
Encoding Iterators in Interaction Nets

José B. Almeida1, Ian Mackie2, Jorge Sousa Pinto1, and Miguel Vilaça1

1 Departamento de Informática / CCTC
Universidade do Minho, Braga, Portugal

2 LIX, CNRS UMR 7161, École Polytechnique, 91128 Palaiseau Cedex, France

Abstract. We propose a method for encoding iterators (recursion operators) using inter-
action nets. The method can be used to obtain a visual notation for functional programs,
and also to extend with recursion the many translations of the λ-calculus into interaction
nets, which have been proposed as efficient implementation mechanisms. We exemplify the
method with a number of list-processing examples that illustrate the application to practical
functional programming. Our examples also show that the method seems to generate, from
appropriate functional programs, many typical examples of interaction net programs.

Keywords: Recursion operators, interaction nets, visual programming.

1 Introduction

The use of visual notations for functional programs has long been an active research topic; the
goal is to have a notation that can be used

1. as an intuitive input notation for interpreters and compilers;
2. to animate visually the execution of functional programs.

Both of these have applications in debugging, education, and everyday programming. Even though
the functional paradigm seems in principle to be amenable to visual representation, no such nota-
tion exists that is widely used by the functional programming community.

In this paper we propose a graphical system for functional programming, based on token-
passing interaction nets. The system offers an adequate solution for classic problems of visual no-
tations, including the treatment of higher-order functions, pattern-matching, and recursion (based
on the use of iterators and other recursion operators). The system implements a call-by-name
semantics, with a straightforward correspondence between functional programs and graphical ob-
jects. Programs can be translated into graphical form (or constructed directly at the graphical
level), evaluated using the operational semantics of the graphical formalism, and then converted
back into textual form.

Technically the main contribution of the paper is an extension of Sinot’s token-passing imple-
mentation of the λ-calculus [17] to typed languages including recursive types and recursive function
definitions based on recursion operators. We illustrate our ideas using the simply-typed λ-calculus
with booleans, natural numbers, and their respective iterators. This system is very close to Gödel’s
System T [8], but to allow for the examples to have a more realistic programming flavour, list types
(and a list iterator) are also included – in fact, the implementation can be extended smoothly for
arbitrary polynomial types. We choose to implement normal-order evaluation for this language,
but call-by-value and call-by-need could easily be obtained by building on previous results by
Sinot. Fixpoint operators have been studied elsewhere for interaction net implementations [4, 13],
and also carried over to the token-passing setting [2].

An interesting feature of the work presented in this paper is that the interaction systems out-
put by our encodings result in definitions that are very similar to the typical examples of “direct”
interaction net programs. In this sense our work justifies semantically a functional subset of inter-
action nets. Moreover this provides further evidence that our approach is indeed an appropriate
and natural way to represent functional programs visually.

2 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

Related Work. Visual Functional Programming. Work in this area has addressed different aspects
of visual programming. The Pivotal project [10] offers a visual notation (and Haskell programming
environment) for data-structures, but not programs. Visual Haskell [16] more or less stands at the
opposite side of the spectrum of possibilities: this is a dataflow-style visual notation for Haskell
programs, which allows programmers to define their programs visually (with the assistance of a
tool) and then have them translated automatically to Haskell code. Kelso’s VFP system [11] is
a complete environment that allows functional programs to be defined visually and then reduce
them step by step. Finally, VisualLambda [6] is a formalism based on graph-rewriting: programs
are defined as graphs whose reduction mimics the execution of a functional program. As far as we
know none of these systems is widely used.

Visual Haskell and VisualLambda have in common the fact that functions are represented as
boxes with input ports for the arguments and an output port for the result; the contents of the box
corresponds to the body of the function. They differ in that Visual Haskell uses named variables to
refer to function arguments, while VisualLambda uses a graphical notation based on arrows. VFP
uses a notation without boxes, inspired by the representations used in implementation-oriented
graph-rewriting machines. In particular, it allows for named functions but also for λ-abstractions,
and an explicit application node exists. Variables are used for arguments, as in Visual Haskell.

Higher-order programming is a fundamental feature of functional programming. A function f
can take a function g as an argument and g can then be applied within the body of f . Expressing
this feature is easy if variables are used as in Visual Haskell and VFP; in VisualLambda a special
box would be used as a placeholder for g (in the body of f) to be instantiated later, and an arrow
would link an input port in the box of f to the box of g. A second difficulty is that a (curried)
function of two arguments may be applied to its first argument and return as result a function. In
a box-based representation this means that it must be possible for a box to lose its input ports one
by one – a quite complicated process. Graph rewriting in general, and our approach in particular,
treat this problem naturally as will become clear.

The work presented in this paper uses a pure visual representation of programs, without named
variables. In this aspect it resembles VisualLambda, however our work differs significantly from
this in that no boxes are used, and all the graph-rewriting operations are local in the sense that
only two nodes of the graph are involved in each step.

