
© 2007 by «Author»; made available under the EPL v1.0 | Date | Other Information, if necessary© 2007 by IBM | July 2007 GTTSE 2007

SAFARI: A Meta-Tooling Platform for Creating
Language-Specific IDEs

Robert M. Fuhrer, Philippe Charles, Stanley M. Sutton Jr.
(IBM T. J. Watson Research Center)

Chris Laffra
(IBM Rational)

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Outline

 Introduction

 SAFARI IDE Development Process Walk-through

 SAFARI Architecture

 Status & Future Work

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Motivation: Easier IDE Creation

 New programming languages are being developed all the time

 “Pure” language research – X10, Fortress, SQLJ, XJ, Linq, PolyJ,…

 Languages to support new architectures, environments, …

 Domain specific languages

 Scripting languages

 Evaluation of language design requires analysis of prolonged use on

significant code bases

 IDE support is critical to adoption and substantial use of new language

 Many existing languages still don’t enjoy support in mainstream IDEs

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Target: Desired IDE Functionality

 New Project/Type/… creation wizards

 refactoring

 launch & debug: launch configs,

breakpoints, backtraces, values, evaluation JDT sets a very high bar!

syntax highlighting, compiler annotations,

hover help, source folding, formatting…

structural views

navigation (hyperlinks, “Open Type”, …)

content assist, quick fixes

compiler w/ incremental build,

automatic dependency tracking

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Approach

 Take advantage of common themes, structures, semantics

 Encapsulate common IDE & language idioms

 Language inheritance:

 in language structure/semantics in implementation

 Meta-tooling for language-specific IDEs

 Language-definition support for syntax, auto-generated ASTs, analyses

 Framework classes for IDE components

 DSL’s to more easily implement language services

 Extensible multi-language static analysis framework (WALA)

 Refactoring support

 Guide developer and direct focus to relevant APIs & customization sites

 Cheat sheets, wizards, default implementations, example IDEs, …

Enable IDE developers to get on with the interesting work!

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Outline

 Introduction

 SAFARI IDE Development Process Walk-through

 SAFARI Architecture

 Status & Future Work

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Development Process: Overview

 Start with a plugin project (duh!)

 Define language descriptor

 Identify base language (if any), file name extensions, …

 In the future: use standard Eclipse “content types”

 Define lexical and grammar specifications

 Using LPG: create grammar skeleton; complete it; parser and AST types

automatically generated

 In the future: interoperate with other parser generators

 Or do it all yourself

 Define various language services

 Mostly in any order, though a few constraints (e.g., reference resolver

before content assistance)

 Customize each selected service as necessary

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Demo, part 1: Basic Services

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Development Process: Adding a Builder/Compiler

 Create skeleton using wizard and SAFARI class library

 Flesh out skeleton:

 Call out to an existing compiler

 direct compiler messages to IMessageHandler

 Write a new compiler starting from AST

 If using Polyglot: implement standard analyses (type checking,

reachability…)

 Implement dependency visitor

 If compiler generates Java™ source: line breakpoint support by adding

SMAP (JSR-44) attributes to generated Java class files

 compiler inserts “//#line” comments to indicate original source location

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Demo, part 3: Building and Execution

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Outline

 Introduction

 SAFARI IDE Development Process Walk-through

SAFARI Architecture

 Status & Future Work

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Architecture of SAFARI-based IDEs

language-specificlanguage-independent * in progress

Polyglot (Cornell Univ)

• base Java 1.4 AST’s
• name resolution
• type checking, …

WALA Static Analysis

• fundamental algorithms/reps
• SSA conversion, 3-address IR
• pointer analyses, call graphs

SAFARI Base Views,
Source Editor,

Builder, Search, …

• content assist
• hover help
• hyperlinking
• outline view,…

LPG Parser/Scanner
Generator

• AST generation

X10 View Enablers

* X10-specific Refactorings

* SAFARI Refactoring

• AST matching & rewriting
• core refactorings WALA Source Analysis

•source translation to WALA IR
•source mapping structures
•base Java source translator
•Eclipse project class-path reader

* X10 Refactoring Enabler

• AST matching & rewriting adapter
• core refactoring extensions

X10 Compiler Front End
• grammar extensions
• AST extensions
• type-checking extensions
• …

* X10/WALA Analysis Enabler
• new WALA IR instructions
• X10 AST’s IR translator
• instruction handlers for analyses

Eclipse 3.1

• JFace: text editing, …
• search API’s
• builder, marker API’s
• LTK (refactoring)
• …

* Java Refactoring Enabler

• AST matching & rewriting adapter
• core refactoring extensions

Java View Enablers
• Token Colorer
• ContentProvider
• LabelProvider
• DocProvider
• Source Folder, …

not part of SAFARI

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Support for Language Services & Analysis

Lexical Analysis

Syntax

Coloring Syntactic Analysis (Parsing)

