell notation.
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Some useful structures. We define the monoid type class with one (closed) opera-
tor, and the Boolean algebra type class with the corresponding Boolean operators as
follows:

class Monoid a where
(&) :: a -> a -> a

class BoolAlg a where
(\/) :: a -> a -> a
(/\) :: a -> a -> a

3.2 Constrained Data Types
The specification of a design normally involves data types subject to properties (usually
called invariants or integrity constraints) which formalize real-life conventions, laws,
rules, norms or natural constraints. For instance, a finite mapping can be modeled as a
finite binary relation where no two pairs with the same first element can be found 1.

Notation will be used to denote datatype subject to restriction ""

meaning:

We define the CData type class to model constrained abstract types in Haskell, as
follows:

class CData a where
inv :: a -> Bool
inv a = True
inv’ :: a -> Error a
inv’ a = if (inv a) then Ok a

else Err "Invariant violation"

exporting the invariant property in two ways: as a predicate ( ) which, by default, is
true, and as its extension resorting to the “error data type”

data Error a = Err String | Ok a

providing an error wherever is violated. (Dynamic error handlingwill be dealt with
in detail in section 3.5).

This type class allows us to define a set of types (CData) which contains precisely
those types for which a suitable definition of integrity constraint (inv) will be given
using instance declarations. We define below some obvious instances of class :

instance (CData a, CData b) => CData (a,b) where
inv(a,b) = (inv a) && (inv b)

1Section 3.3.2 describes this data type.
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instance (CData a, CData b) => CData (Either a b) where
inv (Left a) = inv a
inv (Right b) = inv b

instance CData a => CData [a] where
inv = all inv

These enable the structural propagation of invariant properties along structured data-
types. Wherever a data type is of class , all functions which deliver output of
type should be invariant preserving. This can be ensured by standard proof obliga-
tions of invariant preservation, and dynamically checked by use of , as shown later
on.

3.3 Modeling Finite Structures
An inductive data type is defined up to isomorphism

##
$$

and from its definition two isomorphisms emerge — algebra and co-algebra —
which are each other inverses:

Algebra provides data type constructors upon which one may build inductive
definitions, algorithms, etc. It also sets up the basis for inductive proofs about the data
type. Conversely, co-algebra provides a “parser” for observing the data type in
a “recursive descent” fashion. Because and are each other inverses, structur-
ing algorithms around or is simply a matter of taste: the former leads to an
“axiomatic” (structural, inductive) style, the latter to a more algorithmic (recursive,
interpretative) style.

A leading example of inductive data type are lists over type ( ). A list is either
the empty list or an element appended to a list, that is:

%%
&&

Algebra can be defined , where will express the “NIL pointer”
(1 in the equation) by the empty sequence and is the standard “left append” se-
quence constructor:
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Co-algebra can be defined , where sequence
operators (head of nonempty sequence) and (tail of nonempty sequence) are de-
scribed as follows:

Data type correspond to the Haskell [a] and operator “:” correspond to cons
constructor. The Haskell built-in type of lists can be written, after the declaration of
type A:

data ListA = Nil | Cons (A, ListA)

Data type ListA is inhabited by expressions involving Nil and Cons, like: ,
, , , and generates the following diagram:

!!

''!!!!!!!!!!!!!!!!!!!

((

""

))"""""""""""""""""""

3.3.1 Finite Sets
The power set data type containing all subsets of a finite set :

is not a regular or inductive data type in this way. We know that the empty set is a
subset of — and therefore an inhabitant of — and that, given a subset of
and a particular , then is another (possibly larger) subset of . So a
function "" can be defined, , which
is an algebra for synthesizing data values. We will write
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by introducing

where (“singleton set”). Conversely, if is nonempty, it can
always be decomposed into pair for some . So we can think of

!! where

and where, for nonempty ,

From the outset, is a data type similar to : both share the same generative
“grammar”, or inductive “shape”, defined by functor . However, a
major distinction between the two types can be identified at once: is not a right
inverse of on , that is,

does not hold. Because of the unordered structure of a set one cannot reconstruct the
steps along which it was built. So a powerset is not inductively generated, i.e.it is non
initial in category-theoretical terms. This explain why outs above could not be defined
inductively and why set-theoretical equality had to become explicit. Nevertheless,

holds ( is a right inverse of ). Altogether, this means that contains
“more information” than alone. We convey this fact by writing

%%
&& (3.1)

Data type Definition. Finite sets are modeled by finite lists constrained by the fact
that elements in sets are not repeated,
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where is defined as follows

(3.2)

where is Haskell standard and (inal) and (ent) have the usual set-
theoretical meaning. Its data type definition in Haskell resorts to the predefined list
data type:

data Set a = Set [a]

This declaration introduces a new type constructor , with one data constructor
(in this case the names are the same) whose data type invariant definition is:

instance Eq a => CData (Set a) where
inv (Set l) = length l == card(elems l)
inv’ s = if (inv s) then Ok s

else Err "Set invariant violation"

The trivial set is a set having no elements:

emptyS:: Set a
emptyS = Set []

Sets are ordered by inclusion,

instance Eq a => Ord (Set a)
where (Set s) <= r = all (-| r) s

where all is Haskell standard in the list data type and “-|” is a notation shortcut for
set membership, a -| s = ins a s, where

ins :: Eq a => a -> Set a -> Bool
ins a (Set s) = elem a s

and elem is standard list membership. Finally, set-theoretical equality is defined in
the usual way:

instance Eq a => Eq (Set a)
where s == r = s <= r && r <= s

Cata, Ana, Hylo. The main consequence of the lack of invertibility is that
one cannot build catamorphisms over : only outs-based hylomorphisms

!!

(( ((
""

can be defined over some suitable target -algebra . The set hylomorphism
combinator in Haskell is defined as follows:
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outSet:: Set a -> Either (Set a) (a,Set a)
outSet (Set [])= i1 (Set [])
outSet s = i2 (gets s)

inSet:: Eq a => Either (Set a) (a, Set a)-> Set a
inSet= either (const emptyS) uputs

hyloSet ::(Either (Set a) (a,b) -> b) -> Set a -> b
hyloSet a = a . ( rec (hyloSet a)) . outSet where

rec f = id -|- (id >< f)

For instance, the operator, that counts the number of elements of a finite set, is
hylomorphism , for and , where is constant
function zero.

!!

((

##

((

((

""

((
""

We will adopt notation as an abbreviation of , itself an alternative
notation for over finite sequences:

Then, we can define:

that is,

card:: Set a -> Int
card = hyloSet (either (const 0) (succ . p2))

Folding. The recursion operator fold encapsulates a common pattern for defining pro-
grams that consume values of a least fix-point type such as finite lists [GHA01]. In
other words, when using foldS, a programmer writes functions consuming values of a
data type in terms of a fold function which captures the recursive traversal scheme
for . These functions are meant to replace the constructors in the traversal. We define

as hylomorphism , that is,

foldS ::(a -> b -> b) -> b -> Set a -> b
foldS g u (Set [])= u
foldS g u s = hyloSet (either (const u) (uncurry g)) s
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in Haskell.
Universal quantification is written where is another

hylomorphism that can be seen as set folding:

allS :: (a -> Bool) -> Set a -> Bool
allS p (Set [])= False
allS p s = ((foldS (/\) True) . (nmap p) ) s

Functor. The powerset (type) functor

is equivalent to and boils down to point wise set-
theoretical comprehension:

Recall that a functor class with a polymorphic map (typed fmap :: Functor
a => (b -> c) -> a b -> a c) is provided in the Haskell Prelude. However,
our type cannot be made an instance of this class because must build sets
that satisfy the set invariant (no duplicate elements) and, to do so, we need a context
constraint: equality on the result type. That is to say, if we define

instance Functor (Set a) where
fmap f = hyloSet (either (const (Set[]))

(uncurry puts.(f><id)))

the trouble is that type variables and in the signature of fmap are universally quanti-
fied. This means we can neither use equality or greater-than on the argument’s elements
nor on the resulting set’s element 2.

To implement the power-set functor, we define a new three-parameter type class
3 as follows:

class NFunctor f a b where
nmap :: (a -> b) -> (f a -> f b)

Thenwe define the three functorsMaybe, [] and IO that are provided in the standard
distribution (Prelude.hs) as instances of this class at the obvious way: .
And finally we define the power-set functor as:

instance (Eq b) => NFunctor Set a b where
nmap f = hyloSet (either (const (Set[]))

(uncurry puts.(f >< id)))

2Categorically speaking, is a functor over a sub-category of the category of Haskell types and func-
tions, but Haskell gives us no way to express that [Hug99].

3One reason for this choice is that our model defines basically restricted types and a multi-parameter
class allows us to make instance declarations that constrain the element type or the resulting element type on
a per-instance basis.
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Filtering. ZF-set abstraction,

corresponds to power-set filtering:

In Haskell, we write (after power-set absortion):

filterS :: Eq a => (b -> a) -> (b -> Bool) -> Set b -> Set a
filterS f p

= foldS (unions . cond p (sings . f) (const emptyS))
(emptyS)

where power-set-absorption

(3.3)

is applicable to algebras satisfying the following property 4 :

Union and Intersection Next we define infix operators and functions for intersection
and union sets.

instance Eq a => BoolAlg (Set a) where
r /\ s = filterS id (-| r) s
(\/) = foldS puts

unions :: (Eq a) => Set a -> Set a ->Set a
unions = (\/)

inters :: (Eq a) => Set a -> Set a -> Set a
inters r s= (r/\s)

Function the— returning the inhabitant of a singleton set —

is a partial function

the :: Set a -> a
the (Set [a]) = a

4see [Oli01b]
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which is made total by resorting to the data type:

the’ :: Set a -> Error a
the’ (Set[] ) = Err "Empty Set - there is nothing in it"
the’ (Set [a]) = Ok a

Function can be used safely in contexts which ensure its application to nonempty
arguments. We provide further details about this and other partial functions in section
3.5.

The following list of function signatures involving finite sets are defined in the
model (the complete listing of the module is given in appendix 7.4.4,
A.2).

sings :: a -> Set a
puts :: Eq a => a -> Set a -> Set a
ltos :: [a]->Set a
uputs :: Eq a => (a,Set a) -> Set a
nins, ins :: Eq a => a -> Set a -> Bool
incls :: (Eq a) => Set a -> Set a -> Bool
unions :: (Eq a) => Set a -> Set a ->Set a
inters :: (Eq a) => Set a -> Set a -> Set a
diffs :: (Eq a) => Set a -> Set a -> Set a
prods :: Set a-> Set a -> Set (a,a)
dunion :: Eq a => Set (Set a) -> Set a
zipS :: Set a -> Set b -> Set (a,b)
unzipS :: (Eq b, Eq a) => Set (a,b) -> (Set a,Set b)
zipWithallS :: Set a -> Set b -> Set (a,Set b)
stol :: Set a-> [a]
elems :: Eq a => [a] -> Set a
distls :: a -> Set b -> Set (a,b)

Notation shortcuts. The following infix operators are provided as shortcuts:

a -| s = ins a s
a -||s = nins a s
r \< s = incls r s

3.3.2 Finite Mappings
There is a specialization of the power-set data type which is very useful in formal
specification: the finite mapping data type

A finite mapping is thus a finite binary relation 5 subject to a data type invariant estab-
lishing a “ ” functional dependency,

5A finite binary relation is an inhabitant of data type , for finite and .
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This predicate can also be written in point-free style as follows,

where is a function (to be defined later in this
section) which converts a relation into a set-valued partial function and

is the usual range function.
is a finite “approximations” of the exponential type , which is inhabited

by (total or entire) functions from to . They can be “totaled” by transposition
[OR04] by introduction of an explicit “error” value. Thus the basic isomorphism

Data type Definition Finite mappings can also be modeled by the following (quasi)
inductive data type

leading to restricted lists of pairs,

(3.4)

— where has been defined by (3.2) — and to the following Haskell type definition
involving two type variables, products and lists:

data Pfun a b = Map [(a,b)]

This declaration introduces the new type constructor Pfun and the corresponding
data constructor Map. Thus domain and range, two usual operators defined over finite
mappings,

dom :: (Eq a) => Pfun a b -> Set a
dom (Map f) = (Set . nub . fst . unzip) f

rng :: (Eq b) => Pfun a b -> Set b
rng (Map f ) = (Set . nub . snd . unzip) f

and fold combinator

foldPf :: ((a,b) -> c -> c) -> c -> Pfun a b -> c
foldPf f u (Map s) = foldr f u s

In the limit, a partial function can be totally undefined, that is, . There
is one such function, the empty function:

emptyPf = Map []

Definition 13 (Coherence) Two given partial functions and
are said to be coherent iff

dom dom
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Clearly, if dom dom , then and are coherent. In Haskell this leads
to predicate

coherent::(Eq a, Eq b)=> Pfun b a -> Pfun b a -> Bool
coherent f g = all (uncurry(==)) r

where Set r = rng(pfzip f g)

Partial mapping equality and ordering relations stem from this predicate:

instance (Eq a, Eq b) => Ord (Pfun a b) where
f <= g = (dom f) <= (dom g) && coherent f g

instance (Eq a, Eq b) => Eq (Pfun a b) where
f == g = f <= g && g <= f

For and two coherent partial functions, we can define their union as the follow-
ing partial function:

unionpf: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b
unionpf f g = f \*/ g

and its total counterpart:

unionpf’ :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Error (Pfun a b)
unionpf’ f g = case (coherent f g) of

True -> Ok (f \*/ g)
False -> Err "map union: incompatible maps"

where operator , unrestricted union, is defined by

r \*/ s= foldPf putpf r s

For arbitrary partial functions and , it is possible to define a union operator
generalization, the “override” operator ( in VDM notation). This is function plus in
our model:

plus :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b
plus f g = (restn f (dom g) ) \*/ g

In the special case that the two maps are disjoint, the override operator reduces to the
union operator. Hence we say that the override operator covers the union operator.

Function pfzip is another glueing operator that combines two partial functions as
follows:

pfzip :: Eq b => Pfun b c -> Pfun b d -> Pfun b (c,d)
pfzip (Map f)(Map g) =

Map [ a |-> (b,c) | (a,b) <- f , (d,c) <- g, a==d ]

that is, when the maps are non-disjoint, this function returns a function from the com-
mon domain to pairs that contain the corresponding ranges.

Function pfzipWith op works like pzip but resorts to an operator op to combine the
values from the two maps, instead of just pairing them:
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pfzipWith :: (Eq a, Eq b) =>
(c -> d -> a) -> Pfun b c -> Pfun b d -> Pfun b a

pfzipWith f a b = (id *-> (uncurry f))(pfzip a b)

where infix operator *-> corresponds to a bifunctor to be defined shortly.
We provide another function (monpf) for maps that yields a monoid operator com-

bining the the override operator and pfzipWith function as follows:

instance (Eq a, Eq b, Monoid b) => Monoid (Pfun a b) where
(&) = monpf (&)

monpf :: (Eq b, Eq a) =>
(b -> b -> b) -> Pfun a b -> Pfun a b -> Pfun a b

monpf f m n = plus m (plus n (pfzipWith f m n))

This monoidal operator will prove to be of great significance in some of our later
specifications.