Structure of the Paper. Sections 2 and 3 contain background material on visual programming
with interaction nets and on the token-passing encoding of the λ-calculus. Section 4 defines the
functional language used in the paper. Section 5 introduces the translation of functional programs
into token-passing interaction nets, and Section 6 considers extensions of the language with other
recursion operators. We conclude the paper in Section 7.

2 Interaction Nets

Interaction nets [12] are constrained graph rewriting systems that can still encode all the com-
putable functions. Interaction nets provide a model of computation in a graphical setting. Programs
are represented as particular kinds of graphs, and computation is expressed as graph transforma-
tions. Interaction net systems are user-defined, in the same way as term rewriting systems, by
giving a signature Σ (a set of symbols with a given arity) and a set of interaction rules R. An
occurrence of a symbol is called an agent. An agent with arity n has n + 1 ports: a distinguished
one, depicted by an arrow, called the principal port, and n auxiliary ports. Agents are represented
graphically in the following way:

Encoding Iterators in Interaction Nets 3

A net N built on a signature Σ is a graph (not necessarily connected) with agents at the
vertices. The edges of the net connect agents together at the ports such that there is only one edge
at every port. Edges may connect two different ports of the same agent. The ports of an agent
that are not connected to another agent are called the free ports of the net.

A pair of agents, say (α, β), connected on their principal ports is called an active pair, which
is the interaction net analogue of a redex. An interaction rule replaces an occurrence of the active
pair (α, β) by a net N . The rule has to satisfy a very strong condition: all the free ports are
preserved during reduction, and moreover there is at most one rule for each pair of agents. The
diagram below illustrates the idea, where N is any net built from the signature:

An interaction net system is therefore fully defined by the pair (Σ, R). We say that a net is in
normal form if it does not contain any active pairs. We use the notation −→ for one-step reduction
and −→∗ for its transitive reflexive closure. Additionally, we write N 7→ N ′ if there is a sequence
of interaction steps N −→∗ N ′, such that N ′ is a net in normal form. The strong constraints on
the definition of interaction rules imply that reduction commutes (the one-step diamond property
holds), and thus confluence is easily obtained. Consequently, any normalizing interaction net is
strongly normalizing.

Visual Programming with Interaction Nets. The advantages of using interaction nets for visual
programming can be understood by looking at a simple example. The following interaction rules
define visually the list concatenation operation.

where the symbol app is used for concatenation agents, and nil and cons are the obvious list
constructors. The principal port of app is connected to the first list argument, and the result of
the operation is obtained in the auxiliary port shown on top.

The interest of visual programming with interaction nets in this way can be summarized as
follows.

– Both programs and data are represented in the same simple graphical formalism.
– Programs can be animated without leaving the interaction formalism: instead of resorting to

an external interpreter and then displaying the result of each evaluation step, a program can
be animated by simply reducing the net. The reader can try this by connecting two lists of
some type to an app agent and then applying the rules given above.

– Pattern-matching for external constructors is in-built.
– Recursive definitions are expressed very naturally as interaction rules involving agents (such

as app) that are reintroduced on the right-hand side. Rule application then corresponds to the
expansion of a recursive definition.

The above example is functional in nature: app can be written in a straightforward way as a
function of two arguments that performs recursion on its first argument. But the interaction net

4 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

formalism does not offer a satisfactory semantic interpretation for the behaviour of that symbol.
Moreover, many interaction net systems can be defined that do not have this functional reading.

What is missing is a clear correspondence between functional definitions and interaction sys-
tems like the one shown. In this paper we establish a correspondence between functions defined
with recursion operators and agents with interaction rules like those given for app. We remark
that the inherent inability of interaction nets to match constructors at a level deeper than one
raises no problems: the simple form of pattern-matching available in interaction nets is sufficient
for iterators and other recursion operators such as primitive recursors or accumulations.

3 The Token-passing Encoding of the λ-calculus

A number of different translations of the λ-calculus into interaction nets exist. These have in
common some basic principles:

– Terms are translated into nets of a fixed interaction net system (ΣT , RT).
– If t is a closed λ-term then the net T (t) has one free port, corresponding to the root of the

term, which will be drawn at the top of the net.
– Variables are translated simply as edges in T (t).
– If x1 . . . xn are free variables in t, then the net T (t) has n additional free ports (represented

at the bottom) corresponding to each of the variables .
– T (λx.t) is a net constructed structurally from T (t). This introduces an abstraction symbol

λ at the root of the term, with a port linked to the edge representing the bound variable x
and a port linked to the root of the abstraction body net, T (t). A special case exists when
x 6∈ FV(t), which is handled by introducing an erasing agent ε.

