
Generic Data Processing: A Normalization Exercise

†Claudia Necco, ‡J. Nuno Oliveira,

† Departamento de Informática - Facultad de Cs. F́ısico Matemáticas y Naturales
Universidad Nacional de San Luis

Ejército de los Andes 950 - 5700 San Luis - Argentina

‡ Departamento de Informática, Universidade do Minho
4700-320 Braga - Portugal

Abstract

This paper describes an exercise in generic data normalization theory using a data reification
calculus based on the categorial approach to datatypes.

We develop a relational data model in a functional language and then use transformations to
refine it. The exercise removes data redundancy in close similarity to conventional relational tech-
niques, which extract functional dependences by schema decomposition [Mai83]. Finally the model
is extended using the principles of generic programming, suggesting how to scale up normalization
theory to arbitrary data.
Keywords: generic programming, polytypic programming, functional programming, program cal-
culation, data reification.

1 Introduction

In relational database programming [Cod72] one models real-life facts as tuples which are recorded
in large, mutually dependent persistent data-sets which are subject to intensive search and processing
in order to gather knowledge about a particular application domain. The need for larger and larger
data-sets calls for the integration of disparate data-models (data warehousing); routine data inspection
gives place to data-mining, and sophisticated on-line analytical processing (Olap) replaces manual
consolidation of data.

In the past, textual data has by-and-large been out of this data processing trend, due to lack of
structure and a too strong technology bias 1. This has changed recently when, with the advent of
the Internet, open mark-up textual standards eventually gained wide acceptance and world-wide
prominence. Text processing has always been a privilege of the grammar theorist, the language analyst
or compiler writer, as well as fertile ground for Perl and Awk scripting. However, how does one
combine this with “flat” data mining and Olap technologies? Can these be scaled-up to arbitrarily
structured textual documents? Is there room for a single, generic theory of data calculation able to
cope with such heterogeneous data sources (e.g. text, semi-structured data, tabular data, etc.)?

These questions call for the unification of (from the relational side) normalization, browsing,
analytical processing with the universal-morphism approach which underlies the calculation theory of
generic programming. For instance, the relational join/unjoin operators can be regarded as relational
instantiations of polytypic functions zip and unzip, respectively, see [JJ98] and [Oli98a, NSO99].

However heterogeneous a data source may happen to be, if it is “structured” this means that it
has the shape of an inductively finite data structure (e.g. a finite set or list, a finitely branching tree
or a combination thereof). Inductive datatypes are expressible in generic programming as fixpoints
of appropriate (regular) functors [BdM97]. So the main task appears to be that of generalizing the
functorial constructs which describe relational database types to arbitrary regular functors and see
what happens. Of course we have to broaden our view of functional programming to that of generic
(polytypic) programming [Bo98].

The main contribution of this paper is to show an illustrative example of generic normalization,
using generic functional programming in a pointfree style and program calculation based on categorial
datatype theory.

The structure of the paper as follows: Section 2 contains a very brief introduction to formal
modeling. Section 3 introduces elementary concepts and terminology which are used throughout the
paper. Section 4 sketches a formal model for database relational data. Section 5 presents the generic
normalization exercise 2. The last two sections present some conclusions and future work.

2 Formal Methods and Program Calculation

Formal methods aim at driving software production into good engineering standards by splitting
software production into a specification phase, in which a mathematical model is built of the contractor
requirements, followed by an implementation phase in which such a model is somehow converted into
a runnable software artifact. Formal methods research shows that implementations can be effectively
calculated from specifications [Mor90, Oli90, Oli92]. So, in a sense, software technology is becoming a
mature discipline in its adoption of the “universal problem solving” strategy which one is taught at
school:

• understand the problem

• build a mathematical model of it

• reason in such a model
1Think of the variety of text editors still in existence today.
2This has been carried out in the context of the first author’s Master’s thesis [Nec02].