Filtering. Two useful filtering operators are positive ( ) and negative ( ) domain re-
striction, both with signature

(3.5)

The corresponding Haskell definitions are as follows:

restp :: Eq a => Set a -> Pfun a b -> Pfun a b
restp (Set s)(Map f) = Map ([ p | p <- f ,(elem (fst p) s )])

restn :: Eq a => Set a -> Pfun a b -> Pfun a b
restn (Set s)(Map f) = Map([ p | p <- f not (elem (fst p) s)])

Mapping look-up. Recall the operation of applying a function to an argument:

We define operators for applying finite partial and total functions to their arguments
(modeled using Pfun data type) as

aplpf :: Eq a => Pfun a b -> a -> Maybe b
aplpf (Map f) a = lookup a f

where is the list look-up function defined in the Haskell Prelude, and

aplft :: (Eq a, Eq b) => Pfun a b -> a -> b
aplft f = the . rng . (flip restp f) . sings

wherever is a total mapping.
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Mapping composition. The following combinator can be used to model partial func-
tion composition:

compf :: Eq a => Pfun a b -> Pfun c a -> Pfun c b
compf (Map f) (Map g) =

Map [ a |-> c | (a,b) <- g, (b’,c) <- f, b’==b ]

Bifunctors. Given two partial functions and such that is
injective, we can define the functorial construct as follows:

In Haskell, we introduce infix operator *->

g *-> f = bmapPf g f

which corresponds to function

bmapPf::(Eq c, Eq d)=>(a->c)->(b->d)->Pfun a b->Pfun c d
bmapPf f g h = foldPf (\p ->putpf ((f >< g) p)) (Map[]) h

where

putpf::(b,a) -> Pfun b a -> Pfun b a

is the function that adds a pair of values to a partial function if the pair is coherent with
the function.

Relations versus finite mappings. The well-known isomorphism between binary
relations into set-valued functions

%%

**

is approached, for finite such structures, as follows,

collect :: (Eq a, Eq b) => Set (a,b) -> Pfun a (Set b)
collect (Set r) =

Map (nub [a |-> Set [b | (c,b) <- r ,a == c ] | (a,b) <- r])

discollect:: Pfun a (Set b) -> Set (a,b)
discollect (Map f) = Set [(a,b) | (a, (Set s)) <- f , b <-s ]

provided the empty set is not considered in the range of the involved finite mappings.
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Data type Invariant. Now, we can define the finite mapping data type invariant (see
3.4):

instance (Eq a, Eq b) => CData (Pfun a b) where
inv (Map pf) =inv (Set pf)&& fdp(Set pf)
inv’ f = if (inv f) then Ok f

else Err "Partial function invariant violation"

where

fdp :: (Eq a, Eq b) => Set (b,a) -> Bool
fdp = ((<= sings 1). rng . (id *-> card) . collect)

Finite mapping algebra. The list of functions involving finite mappings defined in
the model is as follows (the complete code is shown in section A.3 of appendix 7.4.4):

aplft :: (Eq a, Eq b) => Pfun a b -> a -> b
aplpf :: Eq a => Pfun a b -> a -> Maybe b
aplpf’ :: Eq a => Pfun a b -> a -> Error b
bmapPf :: (Eq a, Eq b) =>

(c -> b) -> (d -> a) -> Pfun c d -> Pfun b a
bpfFalse :: (Eq (Set a), Eq a) => Pfun a Bool -> Set a
bpfTrue :: (Eq (Set a), Eq a) => Pfun a Bool -> Set a
collect :: (Eq a, Eq b) => Set (a,b) -> Pfun a (Set b)
compat :: (Eq a, Eq b) => Pfun a b -> Pfun a b -> Set a
coherent :: (Eq a, Eq b) => Pfun b a -> Pfun b a -> Bool
compf :: Eq a => Pfun a b -> Pfun c a -> Pfun c b
discollect:: Pfun a (Set b) -> Set (a,b)
dom :: (Eq a) => Pfun a b -> Set a
fdp :: (Eq a, Eq b) => Set (b,a) -> Bool
filterPf :: (Eq a, Eq b) =>

((b,a) -> Bool) -> Pfun b a -> Pfun b a
foldPf :: ((a,b) -> c -> c) -> c -> Pfun a b -> c
get :: Eq a => b -> a -> Pfun a b -> b
incompat :: (Eq a, Eq b) => Pfun a b -> Pfun a b -> Set a
mkr :: Pfun a b -> Set (a,b)
monpf :: (Eq b, Eq a) =>

(b -> b -> b) -> Pfun a b -> Pfun a b -> Pfun a b
pfinv :: (Eq a, Eq b) => Pfun a b -> Pfun b (Set a)
pfunzip ::(Eq a, Eq b, Eq c) =>

Pfun b (c,a) -> (Pfun b c,Pfun b a)
pfzip :: Eq b => Pfun b c -> Pfun b d -> Pfun b (c,d)
pfzipWith :: (Eq a, Eq b) =>

(c -> d -> a) -> Pfun b c -> Pfun b d -> Pfun b a
plus :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b
putpf :: (Eq a, Eq b) => (b,a) -> Pfun b a -> Pfun b a
renpf :: (Eq a, Eq b) => Pfun a a -> Pfun a b -> Pfun a b
restn :: Eq a => Pfun a b -> Set a -> Pfun a b
restp :: Eq a => Pfun a b -> Set a -> Pfun a b
rng :: (Eq b) => Pfun a b -> Set b
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singpf :: (a,b) -> Pfun a b
tcollect :: (Eq a, Eq b) => Set a -> Set (Pfun a b) ->

Pfun (Pfun a b) (Set (Pfun a b))
tnest :: Eq a => Set a -> Pfun a b -> (Pfun a b,Pfun a b)
tot2 :: (a -> b -> b) -> b -> Set (c,a) -> b
ttot :: (Eq a, Eq b) =>

b -> (a -> a -> a) -> a -> Set (Pfun b a) -> Pfun b a
unionpf :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b
unionpf’ :: (Eq b, Eq a) =>

Pfun a b -> Pfun a b -> Error (Pfun a b)

Notation Shortcuts. We provide infix alternatives for the most common finite map-
ping operators:

x |-> y = (x,y)
s <: f = restp f s
s <-: f = restn f s
g *-> f = bmapPf g f
r \*/ s = foldPf putpf r s
a <. f = aplft f a

3.4 Modeling Relational Data in Haskell
The concept of a relation in the relational model is slightly more abstract than its coun-
terpart in mathematics. The relational model deals with tuples by their information
content. The tuple specification requires a careful explanation which is given in the
following sections.

3.4.1 Embedding Products into Tuples

An -ary relation in mathematics is a subset of a finite -ary product ,
which is inhabited by -ary vectors . Each entry in vector is
accessed by its position’s projection . This, however, is
not expressive enough to model relational data as this is understood in database the-
ory [Mai83]. Two ingredients must be added, whereby vectors give place to tuples:
attribute names and NULL values. Concerning the former, one starts by rendering vec-
torial indices explicit, in the sense of writing e.g. instead of . This implies
merging all data types to into a single coproduct type and then
representing the -ary product as

++

**
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under representation function 6 which entails invariant

Note that can be written , where is the initial seg-
ment of the natural numbers induced by . Set is regarded as the attribute name-space
of the model 7.

As a second step in the extension of vectors to tuples, we consider the fact that some
attributes may not be present in a particular tuple, that is, NULL values are allowed 8:

This finally leads to tuples as inhabitants of

thanks to isomorphism [Oli90]. This models tuples of arbitrary
aridity (up to attributes), including the empty tuple.

More descriptively, we define

where is a data type of attribute names and is a data type that models a
set of domains. Domains are sets of values from which the attributes draw their values.
The idea is to prevent comparisons of attributes that are not based on the same domain
by strongly type-checking domains based on their names.

The type checking can be generalized assuming some elementary set of value types.
In this specification, we model five differentValue domains: Integers, Reals, Text, Date
and Time. In Haskell:

data Value = Int Int |
Float Float |
String String |
Date String |
Time String deriving (Show,Eq)

type IdAttr = String
type Tuple = Pfun IdAttr Value

6Injections are associated to the -ary coproduct. and in Haskell correspond to
and , respectively.

7The fact that this can be replaced by any isomorphic collection of attribute names of cardinality has
little impact in the modeling, so we stick to .

8Think of as the singleton type NULL .
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3.4.2 Modeling Relations
Relations can be modeled as pairs of relation schemes and sets of tuples, see definition
1. The relation scheme (a set of attribute names, each one with one default value and an
indication whether it is a key or not) can be defined as a partial function from attribute
names to attribute information:

Writing the specification in Haskell:

type SchemaR = Pfun IdAttr AttrInfo
type Tuples = Set Tuple

data AttrInfo = InfA {ifKey :: Bool,
dom :: Value } deriving (Show,Eq)

data Relation = Rel { schemaR:: SchemaR,
tuples :: Tuples }

The specification of as a set of implies that only proper relations
which contain no duplicate tuples are modeled.

Mappings at tuple level implies that relations are at least in the first normal form
(1NF). Note that the default value implicitly defines the underlying type information.
We can define constants of type to be used in relation schemes, eg.:

domvalueInt = Int 0
domvalueFloat = Float 0.0
domvalueString= String ""
domvalueDate = Date ""
domvalueTime = Time ""

The trivial relation is a relation having no attributes and no tuples. This relation
is the only relation having an empty set of attribute names so it is also the universal
relation of that type.

emptyRel= Rel (Map[])(Set[])

Note, however, that a relation with no tuples can have a non-empty set of attributes. As
a matter of fact, a rather complex data type invariant has to be imposed on
for this data type to be meaningful. Because it requires further notational machinery,
its discussion is deferred to section 3.6.

3.4.3 Basic Relation Operations
The basic operators of relational algebra include union, intersection, difference, selec-
tion, projection, natural-join, equi-join, division, and renaming. “Boolean operations”
[Mai83] union, intersection and difference require that the operand relations have the
same scheme (see 2.5.1 definition 3 ).
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Two relations on the same scheme can be considered sets over the same universe,
the set of all possible tuples on the relation scheme. We relax this equality precondition
to “schemes compatibility” (see definition 1

of section 3.3.2), defining operators more tolerant and leaving to the next level
operators (the Database level) the responsibility of controlling schemes equality. The
Haskell code for Boolean operations is:

-- Union
unionR :: Relation -> Relation -> Relation
unionR (Rel s1 t1) (Rel s2 t2) =

let a = compat s1 s2
t1’ = fmapS (a<:) t1
t2’ = fmapS (a<:) t2

in (Rel ((a <: s1) \*/ (a <: s2)) (t1’ \/ t2’))

-- Intersection
interR :: Relation -> Relation -> Relation
interR (Rel s1 t1) (Rel s2 t2) =

let a = compat s1 s2
t1’ = fmapS (a<:) t1
t2’ = fmapS (a<:) t2

in (Rel (dom(a <: s1)<:(a <: s2) )(t1’ /\ t2’))

-- Difference
diffR :: Relation -> Relation -> Relation
diffR (Rel s1 t1) (Rel s2 t2) =

let a = compat s1 s2
t1’ = fmapS (a<:) t1
t2’ = fmapS (a<:) t2

in (Rel(dom(a <: s2)<-:(a<:s1))(diffs t1’ t2’))

Concerning selection, select (denoted ), is a un-ary operator on relations. When
applied to a relation , it yields another relation that is the subset of tuples of with
certain values on pre-specified attributes (see 2.5.1 definition 7). The argument and
result relation schemes are the same.

Select operators commute under composition. Let be a relation and let and
be attributes of , with and . The identity:

always holds. This property can be calculated from our specification 9:
9Power set-absorption (3.3) is useful in showing that power set-filtering commutes with composition.
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composition definition

definition

definition again

composition

commutes

composition definition, definition twice

Projection (written ) is also a unary operator on relations. Where select chooses
a subset of the rows in a relation, project chooses a subset of the columns (see 2.5.1
definition 8). We can define:

that is, the projection of a relation onto a set s, is the relation obtained by simultane-
ously restricting (positive restriction) the relation scheme and each tuple in the relation
to attributes in . In Haskell:

projectR :: Set IdAttr -> Relation -> Relation
projectR a (Rel s t) = Rel ( a <: s ) (nmap ( a<: ) t)

Natural join ( ) is a binary operator for combining two relations (see section 2.5.1
definition 9). In general, join combines two relations on all their common attributes.
Otherwise, join returns the Cartesian product of them.

natjoinR (Rel s1 t1) (Rel s2 t2) =
let t=(nmap ( \x ->

(nmap (split (const x) id)
(filterS id (coherent x) t2)))t1)

ta=(foldS (unions) (Set[]) ) t
in (Rel ( (dom(s1) /\ dom(s2)) <-: ( s1 \*/ s2))

(nmap (\x ->
(dom(s1)/\dom(s2)) <-: (plus (p1 x)(p2 x))) ta))
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The divide operator ( ), has a rather complex definition, but it does have some
application in natural situations (see section 2.5.1 definition 10). Another way to define
the divide operator follows: let and be relations with schemas such that

, and let . Then is the maximal subset of such
that is contained in . The natural join in this case is a Cartesian product.

divideR :: Relation -> Relation -> Relation
divideR r s =
let y= diffs (dom(schema r)) (dom(schema s))

x= nmap (\t -> projectR y (selectR t r))(tuples s)
u = projectR y r

in foldS interR u x

Finally, the renaming operator ( ) takes a rename function from attribute names
to attribute names ( in our model) and one relation and returns a relation where
attribute names have been changed according to the rename function (see section 2.5.1,
definition 11). Attribute domains are not changed.

renameR :: Pfun IdAttr IdAttr -> Relation -> Relation
renameR f (Rel s t)=(Rel(renpf f s)( nmap (renpf f) t))

3.5 Monadic Error Handling
The RDB-Model contains partial functions. These cannot be applied to all of their
inputs. In order to avoid run-time errors one has two alternatives, either by ensuring that
every call to a function with parameter is protected - i.e., the context which wraps
up such calls ensures pre-condition dom , or one raises exceptions, i.e. explicit
error values. In the former case, mathematical proofs need to be carried out in order
to guarantee safety (that is, pre-condition compliance). The overall effect is to restrict
the domain of the partial function. In the latter case one goes the other way round, by
extending the co-domain of the function so that it accommodates exceptional outputs.
We implement the second alternative with an monad (see 2.3.1). This monad
(also called the monad) embodies the strategy for combining computations
that can throw exceptions by passing bound functions from the point an exception is
thrown to the point that it is handled.

Our Error monad is based upon the data type:

data Error a = Err String | Ok a
deriving (Show, Eq)

that extends an arbitrary data type a with its (polymorphic) exception (or error) value.
The constructor Ok encloses a normal expression of type a and the constructor Error
models an evaluation failure as a data value plus an error string. Clearly, one has

So, in abstract terms, one may regard as partial every function of signature

""
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The next step is to define total(ized) versions of partial functions in the model. We
term the new functions name function ’. Let us see some examples.