– T (t u) is a net constructed structurally from T (t) and T (u). This introduces an application
symbol @ with ports connected to the root ports of T (t) and T (u). A special case exists when
a free variable occurs in both terms, since a single edge must represent this variable at the
bottom of the term. This is handled by introducing a copying agent c, with its two auxiliary
ports connected to the edges representing the free variable in T (t) and T (u), and the edge
connected to its principal port represents the variable in T (t u).

The token-passing encodings [17] use an interaction system where two different symbols exist for
application: one is the syntactic symbol @ introduced by the translation; the corresponding agents
have their principal ports facing the root of the term and will be depicted by triangles. A second
symbol @̂ exists that will be used for computation; to simplify the figures, the corresponding
agents will be depicted by circles equally labelled with @. Their principal ports face the net that
represents the applied function, to make possible interaction with λ agents.

The translation Ttp (·) encodes terms in the system (Σtp, Rtp) where Σtp = {⇓,@, @̂, λ, c, ε, δ}.
The translation is shown in Figure 1, where T (.) stands for Ttp (·). It generates nets containing
no active pairs, so no reduction can happen.

The special symbol ⇓ is used as an evaluation token: an agent ⇓ traverses the net, transforming
occurrences of @ into @̂, thus triggering reductions. The evaluation rules involving ⇓ can be tailored
for a specific evaluation strategy. For call-by-name, Rtp consists of the rules in Figure 2 (the arity
of each symbol can be inferred from the rules). This comprises evaluation rules involving ⇓, a
computation rule involving @ and λ, and management (copying and erasing) rules. The symbol δ
is a mutation of c used for copying abstractions.

To start the reduction (corresponding to normal order evaluation), a ⇓ symbol must be con-
nected to the root port of the term. Let ⇓N denote the net obtained by connecting a ⇓ agent
to the root port of N , then the following correctness result holds: t ⇓ z iff ⇓Ttp (t) −→∗ Ttp (z),
where the evaluation relation · ⇓ · is defined by the standard normal-order evaluation rules:

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z

Encoding Iterators in Interaction Nets 5

Fig. 1. The token-passing translation of λ-terms: the nets T (t u) and T (λx.t). c denotes an array of c
agents, one for each free variable occurring in both t and u. In T (λx.t), a special case exists (not depicted)
when the bound variable does not occur in the term: an ε agent must be connected to the λ agent instead.

Fig. 2. The token-passing rules Rtp. Note the rule templates for (c, α), (δ, α), and (ε, α), which generate
different rules for each instance of the agent α.

6 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

4 The language BNL

In this paper we use the simply-typed λ-calculus extended with natural numbers, booleans, lists,
and iterators for these recursive types. The language BNL is defined by the following syntax for
types and terms (x, y range over a set of variables):

τ, σ ::= Bool | Nat | List(τ) | τ → σ

t, u, v ::= x | λx.t | t u | tt | ff | iterbool(t, u, v)
| 0 | suc(t) | iternat(λx.t, u, v) | nil | cons(t, u) | iterlist(λxy.t, u, v)

and by the typing rules given by:

Γ, x : σ ` t : τ

Γ ` λx.t : σ → τ

Γ ` t : σ → τ Γ ` u : σ

Γ ` t u : τ

Γ ` tt : Bool Γ ` ff : Bool Γ ` 0 : Nat

Γ ` t : Nat

Γ ` suc(t) : Nat Γ ` nil : List(τ)

Γ ` h : τ Γ ` t : List(τ)

Γ ` cons(h, t) : List(τ)

Γ ` t : Bool Γ ` V : τ Γ ` F : τ

Γ ` iterbool(V, F, t) : τ

Γ ` t : Nat Γ ` λx.S : τ → τ Γ ` Z : τ

Γ ` iternat(λx.S, Z, t) : τ

Γ ` t : List(σ) Γ ` λxy.C : σ → τ → τ Γ ` N : τ

Γ ` iterlist(λxy.C, N, t) : τ

The call-by-name evaluation semantics is as follows. Note that constructor terms of a given type
are taken to be canonical forms.

λx.t ⇓ λx.t

t ⇓ λx.t′ t′[u/x] ⇓ z

t u ⇓ z 0 ⇓ 0 suc(n) ⇓ suc(n)

tt ⇓ tt ff ⇓ ff

t ⇓ tt V ⇓ z

iterbool(V, F, t) ⇓ z

t ⇓ ff F ⇓ z

iterbool(V, F, t) ⇓ z

t ⇓ 0 Z ⇓ z

iternat(λx.S, Z, t) ⇓ z

t ⇓ suc(n) S[iternat(λx.S, Z, n)/x] ⇓ z

iternat(λx.S, Z, t) ⇓ z

nil ⇓ nil cons(u, v) ⇓ cons(u, v)
t ⇓ nil N ⇓ z

iterlist(λxy.C, N, t) ⇓ z

t ⇓ cons(u, v) C[u/x, iterlist(λxy.C, N, v)/y] ⇓ z

iterlist(λxy.C, N, t) ⇓ z

Some variables have been capitalized due to reasons that will become clear later on.