• upgrade it, wherever necessary

• calculate a final solution and implement it.

The sophistication of this strategy is only dependent on the underlying mathematics. In the context
of software calculi, data manipulation is based on solving systems of (recursive) equations on domain
spaces, up to isomorphism. This entails the definition of data transformations which can be expressed
functionally and animated using a functional programming language such as Haskell [Tho96].

There are two basic styles for expressing functions: the pointwise style and the pointfree style.
In the former, functions are described by applying them to arguments (“points”). In the latter
one describes functions exclusively in terms of functional combinators. Thanks to the algebra of
such combinators [BdM97], the pointfree style leads to a very effective method for reasoning about
functions, which is based on elementary category theory and is adopted in this paper. A few concepts
in the field are summarized below.

3 Categorical Support

Categories. A category consists of a collection of objects and a collection of arrows. Each arrow
f :: a→ b has a source object a and a target object b. Two arrows f and g can be composed to form a
new arrow g · f , if f has the same target object as the source object of g. This composition operation
is associative. Furthermore, for each object a there is a so-called identity arrow ida :: a→ a, which is
the unit of composition.

Our base category is called Types and has types as objects and functions as arrows. Arrow
composition is function composition (.) and the identity arrows are represented by the polymorphic
function id.

Functors. Functors are structure-preserving mappings between categories. Polymorphic datatypes
are functors from Types to Types. In Haskell, functors can be defined by a type constructor f of kind
∗ → ∗, mapping objects to objects, together with a higher-order function fmap, mapping arrows to
arrows. This is provided as a constructor class in the Haskell Prelude (the standard file of primitive
functions) as follows:

class Functor f where
fmap :: (a→ b)→ (f a→ f b)

The arrow action of a functor must preserve identity arrows and distribute over arrow composition.
For functors from Types to Types, this means that the following equations must hold:

fmap id = id
fmap (f · g) = (fmap f) · (fmap g)

Bifunctors. The product category Types × Types consists of pairs of types and pairs of functions.
We can define functors from Types×Types to the base category Types in Haskell. These functors are
called bifunctors. A (curried) bifunctor in Haskell is a type constructor of kind ∗ → ∗ → ∗, together
with a function bmap. The following constructor class Bifunctor was made available:

class Bifunctor f where
bmap :: (a→ c)→ (b→ d)→ (f a b→ f c d)

Products. Categorical products are provided in Haskell by the type constructor for pairs (a, b)
(usually written as Cartesian product a × b in mathematics) and projections fst and snd (resp. π1

and π2 in standard mathematical notation). Type constructor (,) is extended to a bifunctor in the
obvious way:

instance BiFunctor (,) where
bmap f g = f × g

where
(×) :: (a→ b)→ (c→ d)→ (a, c)→ (b, d)
(f × g) = split (f · fst) (g · snd)

and combinator split :: (a→ b)→ (a→ c)→ a→ (b, c) behaves as follows: split f g x = (f x, g x).

Sums. Categorical sums are defined in the Haskell Prelude by means of type constructor

data Either a b = Left a | Right b

together with a function either :: (a→b)→(c→b)→Either a c→b satisfying the following equations:

(either f g) · Left = f
(either f g) · Right = g

Type constructor Either is extended to a bifunctor by providing the following instance of bmap:

(+) :: (a→ b)→ (c→ d)→ Either a c→ Either b d
(f + g) (Left a) = Left (f a)
(f + g) (Right b) = Right (g b)

instance BiFunctor Either where
bmap f g = f + g

The popular notations 〈f, g〉, [f, g] and F f (where F is a functor) will be adopted interchangeably
with split f g, either f g and fmap f , respectively.