In the Set data type model, we add the gets’ and the’ alternatives to and :

gets’ :: Set a -> Error (a,Set a)
gets’ (Set [])= Err "Empty Set-Nothing to get"
gets’ (Set (a:x) )= Ok (a,Set x)

the’ :: Set a -> Error a
the’ (Set[]) = Err "Empty Set - there is nothing in it"
the’ (Set [a]) = Ok a

To the partial function data type model we add aplpf’ 10 and unionpf’ functions:

aplpf’ :: Eq a => Pfun a b -> a -> Error b
aplpf’ (Map f) a =

case (lookup a f) of
Nothing -> Err "Apply Empty Partial Function"
Just x -> Ok x

unionpf’ :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Error (Pfun a b)
unionpf’ f g = case (coherent f g) of

True -> Ok (plus f g)
False -> Err "map union: incompatible maps"

Finally, to the relation datatypemodel we add:

valType’ :: Value -> Error String
valType’ (Int _ ) = Ok "Int"
valType’ (String _) = Ok "String"
valType’ (Date _ ) = Ok "Date"
valType’ (Time _ ) = Ok "Time"
valType’ _ = Err "unknown ValueType"

Now we need to extend the domain of functions that compose with the “new” par-
tial functions such that they are able to accept arguments from and propagate
them. That is, for a partial function that produces an value and a total
function which we want to compose with , we need to “lift” to such that it
accepts arguments from . Graphically:

"" ""

""

""

(3.6)

10Note that the “error message” exception handling data type extends ( ).
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Note that the composition scheme for the Error data type (3.6) generalizes to the
following polytypic pattern [Oli01c]: the output of the producer function is “ -times”
more elaborate than the input of the consumer function, where is some parametric
data type – .

""

""

Then a composition scheme is devised for such functions, which is depicted as
follows:

"" "" ""

""

and is given by

where "" is a suitable polymorphic function. Together with a unit func-

tion "" and , data type will form a so-calledmonad type, of which Error
A is an example.

Arrow is called the extension of . Functions and are referred as the
monad’smultiplication and unit, respectively. The monadic composition scheme
is called Kleisli composition.

In the Standard Prelude, Haskell defines the class as follows:

class Monad m where
return :: a -> m a
(>>=) :: m a -> ( a -> m b) -> m b

where return refers to the unit of m, and the binding operator ( ) is used to
define the multiplication operator, function join in module Monad.hs.

We define Error Data type as instance of Haskell Monad Class and overload the
monadic operators “return” and “bind” as follows:

instance Monad Error where
return b = Ok b
(Err e) >>= f = Err e
(Ok a) >>= f = f a

We define two functions to extend the domain of functions to accept arguments
from , one for unary functions and another for binary functions:
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lift :: Monad a => (b -> c) -> b -> a c
lift f n = return(f n)

lift2 :: Monad a => (b -> c -> d) -> b -> c -> a d
lift2 f n m = return (f n m)

Two functions in monadic form f::a -> m b and g::b -> m c can be
composed via Kleisli composition:

(.!)::Monad a =>(b -> a c) ->(d -> a b)-> d -> a c
(f .! g) x = (g x) >>= f

The application of a “lifted” function is the following operator:

(!):: Monad a => (b -> a c) -> a b -> a c
f ! x = x >>= f

Haskell provides an alternative syntax for bind ( ) called “do notation” which
is defined as follows:

do { y <- x ; f } = (x >>= (\ y -> f))

We use this notation to implement monadic folds on lists (i.e., folding lists within a
monad) and sets:

mfold :: Monad a => (b -> c -> a c) -> a c -> [b] -> a c
mfold f k [] = k
mfold f k (h:t) = do { b <- mfold f k t ;

f h b }

mfoldS :: Monad a => (b -> c -> a c) -> a c -> Set b -> a c
mfoldS f u (Set l) = mfold f u l

All operations at level of Relational Data Base level will be defined in the sequel
using do notation. Prior to providing such definitions, we present the invariant of the

data type, which also requires the machinery.

3.6 The Relation Data type Invariant
A complex invariant is required to ensure that meets the integrity constraints
of partial mappings and set compound types such that tuples are well and consistently
typed. In the latter case, we need to ensure that:

1. all tuple schemes are mutually coherents, that is:

2. all tuples are type correct, and

3. the key-property is valid in the relation.
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We can reason about the first property using the relation abstract data type in the
following way:

where

In order to detect if some attribute has different types in different tuples, in Step 1 we
apply the valType function to obtain the type of attributes in each tuple (tuple schemes).
Then, we check for “scheme coherence” using function unionpf’ to reduce the set of
tuples schemes. Function mfoldS is the monadic version of foldS (see section 3.5).

We obtain the complete invariant on relations, using this method to formalize each
property. The Haskell code for the invariant is as follows:

instance CData Relation where
inv (Rel s t) =

inv s &&
inv t &&
(m /= emptyPf ) &&
relSchOk (Rel s t)&&
fdpOkv (Rel s t)

where
m= foldS (\x y -> if (coherent x y) then unionpf x y else y)

emptyPf (nmap (id *-> valType) t)
relSchOk r = m <= (id *-> (valType . defaultV)) (schema r)
fdpOkv (Rel s t) = fdp(nmap (tnest (getKeyAtts s)) t)

inv’ (Rel s t) =
do {

inv’ s
‘xtherwise‘ "Relation schema is not a partial function" ;

inv’ t
‘xtherwise‘ "Relation tuples set is not valid";

m <- mfoldS unionpf’ (Ok emptyPf) (nmap (id *-> valType) t)
‘xtherwise‘ "tuple schemas are not mutually compatible" ;

check (relSchemaOk m) (Rel s t)
"At least one tuple type does not match relation schema" ;

check fdpOk (Rel s t)
"The key-property is not valid in the relation"

}
where
relSchemaOk m r = m <= (id *-> (valType . defaultV)) (schema r)
fdpOk (Rel s t) = fdp(nmap (tnest (getKeyAtts s)) t)
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check p v s = if (p v) then (Ok v) else Err s

xtherwise (Ok x) s = Ok x
xtherwise (Err _) s = Err s

3.7 The RDB Level
A Relational Database is a collection of named relations. Any given database, popu-
lated with data, is an instance of a database scheme, a specification of the names and
types of data in each relation attribute. A name is just a string. Names are used to
identify particular attributes relations and databases. We define:

data RDB = RDB { relations :: Pfun IdRel Relation }

type SchemaRDB = Pfun IdRel SchemaR

All operations already defined at Relation-level are lifted to -level by adding
error handling.

Boolean Operations

“Boolean operations” relational union, intersection and difference operations, require
that operands relations have the same scheme (recall section 2.5.1, definition 3).

-- Union
union :: IdRel -> IdRel -> RDB -> Error Relation
union id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’ (unionR r1 r2) ;
if (restrEqdom r1 r2)
then Ok result
else Err "Error in Union Op.:incompatible schemes"}

-- Intersection
inter :: IdRel -> IdRel -> RDB -> Error Relation
inter id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’(interR r1 r2) ;
if (restrEqdom r1 r2)
then Ok (result)
else Err "Error in Intersection Op.:incompatible schemes"}

-- Difference
diff :: IdRel -> IdRel -> RDB -> Error Relation
diff id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
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result <- inv’(diffR r1 r2) ;
if (restrEqdom r1 r2)
then Ok (result)
else Err "Error in Difference Op.:incompatible schemes"}

where restrEqdom predicate is as follows:

restrEqdom:: Relation -> Relation -> Bool
restrEqdom r1 r2 = schema r1 == schema r2
restrEqdom _ _ = False

Select Operation

This operator requires that all attributes specified in its first argument (selection func-
tion) belong to the relation scheme to be filtered.

select :: Pfun IdAttr Value -> IdRel -> RDB -> Error Relation
select f id db =
do {r1 <- aplpf’ (relations db) id ;

if ((dom f) \< (dom (schema r1)) )
then inv’ ( selectR f r1)
else Err "Error in select Op.:attr.are not in rel.domain"}

Project Operator

Let be a relation on scheme , the projection of r onto X, requires that X be a
subset of .

project :: Set IdAttr -> IdRel -> RDB -> Error Relation
project s id db =
do {r1 <- aplpf’ (relations db) id ;

if (s \< (dom (schema r1)) )
then inv’ ( projectR s r1)
else Err "Error in project Op.:attr. not in rel. domain"}

Natural Join Operation

natjoin:: IdRel -> IdRel -> RDB -> Error Relation
natjoin id1 id2 db =
do {r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
inv’(natjoinR r1 r2) }

Divide Operation

Let and be relations, divided by ( ) requires that .

divide :: IdRel -> IdRel -> RDB -> Error Relation
divide id1 id2 db =
do {r1 <- aplpf’(relations db) id1 ;



CHAPTER 3. THE RELATIONAL DATA MODEL IN HASKELL 55

r2 <- aplpf’(relations db) id2 ;
if ( (dom (schema r2)) \< (dom (schema r1)) )
then inv’(divideR r1 r2)
else Err"Error in divide op.:second rel.domain is not

include in first relation’s domain"}

Renaming Operation

Let be a relation on scheme , then with renamed to , denoted ,
requires that be an attribute in and be an attribute not in .

rename::Pfun IdAttr IdAttr -> IdRel -> RDB -> Error Relation
rename f id1 db =

do {r1 <- aplpf’ (relations db) id1 ;
if ((dom f) \< (dom (schema r1)) &&

not((rng f) \< (dom (schema r1))))
then inv’(renameR f r1)
else Err "Error in rename op.: attr. not in rel.domain"}

3.8 Summary
In this chapter we have developed a model, written in the Haskell notation, of the basic
operations of the relational algebra. The model is built in layers, corresponding to
different families of abstractions. Each layer is associated with a data type and the
operations required to deal with it.

We have defined a type class to model constrained data types. Once the model
is built, appropriate monad-based techniques are introduced for error handling. This
allows for the lifting to the RDB-level of the operations already defined at the relation-
level.
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Chapter 4

Toward On Line Analytical
Processing

In this chapter, our goal is to extend the RDB model presented in the previous chapter
in order to provide the functionality necessary for OLAP-based applications.

4.1 Relational versus Multidimensional Tables
The fundamental data structure of a multidimensional database is what we call an n-
dimensional table. Let us start by giving some intuition behind the concept. We wish
to be able to see values of certain attributes as “functions” of others, in whichever
way suits us, exploiting possibilities of multi-dimensional rendering. Drawing on the
terminology of statistical databases [Sho82], we can classify the attribute set associated
with the scheme of a table into two kinds: parameters and measures. There is no
a priory distinction between parameters and measures, so that any attribute can play
either role 1. An example of a two-dimensional table is given in Table 4.1 (adapted
from [GL97]).

We want to work with the relational model we have defined in the previous chapter.
A natural way to achieve this is to regard the multidimensionality of tables as an in-
herently structural feature, which is most significant when the table is rendered to the
user. The actual contents of a table are essentially orthogonal to the associated struc-
ture, i.e., the distribution of attributes over dimensions and measures. Separating both
features leads to a relational view of a table. For instance, the entry in the first (i.e.,
top left-most) “cell” in Table 4.1 containing the entry corresponds to the tuple

over the scheme

(4.1)

in a relational view of table .
1Needless to say, the data type of a measure attribute must have some kind of metrics or algebra associated

with it.
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SALES TIME
Year 1996 1997
Month Jan Feb ... Jan Feb ...

Part City (Cost, Sale)

C
A

PC Mendoza (5, 6) (5, 7) ... (4, 6) (4, 8) ...

TE Córdoba (5, 7) (5,8) ... (4, 8) (4, 9) ...

G
O
RY

... ... ... ... ...
Inkjet Mendoza (7, 8) (7, 9) ... (6, 9) (6, 8) ...

Bs. As. (6, 9) (6, 9) ... (5, 8) (5, 9) ...

... ... ... ... ...

... ... ... ... ... ...

Table 4.1: — a sample two dimensional table with dimensions and .
The associated parameter sets are and , respectively. The mea-
sure attributes are and .

To provide for OLAP, we need to define operations concerned with the following
kinds of functionality:

Classification: Ability to classify or group data sets in a manner appropriate for
subsequent summarization.

Reduction/Consolidation: Generalization of the aggregate operators in standard
SQL. In general, reduction maps multi-sets of values of a numeric type to a
single, “consolidated”, value.

Classification is a generalization of the familiar SQL group by operator. The fol-
lowing example presents a typical query involving classification.

Example 4.1 Consider the relation with scheme (4.1) mentioned before. A
typical query would be: “find, for each part, the total amount of annual sales”. Even
though this query involves aggregation, notice that it also involves classifying the data
into various groups according to certain criteria, before aggregation is applied. Con-
cretely, the above query involves classification by attributes and .

4.2 Classification
In our model, relations are sets of tuples (tables) with a scheme, while tuples are finite
partial functions. First, we define a function for partial function decomposition (or
“tuple classification”). Then we extend the notion of classification, applying it in the
context of tables.

Partial function decomposition (Classification on Tuples) Let be a tuple (
), and let be an arbitrary subset of . A
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classification over of tuple , is the pair of tuples defined by , where
is polymorphic function

(4.2)

(4.3)

The idea of this function is to decompose a partial map into a pair of maps of the
same type

++

**

which, together, rebuild the original map. In Haskell:

tnest :: Eq a => Set a -> Pfun a b -> (Pfun a b,Pfun a b)
tnest s f = (s <: f,s <-: f)

Tabular Decomposition (Classification on Tables) Let be a set of tuples (typed
), and let be an arbitrary set of attributes

of . A over , of table , is given by , where is
polymorphic function

that is,

tcollect :: (Eq a, Eq b)
=> Set a
-> Set (Pfun a b)
-> Pfun (Pfun a b) (Set (Pfun a b))

tcollect s t = collect (nmap (tnest s) t)

in Haskell.
Classification essentially maps tuples of a relation to different groups (necessarily

disjoint). Intuitively, we can think of the attributes in the first argument of as
corresponding to the “group id”.

Example 4.2 The classification part of the query of Example 4.1 can be expressed as
follows: tcollect “Part”,“Year” (tuples RSALES). Table 4.2 illustrates the result of
this operation in concrete Haskell syntax.
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Map[ ( Map [(”Part”, ”PC”),(”Year”, ”1996”)] ,
Set[ Map[(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 6)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 5), (”Sale”, 7)],
............................................................,
Map [(”City”, ”Cordoba”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 7)],
...........................................................] ),

( Map [(”Part”, ”PC”),(”Year”, ”1997”)] ,
Set[ Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 4), (”Sale”, 6)],

Map [(”City”, ”Mendoza”),(”Month”,”Feb”),(”Cost”, 4), (”Sale”, 8)],
............................................................,
Map [(”City”, ”Cordoba”),(”Month”, ”Jan”),(”Cost”, 4), (”Sale”, 8)],
...........................................................] ),

( Map [(”Part”, ”Inkjet”),(”Year”, ”1996”)] ,
Set [ Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 7), (”Sales”, 8)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 7), (”Sale”, 9)],
............................................................,
Map [(”City”, ”Buenos Aires”),(”Month”, ”Jan”),(”Cost”, 6), (”Sale”, 9)],
...........................................................] ),

( Map [(”Part”, ”Inkjet”),(”Year”, ”1997”)] ,
Set [ Map [(”City”, ”Mendoza”),(”Month”, ”Jan”),(”Cost”, 6), (”Sales”, 9)],

Map [(”City”, ”Mendoza”),(”Month”, ”Feb”),(”Cost”, 6), (”Sale”, 8)],
............................................................,
Map [(”City”,”Buenos Aires”),(”Month”, ”Jan”),(”Cost”, 5), (”Sale”, 8)],
...........................................................] )

]

Table 4.2: Output of the expression .