5 A Token-passing Encoding of BNL

We extend to BNL the token-passing call-by-name translation of the λ-calculus into the interaction
system (Σtp, Rtp). We first extend the interaction system and then the translation function. The
novelty of this encoding is not the token-passing aspect (which is a natural extension of the
encoding of the λ-calculus), but rather the approach to recursion.

Encoding Iterators in Interaction Nets 7

Data Structures. Terms of inductively defined types can be represented in interaction nets in the
natural way, as trees where each node corresponds to a constructor, with its principal port facing
the parent node. In a token-passing implementation, there will be an interaction rule between the
token agent and each such constructor symbol that will stop evaluation – this corresponds to the
fact that constructor terms are canonical forms.

For BNL we define the system (ΣBNL, RBNL) where ΣBNL consists of the symbols tt, ff, 0 and
nil with arity 0; suc with arity 1; and cons with arity 2, depicted as

and RBNL consists of the rules given below.

Recursive Programs. A recursive program will be dynamically encoded in an interaction system
specifically generated for it. The interaction system will not be extended by introducing a fixed set
of symbols; instead a new symbol will be introduced for each occurrence of a recursion operator.
This will be accompanied by a set of interaction rules, one for each different constructor of its
argument type, so a dedicated interaction system (Σ0

t , R0
t) is generated for each term t.

This system is constructed by a recursive function (Σ0
t , R0

t) = S (t), defined as follows (∪ is
occasionally used to denote pairwise union).

S (x) .= S (tt) .= S (ff) .= S (0) .= S (nil) .= (∅, ∅)

S (λx.t) .= S (suc(t)) .= S (t)

S (t u) .= S (cons(t, u)) .= S (t) ∪ S (u)

S (iterbool(V, F, b)) .= ({ItBool
V,F ,

̂ItBool
V,F } ∪Σ, RItBool

V,F
∪R),

where (Σ, R) = S (b)∪S (V)∪S (F), and RItBool
V,F

consists of the interaction rules included
in Figures 3(a) and 3(b).

S (iternat(λx.S, Z, n)) .= ({ItNat
S,Z , ̂ItNat

S,Z } ∪Σ, RItNat
S,Z

∪R)
where (Σ, R) = S (n)∪S (S)∪S (Z) and RItNat

S,Z
consists of the interaction rules included

in Figures 3(a) and 3(c).

S (iterlist(λxy.C, N, l)) .= ({ItList
C,N ,

̂ItList
C,N} ∪Σ,RItList

C,N
∪R)

where (Σ, R) = S (l)∪S (C)∪S (N) and RItList
C,N

consists of the interaction rules included
in Figures 3(a) and 3(d).

Iterator symbols are introduced in pairs (It......, Ît
...
...) where the first symbol is used for syntactic

agents and the second for computation agents. To simplify the graphical presentation, syntactic
agents are depicted by triangles. The arity of each symbol can be inferred from the interaction
rules. In Figures 3(b) to 3(d), c denotes an array of c agents and ε denotes an array of ε agents.
The size of this array depends on the number of free variables in the corresponding terms.

8 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

(a)

(b)

(c)

(d)

Fig. 3. Interaction rules for iterators

Encoding Iterators in Interaction Nets 9

(a) (b) (c)

Fig. 4. Translations of iterators. We remark that, if the same variable occurs in more than one of the
named sets (say, FV(V) and FV(F) for iterbool(V, F, b)), c agents must be used to group the edges,
analogously to what happens in the encoding of an application t u (not shown in this figure).

The Translation. A BNL program t will be translated into an interaction net defined in the system
(Σt, Rt) = (Σtp ∪ΣBNL ∪Σ0

t , Rtp ∪RBNL ∪R0
t) where (Σtp, Rtp) was defined in Section 3.

Definition 1. Given a BNL program t, the net T (t) is given as follows.

– If t is an abstraction, variable or application, then T (t) is defined as in Section 3.
– If t is one of tt, ff, 0, or nil, then T (t) is an instance of the corresponding symbol.
– If t = suc(t′), then T (t) is constructed by connecting the auxiliary port of a suc agent to the

root port of T (t′).
– If t = cons(h, t′), then T (t) is constructed by connecting the auxiliary ports of a cons agent to

the root ports of T (h) and T (t′).
– If t = iterbool(V, F, b) then T (t) is given by the net in Figure 4(a).
– If t = iternat(λx.S, Z, n) then T (t) is given by the net in Figure 4(b).
– If t = iterlist(λxy.C, N, l) then T (t) is given by the net in Figure 4(c).

Remarks. As is characteristic of token-passing implementations, all terms (including iterators) are
translated as syntax trees. Syntactic iterator agents i are turned into their computation counter-
parts î by token agents, in the same way as the @ agents in the encoding of the λ-calculus.