Invertible arrows. An arrow f :: b→a is said to be right-invertible (vulg. surjective) if there exists
some g :: a→ b such that f · g = ida. Dually, g is said to be left-invertible (vulg. injective) if there
exists some f such that the same fact holds. Then type b is said to “represent” type a and we draw:

a

g

!!≤ b

f

""

where g and f are called resp. the representation and abstraction functions. An isomorphism f :: b→a
is an arrow which has both a right-inverse g and a left-inverse h — a bijection in set theory terminology.
It is easy to show that g = h = f−1. Type a is said to be isomorphic to b and one writes a ∼= b.

Isomorphisms are very important functions because they convert data from one “format” to
another format losing information. These formats contain the same “amount” of information, although
the same datum adopts a different “shape” in each of them. Many isomorphisms useful in data
manipulation can be defined [Oli98a], for instance function swap :: (a , b)→ (b , a) which is defined
by swap = 〈π2,π1〉 and establishes the commutative property of product, a× b ∼= b× a.

4 Modeling Relational Data

Collective datatypes. Our model of relational data will be based on several families of abstractions,
including collective datatypes such as finite powersets (Pa) and finite partial mappings (a ⇀ b).
These are modeled as Haskell polymorphic algebraic types (that is, algebraic type definitions with type
variables) based on finite lists [a], see Set a and Pfun a b in Table 1, respectively. Both abstractions
contain an equality relation and an ordering relation. The latter instantiates to set inclusion (⊆) and
partial function definedness, respectively.

The finite sets model assumes invariant φ (Set l) def= length l = card(elems l), where length
is Haskell standard and card(inal) and elem(ent)s have the usual set-theoretical meaning. Partial
mappings require an extra invariant ensuring a functional dependence on sets of pairs 3:

fdp
def= (⊆ {1}) · rng · (id ⇀ card) · collect (1)

Table 1 summarizes the Haskell modules defined for these datatypes.

Finite Sets Partial Functions
Datatypes: data Set a = Set [a] data Pfun a b = Map[(a, b)]
Constructors: emptyS, sings, puts, prods bottom, singpf, putpf

ltos collect
Deletions: gets getpf
Observers: ins, nins, incls, card compatible, incompatible

allS allPf
Filters: filterS
Operations: inters, unions, diffs, plus, pfzip plus, pfinv, restn, restp

flatr, flatl, slstr, srstr, sextl, sextr pfzip, pfzipWith
zipS, zipWithallS

Folds: foldS foldPf
Functor: fmapS
Bifunctor: bmapPf
Others: the, stol, elems, card dom, rng, aplpf

unzipS tnest, discollect,mkr, bpfTrue, bpfFalse
pfunzip

Table 1: Finite sets and partial functions: datatypes and functions implemented.

Relational Database Model. An n-ary relation in mathematics is a subset of a finite n-ary product
A1× . . .×An, which is inhabited by n-ary vectors 〈a1, . . . , an〉. Each entry ai in vector t = 〈a1, . . . , an〉
is accessed by its position’s projection πi : A1× . . .×An→Ai. This, however, is not expressive enough
to model relational data as this is understood in database theory [Mai83]. Two ingredients must be
added, whereby vectors give place to tuples: attribute names and null values. Concerning the former,
one starts by rendering vectorial indices explicit, in the sense of writing e.g. t i instead of πi t. This
implies merging all datatypes A1 to An into a single coproduct type A =

∑n
i=1 Ai and then represent

the n-ary product as :

A1 × . . .×An

r
##

≤ (
∑n

i=1 Ai)n

f

$$

3collect :: P(a × b)→ (a ⇀ Pb) converts a relation into a set-valued partial function and rng :: (a ⇀ b)→ Pb is the
usual range function.

under representation function 4 r 〈aj〉j=1..n
def= λj.(ij aj) which entails invariant

φ t
def= ∀j = 1, . . . , n, t j = ij x : x ∈ Aj

Note that j = 1, . . . , n can be written j ∈ n, where n = {1, . . . , n} is the initial segment of the natural
numbers induced by n. Set n is regarded as the attribute name-space of the model 5.