4.3 Reduction/Consolidation
Next, we consider reduction consolidation, which includes not only applications of
functions such as max, min, avg, sum, count to multi-sets of values defined by groups
of tuples, but also statistical functions such as variance and mode, and business calcu-
lations such as proportions and quarterlies.

In our model, reduction functions map sets of tuples of values to individual values.
We first define some necessary auxiliary functions.

Relational Reduction

Function

reduces a binary relation on the second projection according to a reduction structure
!! which, in most cases, is a monoid algebra. In Haskell:
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tot2 :: (a -> b -> b) -> b -> Set (c,a) -> b
tot2 f = foldS (curry (uncurry f . (p2 >< id)))

Partial Function Application with a Default Value

Let be the isomorphism

,,

--

in

In Haskell:

get :: Eq a => b -> a -> Pfun a b -> b
get u a f = aux (aplpf’ f a)

where aux (Ok b) = b
aux (Err s) = u

Tabular Reduction

Finally, function

performs tabular reduction, where .
Argument specifies the measure attribute over which reduction will take place while
arguments and provide the required reduction algebra. The output is packaged into
a one-attribute tuple mapping the measure attribute name to the final result.

The corresponding Haskell code follows the above definition very closely:

ttot :: (Eq a, Eq b)
=> b
-> (a -> a -> a)
-> a
-> Set (Pfun b a)
-> Pfun b a

ttot b f u s = Map [ b |-> (tot2 f u (g u b s)) ]
where g u b = nmap ((id >< (get u b)) . swap .

tnest (sings b))
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Example 4.3 Consider again the query of Example 4.1. We illustrate in this example
how, from the classified set of tuples computed in Example 4.2, it is possible to obtain
the final answer to the query.

Let be the mapping arising from the classification step ( type is
) computed in Example 4.2. We can use to

summarize over the Sales attribute, with a particular binary operation (monoid
in this example), in the range of . The last step is to transform the resulting
structure in a table (set of tuples). Diagram (4.4) depicts the required computations.

((

((

((

((

(4.4)

Altogether, we have evaluated the expression

(4.5)

4.4 Multidimensional Analysis
Next we define a “multidimensional analysis” function that generalizes the algebraic
structure of (4.5) above:

In the context of our relational model in Haskell, we provide the function defined
over the data type, as follows:

mdaR:: Set IdAttr
-> IdAttr
-> (Value -> Value -> Value)
-> Value
-> Relation
-> Relation
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mdaR s a f u r =
Rel ((unions s (sings a)) <:(schema r))

(nmap (uncurry plus)(mkr y))
where y = (id *-> (ttot a f u)) x

x = tcollect s (tuples r)

Table 4.3 illustrates the application of the “multidimensional analysis” operation
to our running example. Operation produces a relation with scheme

which is depicted two-dimensionally.

PartYearSales Year
1996 1997 ...

Part PC 320 455 ...
Inkjet 298 450 ...

...

...

...
Table 4.3: Output of the expression mdaR (Set ["Part","Year"] ) "Sale" fadd
f0 RSALES applied to the input relation RSALES of Example 4.1.

4.5 Summary
In this chapter we have developed in Haskell a collection of functions that capture some
of the functionality currently provided by multidimensional database products. This is
done by defining operations which allow for classifying and reducing relations (tables).
Suitably combined, these operations will make possible to carry out the multidimen-
sional analysis of a relational database.

It should be stressed that the operations defined do not intend to address the issue
of restructuring information from the perspective of the dimensionality of the data.
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Chapter 5

Toward Generic Data
Processing

5.1 Introduction
So far, Haskell has been used in animating an abstract model of the standard relational
database calculus plus some OLAP extensions, written in the style of model-oriented
formal specifications. However, several functions were specified which were more
general than strictly required by the intended data-processing functionality. Genericity
is a central topic of this thesis. In that follows, we address this topic by showing
how parametericity and genericity make room for further extensions of the relational
database model. For instance, the way tuples are structured in our current data model
specification,

calls for generalization of the collective type which contains tuples in each relation,

to

where is an arbitrary parametric data type.
In this chapter we will extend our model by defining generic versions of relational

operators. The intended generalization step, however, cannot be expressed in standard
Haskell and calls for Generic Haskell. We start by over-viewing this language.

65
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5.2 Overview of Generic H SKELL
Generic H SKELL is based on recent work by Hinze [Hin00b] and extends the func-
tional programming language Haskell with, among other features, a construct for defin-
ing type-indexed values with kind-indexed types. These values can be specialized to all
Haskell data types facilitating wider application of generic programming than provided
by earlier systems as eg.POLYP [JJ97].

The Generic H SKELL compiler compiles modules written in an enriched Haskell
syntax. A Generic H SKELLmodule may contain, in addition to regular Haskell code,
definitions of generic functions, kind-indexed types, and type-indexed types, as well as
applications of these to types or kinds. The compiler translates a Generic H SKELL
module into ordinary Haskell by performing a number of tasks:

translating generic definitions into Haskell code;

translating calls to generic functions into an appropriate Haskell expressions, and

specializing generic entities to the types at which they are applied. (Conse-
quently, no type information is passed around at run-time).

In addition, the compiler generates structure types for all data types, together with
functions that allow conversion between a data type and its structure type.

A Generic H SKELL program may consist of multiple modules. Generic func-
tions defined in one module can be imported into and be reused in other modules.
Generic H SKELL comes equipped with a library that provides a collection of com-
mon generic functions.

In the previous paragraphs we enumerate the basic features of Generic H SKELL
which are published by Hinze [HJ03]. Some extensions described by Clarke and Lőh
in [CL02], which are implemented in the current version of the Generic H SKELL
compiler, are:

copy lines, a method to ease the programming of similar generic functions. A
new generic function may be based on a previous one, inheriting the definitions
for all cases that are not explicitly overwritten.

constructor cases, which allow for generic function cases to be defined not only
for named types, but also for particular constructors. This, at a first glance, may
seem not particularly generic, but it happens to be useful in situations similar to
those which require special cases to be defined for particular types.

generic abstractions which allow generic functions to be defined by abstracting
a type variable out of an expression which may involve generic functions.

We will use the last extension to define generic versions of our relational database
operations. In particular, two generic functions included in the standard distribution
of Generic H SKELL will be present in deriving all relational operators: and

.
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5.3 Generic Relational Operators
In a full generic function definition, one is forced to be more general than one intends
to be. For instance, it is impossible to write a generic function that does not have a
function type when applied to a type of kind . This is because the specialization
mechanism interprets abstraction and application at the type level as abstractions and
application at the value level.

To illustrate the later assertion, we reproduce the code of ’s generic definition.

type Map {[ * ]} t1 t2 = t1 -> t2
type Map {[ k -> l ]} t1 t2 = forall u1 u2.

Map {[ k ]} u1 u2 -> Map {[ l ]} (t1 u1) (t2 u2)

gmap {| t :: k |} :: Map {[ k ]} t t
gmap {| Unit |} = id
gmap {| :+: |} gmapA gmapB (Inl a) = Inl (gmapA a)
gmap {| :+: |} gmapA gmapB (Inr b) = Inr (gmapB b)
gmap {| :*: |} gmapA gmapB (a :*: b)= (gmapA a) :*: (gmapB b)
gmap {| (->) |} gmapA gmapB _ = error

"gmap not defined for function types"
gmap {| Con c |} gmapA (Con a) = Con (gmapA a)
gmap {| Label l |} gmapA (Label a)= Label (gmapA a)
gmap {| Int |} = id
gmap {| Char |} = id
gmap {| Bool |} = id
gmap {| IO |} gmapA = fmap gmapA
gmap {| [] |} gmapA = map gmapA

In the Map library, is the generic version of in the class. The
type of is captured by a kind-indexed type which is defined by induction on the
structure of kinds. (The part enclosed in is the kind index.)

The rest are equations, one for each type constant, where a type constant is either
a primitive type like Char, Int etc or one of the three types Unit, “ ” and “ ”
(null-ary products, binary products and binary sums respectively).

Generic abstraction lifts all restrictions that are normally imposed on the type of a
generic function. It enables one to define a function which abstracts a type parameter
from an expression, and later apply it generically. The abstracted type parameter is,
however, restricted to types of a fixed kind. Generic abstractions can be used to write
variations, simplifications and special cases of other generic functions.

The syntax of generic abstractions is similar to ordinary generic definitions, with
two important differences:

the type signature is restricted to a fixed kind, and thus no kind variable is intro-
duced; and

they consist of just one case which has a type variable as its type argument, rather
than a named type.
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Generic Project Suppose that we have several kinds of relations, in which the dif-
ference is the shape of the structure that contains the tuples, for instance:

data Relation = Rel {schema:: Pfun IdAttr AttrInfo,
tuples:: Set (Pfun IdAttr Value) }

data RelationL = RelL {schemaL:: Pfun IdAttr AttrInfo,
tuplesL:: [(Pfun IdAttr Value)] }

data RelationLT = RelLT {schemaLT:: Pfun IdAttr AttrInfo,
tuplesLT:: LTree (Pfun IdAttr Value) }

where is the “leaf tree” datatype, defined in Haskell as follows:

data LTree a = Leaf a | Split (LTree a, LTree a)

Wewant to define a generic function which, taking a set of attributes names
and a generic shape of tuples, returns a generic tuple structure where each tuple is
restricted to the same set of attributes:

To encode this operator in Generic H SKELL , we define a generic abstraction which
uses the function (provided in Generic H SKELL library) to access each tuple
of any tuple structure:

gprojectTup {| t :: * -> * |} ::
(Eq a )

=> Set a
-> t (Pfun a b)
-> t (Pfun a b)

gprojectTup {| t |} s ts = gmap {| t |} (restp s) ts

Generic functions are called by instancing the type-index to a specific type. As an
illustration of this, we can specialize gprojectTup to different types, for instance:

projectR:: Set [Char] -> Relation -> Relation
projectR p (Rel s t)=

Rel (restp p s ) (gprojectTup {| Set |} p t )

projectRL:: Set [Char] -> RelationL -> RelationL
projectRL p (RelL s t)=

RelL (restp p s) (gprojectTup {| [] |} p t )

projectRLT:: Set [Char] -> RelationLT -> RelationLT
projectRLT p (RelLT s t)=

RelLT (restp p s) (gprojectTup {| LTree |} p t)
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Specialized Function projectR can be used to specify the project operation at RDB level
(recall function defined in section 3.4.3) as follows:

sproject :: Set IdAttr -> IdRel -> RDB -> Error Relation
sproject s id db =

do {r1 <- aplpf’ (relations db) id ;
result <- inv’ ( projectR s r1) ;
if (s \< dom(schema r1))

then Ok (result)
else Err "Error in project operation:

attributes are not in relation domain"
}

Generic Select We proceed to defining , the generic function that, taking a
selection criteria (partial function) and a generic shape of tuples, returns a generic tuple
structure where each tuple satisfies the selection criteria presented by the first argument
(that is, a tuple structure where each tuple is “coherent” or “compatible” with the first
argument):

To specify this operator in Generic H SKELL , we define a generic abstraction which
uses the function to implement . The function, provided in
Generic H SKELL library, is a generic version of , typed as follows 1:

Back to the definition of , the idea is to access each tuple of a tuple structure
and check its with the first argument of the selection function. If the tuple is compatible
(coherent), it is “put into” the result structure. We parameterize the operation that
permits to add a tuple to the structure and the empty structure (they will be known
when the function will be instanced).

gselectTup {| t:: * -> * |} ::
(Eq a, Eq b)

=> Pfun a b
-> ((Pfun a b) -> t (Pfun a b) -> t(Pfun a b))
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)

gselectTup {| t |} p f te xs
= rreduce {| t |}

1Note the reversed order of the last two arguments.
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(\x y -> if (coherent p x)
then (f x y)
else y )

xs te

The specialization of gselectTup to our original model is:

selectR :: Pfun [Char] Value -> Relation -> Relation
selectR p (Rel s t) =

Rel s (gselectTup {| Set |} p puts (Set[]) t)

And the select operation at -level becomes:

sselect :: Pfun IdAttr Value
-> IdRel
-> RDB
-> Error Relation

sselect f id db =
do {r1 <- aplpf’ (relations db) id ;

result <- inv’ (selectR f r1);
if ((dom f) \< dom(schema r1))

then Ok (result)
else Err "Error in select operation:

attributes are not in relation domain"
}

Generic Boolean Operations To specify generic Boolean operations of two struc-
tures of tuples, we define generic abstractions using and functions. In
the case of generic union, is used to add the tuples of the second structure to
the first structure. Only the tuples that are not in the structure are added. Function
is provided in the Generic H SKELL library. It is a generic version of (existential
quantifying over finite lists defined in Haskell Prelude):

Function will be used to check if each tuple is in the result structure. We param-
eterize the operation that adds a tuple to the structure (first parameter of )
because it won’t be known until the function is specialized.

gunionTup {| t :: * -> * |} ::
(Eq a, Eq b, Eq (Pfun a b))

=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)

gunionTup {| t |} f t1 t2 =
rreduce {| t |}

(\x y-> if (gany{| t |}(\z -> z==x) t2)
then y
else (f x y)) t1 t2
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Once again, what we had before at -level stems from a specialization of
generic gunionTup:

unionR (Rel sx tx) (Rel sy ty) =
Rel sx (gunionTup {| Set |} puts tx ty )

and
sunion :: IdRel -> IdRel -> RDB -> Error Relation
sunion id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’ (unionR r1 r2) ;
if (restrEqdom r1 r2)

then Ok result
else Err "Error in Union Operation:

incompatible schemes"
}

In a similar way, the specification of generic intersection of two structures of tu-
ples involves function to construct a structure with the common tuples. We
parameterize the operation that adds a tuple to the structure and the empty structure.

ginterTup {| t :: * -> * |} ::
(Eq a, Eq b, Eq (Pfun a b))

=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)

ginterTup {| t |} f te t1 t2 =
rreduce {| t |} (\x y-> if (gany{| t |}(\z -> z==x) t2)

then (f x y)
else y ) t1 te

The specialization of ginterTup and the intersection operation at -level is as
follows:

interR (Rel sx tx) (Rel sy ty)=
Rel sx (ginterTup {| Set |} puts (Set[]) tx ty )

and
sinter :: IdRel -> IdRel -> RDB -> Error Relation
sinter id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’(interR r1 r2) ;
if (restrEqdom r1 r2)

then Ok (result)
else Err "Error in Intersection Operation:

incompatible schemes"
}
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The abstraction defined for generic difference between two tuple structures is sim-
ilar to the generic intersection function, but with the if’s branches inverted:

gdiffTup {| t :: * -> * |} ::
(Eq a, Eq b, Eq (Pfun a b))

=> ((Pfun a b) -> t(Pfun a b) -> t(Pfun a b))
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)
-> t(Pfun a b)

gdiffTup {| t |} f te t1 t2 =
rreduce {| t |} (\x y-> if (gany{| t |}(\z -> z==x) t2)

then y
else (f x y)) t1 te

The specialization of gdiffTup and the difference operation at -level for our
model are

diffR (Rel sx tx) (Rel sy ty)=
Rel sx (gdiffTup {| Set |} puts (Set[]) tx ty )

and

sdiff :: IdRel -> IdRel -> RDB -> Error Relation
sdiff id1 id2 db =

do {r1 <- aplpf’ (relations db) id1 ;
r2 <- aplpf’ (relations db) id2 ;
result <- inv’(diffR r1 r2) ;
if (restrEqdom r1 r2)

then Ok (result)
else Err "Error in Difference Operation:

incompatible schemes"
}

respectively.