A first key aspect of our approach is that the interaction rules of the (computation) iterator
agents internalise the iterator’s parameters. For instance the net T (iterlist(λxy.C, N, cons(h, t)))
reduces in one step to T (C[h/x, iterlist(λxy.C, N, t)/y]), with an evaluation token on top to control
normal-order evaluation.

A second key aspect is that each such new symbol will have auxiliary ports in a one-to-one
correspondence with the free variables in the iterator term, since iterator terms are not restricted
to be closed. The significance of this will be clear from the examples.

Lemma 1. Let t be a closed BNL term; then: t ⇓ z =⇒ ⇓T (t) −→∗ T (z).

Lemma 2. Let t be a closed BNL term and z a canonical form, then: ⇓T (t) −→∗ T (z) =⇒
t ⇓ z.

The proofs of these results can be found in a long version of this paper [1]. The following is a
consequence of the lemmas:

Proposition 1 (Correctness). If t is a closed BNL term and z a canonical form, then: t ⇓
z ⇐⇒ ⇓T (t) −→∗ T (z).

10 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

Fig. 5. Encoding of add and corresponding interaction rules

Example 1. Let add of type Nat → Nat → Nat be defined as add = λxy.iternat(λr.suc(r), y, x).
The free variable y in the second argument of the iterator gives rise to an auxiliary port in the
symbol ItNat

suc(r),y. The net corresponding to the encoding of the function and the interaction rules
generated are given in Figure 5, where add stands for ItNat

suc(r),y. We remark that the last rule,
whose right-hand side contained an active pair, was normalized by reducing that pair. The same
will happen in the following examples.
The interaction rules for the computation agent add constitute a highly intuitive visual definition of
addition, as should happen in any framework for visual programming. Figure 6 shows an example
evaluation of a program.

Example 2. The reader is invited to work out the encoding of the append function: app : List(τ) →
List(τ) → List(τ), defined as app = λl1l2.iterlist(λhr.cons(h, r), l2, l1) and to compare it to the
rules given in Section 2 for the agent app as an example of a direct interaction net program.

Example 3. Our final example corresponds to a higher-order function. The function map : (τ →
σ) → List(τ) → List(σ), defined as map = λfl.iterlist(λhr.cons(f h, r), nil, l). This example differs
from the previous in that a free variable (f) now occurs in the first argument of the iterator. Again
this generates an auxiliary port in ItList

cons(f h,r),nil. The function is encoded as as the net in Figure 7,
where the name map is used for the symbol ItList

cons(f h,r),nil. Its interaction rules are also shown in
the figure.
Again the visual representation is intuitive. The role of the copying agent in the second rule is
to produce two copies of the encoding of the function f : one to be applied to the head of the
argument list, and another to be used in the recursive mapping of the tail.

6 Extending the Language with New Operators

A recursor for natural numbers can be added to the language with the following syntax, typing
and evaluation rules: t, u, v ::= . . . | recnat(λxy.u, v, t),

Γ ` t : Nat Γ ` λxy.S : τ → Nat → τ Γ ` Z : τ

Γ ` recnat(λxy.S, Z, t) : τ

Encoding Iterators in Interaction Nets 11

Fig. 6. Snapshots of the evaluation of the program (λxy.iternat(λr.suc(r), y, x)) (suc(0)) (suc(0))

Fig. 7. Encoding of map and corresponding interaction rules

12 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

t ⇓ 0 Z ⇓ z

recnat(λxy.S, Z, t) ⇓ z

t ⇓ suc(n) S[recnat(λxy.S, Z, n)/x, n/y] ⇓ z

recnat(λxy.S, Z, t) ⇓ z

The computational power of this recursor operator comes from the fact that it has access to
its argument, in addition to the recursive result on that argument. The factorial function, for
instance, can be defined in this way, but not with an iterator. Replacing the iterator with this
recursor requires only minor changes in the interaction system: an agent RecNat

S,Z must be used
in the translation of the expression recnat(λxy.S, Z, t) instead of ItNat

S,Z . Its interaction with the
successor symbol is given by the rule shown below, where we note that for an argument suc(n),
the net representing n must now be duplicated.

Extending the language with other recursion operators is not only a matter of expressiveness,
but also of convenience. We take as example the Haskell foldl (left folding) list operator: even
though it can be encoded with the more common foldr (right folding operator), it is still conve-
nient to have it in the language. For instance, a linear time, tail-recursive function for reversing
lists can be written in the two following ways:

revt l = foldr (\h r a -> r(h:a)) id l []
revt l = foldl (\r h -> h:r) [] l

The latter is clearly preferable for its simplicity. The first version can be written in BNL as
revt = λl.iterlist(λxya.y (cons(x, a)), (λx.x), l) nil. Applying the encoding of Section 5 results in
the introduction of an agent ItList

(λa.y cons(x,a)),(λx.x). Naturally, the interaction rules for this agent
introduce encodings of abstractions in their right-hand sides, which results in a quite complicated
definition. To accommodate the second, simpler definition, we now consider the extension of BNL
with an accumulation operator, t, u, v ::= . . . | acclist(λxy.t, u, v), with the following typing and
evaluation rules.

