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Abstract -This paper describes the results of an analysis of the Nash Equilibrium 
in randomly generated repeated games. We study two families of games: 
symmetric bi-matrix games G(A, B) with B = AT and non-symmetric bi-matrix 
games (the first includes the classical games of Prisoner Dilemma, Battle of the 
Sexes, and Chickens). We use pure strategies, implemented by automata of size 
two, and different strategy domination criteria.  

We observe that, in this environment, the uniqueness and efficiency of 
Equilibria Outcomes is the typical result. 
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1.- Introduction 

It is well known that the behavior of economic agents that interact repeatedly cannot be fully 
captured by simple static models. Repeated interaction allows agents to use punishments threats to 
enforce particular actions that would not have been taken in a static framework. In many economic 
examples the long term relationship consists of a sequence of repeated situations. This economic 
scheme can be modeled as a Repeated Game. A typical example of this type of interaction occurs 
when many firms interact in a market. Usually this interaction is not carried out in a single period 
but rather on a long term relationship. In this case some "cooperative" behavior is observed, even 
when there is no commitment among the actors. The possibility of future punishment yields 
cooperation in a non-cooperative environment. 

Non-cooperative game theory provides equilibrium concepts in order to decide which type of 
behavior result stable. The Nash equilibrium (see [1]) is the most classical and generally accepted 
solution. 

Usually several new equilibria appear when we compare a Repeated Game with a game 
corresponding to a single period. This result is known in the literature as the Folk Theorem. Having 
many equilibria is good in some sense. It allows supporting many outcomes (including some 
"cooperative outcomes"). But it is not so good in another sense. The multiplicity of equilibria 
makes the prediction of the actual path of play very difficult. In some typical examples there is a 
clear intuition on what should be the "natural" outcome of the game. For instance in the Prisoners 
Dilemma game, (C,C) should be the result (see section 3). Thus, we would like to see unique full 
cooperative outcomes as a result of only non-cooperative assumptions. 

Several different approaches have been attempted towards this goal, but with almost no 
success in isolating the “cooperative” equilibrium. The most common approach focuses on refining 



 

the Nash solution (Subgameperfection [2] and other refinements, see [3] for details). It 
reduces the equilibrium strategies but not the equilibrium payoffs, bringing up again a full Folk 
Theorem. Thus extra rationality assumptions have to be included in the model, because some "non-
cooperative outcomes" (D, D) in the Prisoners Dilemma game are hard to remove. Moreover 
sometimes the only remaining equilibrium is just the non-cooperative one (see [4]) 

Another approach includes some bounded rationality considerations on the complexity of the 
strategies or some preference for simple strategies and costs of strategies implementation. This 
research line was followed by [3],[5],[6] and others. A reduction of the Equilibrium outcomes was 
obtained but they failed to remove the non-cooperative one, and in some cases the full cooperative 
outcome was removed instead. 

We will present a model with only non-cooperative assumptions. We will consider the Nash 
Equilibrium solution and the standard elimination of dominated strategies. We will only deal with 
strategies implemented by automata of size two. Even though this is certainly a very simple 
context, it is a fully non-cooperative situation. This class includes strategies (like tit-for-tat) that 
proved to be successful even in the presence of more complicated strategies (see the "Tournament 
approach" presented  by [7]. and [8] ). 

In our model the non-cooperative outcome will be then eliminated in the Prisoners Dilemma 
Game (in this case the full cooperative outcome and a not fully cooperative one remain as possible 
outcomes). 

Moreover, we will show that the typical result in a family of symmetric-games (including the 
Prisoners Dilemma Game) is uniqueness. It is also observed that we typically obtain efficient 
unique outcomes. We will also show that the uniqueness is still more common in general games if 
we remove the symmetry. 

 

2.- Games in Normal Form and Repeated Games 
A Game of strategies in normal form could be described by a 3-uple G= (N, A, u). N will be 

the set of players. We will deal with 2-players games, then  N={1,2}. A is the action profile set, 
A=A1 x A2. For each player i ∈ N, Ai is the set of available strategies. u=(u1,u2) are the payoff 
utility vector, where ui : A → R is the payoff function of player i. 