Generic Renaming Let denote the generic function that, taking a rename
function from attribute names to attribute names and a generic shape of tuples, returns
a generic tuple structure where attribute names are changed via the rename function.
In Haskell, this is function

grenameTup {| t :: * -> * |} :: (Eq a, Eq b ) =>
Pfun a a -> t (Pfun a b) -> t (Pfun a b)

grenameTup {| t |} r xs =gmap {| t |} (renpf r) xs

As before, this instances to and then to -level:

renameR :: Pfun [Char] [Char] -> Relation -> Relation
renameR p (Rel s t) =

Rel (renpf p s) (grenameTup {| Set |} p t )
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srename :: Pfun IdAttr IdAttr
-> IdRel
-> RDB
-> Error Relation

srename f id1 db =
do {r1 <- aplpf’ (relations db) id1 ;

result <- inv’(renameR f r1);
if ((dom f) \< dom(schema r1))

then Ok (result)
else Err "Error in Rename Operation:

attribute to rename are not in relation domain"}

Generic Natural Join Let denote the binary operator for combining two
tuple structures on all their common attributes. Should they have no common attributes,

will return the Cartesian product of them.
First, we define an auxiliary function

which filters a structure, retaining only those elements that satisfy , and applies
to each such element. The third and fourth parameters correspond to the operation
that adds a tuple to the structure and the empty structure, respectively. For instance,
instanced to Set, corresponds to ZF-set abstraction

gfilter {| t:: * -> * |} ::
(a -> Bool)

-> (a -> b)
-> (b -> t b -> t b)
-> t b
-> t a
-> t b

gfilter {| t |} p op f te xs =
rreduce {| t |}

(\x y -> if (p x)
then f (op x) y
else y ) xs te

Then we can define:

gnatjoinTup {| t |} ft1 ft2 te1 te2 r1 r2 =
let a=
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gmap {| t |}
(\x->

(gfilter {| t |}
(coherent x) (aux x) ft1 te1 r2)

) r1
in rreduce {| t |} ft2 a te2

where
aux:: Eq a => Pfun a b -> Pfun a b -> Pfun a b
aux x y =(dom(x) /\ dom(y)) <-: (plus x y)

Finally, the specialization of gnatjoinTup and the natural join operation to our set-
based -level are, as expected:

gnatjoinR (Rel sx tx) (Rel sy ty)=
Rel ( (dom(s1) /\ dom(s2)) <-: ( s1 \*/ s2))

( gnatjoinTup {| Set |} puts (\/) (Set[]) (Set[]) tx ty)

snatjoin id1 id2 db =
do { r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
inv’(natjoinR r1 r2) }

5.4 Generic Olap Operators
We are now ready to define the generic counterparts of the OLAP functions described
in section 4.1.

Partial Function Decomposition (Classification on Tuples) Let be a tuple (
), and let be an arbitrary subset of . A

classification over of tuple , is the pair of tuples defined by , where
is the polymorphic function that decompose a partial map into a pair of maps of the
same type (see 4.3).

Tabular Decomposition (Classification on Tables) Let be a structure of tuples
(typed ), and let be an arbitrary set of the
attributes of . A over , of structure , is given by ,
where is polymorphic function

where is the function that converts a structure of pairs into a structure-valued
finite mapping,

%%

**
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written in Generic H SKELL as follows:

gcollect {| t |} ts =
Map (nmap (split id (flip gextr {| t |} ts)) l )

where l= (nub .
flatten {| t |} .
gmap {| t |} fst ) ts

The auxiliary function

takes a partial function and a structure with pairs of tuples (or “classified tuples”, see
in section 4.1), and returns a structure with the same shape of the second ar-

gument, where each pair is replaced either by this second projection or by an “empty
tuple”. In case the first projection of a pair matches the partial function, the pair is
replaced by its second projection.

For tuples, is written as follows:

gtcollect{| t:: * -> * |} ::
(Eq a, Eq b)

=> Set a
-> t (Pfun a b)
-> Pfun (Pfun a b) (t (Pfun a b))

gtcollect {| t |} s ts =
gcollect {| t |} (gmap {| t |} (tnest s) ts)

Generic Relational Reduction. This is provided by function which is defined
by

and expressed in Generic H SKELL as follows:

gtot2 {| t:: * -> * |} ::
(a -> b -> b)

-> b
-> t (c,a)
-> b

gtot2 {| t |} f u ts =
rreduce {| t |} f y u

where y= gmap {| t |} snd ts

Generic Tabular Reduction We define function, that performs tabular reduc-
tion, in a way similar to the function (see section 4.1), simply by generalizing the
power-set functor to an arbitrary regular functor:



76 5.5. EXAMPLE

gttot {| t:: * -> * |} ::
(Eq a, Eq b)
=> b
-> (a -> a -> a)
-> a
-> t(Pfun b a)
-> Pfun b a

gttot {| t |} a f u ts =
Map [ (a, (gtot2 {| t |} f u y))]

where y = ( gmap {| t |} ((id >< (get u a)) .
swap .
tnest (sings a)) ts

Generic Multidimensional Analysis Finally, the specification of “generic multidi-
mensional analysis” of tuple structures is given by:

gmda {| t:: * -> * |}::
(Eq a, Eq b)
=> Set a
-> a
-> (b -> b -> b)
-> b
-> t (Pfun a b)
-> Set (Pfun a b)

gmda {| t |} s a f u ts =
nmap (uncurry plus) (mkr y)

where y= (id *-> (gttot {| t |} a f u )) x
x= gcollect {| t |} s ts

Note that always produces a “table” as result, that is, a “set” of tuples. This
is because multi-dimensional analysis has to do with data reduction. Its output is al-
ways an association of such a reduction to the values of the preserved dimensions,
irrespectively of the shape of the input structure.

5.5 Example
Generic functions are specialized at compile time and specializations are always gen-
erated locally per module. In order to specialize to “Sets of tuples”, we define

and functions, that specialize to Relations and RDB level respec-
tively. In Haskell:

smdaR:: Set IdAttr
-> IdAttr
-> (Value->Value->Value)
-> Value
-> Relation
-> Relation

smdaR s a f u r = Rel ((unions s (sings a)) <:(schema r))
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(gmda{| Set |} s a f u (tuples r))

smda:: Set IdAttr
-> IdAttr
-> (Value->Value->Value)
-> Value
-> IdRel
-> RDB
-> Error Relation

smda s a f u id db = do { r1<- aplpf’ (relations db) id ;
inv’(smdaR s a f u r1 ) }

We use the Generic Generic H SKELL compiler to produce an ordinary Haskell
module with the “specialized” OLAP operations and . Consider again
the query of Example 4.1 in chapter 4, given the relation with scheme
Part, City, Year, Month, Cost, Sale , “find, for each part, the total amount of an-
nual sales”. Expression smdaR (Set["Part","Year"]) "Sales" valadd
val0 "RSALES" applied to the input Relation of Example 4.1 produces
the same output depicted in Table 4.3.

5.6 Summary
In this chapter we have provided definitions for generic versions of the standard rela-
tional operators and studied the effects of this generalization.

Among several possible generalizations, we chose to generalize the “shape” of the
parametric type which collects all tuples in a relation.

We have also investigated the consequences of defining classification and reduction
operations on generic tuple structures.
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Chapter 6

An Approach to (Generic)
Normalization

6.1 Motivation
In relational database design practice, starting relation schemes tend often to be too
large, unstructured and affected by functional dependencies. The goal of the so-called
normalization theory [Mai83], [Cod71b], [Cod72a] is to find a set of relation schemes
— also called a database scheme — which is free of information redundancy (i.e.
“is normalized”) and yet able to represent the same information as the initial relation
scheme. This chapter is devoted to illustrate the scaling up of normalization theory
when it is applied under the principles of generic programming and generic information
models developed in the previous chapters.

To provide a complete generalization of normalization theory would be a non-
trivial task far beyond the scope and plan of this thesis. Instead, we develop an exercise
which shows how such generalization can or could be performed 1.

Our example is as follows. Let us — back to the conventional, set-based (tabular)
model — consider the following relational database scheme

(6.1)

consisting of one table or relation r involving four attributes and such that
is a key for this relation and that it satisfies functional dependence (FD) . Such
is the case of the following tabular illustration:

(6.2)

1A preliminary version of this exercise can be found in [NO02].
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We would like to update the relation simply by specifying values for the key and then
giving values for the remaining attributes. However, should we perform 2

then the relation will violate FD .
To avoid violations of this kind, every time an update is made, one has to scan

the whole relation and update the value everywhere the value occurs, despite the
fact that only one tuple is to be changed. This happens because the ( -value, -value)
information is duplicated in the relation, thus making the data redundant. We are better
off, with respect to updates and redundancy, if we represent the same information as a
database of two relations, namely and , as shown below:

(6.3)

We can retrieve the original relation by taking . The update anomaly no
longer exists, since only one tuple needs to be updated to change a assignment. We
have also removed some data redundancy, since ( -value, -value) pairs are recorded
only once.

This process which extracts functional dependences is known as normalization
through decomposition [Mai83, RO97]. In general, the set-theoretical model of (6.1)
using vector types is

(6.4)

where is the power-set functor and are the types which are inhabited by
the values of attributes , respectively. Invariant

records the functional dependence, where is the predicate defined in section
3.3.2.

Our work plan concerning this example is as follows. First of all, we want to show
how to extract the functional dependence from (6.4) by calculation. That is, we
want to calculate a pair of abstraction/representation functions witnessing the
inequality 3 which follows:

++

..
(6.5)

2 denotes the change operation, used to modify only part of a tuple (see [Mai83], page 8).
3See section 3.1.
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For instance, representation function applied to table (6.2) should decompose it in
pair of tables of (6.3).

Secondly, we want to show that such a decomposition is not a privilege of the
relational (tabular) information model and that it can in fact be generalized to any other
collective data type ,

(6.6)

under a generalized invariant

where "" is the polytypic operation which collects all data from the
nodes of a -structure (of course, for ). The transformation
of the left-hand side of (6.5) into its right-hand side will be carried out first for vectors
and then extended to tuples as defined in the model.

In order to express the outcome of the calculations at the generic functor level (6.6),
it will be necessary to extend the model to support generic functions. We will exper-
iment with higher-order polymorphism and constructor classes as a means of adding
genericity to standard Haskell and showing a simple, alternative way of extending the
model’s expressive power.

6.2 Pure Relation Level
The calculation which is sketched below is a point-free version of the conventional
relational technique which extracts functional dependences by scheme decomposition
[RO97]:

(6.7)

(6.8)

(6.9)

(6.10)

(6.11)
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(6.12)

(6.13)

The injective function and its left-inverse
are defined in module Pfun Impl.hs (see 3.6 in section 3.3.2).

The calculation also involves , known as the left-
strength 4 of the power-set functor, and its inverse . Finally, the
finite mapping counterparts of [BdM97] are defined in section 3.3.2.

6.3 Going Polytypic
Let us now see how to generalize in the calculation above to a generic (strong)
functor T and how to model this in Haskell by using higher-order polymorphism and
constructor classes.

Let us deal with the Haskell model first. To begin with, we need to extend the
strength of the power-set functor to regular functors (class ). That is, we
need to define the function that pairs all elements of a structure with one particular
element. We define the following functions in Haskell that correspond to left and right
polytypic strength:

prstr :: NFunctor f a (a,b) => (f a,b) -> f (a,b)
prstr(s,x) = nmap (split id (const x)) s

plstr :: NFunctor f a (a,b) => (b,f a) -> f (b,a)
plstr(x,s) = nmap (split (const x) id) s

6.3.1 Adding Ad-Hoc Genericity
The next step is to define the class whose operations include those required by the
process of normalization (note the character “p” (=polytypic) prefixing in each function
symbol):

class Poly t where

pzipWith :: (a -> b -> c) -> t a -> t b -> t c

punzip :: (NFunctor t (Maybe (a,b)) (Maybe a),
NFunctor t (Maybe (a,b)) (Maybe b)) =>

t (a,b) -> (t a , t b)

pzip :: (NFunctor t (a,b) a,
NFunctor t (a,b) b) =>

4In general the strength of a functor F is a natural transformation from F to F , which
has useful links with the concept of membership [RBH96].
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(t a , t b) -> Maybe(t(a,b))

pflatten :: t a -> [a]

pelems :: (Eq a , NFunctor t a (Set a)) =>
t a -> Set a

pdiscollect ::(Eq (t (Maybe (b,c))), Eq b,
NFunctor t (b,Maybe c) (Maybe (b,c)),
NFunctor t (Maybe c) (b,Maybe c),
NFunctor t (Maybe c) (Maybe (b,c))
NFunctor t (Maybe (b,c)) (b,c)) =>

Pfun b (t (Maybe c)) -> t (b,c)

pcollect :: (NFunctor t (a,b) a,
NFunctor t (a,b) (Maybe b), Eq a) =>

t (a,b) -> Pfun a (t (Maybe b))

pextl :: (NFunctor t (Maybe b,Maybe c) (Maybe b),
NFunctor t (Maybe b,Maybe c) (Maybe c),
NFunctor t (Maybe (b,c)) (Maybe b,Maybe c),
Eq (Maybe b),
NFunctor t (Maybe b) (Set (Maybe b))) =>

t (Maybe (b,c)) -> (b,t (Maybe c))

Some default implementations are provided as follows:

pelems = Set . nub . pflatten

pdiscollect x = nmap g . (foldS (pzipWith (&)) u y)
where y = (nmap (( nmap plstr) . plstr) . mkr) x

u = (the . rng .
(id *-> (nmap (const Nothing)))) x

g (Just a) = a

pcollect t = Map (nmap (split id (flip extr t)) l)
where l = (nub . pflatten . (nmap fst) ) t

punzip = split (nmap fst) (nmap snd)

pextl = ((fromJust. (foldS (\/) Nothing) .
pelems) >< id) .
punzip

Some comments are on demand:

resorts to the data type 5 in order to introduce explicit
5That is, data type , which corresponds to the Maybe type constructor of the Standard Prelude.
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values to fill in the empties in a generic -structure. Because is an in-
stance of , it is also a -structure.

The function that extracts a value of a structure of pairs (the inverse of
left-strength) is defined for structures with components.

Function takes a structure containing pairs and splits it into a pair of
structures containing the first and the second component respectively. Function

is a partial inverse of : it takes a pair of structures and “zips” them
together to just a structure of pairs if the two structures have the same shape, or
to Nothing otherwise.

The traditional function zip [BdM97]:

combines two list and does not need the Maybe type in the result as the longer
list can always be truncated. (In general such truncation is possible for all types
that have a null-ary constructor, but not for all regular types.)

, , and are among the functions which have no default
implementation. They have thus to be provided for every instance of the class.