As a second step in the extension of vectors to tuples, we consider the fact that some attributes
may not be present in a particular tuple, that is, null values are allowed 6:

(
∑

i∈n

Ai + 1)n

which finally leads to tuples as inhabitants of

Tuple = (n ⇀
∑

i∈n

Ai)

thanks to isomorphism A ⇀ B ∼= (B + 1)A [Oli90]. This models tuples of arbitrary arity (up to n
attributes), including the empty tuple. For notation economy, for every X ⊆ n, we will write Tuple X

as a shorthand for X ⇀
∑

i∈X Ai.
Tuple is the basis for the Haskell model of database relations presented in Table 2. Relations

(Relation) are sets of tuples sharing a common attribute schema (SchemaR). A rather complex
invariant ensuring that tuples are well and consistently typed is required, which is omitted here for
economy of presentation. This and other details of this model can be found in [Nec02].

Relations
Datatypes: type Tuple = Pfun IdAttr Value

type SchemaR = Pfun IdAttr AttrInfo
type IdAttr = String
type Tuples = Set Tuple
data Relation = Rel { schema::SchemaR, tuples::Tuples}
data AttrInfo = InfA { ifKey::Bool, defaultV::Value }
data Value = Int Int | String String | Date String | Time String

Constructors: emptyR
Operations: unionR, interR, diffR

projectR, selectR, natjoinR, equijoinR, renameR, divideR

Table 2: Relations: datatypes and functions implemented.

5 Exercise in Generic Normalization

Our main target in the exercise which follows is to illustrate the scaling up of normalization theory
when it is applied under the principles of generic programming.

Normalization through Decomposition. Consider the following relational database schema

S = {〈r = {α, β, γ, δ},αβ〉} (2)
4Injections ij=1,n are associated to the n-ary coproduct. Left and Right in Haskell correspond to i1 and i2, respec-

tively.
5The fact that this can be replaced by any isomorphic collection of attribute names of cardinality n has little impact

in the modelling, so we stick to n..
6Think of 1 as the singleton type {null}.

consisting of one table or relation r involving four attributes α, β, γ and δ. αβ is a key for this relation
and it must also satisfy functional dependence α→δ, such as in, e.g., the following tabular illustration:

α β γ δ

a1 b1 c1 d1
a1 b2 c2 d1
a2 b3 c1 d2

(3)

We would like to update the relation by specifying values for the key and then giving values for the
remaining attributes. However, if we perform 7

CH(r; a1, b1; γ = c1, δ = d3)

the relation will violate FD α→ δ. To avoid violations of this kind, every time an update is made, one
has to scan the whole relation and update the δ value everywhere the α value occurs, despite the fact
that only one tuple was to be changed. This happens because the (α-value, δ-value) information is
duplicated in the relation, thus making the data redundant. We are better off, with respect to updates
and redundancy, if we represent the same information as a database of two relations, r1 and r2, as
shown below:

α δ

a1 d1
a2 d2

+

α β γ

a1 b1 c1
a1 b2 c2
a2 b3 c1

(4)

We can retrieve the original relation r by taking r1 ! r2. The update anomaly no longer exists,
since only one tuple needs to be updated to change a δ assignment. We have also removed some data
redundancy, since (α-value, δ-value) pairs are recorded once. This process which extracts functional
dependences is known as Normalization through Decomposition [Mai83, RO97].