A Nash Equilibrium (NE) is an action profile a* = (a*
1, a*

2 ) such as : 
∀ a1∈A1, u1(a*) ≥ u1(a1,a*

2)  and  ∀ a2∈A2, u2(a*) ≥ u2(a*
1,a 2).  

The (infinitely) Repeated Game consists of a sequence of repetitions of a one-shot game.  
The sequence of outcomes will be evaluated with limit of the mean.  
 

2.1- Prisoners dilemma and other Classical Games. 
The Prisoners Dilemma ( P=({1,2}, A, u) ) is without a doubt the most studied game in Game 

Theory. This game can be described by the numeric example showed in Fig.1 (a).  
 
 

 C D 
C 2, 2 -1, 3 
D 3,-1 0, 0 

                
 

(a) (b) 

Fig 1: Prisoners dilemma. (a) Payoffs matrix. (b) Possible equilibrium outcomes in the Repeated 
Game (Folk Theorem). 
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It is immediate to verify that the only Nash Equilibrium in the one shot game is (D, D) with 
payoff (0, 0). However the outcome (2,2) associated to the strategies (C, C) naturally results more 
appealing. When the game is repeated over time we have the Classical Folk Theorem, where the 
shaded area represent the equilibrium outcomes (Fig.1 (b)).  

We will also consider the following classical games: 
 

 
 C D   C D 

C -4, -4 2, -1  C 3, 1 0, 0 
D -1,  2 0,  0  D 0, 0 1, 3 

  
 
Fig.2 Classical Games. (a) Game of Chicken. (b) Battle of the Sexes. 

 

3.- Use of Automata in Repeated Games. 
The intuitive description of an automaton corresponds to think that an agent (a player) may 

have diverse states of mind under which it takes decisions. For example a player that plays the 
constant strategy C in the Infinitely Repeated Prisoners Dilemma Game has only one state of mind 
("cooperative"). On the other hand if it plays a trigger strategy we could think that it has two states, 
an initial cooperative state and after any non-cooperation it move to a non-cooperative state where 
it remains for ever. 

The C-tit for tat (C-tft) strategy and D-tit for tat (D-tft) also correspond to individuals with 
two states of mind. 

The following is a formal description of a (full) automaton for player i. This will be denoted 
by a 4-uple : 

Mi  = (Mi ,mi
0 ,Bi ,Ti )  with Mi ⊂ N (N is the set of natural numbers), Mi is the set of states, 

mi
0 is the initial state, Bi: Mi →Ai is  the behavior function and Ti: Mi x A → Mi is the transition 

function (where A=Π Ai is the actions profiles set). The transition function indicates how the 
automaton changes of states. When the transition function is restricted to T M A M

i i i i
: ! "#"$ , 

where for j,i ∈N and i ≠ j: A-i =Π Aj ,the automaton Mi will be called Exact. 
The automaton will be said finite if Mi is a finite set. 
Given a strategy we could define a full automaton that implements it and given a full 

automaton we could construct the associate strategy. The construction of an automaton starting 
from the strategy could be done in several different forms and we could give automata of different 
sizes associates to the same strategy. However there exists an automaton of minimal size that 
implements a given strategy.  

A strategy in an extensive-form game typically indicates the actions to be taken by a given 
player in all information sets (in which he/she plays). This is done so that when studying 
refinements a player can tremble in a previous information set, and still have his/her strategy 
prescribe what to do in subsequent moves. Thus, each exact automata don not fully capture the 
notion of strategy. However to the effects of studying Nash Equilibria it won't make any difference 
considering full or exact automata. We use only exact automata. 

In Figure 3 we show examples of both types of automata: 
 
 
 
 
 

 

(a) (b) 



 

 
 
 
 
 
 
                (a)                                                                     (b) 
 

Fig 3.(a) Full automaton. Trigger strategy (with punishments to deviations of any player), (b) Exact 
automaton. Trigger strategy (with punishments to deviations of the opponent) 
 
Here the behavior functions are indicated in the circles of the corresponding states and the 

arches between states indicate the transitions. The initial states are the first to the left and arches 
without labeling includes all the options not considered by the labeled arches.  

 

4.- Folk Theorems for games played by two states automata with elimination  of Dominated 
Strategies. 

There are many articles in the literature attempting to give priority to the preference for 
simpler strategies (see [5], [6], [9], [10], etc). 