The next step is to define somewell-known functors as instances of this class. Some
examples follow:

instance Poly [] where
pflatten = id
pzipWith = zipWith
pzip (a, b) = Just (zip a b)

instance Poly Maybe where
pflatten (Just a) = [a]
pflatten (Nothing)= []
pzipWith f (Just a)(Just b) = Just (f a b)
pzipWith f (Just a)(Nothing) = Nothing
pzipWith f (Nothing)(Just b) = Nothing
pzipWith f (Nothing)(Nothing)= Nothing
pzip (Just a,Just b) = Just (Just (a ,b))
pzip (Just a,Nothing) = Nothing
pzip (Nothing,Just b) = Nothing
pzip (Nothing,Nothing)= Nothing

instance Poly Set where
pflatten= flattenS
pzipWith f (Set l1) (Set l2)=

Set (zipWith f l1 l2)
pzip (a, b)

| (card a) == (card b) = Just (zipS a b)
| otherwise = Nothing
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6.4 Polytypic Normalization by Calculation

We are now ready to reproduce the calculation between steps (6.7) and (6.13) now at
polytypic level. The calculation goes as follows:

T
T

T

T
T

Example

Let us see a brief example of polytypic normalization of an arbitrary structure of tuples.
Consider the relation 6 shown in Table 6.1:

(FLIGHT DAY PILOT GATE)
112 6 June Bosley 7
112 7 June Brooks 7
203 9 June Bosley 12

Table 6.1: The relation .

6This example is taken from [Mai83], page 98.
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is a key for assign, and the relation must also satisfy the FD
!!

To avoid violating the FD, every time an update is made, we have to scan the relation
and update the gate number every place the flight number appears. We would like to
change only one tuple. Furthermore, the flight number–gate number information is
duplicated in the relation, thus making the data redundant.

Suppose that we model relations as pairs of relation schemes and “Leaf Trees” of
products, that is:

where the data type is defined in Haskell:
data BTree a = Empty | Node(a, (BTree a, BTree a))

We illustrate the process of normalization by showing the data transformation over
the second projection of the data type (the generalized part):

Node ((Int 112,Date "7-june",String "Brooks",Int 7),
(Node ((Int 112,Date "6-june",String "Bosley",Int 7),

(Empty,Empty)),
Node ((Int 203,Date "9-june",String "Bosley",Int 12),

(Empty,Empty))
)) :: BTree (Value,Value,Value,Value)

((

Node ((Int 112,(Date "7-june",String "Brooks",Int 7)),
(Node ((Int 112,(Date "6-june",String "Bosley",Int 7)),

(Empty,Empty)),
Node ((Int 203,(Date "9-june",String "Bosley",Int 12)),

(Empty,Empty))
)) :: BTree (Value,(Value,Value,Value))

((

[Int 112
-> Node (Just (Date "7-june",String "Brooks",Int 7),

(Node (Just (Date "6-june",String "Bosley",Int 7),
(Empty,Empty)),

Node (Nothing,(Empty,Empty))
)) ,

Int 203
-> Node (Nothing,

(Node (Nothing,(Empty,Empty)),
Node (Just (Date "9-june",String "Bosley",Int 12),

(Empty,Empty))
))] :: Pfun Value (BTree (Maybe (Value,Value,Value)))
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T
((

[Int 112
-> Node (Just (Int 7,(Date "7-june",String "Brooks")),

(Node (Just (Int 7,(Date "6-june",String "Bosley")),
(Empty,Empty)),

Node (Nothing,(Empty,Empty))
)) ,

Int 203
-> Node (Nothing,

(Node (Nothing,
(Empty,Empty)),

Node (Just (Int 12,(Date "9-june",String "Bosley")),
(Empty,Empty))

))] :: Pfun Value (BTree (Maybe (Value,(Value,Value))))

((

[Int 112
-> (Int 7,

Node (Just (Date "7-june",String "Brooks"),
(Node (Just (Date "6-june",String "Bosley"),

(Empty,Empty)),
Node (Nothing,

(Empty,Empty)))
)) ,

Int 203
-> (Int 12,

Node (Nothing,
(Node (Nothing,

(Empty,Empty)),
Node (Just (Date "9-june",String "Bosley"),

(Empty,Empty))
)))] :: Pfun Value (Value,BTree (Maybe (Value,Value)))

((

([Int 112 -> Int 7 , Int 203 -> Int 12],
[Int 112 -> Node (Just (Date "7-june",String "Brooks"),

(Node (Just (Date "6-june",String "Bosley"),
(Empty,Empty)),

Node (Nothing,
(Empty,Empty))

)) ,
Int 203 -> Node (Nothing,

(Node (Nothing,
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(Empty,Empty)),
Node (Just (Date "9-june",String "Bosley"),

(Empty,Empty))
))

]) :: (Pfun Value Value,Pfun Value (BTree (Maybe (Value,Value))))

((

([Int 112 -> Int 7 , Int 203 -> Int 12],
Node ((Int 112,(Date "7-june",String "Brooks")),

(Node ((Int 112,(Date "6-june",String "Bosley")),
(Empty,Empty)),

Node ((Int 203,(Date "9-june",String "Bosley")),
(Empty,Empty))

))) :: (Pfun Value Value,BTree (Value,(Value,Value)))

T
((

([Int 112 -> Int 7 , Int 203 -> Int 12],
Node ((Int 112,Date "7-june",String "Brooks"),

(Node ((Int 112,Date "6-june",String "Bosley"),
(Empty,Empty)),

Node ((Int 203,Date "9-june",String "Bosley"),
(Empty,Empty))

))) :: (Pfun Value Value,BTree (Value,Value,Value))

After these calculations, we are better off, with respect to updates and redundancy,
because we have the same information (relation ) as a pair of structures.

6.4.1 Vectors Give Place to Tuples
To develop this section we recall that data type is the basis for the Haskell model
of database relations presented in chapter 3, (section 3.4.1) and that relations (
data type) are sets of tu-ples sharing a common attribute scheme (the data-
type).

For notation economy, let

For every , we will write as a shorthand for . We want
to show that, for , inequation

(6.14)

holds, where invariant ensures that the substructure contains a functional depen-
dence where is the corresponding key.



CHAPTER 6. AN APPROACH TO (GENERIC) NORMALIZATION 89

The calculation goes as follows:

[ NB: ]

[ NB: ]

In generalizing sets of tuples to a generic functorT, we reuse the class without
changes. The calculation is a smooth generalization of the one above.

[ NB: ]
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[ NB: ]

6.5 Summary
In this chapter, we have presented the process of normalization through decomposition,
from a calculational approach. We have shown how the data can be “transformed”
using appropriate morphisms (reification laws) in order to extract functional depen-
dences.

Next we have sketched a discipline of generic normalization of inductive data-
structures. XML document re-factoring is an area where this discipline could be appli-
cable. (Think for instance of the inductive types as representing the generative gram-
mar implicit in a DTD and of the tuples as representing the attributive contents of the
elements themselves.)

The availability of Haskell XML conversion tools (eg. HaXML, see http:
//www.cs.york.ac.uk/fp/HaXml)) provides a stimulus toward the direct use
of our Haskell model in such a context. However — as discussed in this chapter — we
need support for polytypism, or generic programming and, as has been noted here, this
can be achieved in more than one way.



Chapter 7

Conclusions and Future Work

The research carried out in the work reported in this dissertation belongs to the inter-
section between formal methods, relational database theory and functional program-
ming. In particular, the Haskell functional language has been used to animate an ab-
stract model of the standard relational database calculus, written in the style of model-
oriented formal specification.

Parametricity and genericity have been shown to make room for further extensions
of the model, eventually leading to the use of Generic Haskell and to ad-hoc polymor-
phism. Besides animation, the (generic) functional model is further subject to formal
reasoning and calculation, paving the way to a more generic formulation of the standard
relational calculus. Our experiments have gone as far as formulating a generic version
of , the OLAP multi-dimensional analysis functionality, and furthermore, suggest-
ing a theory of data normalization which is more general than the standard relational
database theory (of which it appears to be a particular case).

The topic of generic (or type-constructor parametric) programming has become a
central one in this thesis. Our incursion in this field has shown that there is more than
one way to achieve genericity, each with its merits and disadvantages. In this chapter
we will draw some conclusions on this “hot topic” of today’s computer programming
discipline.

Despite their somewhat speculative nature, the results of this thesis are likely to be
useful in pragmatic contexts such as, for example, the normalization (or re-engineering)
of large and complex XML data, a topic described below in the prospect for future
work. Prior to that, let us present some comments and conclusions about the work
developed so far.

7.1 Overall Comments
In devising a new data model (or variants thereof) the most important aspect of the
design is concerned with the semantic objects (or states) — “those things we wish to
talk about”.

The objects modeled by data type definitions in our (standard or generic) database
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models are representationally abstract mathematical domains. That is: we have ab-
stracted from any implementation concerns to focus on what the user wishes to see.
But the domain definitions sometimes define too little. It is, in general, not possible to
express, in the form of domain equations, all the internal consistency constrains which
usually must hold within and/or among sub-parts of objects. So data model integrity
constraints must be expressed in the form of predicates called data type invariants. In-
variants apply to objects of defined domains and are intended to hold for those objects
which are said to be well-formed.

Many database design approaches all too often begin by explaining concrete syntax,
trying to cover the domain of applicable commands as completely as possible, and fail-
ing, invariably, to explain, to any acceptable depth, the semantic domains. As a matter
of fact, such denotational modeling of data models very soon brings one into interest-
ing generalizations. The abstraction level of declarative languages, such as Haskell,
relieves one frommany unwanted clerical details, and thereby enables one to better ex-
ploit one’s mental capability. Among the abstraction tools available in Haskell, monads
deserve a special mention.

Monads provide us with a convenient notion of a computation or effect. By us-
ing them we can enrich our computational model by distinguishing between the values
and the effects. For example, two programs that calculate the same answer, but gen-
erate different screen outputs, should certainly be considered different. This is hard to
achieve in a setting where computations are viewed statically, as pure functions. By
using monads, one can precisely — and generically — specify the desired level of dis-
tinction between data and computations. This balances the trade-off between impure
and pure functional languages from the implementer’s language point of view. On the
one hand, pure languages such as Haskell benefit from the power of equational rea-
soning. On the other hand, many desired features seem to be very hard to implement
without using impure constructs, such as error handling. Monads provide solutions
that combine the best of both approaches. We should note that monads are not special
programming language constructs — they are simply an example of a good data ab-
straction technique. One of the big advantages of monads, apart from the support for
higher order functions, is that they almost don’t impose restrictions to the underlying
programming language environment. The monadic style is just a simple methodology
that can capture individual properties while keeping the abstraction level appropriately
high, thus saving us from being too concerned about technical details.

7.2 About Genericity
In brief, one can implement polytypic programs in three different ways (recall section
2.4):

using a universal data type;

using higher-order polymorphism and constructor classes;

using a special syntactic construct.
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In this work we have chosen to experiment with the last two alternatives. We started
from using the Haskell 98 type class 1 mechanism in order to gain experience in defin-
ing generic functions. First we defined the constructor class “NFunctor” (see section
3.3.1, paragraph 3.3.1) in order to provide our model with a polytypic mapping func-
tion. The use of a multi-parameter class allowed us to make instance declarations that
constrain the arguments type on a per instance basis.

Then, we extended the strength of the power-set functor to regular functors (class
) by defining prstr and plstr functions in Haskell (these correspond to left

and right polytypic strength). Finally, we defined a constructor class— —whose
operations include those required by the process of generic (polytypic) normalization.

The next step was to develop generic relational operators using a language with ex-
plicit syntactic constructs for defining polytypic functions. We first experimented with
the POLYP [JJ97] system but soon realized that there was a serious shortcoming: only
unary (regular) data types can be polytypically defined. We have overcome this prob-
lem by switching to Generic H SKELL , which implements a new approach to generic
programming due to Hinze [Hin00b]. In particular, we experimented with generic ab-
stractions which are introduced in [CL02]. It should be stressed that function gmap
defined in the Map library of Generic H SKELL (reproduced in section 5.3), is the
generic version of in the class, but not of our in the
class. Should we have used gmap function to define “the mapping function” over Set
data type, the resulting specialization could produce erroneous sets. Again, we need
a context constraint: equality on the result type (see section 3.3.1, paragraph 3.3.1).
We use function gmap in all cases to apply specific functions that “preserve” Set’s
invariant.

In this context our main conclusions are as follows:

By using the Haskell 98 class system, programs become cluttered with instance
declarations and type declarations become cluttered with contexts (see type dec-
larations of poly class functions in section 6.3.1).

Different instances declarations can constrain the argument type in different
ways (see instance definition of for Set type in section 3.3.1).

Multi-parameter type classes could be used to represent an arbitrary relation be-
tween types (see type of prstr and plstr functions in section 6.3).

Generic definitions using generic abstractions are simple to write in Generic
H SKELL and can be applied to Haskell 98 types of all kinds.

We cannot compile a generic function without knowing to which data types it
will be called. It is not possible to compile generic functions separately from the
code that calls them.

1The term “type class” includes both the original Haskell 1.0 type system and the “constructor classes”
introduced by Jones [Jon93].
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7.3 Some Difficulties
The main difficulties in carrying out the work described in this dissertation have been
found, basically, in the areas of computer science and mathematics: the lack of experi-
ence with functional programming on one hand, and some unfamiliarity with category
theory on the other.

A paradigmatic example of evolution of our modeling originated in this lack of
experience with these mathematical subjects is provided by the morphism associated
with the finite set data type. This has undergone significant transformations, evolving
from a first (naive) form:

foldS f u (Set s) = foldr f u s

— as instanced for instance in

card = foldS (\a -> succ) 0

— to the more sophisticated and useful form,

foldS g u = hyloSet (either (const u) (uncurry g))

— now instanced in a more algebraic way, using the either combinator,

card = hyloSet (either (const 0) (succ . p2))

which includes the hylomorphism combinator

hyloSet ::(Either (Set a) (a,b) -> b) -> Set a -> b
hyloSet a = a . ( rec (hyloSet a)) . outSet where

rec f = id -|- (id >< f)

which unveils the polynomial structure of its base functor in a much clear way.

7.4 Prospects for Future Developments
The research theme proposed in this M.Sc. thesis project is expected to evolve toward
a Ph.D. project in a natural way. Based on some intuitions that has been gathered from
the experimental work of this M.Sc. thesis, we are ready for moving from notation to
calculus, as sketched in e.g. [BH95], and from there to concrete applications.

The target of generalizing the whole relational calculus will entail complex rea-
soning. Fortunately, there is now a standard and solid approach to program calculation
which seems to have the potential to accommodate this project, and this is the relational
theory of data types [BH93].

Some specific topics for future work are listed below.
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7.4.1 Toward Generic Normalization Theory
A lot of work remains to be done in the evolution of standard normalization theory
toward genericity which is suggested in this thesis. In particular, a proper formaliza-
tion of the intuitions presented in section 6 is on demand. This includes the interplay
between data type construction and data type constraining (cf. data type invariants),
which still requires proper formalization in the point-free style.

It should be stressed that — as can be found in our calculations and is pointed out in
[Oli90]—many transformation rules are invariant-sensitive. The “pull-back approach”
of [Oli98] is an attempt toward point-free invariant reasoning which proves to be in-
sufficient in practice. Currently, a more promising approach can be exploited [Oli04]:
that of modeling constrained data types by co-reflexive relations and performing the
reasoning in the (point-free) relational theory of data types [BH93, BdM97, Bac00].
The latter reference is a very lucid account of program calculation pointing toward an
effective (and desirable) “algebrization of logics”.

7.4.2 Toward Generic Multi-Dimensional Data Processing
In chapter 4, we introduced a set of operations that extended the functionality provided
by the relational data model proposed in chapter 3 to support OLAP-based applications.
We worked under the assumption that relational systems can model N-dimensional data
as a relation with N-attribute domains.

