
Techniques for lightweight DSL development in
Converge

Laurence Tratt
http://tratt.net/laurie/

2007/07/02

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 1 / 8

http://tratt.net/laurie/
http://tratt.net/laurie/

Background

Renewed talk of DSLs, particularly in Ruby.

Are library calls really all a DSL is?
Rich DSLs require new syntax...
...but parsing, compilation, error checking etc. are often hard.
A solution: an extensible programming language. Converge.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 2 / 8

http://tratt.net/laurie/

Background

Renewed talk of DSLs, particularly in Ruby.
Are library calls really all a DSL is?

Rich DSLs require new syntax...
...but parsing, compilation, error checking etc. are often hard.
A solution: an extensible programming language. Converge.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 2 / 8

http://tratt.net/laurie/

Background

Renewed talk of DSLs, particularly in Ruby.
Are library calls really all a DSL is?
Rich DSLs require new syntax...
...but parsing, compilation, error checking etc. are often hard.

A solution: an extensible programming language. Converge.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 2 / 8

http://tratt.net/laurie/

Background

Renewed talk of DSLs, particularly in Ruby.
Are library calls really all a DSL is?
Rich DSLs require new syntax...
...but parsing, compilation, error checking etc. are often hard.
A solution: an extensible programming language. Converge.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 2 / 8

http://tratt.net/laurie/

What is Converge?

Converge has a number of influences. Relevant ones include:
is dynamically, but strongly typed (think Python).
is compiled to bytecode and run by a VM (think Java).
can perform compile-time meta-programming (as Template
Haskell, but probably easiest to think of macros in LISP/Scheme).
can have its syntax extended (think MetaBorg).

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 3 / 8

http://tratt.net/laurie/

Compile-time meta-programming

This is the tricky, interesting bit!

Expression 2 + 3 evaluates to 5 as one expects.

Splice $<x> evaluates x at compile-time; the
AST returned overwrites the splice.

Quasi-quote [| 2 + 3 |] evaluates to a hygienic AST repre-
senting 2 + 3.

Insertion [| 2 + ${x} |] ‘inserts’ the AST x into the AST be-
ing created by the quasi-quotes.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 5 / 8

http://tratt.net/laurie/

Compile-time meta-programming

This is the tricky, interesting bit!

Expression 2 + 3 evaluates to 5 as one expects.

Splice $<x> evaluates x at compile-time; the
AST returned overwrites the splice.

Quasi-quote [| 2 + 3 |] evaluates to a hygienic AST repre-
senting 2 + 3.

Insertion [| 2 + ${x} |] ‘inserts’ the AST x into the AST be-
ing created by the quasi-quotes.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 5 / 8

http://tratt.net/laurie/

An example

func expand_power(n, x):
if n == 0:
return [| 1 |]

else:
return [| ${x} * ${expand_power(n - 1, x)} |]

func mk_power(n):
return [|
func (x):
return ${expand_power(n, [| x |])}

|]

power3 := $<mk_power(3)>

means that power3 looks like:
power3 := func (x):
return x * x * x * 1

by the time it is compiled to bytecode.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 7 / 8

http://tratt.net/laurie/

What does this have to do with DSLs?

Macros allow us to ‘compile out’ DSLs at compile-time.
Converge has lots of support for DSL creation, debugging etc.
Talk #1: Introduction to Converge, macros, and simple DSL
creation.
Talk #2: Quick introduction to Converge and macros, and slightly
more advanced DSL creation.

L. Tratt http://tratt.net/laurie/ Lightweight DSLs in Converge 2007/07/02 8 / 8

http://tratt.net/laurie/

	