We will deal with two player games with two pure strategies for each player, and we will 
restrict to strategies implemented by automata of sizes at most two. We will consider strategic 
domination. 

A strategy fi of player i dominates another strategy gi of player i, in a Strong way (SDom) if 
the outcomes obtained by player i by playing fi are strictly better than those obtained by playing gi 
against any strategy of the opponent (fi SDom gi iff ui(fi, rj)>ui(gi, rj) for all strategy rj of player j≠i). 

If the inequality is not strict we have Weak domination (WDom), and if we also require that 
for at least one strategy of the opponent the inequality be strict we have regular domination 
(RDom). 

5.-  An statistic study of Nash Equilibrium in games played by two states automata 

5.1. Classical Games 
For the Prisoners Dilemma under the above mentioned assumptions we have: 
 
 
 
 
 
 
 
 

 
Fig.4.Nash Equilibria in Prisoners Dilemma Game. (a) Without Domination (b) Weak or 

Regular Domination. 
 
The effect of domination in classical games was very weak. Only in the Prisoner Dilemma 

game we eliminated the non cooperative outcome (0, 0) but we still had two remaining outcomes, 
(1, 1) and (2, 2). In the others games there was no reductions in the number of outcomes. 
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5.2. Symmetrical Random Games 
We generated 50 random symmetric bi-matrix games G(A, B) with  B = AT . It includes the classical 

games of Prisoner Dilemma, Battle of the Sexes, and Chickens. The entries were integer numbers in the 
range [-9,9]. We obtained the following results: 

 
GAME WITHOUT DOMINATION GAME WITHOUT DOMINATION (cont.)

 #NEO #Equilibrium Strategies  #NEO #Equilibrium strategies

1 1 35 26 9 79 14 14 5 15 15 8 8 26

2 2 79 12 27 2 79 12

3 3 79 14 4 28 3 35 79 48

4 1 79 29 2 79 12

5 3 79 52 7 30 4 32 57 57 52

6 4 79 8 1 1 31 3 14 79 14

7 1 39 32 2 79 12

8 1 210 33 7 79 34 34 15 15 4 11

9 3 79 34 3 79 52 41

10 3 79 52 4 35 4 57 57 52 7

11 3 79 14 4 36 1 210

12 1 35 37 5 4 11 11 79 52

13 3 57 57 52 38 3 10 4 1

14 1 79 39 2 10 8

15 3 27 27 52 40 2 4 12

16 1 35 41 4 79 11 11 4

17 1 79 42 3 41 79 52

18 4 18 18 15 23 43 5 79 7 7 14 14

19 3 79 14 4 44 3 4 2 4

20 2 79 12 45 3 79 14 4

21 6 30 30 24 24 54 9 46 6 26 26 21 21 8 54

22 1 35 47 3 27 27 52

23 3 26 2 4 48 2 79 12

24 4 34 34 52 7 49 4 27 27 52 1

25 3 79 35 5 50 1 39  
Table 1: Number of equilibrium outcomes without domination. 

 
40 0 2 4 12 50 1 1 50 1 1

41 0 4 79 11 11 4 10 4 59 4 4 4 10 4 59 4 4 4

42 0 3 41 79 52 0 3 41 79 52 0 3 41 79 52

43 0 5 79 7 7 14 14 49 1 2 50 1 1

44 0 3 4 2 4 30 3 4 2 4 34 3 4 2 1

45 0 3 79 14 4 14 2 71 14 14 2 71 14

46 0 6 26 26 21 21 8 54 38 1 40 40 1 30

47 0 3 27 27 52 0 3 27 27 52 0 3 27 27 52

48 2 2 79 12 23 2 41 9 24 2 41 7

49 0 4 27 27 52 1 6 3 20 20 52 6 3 20 20 52

50 5 1 39 46 1 9 50 1 1

 
Table 2:Number of equilibrium outcomes with different domination. 

 



 

GAME STRONG DOMINATION REGULAR DOMINATION WEAK DOMINATION 

#El. #NEO #Equilibrium Strategies #El. #NEO #Equilibrium Strategies #El. #NEO #Equilibrium Strategies  
Table 2:Number of equilibrium outcomes with different domination (Cont.). 

