
Building Composable Domain-specific
Language Extensions for Java

Eric Van Wyk

Department of Computer Science www.melt.cs.umn.edu

and Engineering www.cs.umn.edu/~evw

University of Minnesota evw@cs.umn.edu

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 2

Extensible Languages: motivation and
goals

 Domain specific languages (DSLs) provide
 high-level notations for abstractions

 analyses (e.g. error checking at domain level),

 optimizations

specific to a problem domain.
 But, problems often cover more that one domain.

 Libraries are “composable” --- programmers import the
ones they want to use, but these have none of the
advantages that DSLs provide.

 Extensible languages in which
 language extensions add domain-specific language features

 with composable extensions, programmers can import the set of
features needed to address all aspects of a particular task.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 3

Example: SQL embedded in Java
 In JDBC, SQL commands are sent as strings to the

database server via a connection.

 One writes code like the following:
Int value = 100 ;

ResultSet rs ;

Statement stmt = conn.createStatement();

rs = stmt.execute(“SELECT cust_name FROM " +

“customers WHERE quantity > " + value);

 SQL error checking and optimization is done by the
server at run-time, not by the compiler at compile-time.

 A better solution: extend Java with SQL language
constructs.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 4

Example: SQL embedded in Java
 Using an extensible language . . .

Int value = 100 ;

ResultSet rc ;

rc = using conn query

(SELECT cust_name FROM

customers WHERE quantity > value) ;

 Here on … query is a new expression which takes a data
base connection and an SQL query expression.

 An extended language processor can statically type check
the SQL queries.

 Requires semantic analysis and translation to Java.

 This is not LINQ or SQLJ.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 5

Example: Computational Geometry
 Geometric algorithms make extensive use of primitive

expressions that return a qualitative result over geometric
entities
 e.g. is point p inside circle (c,r)

 e.g. is point p to the left or right of vertical line l

 implemented by taking the sign of an expression “sign (z - x * y)”

 Writing efficient robust CG programs is difficult.
 Round off errors due to limited precision numbers.

 Import fast unbounded-precision integers from LN

 Degeneracies in the input data – point p is on line l

 Perform transformations to handle degeneracies

 Can statically calculate size needed for intermediate values.

 Again, require semantic analysis and translation.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 6

Challenges to building extensible
languages

 Composable specifications of feature semantics

 Attribute grammars + forwarding + . . .

 Get both explicit and implicit (via translation)
specification of semantics.

 Tool support: Silver – extensible AG system.

 Composable specifications of feature syntax

 Context-aware scanning with LR-parsing

 Deterministic, yet handles large class of languages

 Monolithic and modular determinism analyses

 Tool support: Copper – parser and scanner generator.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 7

AbleJ

 An extensible implementation of Java

 Built from declarative specifications used by Silver
and Copper.

 Several composable language extensions
 SQL, Computational Geometry, Condition Tables, Pizza

constructs, . . .

 Supports automatic composition of language
extensions to create domain-adapted versions of
Java.

 Specifies all of Java 1.4 syntax and several
semantic analyses such as type checking.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 8

More information

 … on Tuesday and Thursday

 … Thanks for your attention.