Γ ` t : List(τ) Γ ` λxy.C : σ → τ → σ Γ ` N : σ

Γ ` acclist(λxy.C, N, t) : σ

t ⇓ nil N ⇓ z

acclist(λxy.C, N, t) ⇓ z

t ⇓ cons(h, u) acclist(λxy.C, C[N/x, h/y], u) ⇓ z

acclist(λxy.C, N, t) ⇓ z

The function S (·) is extended to create the accumulator Interaction Net System as follows.

S (acclist(λxy.C, N, l)) = ({AccList
C,N ,

̂AccList
C,N} ∪Σ, RAccList

C,N
∪R)

where (Σ,R) = S (l) ∪ S (C) ∪ S (N)

and RAccList
C,N

consists of the following rules (together with the obvious evaluation token rule).

Encoding Iterators in Interaction Nets 13

The translation is then extended as follows. T̂ (acclist(λxy.C, N, l)) is defined to be the net

We remark that in the reduction rules for acclist(λxy.C, N, l) the second argument N is not fixed
throughout iteration; as such it cannot be internalized as part of the definition of the agent AccList

C,N .
Instead the corresponding net is connected to an auxiliary port in that agent (we could have
removed the N index from the name of the symbol). The second version can now be written revt =
λl.acclist(λxy.cons(y, x), nil, l), and T̂ (revt) is the following net, where revt stands for AccList

cons(y,x),nil,
with the rules below.

7 Conclusions and Future Work

We have presented an approach to encoding in interaction nets functional programs defined with
recursion operators, and given the full details of the application of this approach to the token-
passing implementation of a normal-order language, which results in a very convenient visual
notation for this language. The approach can be easily extended to richer sets of recursive types
and to other recursion operators and also to new strategies.

We have left types mostly out of our discussion. A net can be typed by assigning a type to
every port. In our context, the types are those defined for the functional language BNL, except

14 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

that they may occur either positively (in ports corresponding to data structures) or negatively (in
ports corresponding to function or constructor arguments). In a correctly-typed net every edge
connects two ports typed with +A and −A for some type A. So typing extends smoothly to the
visual setting.

The novel characteristics of the translation are the fact that the interaction system is generated
dynamically from the program, and the internalisation of some of the parameters of the recursion
operator, in the interaction rules of the symbol that encodes the operator’s behaviour.

Tool Support. A prototype system for visual functional programming is currently being developed,
integrated in the tool INblobs [3] for interaction net programming. The tool consists of an evaluator
for interaction nets together with a compiler module that translates programs to nets. It will allow
users to type in a functional program, visualize it, and then follow its evaluation visually step by
step. Additionally, a visual editing mode will be available that will allow users to construct nets
corresponding to functional programs. This raises a topic we have left out of the discussion in the
paper, which is to give a direct (i.e. not resulting from a translation) characterization of this class
of nets.

Program Transformation. A different line of work is inspired by work of the datatype-generic pro-
gramming community and the school of program calculation [5]. This prompts the investigation
of visual fusion laws for instance. Fusion laws simplify compositional functional programs before
their application to arguments: before calculating f(g(x)) one may in certain conditions, by elim-
inating intermediate data structures, obtain a more efficient function h equivalent to f · g, and
calculate instead h(x). A classic case is when g is an iterator. We conjecture that these laws can
be proved in the interaction net setting by using notions of contextual equivalence [7]. Extending
the visual programming tool with fusion capabilities would make possible to perform program
transformations at the visual level.

Handling Other Encodings. The token-passing translation of the λ-calculus has the advantage of
implementing a simple evaluation order and maintaining a structure in the nets that is always
immediately recognizable and understandable in terms of the evaluation semantics. As such it is
totally appropriate for our goal of providing a visual representation for functional programs.

Interaction nets have been extensively studied as an implementation mechanism for the λ-
calculus. The main motivation for this approach is that it results in highly efficient evaluation
strategies, made possible by the close control kept on the erasing and duplication of terms. The
token-passing translation is not representative of most work in this area, which has concentrated
on designing efficient, rather than simple, translations. These translations are not controlled by an
evaluation token (in fact they produce nets already containing active pairs) and impose reduction
strategies that cannot be defined using term-based abstract machines.

There are a number of interaction net encodings of the λ-calculus, which follow different strate-
gies. To give just a sample, Gonthier, Abadi and Lévy [9] presented an implementation of optimal
β-reduction. Mackie [14, 15] has proposed several systems, each corresponding to a different strat-
egy for reduction in the λ-calculus.