 
In the Table 1 we show the number of equilibrium outcomes with the different domination 

and in the Table 2 without domination. In these tables, #NEO is the number of different Nash 
Equilibrium Outcomes in each randomly generated game; #Equilibrium Strategies is the number 
strategies leading to each equilibrium outcome in an decreasing order (for instance: in the game 2, 
there are 2 payoffs corresponding to different equilibrium strategies; 79 strategies give the first 
outcome and 12 the second. This game has 91 equilibrium strategies with 2 different equilibrium 
outcomes); #El. is the number of strategies eliminated under each domination criterion.  
 

GAME #EO 

1 1 (6,6) ES

2 2 (7,7) ES (5.50,5.50) S

3 3 (4,4) ES (0.00,0.00) S (-4,-4) S*

4 1 (5,5) ES

5 3 (0.00,0.00) ES (-3.50,-3.50) S (-7,-7) S

6 4 (1,1) ES (-3.50,-3.50) S (-4,-5) * (-5,-4) *

7 1 (4,4) ES

8 1 (-3,-3) ES

9 3 (4,4) ES (3,3) S* (2,2) S*

10 3 (2,2) ES (-0.50,-0.50) S (-3,-3) S*

11 3 (0.00,0.00) ES (-1.50,-1.50) S (-3,-3) S*

12 1 (4,4) ES

13 3 (7,6) E (6,7) E (6.50,6.50) ES

14 1 (6,6) ES

15 3 (-0.50,-0.50) ES (-5,4) E (4,-5) E

16 1 (4,4) ES

17 1 (3,3) ES

18 4 (-6,2) E (2,-6) E (-2,-2) S (1,1) ES

19 3 (6,6) ES (1.50,1.50) S (-3,-3) S

20 2 (2,2) ES (-2,-2) S*

21 6 (2,-8) E* (-8,2) E* (-3,-8) * (-8,-3) * (-8,-8) S* (-3,-3) ES

22 1 (6,6) ES

23 3 (3,3) ES (0.50,0.50) S (-1,-1) S*

24 4 (7,1) E (1,7) E (4,4) ES (3,3) S

25 3 (4,4) ES (2,2) S (0.00,0.00) S

26 9 (4,4) ES (-7,4) * (4,-7) * (-7,-7) S* (4,-1.50) * (-1.50,4) * (-1.50,-7) * (-7,-1.50) * (-1.50,-1.50)

27 2 (3,3) ES (0.00,0.00) S

28 3 (-2,-2) S (-1,-1) ES (-1.50,-1.50) S

29 2 (1,1) ES (-1,-1) S

30 4 (4,4) ES (0.00,4) (4,0.00) (2,2) S

31 3 (4,4) S (7,7) ES (5.50,5.50) S

32 2 (4,4) ES (0.00,0.00) S

33 7 (6,6) ES (6,-1) * (-1,6) * (2.50,6) * (6,2.50) * (-1,-1) S* (2.50,2.50) S*

34 3 (5,5) ES (4,4) S (3,3) S

35 4 (7,5) E (5,7) E (6,6) ES (5,5) S

36 1 (6,6) ES

37 5 (-7,-7) S* (-6,-7) * (-7,-6) * (-5,-5) ES (-6,-6) S

38 3 (-2,-2) ES (-7,-7) S* (-6,-6) S

39 2 (0.50,0.50) ES (0.00,0.00) S

40 2 (-1,-1) ES (-3,-3) S*

41 4 (7,7) ES (4,-3) (-3,4) (0.00,0.00) S

42 3 (3,3) S (5,5) ES (4,4) S

43 5 (1,1) ES (1,-2) * (-2,1) * (-2,-2) S* (0.50,0.50) S*

44 3 (3,3) ES (2.50,2.50) S (1,1) S

45 3 (7,7) ES (1,1) S (-5,-5) S*

46 6 (5,0.00) E* (0.00,5) E* (2.50,0.00) * (0.00,2.50) * (0.00,0.00) S* (2.50,2.50) ES

EQUILIBRIA PAYOFF

Table 3: Equilibrium payoffs. 



