
Building Composable Domain-specific
Language Extensions for Java

Eric Van Wyk

Department of Computer Science www.melt.cs.umn.edu

and Engineering www.cs.umn.edu/~evw

University of Minnesota evw@cs.umn.edu

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 2

Extensible Languages: motivation and
goals

 Domain specific languages (DSLs) provide
 high-level notations for abstractions

 analyses (e.g. error checking at domain level),

 optimizations

specific to a problem domain.
 But, problems often cover more that one domain.

 Libraries are “composable” --- programmers import the
ones they want to use, but these have none of the
advantages that DSLs provide.

 Extensible languages in which
 language extensions add domain-specific language features

 with composable extensions, programmers can import the set of
features needed to address all aspects of a particular task.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 3

Example: SQL embedded in Java
 In JDBC, SQL commands are sent as strings to the

database server via a connection.

 One writes code like the following:
Int value = 100 ;

ResultSet rs ;

Statement stmt = conn.createStatement();

rs = stmt.execute(“SELECT cust_name FROM " +

“customers WHERE quantity > " + value);

 SQL error checking and optimization is done by the
server at run-time, not by the compiler at compile-time.

 A better solution: extend Java with SQL language
constructs.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 4

Example: SQL embedded in Java
 Using an extensible language . . .

Int value = 100 ;

ResultSet rc ;

rc = using conn query

(SELECT cust_name FROM

customers WHERE quantity > value) ;

 Here on … query is a new expression which takes a data
base connection and an SQL query expression.

 An extended language processor can statically type check
the SQL queries.

 Requires semantic analysis and translation to Java.

 This is not LINQ or SQLJ.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 5

Example: Computational Geometry
 Geometric algorithms make extensive use of primitive

expressions that return a qualitative result over geometric
entities
 e.g. is point p inside circle (c,r)

 e.g. is point p to the left or right of vertical line l

 implemented by taking the sign of an expression “sign (z - x * y)”

 Writing efficient robust CG programs is difficult.
 Round off errors due to limited precision numbers.

 Import fast unbounded-precision integers from LN

 Degeneracies in the input data – point p is on line l

 Perform transformations to handle degeneracies

 Can statically calculate size needed for intermediate values.

 Again, require semantic analysis and translation.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 6

Challenges to building extensible
languages

 Composable specifications of feature semantics

 Attribute grammars + forwarding + . . .

 Get both explicit and implicit (via translation)
specification of semantics.

 Tool support: Silver – extensible AG system.

 Composable specifications of feature syntax

 Context-aware scanning with LR-parsing

 Deterministic, yet handles large class of languages

 Monolithic and modular determinism analyses

 Tool support: Copper – parser and scanner generator.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 7

AbleJ

 An extensible implementation of Java

 Built from declarative specifications used by Silver
and Copper.

 Several composable language extensions
 SQL, Computational Geometry, Condition Tables, Pizza

constructs, . . .

 Supports automatic composition of language
extensions to create domain-adapted versions of
Java.

 Specifies all of Java 1.4 syntax and several
semantic analyses such as type checking.

Eric Van Wyk, University of MinnesotaGTTSE, Braga, Portugal, July, 2007 8

More information

 … on Tuesday and Thursday

 … Thanks for your attention.