Function , which creates a table with an aggregated value indexed by a set of
attributes, operates on relations and produces relations. It could be composed with the
basic operators of relational algebra to build other OLAP operators in order to provide
constructs such histograms, cross-tabulations, subtotals, roll-up and drill-down. For
instance, could be used to compute the following table (roll up using totals report):

PartYearSales Year
1996 1997 ... Total

Part PC 320 455 ... 1256
Inkjet 298 450 ... 987

...

...

...

...

...

Total 1788 1450 ... —

Table 7.1: Sales Roll Up by Part by Year (applied to the input relation RSALES of Example 4.1.

The rightmost column corresponds to the output of the expression:

mdaR (Set["Part"]) "Sale" fadd f0 RSALES

while the bottom row could be computed using:

mdaR (Set["Year"]) "Sales" valadd val0 r1olap

Composition (and others categorical combinators) provides a powerful tool to com-
pose operators and allows for complex multidimensional queries to be built.
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In Chapter 5, section 5.4 we developed the generic counterparts of OLAP oper-
ations. We have presented the basic ideas of a comprehensive, generic conceptual
model for multidimensional data processing, with symmetric treatment of dimensions
and measures and the ability to pose powerful ad-hoc queries through a simple and
declarative interface.

The next step, which goes beyond the scope of the present work, should include the
development of a complete algebra and a rigorous calculus based upon the algebraic
operators of the model.

7.4.3 Free Theorems for Generic Data Processing
As stressed earlier on, the topic of generic (or type-constructor parametric) program-
ming is central to this thesis. Why such an emphasis on parametricity and genericity?

Surely there is some intellectual reward and conceptual economy in designing so-
lutions to specific problems as the customization of generic ones. However, there is
more. In a famous paper entitled Theorems for free! [Wad89] Philip Wadler writes:

From the type of a polymorphic function we can derive a theorem that is
satisfy. (...) How useful are the theorems so generated? Only time and
experience will tell (...)

This result is a rewording of Reynolds abstraction theorem on parametric polymor-
phism which can be found in a remarkably elegant point-free formulation in [BB03].
This paper and others (eg. [OR04]) present examples of the use of this theorem to calcu-
late useful fusion-laws involving polymorphic types. So, it is to be expected that every
of our generic, polymorphic models of relational and OLAP operators will enjoy one
such fusion-law, the corollaries of which — if already known — will be thus proved
“for free”, and— if still unknown—will add to the theory behind such important areas
of computing.

7.4.4 Application Area: XML Re-factoring
The widespread adoption of XML as an universal, textual data-definition format is
regarded as a positive step in computing in the last decade. However, such a positive
step may be endangered by too much freedom and informality in designing and/or
using such XML-dialects, as is pointed out in two recent attempts to formalize XML-
based domain-specific languages, namely UIML [Fer04] and GML [Hen04].

As a consequence, it can be anticipated that many XML documents are likely to
become legacy code sooner than expected. One of the deficiencies found in the works
just mentioned has to do with lack of referential integrity and lack of constraints —
two of our concerns in this thesis.

The discipline of generic normalization of inductive data-structures will surely be
applicable to such XML document re-factoring— think, as we have already stressed at
the end of chapter 6, of the inductive types as representing the generative grammar im-
plicit in a DTD and of the tuples as representing the attributive contents of the elements
themselves.
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The availability of Haskell-based grammar-engineering tools such as STRAFUNSKI
[LV03] adds to our interest and curiosity in this line of applied research.
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Appendix A

Haskell Source Code

A.1 Cat Impl.hs

---------------------------------------------------------------
-- RDB model: Category Theory Support
---------------------------------------------------------------
module Cat_Impl where
import Types
infix 4 ><
infix 4 -|-

-- (1) Product ------------------------------------------------
(><) :: (a -> b) -> (c -> d) -> (a,c) -> (b,d)
(f >< g)(a,b) = (f a, g b)

split :: (a -> b) -> (a -> c) -> a -> (b,c)
split f g x = (f x, g x)

-- (2) Coproduct ----------------------------------------------
(-|-) :: (a -> b) -> (c -> d) -> Either a c -> Either b d
(f -|- g) (Left a) = Left (f a)
(f -|- g) (Right b) = Right (g b)

-- (3) Exponentiation -----------------------------------------
expn :: (a -> b) -> (c -> a) -> c -> b
expn f = \g -> f . g

-- (4) Others -------------------------------------------------
-- McCarthy’s conditional
cond :: (a -> Bool) -> (a -> b) -> (a -> b) -> a -> b
cond p f g = (either f g) . (grd p)
grd :: (a -> Bool) -> a -> Either a a
grd p x = if p x then Left x else Right x

99
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-- (5) Error Monad --------------------------------------------
data Error a = Err String | Ok a deriving (Show, Eq)

instance Monad Error where
return b = Ok b
(Err e) >>= f = Err e
(Ok a) >>= f = f a

mfold :: Monad a => (b -> c -> a c) -> a c -> [b] -> a c
mfold f k [] = k
mfold f k (h:t) = do { b <- mfold f k t ;

f h b }
mfoldS :: Monad a => (b -> c -> a c) -> a c -> Set b -> a c
mfoldS f u (Set l) = mfold f u l

lift :: Monad a => (b -> c) -> b -> a c
lift f n = return(f n)

lift2 :: Monad a => (b -> c -> d) -> b -> c -> a d
lift2 f n m = return (f n m)

-- (6) Monadic extensions ------------------------------------
-- Kleisli composition
(.!) :: Monad a => (b -> a c) -> (d -> a b ) -> d -> a c
(f .! g) x = (g x) >>= f

(!):: Monad a => (b -> a c) -> a b -> a c
f ! x = x >>= f

-- (7) Basic algebraic signatures ----- -----------------------
class Monoid a where

(&) :: a -> a -> a
instance Monoid (Maybe a) where

(Just a) & Nothing = Just a
Nothing & (Just a) = Just a
Nothing & Nothing = Nothing
(Just a) & (Just b) = Nothing

class BoolAlg a where
(\/) :: a -> a -> a
(/\) :: a -> a -> a

instance BoolAlg Bool where
(\/) = (||)
(/\) = (&&)

instance BoolAlg (Maybe a) where
(Just a) \/ Nothing = Just a
Nothing \/ (Just a) = Just a
Nothing \/ Nothing = Nothing
(Just a) \/ (Just b) = Nothing
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-- (8) Basic bifunctors ---------------------------------------
class BiFunctor f where

bmap :: (a -> c) -> (b -> d) -> (f a b -> f c d)
instance BiFunctor Either where

bmap f g = f -|- g
instance BiFunctor (,) where

bmap f g (a,b) = (f >< g)(a,b)

-- (9) New Functor --------------------------------------------
class NFunctor f a b where

nmap :: (a -> b) -> (f a -> f b)
instance NFunctor [] a b where

nmap=fmap
instance NFunctor Maybe a b where

nmap f Nothing = Nothing
nmap f (Just x) = Just (f x)

instance NFunctor IO a b where
nmap f x = x >>= (return . f)

-- Strength of a functor
prstr :: NFunctor a b (b,c) => (a b,c) -> a (b,c)
prstr(s,x) = nmap (split id (const x)) s
plstr :: NFunctor a b (c,b) => (c,a b) -> a (c,b)

plstr(x,s) = nmap (split (const x) id) s

-- (10) Invariants --------------------------------------------
class CData a where

inv :: a -> Bool
inv a = True
inv’ :: a -> Error a
inv’ a = if (inv a) then Ok a

else Err "Invariant violation"
instance (CData a, CData b) => CData (a,b) where

inv(a,b) = (inv a) && (inv b)
instance (CData a, CData b) => CData (Either a b) where

inv (Left a) = inv a
inv (Right b) = inv b

instance CData a => CData [a] where
inv = all inv

-- (11) Natural isomorphisms ----------------------------------
swap :: (a,b) -> (b,a)
swap (a,b) = (b,a)
shiftr3:: (a,b,c) -> (c,a,b)
shiftr3 (a,b,c) = (c,a,b)
assoc = split ( fst . fst ) (split ( snd . fst ) snd )
assocr (a,b,c) = (a,(b,c))
unassocr (a,(b,c)) = (a,b,c)
assocl (a,b,c) = ((a,b),c)
unassocl ((a,b),c) = (a,b,c)
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A.2 Set Impl.hs

---------------------------------------------------------------
-- RDB model: Sets Implementation
---------------------------------------------------------------
module Set_Impl where
import Types --Datatype definition
import List
import Cat_Impl
import Exp

--(1) Hylo ----------------------------------------------------
outSet:: Set a -> Either (Set a) (a,Set a)
outSet (Set [])= i1 (Set [])
outSet s = i2 (gets s)

inSet:: Eq a => Either (Set a) (a, Set a)-> Set a
inSet= either (const emptyS) uputs

hyloSet ::(Either (Set a) (a,b) -> b) -> Set a -> b
hyloSet a = a . ( rec (hyloSet a)) . outSet where

rec f = id -|- (id >< f)

-- (2) Instances ----------------------------------------------
instance Eq a => Eq (Set a)

where s == r = s <= r && r <= s

instance Eq a => Ord (Set a)
where (Set s) <= r = all (-| r) s

instance Eq a => BoolAlg (Set a) where
r /\ s = filterS id (-| r) s
(\/) = foldS puts

instance (Eq b) => NFunctor Set a b where
nmap f =

hyloSet (either (const (Set[])) (uncurry puts . (f >< id)))

instance Eq a => CData (Set a) where
inv (Set l) = length l == card(elems l)
inv’ s = if (inv s) then Ok s

else Err "Set invariant violation"

-- (3) Total Functions ----------------------------------------
-- Membership
ins :: Eq a => a -> Set a -> Bool
ins a (Set s) = elem a s
nins :: Eq a => a -> Set a -> Bool
nins a (Set s) = not (elem a s)
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-- Folding
foldS ::(a -> b -> b) -> b -> Set a -> b
foldS g u = hyloSet (either (const u) (uncurry g))

-- ZF filter
filterS :: Eq a => (b -> a) -> (b -> Bool) -> Set b -> Set a
filterS f p=

foldS(unions . cond p (sings . f) (const emptyS) )(emptyS)

-- constructors
sings :: a -> Set a
sings a = Set [a]

-- Union-intersection-diff-inclusion
unions :: (Eq a) => Set a -> Set a ->Set a
unions = (\/)
inters :: (Eq a) => Set a -> Set a -> Set a
inters = (/\)
dunion :: Eq a => Set (Set a) -> Set a
dunion = foldS (unions) (Set [])
diffs :: (Eq a) => Set a -> Set a -> Set a
diffs r s= filterS id (-|| s) r
incls :: (Eq a) => Set a -> Set a -> Bool
incls r s =(diffs r s) == Set []

-- elems
elems :: Eq a => [a] -> Set a
elems = foldr puts (Set [])

-- cardinal
card:: Set a -> Int
card = hyloSet (either (const 0) (succ . p2))

-- Power set strength
lstrS :: (a, Set b) -> Set (a,b)
lstrS (a, Set b) = Set [(a,c) | c<-b ]
rstrS :: (Set b, a) -> Set (b,a)
rstrS (Set b, a) = Set [(c,a) | c<-b ]
-- extract the leftmost element (inverses of strength)

extlS :: (Eq a, Eq b) => Set (a,b) -> (a,Set b)
extlS = (the >< id) . unzipS

-- Zip’s-unzip
zipS :: Set a -> Set b -> Set (a,b)
zipS (Set a) (Set b)= Set (zip a b)
zipWithallS:: Set a -> Set b -> Set (a,Set b)
zipWithallS (Set a) b = Set ([(x,b) | x <- a ])
unzipS:: (Eq b, Eq a) => Set (a,b) -> (Set a,Set b)
unzipS = split (nmap p1) (nmap p2)
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-- flatten
flattenS :: Set a -> [a]
flattenS = hyloSet (either (const [])(uncurry (:)))

flatr:: (Eq a, Eq b, Eq c) => Set (a,(b,c))-> Set (a,b,c)
flatr = nmap (unassocr)

flatl:: (Eq a, Eq b, Eq c) => Set ((a,b),c)-> Set (a,b,c)
flatl= nmap (unassocl)

-- Others
puts :: Eq a => a -> Set a -> Set a
puts a (Set s) = Set (nub (a : s))

uputs::Eq a => (a,Set a) -> Set a
uputs = uncurry(puts)

allS :: (a -> Bool) -> Set a -> Bool
allS p s = ((foldS (/\) True) . (nmap p) ) s

prods:: Set a-> Set a -> Set (a,a)
prods (Set a) (Set b)= Set([(x,y) | x <- a, y <- b])

ltos:: [a]->Set a
ltos l =Set l

stol:: Set a-> [a]
stol (Set s) =s

-- (4) Partial Functions --------------------------------------
gets :: Set a -> (a,Set a)
gets (Set (a:x))= (a,Set x)

gets’ :: Set a -> Error (a,Set a)
gets’ (Set [] )= Err "Empty Set - Nothing to get"
gets’ (Set (a:[]))= Ok (a,Set [])
gets’ (Set (a:x) )= Ok (a,Set x)

the :: Set a -> a
the (Set [a]) = a

the’ :: Set a -> Error a
the’ (Set[] ) = Err "Empty Set - There isn’t the"
the’ (Set [a]) = Ok a

-- (5) Notation Shortcuts -------------------------------------
a -| s = ins a s
a -||s = nins a s
r \< s = incls r s
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A.3 Pfun Impl.hs

---------------------------------------------------------------
-- RDB model: Partial Functions Implementation
---------------------------------------------------------------
module Pfun_Impl where
import Cat_Impl
import List
import Combinadores
import Types
import Set_Impl

-- (1) Instances ----------------------------------------------
instance (Eq a, Eq b) => Ord (Pfun a b) where

f <= g = (dom f) <= (dom g) && coherent f g
instance (Eq a, Eq b) => Eq (Pfun a b) where

f == g = f <= g && g <= f
instance (Eq a, Eq b, Monoid b) => Monoid (Pfun a b) where

(&) = monpf (&)
instance (Eq a, Eq b) => CData (Pfun a b) where

inv (Map pf) =inv (Set pf)&& fdp(Set pf)
inv’ f = if (inv f) then Ok f

else Err "Partial function invariant violation"

-- (2) Total Functions ----------------------------------------
dom :: (Eq a) => Pfun a b -> Set a
dom (Map f) = (Set . nub . fst . unzip) f
rng :: (Eq b) => Pfun a b -> Set b
rng (Map f ) = (Set . nub . snd . unzip) f

putpf :: (Eq a, Eq b) => (b,a) -> Pfun b a -> Pfun b a
putpf p (Map s) = if (coherent (singpf p) (Map s))

then Map (union [p] s)
else (Map[])

-- functional dependency
fdp :: (Eq a, Eq b) => Set (b,a) -> Bool
fdp (Set[])=False
fdp s = ((<= sings 1). rng . (id *-> card) . collect) s

--constructor
singpf:: (a,b) -> Pfun a b
singpf p = Map [p]