Let T (·) be one such translation. T (t u) is constructed from T (t) and T (u) by introducing an
application symbol @ with its principal port connected to the root port of T (t). Our treatment of
iterators can be adapted to this setting by simply removing the evaluator tokens and introducing
the iterator agents with the principal port immediately facing the argument. For instance we have
that T (iternat(λx.S, Z, n)) may be given by the following net, with the rules below.

Encoding Iterators in Interaction Nets 15

When the iterated function is a closed term, a correctness result can be easily established: Let
λx.S be a closed term, then

1. T (iternat(λx.S, Z, 0)) −→ T (Z)
2. T (iternat(λx.S, Z, suc(n))) −→ T (S[iternat(λx.S, Z, n)/x])

We remark that it is always possible to work with iterators with closed functions – thus this
result applies to all programs. In general the correctness of the resulting translation of BNL has
to be proved for each base translation of the λ-calculus. If such a result can be established, it still
has to be studied if, and in what way, the reduction strategy imposed by the translation for the
λ-calculus is modified by this treatment of recursion.

References

1. J. B. Almeida, I. Mackie, J. S. Pinto, and M. Vilaça. Encoding iterators in interaction nets. Available
from http://www.di.uminho.pt/~jmvilaca.

2. J. B. Almeida, J. S. Pinto, and M. Vilaça. Token-passing Implementations of Recursion and Structured
Types. In Proceedings of the 7th International Workshop on Reduction Strategies in Rewriting and
Programming (WRS’07), 2007. To appear in Elsevier ENTCS.

3. J. B. Almeida, J. S. Pinto, and M. Vilaça. A Tool for Programming with Interaction Nets. In
Proceedings of the The Eighth International Workshop on Rule-Based Programming (RULE’07), 2007.
To appear in Elsevier ENTCS.

4. A. Asperti and S. Guerrini. The Optimal Implementation of Functional Programming Languages,
volume 45 of Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 1998.

5. R. Bird and O. de Moor. Algebra of Programming. Prentice Hall, 1997.
6. L. Dami and D. Vallet. Higher-order functional composition in visual form. Technical report, 1996.
7. M. Fernández and I. Mackie. Operational equivalence for interaction nets. Theoretical Computer

Science, 297(1–3):157–181, February 2003.
8. J.-Y. Girard, Y. Lafont, and P. Taylor. Proofs and Types, volume 7 of Cambridge Tracts in Theoretical

Computer Science. Cambridge University Press, 1989.
9. G. Gonthier, M. Abadi, and J.-J. Lévy. The geometry of optimal lambda reduction. In Proceedings of

the 19th ACM Symposium on Principles of Programming Languages (POPL’92), pages 15–26. ACM
Press, Jan. 1992.

10. K. Hanna. Interactive Visual Functional Programming. In S. P. Jones, editor, Proc. Intnl Conf. on
Functional Programming, pages 100–112. ACM, October 2002.

11. J. Kelso. A Visual Programming Environment for Functional Languages. PhD thesis, Murdoch
University, 2002.

12. Y. Lafont. Interaction nets. In Proceedings of the 17th ACM Symposium on Principles of Programming
Languages (POPL’90), pages 95–108. ACM Press, Jan. 1990.

16 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

13. I. Mackie. The geometry of interaction machine. In Proceedings of the 22nd ACM Symposium on
Principles of Programming Languages (POPL’95), pages 198–208. ACM Press, January 1995.

14. I. Mackie. YALE: Yet another lambda evaluator based on interaction nets. In Proceedings of the 3rd
International Conference on Functional Programming (ICFP’98), pages 117–128. ACM Press, 1998.

15. I. Mackie. Efficient λ-evaluation with interaction nets. In V. van Oostrom, editor, Proceedings of the
15th International Conference on Rewriting Techniques and Applications (RTA’04), volume 3091 of
Lecture Notes in Computer Science, pages 155–169. Springer-Verlag, June 2004.

16. H. J. Reekie. Realtime Signal Processing – Dataflow, Visual, and Functional Programming. PhD
thesis, University of Technology at Sydney, 1995.

17. F.-R. Sinot. Call-by-name and call-by-value as token-passing interaction nets. In P. Urzyczyn, editor,
TLCA, volume 3461 of Lecture Notes in Computer Science, pages 386–400. Springer, 2005.

Encoding Iterators in Interaction Nets 17

A Proof of Lemma 1

The following auxiliary Lemma has a simple inductive proof:

Lemma 3. Let t ∈ BNL be a closed term, then

1. the interaction net obtained by connecting an agent ε to T (t) reduces to the empty net, and
2. the interaction net obtained by connecting a c agent to T (t) reduces to two copies of the net

T (t).

T (t)

c

T (t) T (t)
*

ε

T (t)

*

Lemma 4. For every term t and closed term u we have the following.

T (t)

T (u)

....
* T(t{u/x})

........

Proof. Direct from the definition of substitution and the previous result.