In general, the set-theoretical model of S (2) using vector types is

P(A×B × C ×D)φ (5)

where P is the powerset functor and A, . . . ,D are the types which are inhabited by the values of
attributes α, . . . , δ. Invariant φ records the α→ δ functional dependence, recall (1):

φ
def= fdp · P〈π1,π4〉

Our task now is as follows. First of all, we want to show how to extract the α → δ func-
tional dependence from (5) by calculation. That is, we want to calculate a pair (rf, af) of abstrac-
tion/representation functions witnessing the inequality which follows:

P(A×B × C ×D)φ

rf
%%

≤ (A ⇀ D)× P(A×B × C)

af

&&
(6)

In the illustration above, this means to decompose table (3) in two tables (4).
Secondly, we want to show that such a decomposition is not a privilege of the relational (tabular)

information model and that it can in fact be generalized to any other collective datatype T,

T(A×B × C ×D)φ ≤ (A ⇀ D)× T(A×B × C) (7)

7CH(...) is the change operation, used to modify only part of a tuple (see [Mai83], page 8).

under a generalized invariant

φ
def= fdp · setify · T〈π1,π4〉

where PX TX
setify'' is the polytypic operation which collects all data from the nodes of a T-structure

(of course, setify = id for T = P).
The transformation of the left-hand side of (6) into its right-hand side was carried out for vectors

and then extended to tuples using the categorial structure of the model [Nec02]. In order to carry out
calculations at the generic functor level (7), it is necessary to extend the model to support generic
functions.

For economy of presentation we shall skip the first step (vector model) and focus on the calculation
performed over tuples (Table 2) and its generalization.

Calculating with Tuples. The calculation which is sketched below is a pointfree version of the
conventional relational technique which extracts functional dependences by schema decomposition
[Mai83]. We want to show that

P(Tuple n)φk,s
≤ (Tuple k ⇀ Tuple s−k)× P(Tuple n−(s−k)) (8)

holds, where s is the substructure s that contains a functional dependence, k is the corresponding key
(thus k ⊆ s ⊆ n holds) and invariant φk,s is parametric on s and k.

The calculation goes as follows (see below an account of the functions involved):

P(Tuple n)φk,s

∼= { rf1 = P(tnest k); af6 = P(plus)}

P(Tuple k × Tuple n−k)

≤ { rf2 = collect; af5 = discollect}

Tuple k ⇀ P(Tuple n−k)
∼= { rf3 = id ⇀ (sextl · P(tnest s)); af4 = P(plus) · slstr ; (n− k) ∩ s = s− k }

Tuple k ⇀ Tuple s−k × P(Tuple n−s)

≤ { rf4 = pfunzip; af3 = pfzip}

(Tuple k ⇀ Tuple s−k)× (Tuple k ⇀ P(Tuple n−s))
∼= { rf5 = id× discollect; af2 = id× collect }

(Tuple k ⇀ Tuple s−k)× P(Tuple k × Tuple n−s)
∼= { rf6 = id× P(plus); af1 = id× tnest k ; (n− s) ∪ k = n− (s− k) }

(Tuple k ⇀ Tuple s−k)× P(Tuple n−(s−k))

The collect :: P(a×b)→(a ⇀ Pb) injection and its left-inverse discollect are as defined in [Oli90].
The tuple splitting operation tnest :: Pa→ (a ⇀ b)→ (a ⇀ b)× (a ⇀ b) is central to the calculation in
performing isomorphism A ⇀ B ∼= (K ⇀ B)× ((A−K) ⇀ B) which holds wherever K ⊆ A [Oli90].
The calculation also involves slstr :: a×Pb→P(a× b), the left-strength of the powerset functor, and
its inverse sextl. Finally, pfzip, pfunzip are the finite mapping counterparts of zip, unzip [JJ98]. The
Haskell implementation of all these functions can be found in [Nec02].