 

GAME #EO 

11 3 (0.00,0.00) ES (-1.50,-1.50) S (-3,-3) S*

12 1 (4,4) ES

13 3 (7,6) E (6,7) E (6.50,6.50) ES

14 1 (6,6) ES

15 3 (-0.50,-0.50) ES (-5,4) E (4,-5) E

16 1 (4,4) ES

17 1 (3,3) ES

18 4 (-6,2) E (2,-6) E (-2,-2) S (1,1) ES

19 3 (6,6) ES (1.50,1.50) S (-3,-3) S

20 2 (2,2) ES (-2,-2) S*

21 6 (2,-8) E* (-8,2) E* (-3,-8) * (-8,-3) * (-8,-8) S* (-3,-3) ES

22 1 (6,6) ES

23 3 (3,3) ES (0.50,0.50) S (-1,-1) S*

24 4 (7,1) E (1,7) E (4,4) ES (3,3) S

25 3 (4,4) ES (2,2) S (0.00,0.00) S

26 9 (4,4) ES (-7,4) * (4,-7) * (-7,-7) S* (4,-1.50) * (-1.50,4) * (-1.50,-7) * (-7,-1.50) * (-1.50,-1.50) S

27 2 (3,3) ES (0.00,0.00) S

28 3 (-2,-2) S (-1,-1) ES (-1.50,-1.50) S

29 2 (1,1) ES (-1,-1) S

30 4 (4,4) ES (0.00,4) (4,0.00) (2,2) S

31 3 (4,4) S (7,7) ES (5.50,5.50) S

32 2 (4,4) ES (0.00,0.00) S

33 7 (6,6) ES (6,-1) * (-1,6) * (2.50,6) * (6,2.50) * (-1,-1) S* (2.50,2.50) S*

34 3 (5,5) ES (4,4) S (3,3) S

35 4 (7,5) E (5,7) E (6,6) ES (5,5) S

36 1 (6,6) ES

37 5 (-7,-7) S* (-6,-7) * (-7,-6) * (-5,-5) ES (-6,-6) S

38 3 (-2,-2) ES (-7,-7) S* (-6,-6) S

39 2 (0.50,0.50) ES (0.00,0.00) S

40 2 (-1,-1) ES (-3,-3) S*

41 4 (7,7) ES (4,-3) (-3,4) (0.00,0.00) S

42 3 (3,3) S (5,5) ES (4,4) S

43 5 (1,1) ES (1,-2) * (-2,1) * (-2,-2) S* (0.50,0.50) S*

44 3 (3,3) ES (2.50,2.50) S (1,1) S

45 3 (7,7) ES (1,1) S (-5,-5) S*

46 6 (5,0.00) E* (0.00,5) E* (2.50,0.00) * (0.00,2.50) * (0.00,0.00) S* (2.50,2.50) ES

EQUILIBRIA PAYOFF(cont)

Table 3:Equilibrium payoffs. (Cont.) 
 

In the Table 3 we show the equilibrium payoffs. #NO is the number of different outcomes. 
The references that appear together with the payoffs, indicate: S that the equilibrium is symmetric, 
E that the equilibrium is efficient (Pareto Optimal), * that the equilibrium disappears eliminating 
regular or weakly dominated strategies. 

The following Picture shows the percentages of the number of equilibrium payoff with and 
without domination: 

0,00

0,05

0,10

0,15

0,20

0,25

0,30

0,35

0,40

1 2 3 4 5 6 7 8 9

Without Dom
 Strong Dom

Regular Dom.
Weak Dom

Equilibrium Outcomes

 
Fig.4: Symmetrical Random Games, percentages of the number of equilibrium payoffs with and 
without domination 

 
We can observe that the typical number of equilibria decreases from 3 to 1 with the use of 

Weak or Regular domination. We also observe that eliminated equilibria are not the Efficient 



 

Symmetrical (ES). The domination reduced the Symmetrical-Not Efficient Equilibria in 13% of the 
cases, Non Symmetrical- Efficient in 3% and Non Symmetrical-Non Efficient in 15%. 

This certainly contrast with the multiplicity observed in these cases for the Classical Games 
in the previous section. 