-- coherence
coherent :: (Eq a, Eq b) => Pfun b a -> Pfun b a -> Bool
coherent f g = all(uncurry(==)) r where Set r= rng (pfzip f g )
coherents :: (Eq a, Eq b) => Pfun a b -> Pfun a b -> Set a
coherents f g = diffs ((dom f) \/ (dom g)) (incoherents f g)
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incoherents :: (Eq a, Eq b) => Pfun a b -> Pfun a b -> Set a
incoherents f g = bpfFalse ((id *-> (uncurry(==)))(pfzip f g))

-- zip-unzip
pfzip :: Eq b => Pfun b c -> Pfun b d -> Pfun b (c,d)
pfzip (Map f)(Map g) =

Map [ a |-> (b,c) | (a,b) <- f , (d,c) <- g, a==d ]

pfunzip ::(Eq a, Eq b, Eq c) =>
Pfun b (c,a) -> (Pfun b c,Pfun b a)

pfunzip = split (id *-> p1) (id *-> p2)

pfzipWith :: (Eq a, Eq b) => i
(c -> d -> a) -> Pfun b c -> Pfun b d -> Pfun b a

pfzipWith f a b = (id *-> (uncurry f))(pfzip a b)

--Overwrite operator
plus :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b
plus f g = (restn (dom g) f ) \*/ g

--positive- negative restriction
restp :: Eq a => Set a -> Pfun a b -> Pfun a b
restp (Set s) (Map f)= Map ([ p | p <- f , ( elem (fst p) s ) ])

restn :: Eq a => Set a -> Pfun a b -> Pfun a b
restn (Set s) (Map f)=

Map ([ p | p <- f , not ( elem (fst p) s ) ])

-- Folding
foldPf :: ((a,b) -> c -> c) -> c -> Pfun a b -> c
foldPf f u (Map[]) = u
foldPf f u (Map s) = foldr f u s

-- "reverses" f.
pfinv :: (Eq a, Eq b) => Pfun a b -> Pfun b (Set a)
pfinv f = (collect . (nmap swap) . mkr) f

--make relation
mkr :: Pfun a b -> Set (a,b)
mkr (Map f) = Set f

--apply total function
aplft :: (Eq a, Eq b) => Pfun a b -> a -> b
aplft f = the . rng . (flip restp f) . sings

-- rename
renpf :: (Eq a, Eq b) => Pfun a a -> Pfun a b -> Pfun a b
renpf r f=plus (dom r <-: f) (compf f ((id *-> the) (pfinv r)))
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-- compound total functions
compf :: Eq a => Pfun a b -> Pfun c a -> Pfun c b
compf (Map f) (Map g) =

Map [ a |-> c | (a,b) <- g, (b’,c) <- f, b’==b ]

-- Bifunctor
bmapPf :: (Eq a, Eq b) =>

(c -> b) -> (d -> a) -> Pfun c d -> Pfun b a
bmapPf f g h = foldPf (\p -> putpf ((f >< g) p)) (Map []) h

--apply partial function
aplpf :: Eq a => Pfun a b -> a -> Maybe b
aplpf (Map f) a = lookup a f

--Union operator
unionpf :: (Eq b, Eq a) => Pfun a b -> Pfun a b -> Pfun a b

unionpf f g = f \*/ g

-- filtering
filterPf::(Eq a, Eq b) => ((b,a) -> Bool)-> Pfun b a-> Pfun b a
filterPf p=foldPf (plus . cond p singpf (const emptyPf))(Map[])

-- Others
collect :: (Eq a, Eq b) => Set (a,b) -> Pfun a (Set b)
collect (Set r) =
Map (nub [ a |-> Set[ b | (c,b) <- r , a==c ] | (a,b) <- r ])

discollect:: Pfun a (Set b) -> Set (a,b)
discollect (Map f) = Set [(a,b) | (a, (Set s)) <- f , b <-s ]

bpfTrue :: (Eq (Set a), Eq a) => Pfun a Bool -> Set a
bpfTrue g = let f = pfinv g

in if True -| (dom f) then aplft f True else (Set[])
bpfFalse :: (Eq (Set a), Eq a) => Pfun a Bool -> Set a
bpfFalse g =let f = pfinv g

in if False -| (dom f) then aplft f False else (Set[])

monpf :: (Eq b, Eq a) =>
(b -> b -> b) -> Pfun a b -> Pfun a b -> Pfun a b

monpf f m n = plus m (plus n (pfzipWith f m n))

-- (3) Partial Functions --------------------------------------
aplpf’ :: Eq a => Pfun a b -> a -> Error b
aplpf’ (Map f) a=case (lookup a f) of

Nothing -> Err "Apply Empty Partial Function"
Just x -> Ok x

unionpf’::(Eq b, Eq a) => Pfun a b->Pfun a b-> Error (Pfun a b)
unionpf’ f g = case (coherent f g) of

True -> Ok (f \*/ g)
False -> Err "map union: incompatible maps"
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-- (4) Auxs. for Olap operations -------------------------------
tnest :: Eq a => Set a -> Pfun a b -> (Pfun a b,Pfun a b)
tnest s f = (s <: f,s <-: f)
tcollect :: (Eq a, Eq b) =>

Set a -> Set (Pfun a b) -> Pfun (Pfun a b) (Set (Pfun a b))
tcollect s t = collect (nmap (tnest s) t)
tot2 :: (a -> b -> b) -> b -> Set (c,a) -> b
tot2 f b r= foldS (curry (uncurry f . (p2 >< id))) b r
ttot :: (Eq a, Eq b) =>

b -> (a -> a -> a) -> a -> Set (Pfun b a) -> Pfun b a
ttot a f u s = Map [ a |-> (tot2 f u y) ]

where y =nmap ((id >< (get u a)) . swap . tnest (sings a)) s

-- get totalizes a partial function (f) with a default value (u)
get :: Eq a => b -> a -> Pfun a b -> b
get u a f = aux (aplpf’ f a)

where aux (Ok b) = b
aux (Err s) = u

-- (5) Notation shortcuts -------------------------------------
x |-> y = (x,y)
s <: f = restp s f
s <-: f = restn s f
g *-> f = bmapPf g f
r \*/ s = foldPf putpf r s
a <. f = aplft f a

A.4 Rel Impl.hs

---------------------------------------------------------------
-- RDB model: Relations Implementation
---------------------------------------------------------------

module Rel_Impl where
import Types
import Cat_Impl
import Set_Impl
import Pfun_Impl

-- (1) Instance definitions -----------------------------------

instance Eq Relation where
r1==r2 =

(schema(r1)==schema(r2)) && (tuples(r1)==(tuples(r2)))

instance Ord Relation where
r1<=r2 =

(schema(r1)<=schema(r2)) && (tuples(r1)<=(tuples(r2)))



APPENDIX A. HASKELL SOURCE CODE 109

instance CData Relation where
inv (Rel s t) = inv s && inv t && (m /= emptyPf ) &&

relSchOk (Rel s t) && fdpOkv (Rel s t)
where

m=foldS (\x y ->if (coherent x y) then unionpf x y else y)
emptyPf (nmap (id *-> valType) t)

relSchOk r = m <= (id *-> (valType . defaultV)) (schema r)
fdpOkv (Rel s t) = fdp(nmap (tnest (getKeyAtts s)) t)

inv’ (Rel s t) =
do {inv’ s

‘xtherwise‘ "Relation schema is not a partial function";
inv’ t
‘xtherwise‘ "Relation tuples set is not valid";

m <-mfoldS unionpf’ (Ok emptyPf)(nmap (id *-> valType) t)
‘xtherwise‘ "tuple schemas are not mutually compatible";

check (relSchemaOk m) (Rel s t)
"At least one tuple type does not match relation schema";

check fdpOk (Rel s t)
"The key-property is not valid in the relation"

}
where
relSchemaOk m r= m<=(id *-> (valType . defaultV)) (schema r)

fdpOk (Rel s t) = fdp(nmap (tnest (getKeyAtts s)) t)

check p v s = if (p v) then (Ok v) else Err s

xtherwise (Ok x) s = Ok x
xtherwise (Err _) s = Err s

-- (2) Total Functions ----------------------------------------
--Observers
getMSch :: Relation -> SchemaR
getMSch (Rel s r )=s
getKeyAtts :: SchemaR -> Set IdAttr
getKeyAtts = bpfTrue . (id *->ifKey)

valType :: Value -> String
valType (Int _) = "Int"
valType (String _) = "String"
valType (Date _) = "Date"
valType (Time _) = "Time"

-- get all attributes actually in relation
actAtts :: Relation -> Set IdAttr
actAtts = dunion . (nmap dom) . tuples

-- get all attributes declared in relation schema
dclAtts :: Relation -> Set IdAttr
dclAtts = dom . schema
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-- Basic Relation operators
-- Union
unionR :: Relation -> Relation -> Relation
unionR (Rel s1 t1) (Rel s2 t2) =

let a = coherents s1 s2
t1’ = nmap (a<:) t1
t2’ = nmap (a<:) t2

in (Rel ((a <: s1) \*/ (a <: s2)) (t1’ \/ t2’))

-- Intersection
interR :: Relation -> Relation -> Relation
interR (Rel s1 t1) (Rel s2 t2) =

let a = coherents s1 s2
t1’ = nmap (a<:) t1
t2’ = nmap (a<:) t2

in (Rel ( dom(a <: s1) <: (a <: s2) ) (t1’ /\ t2’))

-- Difference
diffR :: Relation -> Relation -> Relation
diffR (Rel s1 t1) (Rel s2 t2) =

let a = coherents s1 s2
t1’ = nmap (a<:) t1
t2’ = nmap (a<:) t2

in (Rel (dom(a <: s2) <-: (a <: s1) ) (diffs t1’ t2’))

-- Projection
projectR :: Set IdAttr -> Relation -> Relation
projectR a (Rel s t) = (Rel ( a <: s ) (nmap (a<:) t))

-- Selection
selectR :: Pfun IdAttr Value -> Relation -> Relation
selectR i (Rel s t) = (Rel s (filterS id (coherent i) t))

-- Natural join
natjoinR :: Relation -> Relation -> Relation
natjoinR (Rel s1 t1) (Rel s2 t2) =
let t=(nmap ( \x -> (nmap (split (const x) id)

(filterS id (coherent x) t2)))t1)
ta=(foldS (unions) (Set[]) ) t

in (Rel ( (dom(s1) /\ dom(s2)) <-: ( s1 \*/ s2))
(nmap (\x ->(dom(s1)/\dom(s2)) <-: (plus (p1 x)(p2 x))) ta))

-- Cartesian Product
cproductR :: Relation -> Relation -> Relation
cproductR (Rel s1 t1) (Rel s2 t2) =

let ta= nmap (split (const t1) id) t2
tb= nmap(\(l,r)-> nmap(split id (const r)) l) ta

in Rel (s1\*/s2) (nmap(uncurry plus) (dunion tb))
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-- Renaming
renameR :: Pfun IdAttr IdAttr -> Relation -> Relation
renameR f (Rel s t)= (Rel (renpf f s) ( nmap (renpf f) t))

-- Divide
divideR :: Relation -> Relation -> Relation
divideR r s =

let y= diffs (dom(schema r)) (dom(schema s))
x= nmap (\t -> projectR y (selectR t r)) (tuples s)
u = projectR y r

in foldS interR u x

-- (3) Partial Functions --------------------------------------
valType’ :: Value -> Error String
valType’ (Int _ ) = Ok "Int"
valType’ (String _) = Ok "String"
valType’ (Date _ ) = Ok "Date"
valType’ (Time _ ) = Ok "Time"
valType’ _ = Err "unknown ValueType"

-- (4) Olap operators -----------------------------------------
mdaR:: Set IdAttr ->IdAttr-> (Value->Value->Value) ->Value ->

Relation-> Relation
mdaR s a f u t =
Rel ((unions s (sings a))<:(schema t))

(nmap (uncurry plus)(mkr y))
where y = (id *-> (ttot a f u)) x

x = tcollect s (tuples t)

A.5 RDB Impl.hs

---------------------------------------------------------------
-- RDB model: Relational Database Implementation
---------------------------------------------------------------
module RDB_Impl where
import Cat_Impl
import Types
import Set_Impl
import Pfun_Impl
import Rel_Impl

-- (1) Instance definitions -----------------------------------
instance Eq RDB where

db1==db2 = (relations(db1)==relations(db2))
instance Ord RDB where

db1<=db2 = (relations(db1)<=relations(db2))
instance CData RDB where

inv (RDB f) = ( allS inv) (rng f)
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-- (2) Observers ----------------------------------------------
dbschema :: RDB -> SchemaRDB
dbschema = (id *-> schema) . relations

-- (3) RDB operators ------------------------------------------

-- Union
union :: IdRel -> IdRel -> RDB -> Error Relation
union id1 id2 db =
do {r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
result <- inv’ (unionR r1 r2) ;
if (restrEqdom r1 r2)
then Ok result
else Err "Error in Union Operation: incompatible schemas"

}

-- Intersection
inter :: IdRel -> IdRel -> RDB -> Error Relation
inter id1 id2 db =
do {r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
result <- inv’(interR r1 r2) ;
if (restrEqdom r1 r2)
then Ok (result)
else Err "Error in Intersection Op.:incompatible schemas"

}

-- Difference
diff :: IdRel -> IdRel -> RDB -> Error Relation
diff id1 id2 db =
do {r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
result <- inv’(diffR r1 r2) ;
if (restrEqdom r1 r2)
then Ok (result)
else Err "Error in Difference Op.: incompatible schemas"

}

-- Projection
project :: Set IdAttr -> IdRel -> RDB -> Error Relation
project s id db =
do {r1 <- aplpf’ (relations db) id ;

result <- inv’ ( projectR s r1) ;
if (s \< dom(schema r1))
then Ok (result)
else Err "Error in Project op.:

attributes are not in relation domain"
}
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-- Selection
select :: Pfun IdAttr Value -> IdRel -> RDB -> Error Relation
select f id db =
do {r1 <- aplpf’ (relations db) id ;

result <- inv’ (selectR f r1);
if ((dom f) \< dom(schema r1))
then Ok (result)
else Err "Error in select op.:

attributes are not in relation domain"
}

-- Natural join
natjoin:: IdRel -> IdRel -> RDB -> Error Relation
natjoin id1 id2 db =
do {r1 <- aplpf’ (relations db) id1 ;

r2 <- aplpf’ (relations db) id2 ;
inv’(natjoinR r1 r2)

}
-- Renaming
rename :: Pfun IdAttr IdAttr -> IdRel -> RDB -> Error Relation
rename f id1 db =
do {r1 <- aplpf’ (relations db) id1 ;

result <- inv’(renameR f r1) ;
if ((dom f) \< dom(schema r1))
then Ok (result)
else Err "Error in rename op.:

attributes to rename are not in relation domain"
}

-- Divide
divide :: IdRel -> IdRel -> RDB -> Error Relation
divide id1 id2 db =
do {r1 <- aplpf’(relations db) id1 ;

r2 <- aplpf’(relations db) id2 ;
inv’(divideR r1 r2)

}

--(4) Olap operators ------------------------------------------
mda::Set IdAttr->IdAttr->(Value->Value->Value)->Value->IdRel

->RDB->Error Relation
mda s a f u id db =
do {r1<- aplpf’ (relations db) id ;

inv’(mdaR s a f u r1 )
}

-- (5) Restrictions -------------------------------------------
restrEqdom:: Relation -> Relation -> Bool
restrEqdom r1 r2 = schema r1 == schema r2
restrEqdom _ _ = False
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