Going generic. Let us now see how to generalize P in the calculation above to a generic (strong)
functor T and how to model this in Haskell by using higher-order polymorphism and constructor
classes. First, the class of strong functors is defined as a subclass of Functor,

class Functor f ⇒ Strong f where
rstr :: (f a, b) → f(a, b)
lstr :: (b, f a) → f(b, a)

exporting both a left and a right strength (resp. rstr and lstr) whose default implementations are

rstr(t, x) = fmap (split id (const x)) t
lstr(x, t) = fmap (split (const x) id) t

Then subclass Poly of Strong is defined, whose operations include those required by the process of
normalization (note the character “p” (=polytypic) prefixing in each function symbol):

class Strong t⇒ Poly t where
– signatures
pzipWith :: (a→ b→ c)→ t a→ t b→ t c
punzip :: t(a, b)→ (t a , t b)
pzip :: (t a, t b)→Maybe(t(a, b))
pflatten :: t a→ [a]
pelems :: Eq a⇒ t a→ Set a
pdiscollect :: (Eq (t (Maybe (b, c))), Eq b)⇒ Pfun b (t (Maybe c))→ t (b, c)
pcollect :: Eq a⇒ t (a, b)→ Pfun a (t (Maybe b))
– default implementations
pelems = Set · nub · pflatten
pdiscollect x = foldS (pzipWith (plus))u y

where y = (fmapS(λ(z, y)→ fmap (splus z) y) · mkr)x
u = (the · (fmapS (fmap (const (Map [])))) · rng)x

pcollect t = Map (map (split id (flip extr t)) l)
where l = (nub · pflatten · (fmap fst)) t

punzip = split (fmap fst) (fmap snd)

Note that pzip is among the functions which have no default implementation, because the “zip” process
fails (cf. Maybe) wherever the shape of both arguments is not the same [Jan00] and this can only
be checked when the structure of the instance type is known. It has thus to be provided for every
instance of the class, a fact which motivates the brief discussion which follows.

6 Discussion

We have chosen to implement our generic (polytypic) normalization operations using higher-order
polymorphism and constructor classes in Haskell. The class system allows for overloaded functions but
programs become cluttered with instance declarations and type declarations become cluttered with
contexts.

Two other ways to implement polytypic programs in a typed language are: (a) to use a universal
datatype; (b) to use special syntactic constructs.

In the first alternative, an universal datatype is chosen on which we define the functions we want
to have available for large classes of datatypes. These polytypic functions can be used on a specific
datatype if we provide translation functions to and from the universal datatype. An advantage of this
approach is that we do not need a language extension for writing polytypic programs. However, it has
several disadvantages: type information is lost in the translation phase to the universal datatype, and
type errors can occur when programs run. Furthermore, different people will use different universal
datatypes, which will make program reuse more difficult.

PolyP [Jan00] is an example of the second alternative, that of extending the language with
explicit syntactic constructs for defining polytypic functions. We have ported our experiment to
the PolyP system but soon realized that there was a serious shortcoming: only unary (regular)
datatypes can be polytypically defined. We hope to overcome this problem by switching to Generic
Haskell [CHJ+01].

7 Concluding Remarks and Future Work

Productivity and scientific progress in the software development technology is often hindered
by artificial, “application domain” border-lines which prevent cross-fertilization of results and the
even spread of novelty. Such frontiers often have an academic, social or cultural bias. For instance,
the average database programmer will regard functional programming as too academic and perhaps
useless. Conversely, a functional programmer will regard database programming as a too specific and
not sufficiently exciting topic.

However, these two research areas have more in common than it appears at first sight. Both
put emphasis on the rÙle of data structuring in software development and both have developed their
own calculus. Can these two seemingly disparate notations and calculi me merged together? This
is the question which has motivated the present paper, which describes research in the intersection
between formal methods and relational database theory. Our experiments (which include a generic
version of mda, the multi-dimensional analysis Olap functionality [Nec02]) suggest that there is a
more general theory of data normalization of which the standard relational database theory appears
to be a particular case.

Of course, a lot of work remains to be done in this evolution of standard normalization theory
towards genericity, in particular concerning a proper formalization of the intuitions presented in this
paper. The interplay between datatype construction and datatype constraining (cf. datatype invari-
ants) still requires a proper formalization in the pointfree style. And, as can be found in our calculation
and is noted in [Oli90], many transformation rules are invariant-sensitive. The “pullback approach”
of [Oli98b] is an attempt in this direction which proves to be insufficient in practice. Currently we
are exploiting a far more promising approach, that of modelling constrained datatypes (subject to
invariants) by coreflexive relations and performing the reasoning in the (pointfree) relational theory
of datatypes [BdM97, Bac00].