 

5.3. Non Symmetrical Random Games 
Then we generated 50 random games (not necessary symmetric), under the same conditions 

of the previous section. We obtained the following results: 
Game WITHOUT DOMINATION STRONG DOMINATION REGULAR DOMINATION WEAK DOMINATION

#NEO #Equilibrium Estrategies #Elim. #NEO #Elim. #NEO #Elim. #NEO

1 3 79 45 41 0 3 79 45 41 0 3 79 45 41 0 3 79 45 41

2 1 27 8 1 27 34 1 27 37 1 19

3 1 18 8 1 18 46 1 5 50 1 1

4 2 24 1 1 2 24 1 47 1 6 50 1 1

5 4 79 18 15 6 0 4 79 18 15 6 47 1 4 50 1 1

6 3 79 45 18 0 3 79 45 18 3 3 79 45 15 3 3 79 45 15

7 6 45 27 27 22 19 8 0 6 45 27 27 22 19 8 38 1 34 40 1 25

8 3 79 12 1 4 3 79 12 1 23 2 41 9 24 2 41 7

9 1 24 11 1 24 44 1 12 50 1 1

10 2 19 10 6 2 19 10 47 1 6 50 1 1

11 2 46 11 0 2 46 11 6 2 32 10 6 2 32 10

12 1 79 12 1 79 39 1 35 40 1 30

13 1 8 4 1 8 49 1 2 50 1 1

14 2 18 16 5 2 18 16 46 1 8 50 1 1

15 4 79 23 20 13 0 4 79 23 20 13 48 1 3 50 1 1

16 1 18 8 1 18 48 1 3 50 1 1

17 1 79 8 1 79 37 1 45 40 1 30

18 2 51 46 8 2 51 46 42 2 6 6 46 2 2 2

19 2 79 10 8 2 79 10 37 1 45 40 1 30

20 1 3 0 1 3 5 1 2 5 1 2

21 3 79 12 1 4 3 79 12 1 23 2 41 9 24 2 41 7

22 1 27 5 1 27 34 1 25 37 1 19

23 5 18 16 11 8 4 0 5 18 16 11 8 4 46 2 4 4 50 1 1

24 2 14 5 4 2 14 5 49 1 2 50 1 1

25 1 46 0 1 46 4 1 33 4 1 33

26 2 57 21 4 2 57 21 24 2 41 16 25 2 41 12

27 1 19 0 1 19 3 1 13 3 1 13

28 1 46 0 1 46 4 1 33 4 1 33

29 2 51 19 8 2 51 19 40 2 3 2 42 2 3 2

30 2 79 10 8 2 79 10 37 1 45 40 1 30

31 2 16 11 0 2 16 11 7 2 11 10 7 2 11 10

32 3 57 45 27 0 3 57 45 27 19 2 52 35 19 2 52 35

33 3 24 19 8 4 3 24 19 8 36 2 14 12 50 1 1

34 3 57 34 24 0 3 57 34 24 50 1 1 50 1 1

35 1 14 8 1 14 49 1 2 50 1 1

36 1 18 8 1 18 48 1 3 50 1 1

37 2 79 12 9 2 79 12 25 2 41 6 26 2 41 4

38 3 45 27 27 0 3 45 27 27 0 3 45 27 27 0 3 45 27 27

39 4 79 11 7 4 0 4 79 11 7 4 18 3 37 11 6 18 3 37 11 6

40 1 20 8 1 20 48 1 4 50 1 1

41 1 51 8 1 51 48 1 4 50 1 1

42 3 18 11 5 0 3 18 11 5 8 3 15 5 4 8 3 15 5 4

43 1 79 17 1 79 43 1 14 50 1 1

44 2 46 24 0 2 46 24 41 2 6 2 42 2 3 2

45 2 16 5 0 2 16 5 7 2 11 4 7 2 11 4

46 2 46 5 0 2 46 5 6 2 32 4 6 2 32 4

47 1 79 8 1 79 37 1 45 40 1 30

48 2 79 21 2 2 79 21 23 2 41 18 24 2 41 14

49 1 46 0 1 46 7 1 27 7 1 27

50 3 79 24 11 0 3 79 24 11 12 3 48 21 5 12 3 48 21 5

#Equilibrium Estrategies #Equilibrium Estrategies #Equilibrium Estrategies

 
Table 4:Number of equilibrium outcomes with and without different domination.  