And now for Lemma 1:
Let t be a closed BNL term, then

t ⇓ z =⇒ ⇓T (t) −→∗ T (z)

Proof. By induction on the length of the derivation of t ⇓ z:

– base cases: if t is one of λx.t′, tt, ff, 0, suc(t′), nil, or cons(t′, u), then t ⇓ t and ⇓T (t) −→ T (t)
– if v u ⇓ z then two induction hypotheses apply:

⇓T (v) −→∗ T (λx.v′) (1)
⇓T (v′[u/x]) −→∗ T (z) (2)

and ⇓T (v u) −→∗ T (z) by a ⇓ ./ @ interaction step, followed by (1), followed by a @̂ ./ λ
interaction step. Now since u must be closed, Lemma 4 applies to finish the substitution
process, thus ⇓T (v u) −→∗ ⇓T (v′[u/x]). Finally using (2) we get ⇓T (v u) −→∗ T (z).

– for iternat(λx.S, Z, t) ⇓ z two rules exist with this conclusion. For each case two induction
hypotheses apply.
• Case 1

⇓T (t) −→∗ T (0) (3)
⇓T (Z) −→∗ T (z) (4)

• Case 2

⇓T (t) −→∗ T (suc(n)) (5)
⇓T (S[iternat(λx.S, Z, n)/x]) −→∗ T (z) (6)

18 José B. Almeida, Ian Mackie, Jorge Sousa Pinto, and Miguel Vilaça

In both cases the reduction of ⇓T (iternat(λx.S, Z, t)) starts with a ⇓ ./ ItNat
S,Z interaction step.

Then:
• Case 1. I.H. (3) applies, followed by a ItNat

S,Z ./ 0 interaction and I.H. (4). Finally, since
iternat(λx.S, Z, t) is closed, Lemma 3 applies to erase subterms.

• Case 2. I.H. (5) applies, then a ItNat
S,Z ./ suc interaction. Since iternat(λx.S, Z, t) is closed,

Lemma 3 applies to duplicate subterms, resulting in ⇓T (S[iternat(λx.S, Z, n)/x]). Finally,
I.H. 5 applies.

Thus in both cases ⇓T (iternat(λx.S, Z, t)) −→∗ T (z).
– The remaining cases (conditional and list iterator) are similar.

ut

B Proof of Lemma 2

Let t be a closed BNL term and z a canonical form according to the rules in Section 4; then

⇓T (t) −→∗ T (z) =⇒ t ⇓ z

Proof. By induction on the length of the interaction net reduction sequence ⇓T (t) −→∗ T (z)
and case analysis:

– if t is a canonical form λx.t′, tt, ff, 0, suc(t′), nil, or cons(t′, u), then we have a base case for
induction (1 reduction step) since

⇓T (t) −→ T (t) =⇒ t ⇓ t

– if t = t′ u then the net ⇓T (t) reduces in one step to a net with an agent @̂ at the root. Now
if this net reduces to T (z) for some canonical form z, it must be the case that the @̂ agent
is involved in a reduction step, and the only rule that applies is the β rule with the λ agent;
thus there must be a reduction sequence

⇓T (t′) −→∗ T (λx.t′′) (7)

for some abstraction λx.t′′, and then a further reduction yields ⇓T (t) −→∗ ⇓T (t′′[u/x]). To
complete the reduction sequence the following must hold:

⇓T (t′′[u/x]) −→∗ T (z) (8)

Now applying the induction hypothesis to the reductions (7) and (8) yields t′ ⇓ λx.t′′ and
t′′[u/x] ⇓ z, and the application of the appropriate evaluation rule from Section 4 concludes
this case.

– if t is an iterator term, a similar reasoning applies. We illustrate this for t = iternat(λx.S, Z, n).

The net ⇓T (t) reduces in one step to a net with an agent ̂ItNat
S,Z at the root. If this net reduces

to T (z) for some canonical form z, it must be the case that the agent at the root is involved
in a reduction step, and the only rules that apply are those in Figure 3(c); thus one of the two
reduction sequences must exist:

⇓T (n) −→∗ T (0) , or (9)
⇓T (n) −→∗ T (suc(n′)) (10)

for some n′. One further step of reduction, together with Lemmas 3 and 4, yields in each case

⇓T (t) −→∗ ⇓T (Z) , or
⇓T (t) −→∗ ⇓T (S[iternat(λx.S, Z, n′)/x])

Encoding Iterators in Interaction Nets 19

Reduction is completed as follows in both cases:

⇓T (Z) −→∗ T (z) , or (11)
⇓T (S[iternat(λx.S, Z, n′)/x]) −→∗ T (z) (12)

Applying the induction hypothesis to 9 and 11 yields n ⇓ 0 and Z ⇓ z. In the other case,
applying the I.H. to 10 and 12 yields n ⇓ suc(n′) and S[iternat(λx.S, Z, n′)/x] ⇓ z. In both
cases the proof is finished by applying evaluation semantics rules, resulting in t ⇓ z.

ut