References

[Bac00] R. C. Backhouse. Fixed point calculus, 2000. Summer School and Workshop on Algebraic
and Coalgebraic Methods in the Mathematics of Program Construction, Lincoln College,
Oxford, UK 10th to 14th April 2000.

[BdM97] R. Bird and O. de Moor. Algebra of Programming. Series in Computer Science. Prentice-Hall
International, 1997. C. A. R. Hoare, series editor.

[Bo98] R.C. Backhouse and T. Sheard (org.). WGP’98 — Workshop on Generic Programming,
1998. Marstrand, Sweden, 18th June, 1998
(http://www.cse.ogi.edu/PacSoft/conf/wgp/).

[CHJ+01] D. Clarke, R. Hinze, J. Jeuring, A. Löh, and J. de Wit. The generic haskell user’s guide,
November 2001. Technical Report UU-CS-2001-26, Universiteit Utrecht.

[Cod72] E. F. Codd. Relational completeness of database sublanguages. In Data Base Systems,
pages 65–98. Prentice-Hall, 1972. Courant Inst. Computer Science Symp. 6, Englewood
Cliffs, NJ.

[Jan00] P. Jansson. Functional Polytypic Programming. PhD thesis, Chalmers University og Tech-
nology and Götebord University, 2000.

[JJ98] P. Jansson and J. Jeuring. Polylib — a library of polytypic functions. In Workshop on
Generic Programming (WGP’98), Marstrand, Sweden, 1998.

[Mai83] D. Maier. The Theory of Relational Databases. Computer Science Press, 1983. ISBN
0-914894-42-0.

[Mor90] C. Morgan. Programming from Specification. Series in Computer Science. Prentice-Hall
International, 1990. C. A. R. Hoare, series editor.

[Nec05] C. Necco. Polytypic data processing, may 2005. Master’s thesis (Facultad de Cs. F́ısico
Matemáticas y Naturales, University of San Luis, Argentina).

[NSO99] F. L. Neves, J. C. Silva, and J. N. Oliveira. Converting Informal Meta-data to VDM-SL: A
Reverse Calculation Approach . In VDM in Practice! A Workshop co-located with FM’99:
The World Congress on Formal Methods, Toulouse, France, 20-21 September, September
1999.

[Oli90] J. N. Oliveira. A reification calculus for model-oriented software specification. Formal
Aspect of Computing, 2(1):1–23, April 1990.

[Oli92] J. N. Oliveira. Software Reification using the SETS Calculus . In Proc. of the BCS FACS
5th Refinement Workshop, Theory and Practice of Formal Software Development, London,
UK, pages 140–171. Springer-Verlag, 8–10 January 1992. (Invited paper).

[Oli98a] J. N. Oliveira. A data structuring calculus and its application to program development, May
1998. Lecture Notes of M.Sc. Course Maestria em Ingeneria del Software, Departamento
de Informatica, Facultad de Ciencias Fisico-Matematicas y Naturales, Universidad de San
Luis, Argentina.

[Oli98b] J. N. Oliveira. ‘Fractal’ Types: an Attempt to Generalize Hash Table Calculation. In
Workshop on Generic Programming (WGP’98), Marstrand, Sweden, June 1998.

[RO97] C. J. Rodrigues and J. N. Oliveira. Normalization is Data Reification. Technical Report
UMDITR9702, University of Minho, Dec. 1997.

[Tho96] Simon Thompson. Haskell – The Craft of Functional Programming. Addison-Wesley, 1st
edition, 1996. ISBN 0-201-40357-9.