 
GAME #EO Equilibrium Payoff

1 3 ( 6,  8) E ( 5,  6.50) ( 4,  5)

2 1 (-5,  3) E

3 1 ( 2, -8) E

4 2 ( 6,  3) E ( 0,  3) *

5 4 ( 3, -2) E (-2, -2) * (0.50, -2) * ( 0, -3) *

6 3 ( 7,  6) E ( 7,  2) ( 7, -2)

7 6 ( 3.50, -1.50) E ( 7, -2)  E* ( 0, -1) E* (3.50, -2) * ( 0, -1.50) * ( 0, -2) *

8 3 ( 7,  7) E ( 0.50, -1) (-2, -4) *

9 1 (-2,  7) E

10 2 ( 2,  0) ( 2,  1.50) *

11 2 ( 7,  1) E ( 3, -5)

12 1 ( 7,  0) E

13 1 ( 0, -2) E

14 2 ( 4, -1) E ( 9, -2) E*

15 4 ( 8, 0) E ( 0, -2) * ( 0,  0) * ( 4, -1) *  
Table 5: Equilibrium payoffs. 



 

GAME #EO Equilibrium Payoff (cont.)

16 1 (-4,  7) E

17 1 ( 6,  1) E

18 2 ( 9,  6) E ( 6,  9) E

19 2 ( 6,  9) E ( 4,  4) *

20 1 ( 3,  1) E

21 3 ( 7,  9) E (1.50,  3.50) (-3, -1) *

22 1 (-2, -6) E

23 5 ( 7, -9) E* ( 1.50, -9) * (-1, -4) * ( 1, -4) E (-4, -9) *

24 2 ( 4,  1) ( 4,  4.50) E*

25 1 ( 5, -3) E

26 2 ( 4,  0) E ( 0,  1) E

27 1 ( 2,  7) E

28 1 ( 5,  5) E

29 2 ( 4,  8) E ( 6,  5) E

30 2 ( 3,  2) E ( 1,  0) *

31 2 ( 8, -1) E ( 6, -4)

32 3 ( 6,  8) E ( 0,  8.50) E (-6,  9) E*

33 3 (-8,  2) E (-8, -1) * (-8, -4) *

34 3 ( 2,  3) E ( 0,  6) E* ( 1,  4.50) E*

35 1 ( 3, -6)

36 1 ( 0,  6) E

37 2 ( 9,  9) E ( 1.50,  6.50)

38 3 ( 3, -2.50) E ( 8, -4) E (-2, -1) E

39 4 ( 3,  7) E ( 0.50, -0.50) ( 3, -1) (-2, -8)  *

40 1 (-2,  2)

41 1 ( 5,  4) E

42 3 (-8,  8) E (-1, -2) ( 2,  1) E

43 1 ( 9,  9) E

44 2 ( 9,  0) E (-2,  1) E

45 2 ( 4,  0) E (-4, -4)

46 2 ( 0,  4) E (-6, -2)

47 1 ( 6,  9) E

48 2 ( 4,  7) E (-1.50,1.50)

49 1 ( 1,  7 ) E

50 3 ( 8,  6)) E ( 5,  5) ( 2,  4)  
Table 5:Equilibrium payoffs (cont.) 

 
The references are the same of table 1-2 and 3 respectively. 
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Fig.5: Non Symmetrical Random Games, percentages of equilibrium outcomes with and without 
different domination  

 



 

Without the symmetrical restriction on the stage game, we found an enforcement of the 
equilibrium uniqueness in the repeated game. We also noted that under Strong domination no 
outcome is eliminated (only some strategies), Weak and Regular domination strength the 
uniqueness. 

We have observed in this case, that the domination reduced the amount of Equilibrium in 
27.8%, Not Efficient Equilibrium in 50% and Efficient in 12%:  

Initially in the 38% of the cases the amount of equilibrium was one. After elimination of 
dominated strategies, the uniqueness was the result in 58% of the cases independently of the type of 
domination used. 

8.- Concluding Remarks and Open Questions: 
The use of automata of size 2 and strategy domination gives a full non-cooperative 

environment where the uniqueness and efficiency of the Equilibrium Outcomes is the typical result. 
It certainly contrast with the corresponding results in classical games and moreover with the 
unrestricted Folk Theorems.  

For this study we used software that deals with automata of size 2. It would be interesting to 
relax the condition of the automata size, but it should be kept in mind that in this case several 
implementation difficulties can appear because of the large number of automata that one will have 
to manage. It would also be of interest to consider refinements of Nash Equilibria. 
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