Binding Analysis

Content

Assist

Eager

Parsing

Flow Analyses

Quick Fix

Refactoring

Refactoring-

Specific

Analyses

Search

Index

Creation

Lexical
Specificatio

n

Grammar
Specification,

Auto-generated
AST’s

Grammar Annotations:
Scoping & Definitions

Declarative
Presentation
Specification

s

Index Entry
Specifications

AST Pattern
Matching

WALA Analyses

Declarative
AST Rewrite

Specifications

Error Recovery
Grammar Specs,

Declarative
Assist

Specifications

m
o

re
 e

x
p

e
n

sive
 a

n
a
ly

se
s

Outlining

/Folding

Type Analysis

Language

Inheritance

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI (LPG) Scanner Specifications & Inheritance

incremental additions

to base scanner spec

ident ::= [a-zA-Z][a-zA-Z0-9_]+

digit ::= [0-9]

integer ::= digit+

fixed ::= digit+ \. digit+

…

inherit base;

drop float, fixed;

httpProto ::= ‘http’

mailProto ::= ‘mailto’

ftpProto ::= ‘ftp’

hostname ::= ident (\. ident)+

hostIP ::= digit+ (\. digit+)+
new terminals

Base Scanner:

Derived Scanner:

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI (LPG) Grammar Specifications & Inheritance

start A;

A ::= B | C

B$$b ::= b | B b

mods[|mod|] ::= $empty | mods mod

mod## ::= static | public | …

…

inherit base;

drop C;

A ::= D

D ::= …

Base Grammar:

Derived Grammar:

new production for

existing non-terminal

new non-terminal

AST for B is an array of b’s

mods is an OR of mod’s

AST for mod is an enum

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

TextPresentation KeywordPresentation {
font normal = "courier"
token keyword = {

color = "blue";
font = normal;
style = { bold };

}
token comment = {

color = "green";
font = normal;
style = { italic };

}
token string = {

color = "red";
font = normal;
style = { italic };

}
}

Editor extends Language.Editor {
use KeywordPresentation;

}
}

package x10.uide.views;

language X10 extends Java {
icon nullableIcon = "icons/nullable.gif";
icon valueIcon = "icons/value.gif";

set modifierIcons(decl) = super.modifierIcons(decl)+{
decl.modifiers().isNullable() => nullableIcon,
decl.modifiers().isValue() => valueIcon

}

Outline extends Java.Outline {
node async;

}
}

package java.uide.views;

language Java {
icon staticIcon = "icons/static.gif";
icon finalIcon = "icons/final.gif";
icon publicIcon = "icons/public.gif";
icon privateIcon = "icons/private.gif";
icon protectedIcon = "icons/protected.gif";
icon packageIcon = "icons/package.gif";

set modifierIcons(Declaration decl) = {
decl.modifiers().isStatic() => staticIcon +
decl.modifiers().isFinal() => finalIcon +

decl.modifiers().isPublic() => publicIcon +
decl.modifiers().isPrivate() => privateIcon +
decl.modifiers().isProtected() => protectedIcon +
decl.modifiers().isPackage() => packageIcon

}
TreePresentation DeclPresentation {

node Type = {
label = Type.name();
icons = modifierIcons(Type);

}
node Method = {

label = Method.name() + Method.signature();
icons = modifierIcons(Method);

}
node Field = {

label = Field.name();
icons = modifierIcons(Field);

}
}
Outline extends Language.Outline {

use DeclPresentation;
node Type;
node Method;
node Field;

}

font normal = "courier"

token keyword = {

color = "blue";

font = normal;

style = { bold };

}

token comment = {

color = "green";

font = normal;

style = { italic };

}

token string = {

color = "red";

font = normal;

style = { italic };

}

SAFARI Presentation Specification

generate label &

image providers

generate

token colorer

language inheritance

declare iconsassociate AST

nodes w/ icons

associate token

types w/ text attributes

node Type = {

label = Type.name();

icons = modifierIcons(Type);

}

node Method = {

label = Method.name() +

Method.signature();

icons = modifierIcons(Method);

}

node Field = {

label = Field.name();

icons = modifierIcons(Field);

}

language X10 extends Java {

icon nullableIcon = "icons/nullable.gif";

icon valueIcon = "icons/value.gif";

set modifierIcons(Declaration decl) =

super.modifierIcons(decl) + {

decl.modifiers().isNullable() =>

nullableIcon,

decl.modifiers().isValue() =>

valueIcon

};

Outline extends Java.Outline {

node async;

}

}

icon staticIcon = "icons/static.gif";

icon finalIcon = "icons/final.gif";

icon publicIcon = "icons/public.gif";

icon privateIcon = "icons/private.gif";

icon protectIcon = "icons/protected.gif";

icon packageIcon = "icons/package.gif";

set modifierIcons(Declaration decl) = {

decl.modifiers().isStatic() => staticIcon +

decl.modifiers().isFinal() => finalIcon +

decl.modifiers().isPublic() => publicIcon +

decl.modifiers().isPrivate()=> privateIcon +

decl.modifiers().isProtected()=>protectIcon +

decl.modifiers().isPackage() => packageIcon

}

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Error Handling

 Errors are the norm! must not cripple the IDE!

 All analyses must produce something reasonable wherever possible

SAFARI/LPG: systematic, semi-automatic error recovery for parsing &

creating “prosthetic” AST nodes

void A() {

int x= 5;

foo blah;

for(int i=0; i < a.length; i++) {

int y= a[i] * a[j];

x += y;

}

}

A()

body

int x= 5; BadStmt for

int i=0;

body

i < a.length i++

header

…dangling ref

mangled statement

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Code Generation in SAFARI

 Presently: two very simple approaches

 Template-based w/ substitutions for initial skeletons of user-modifiable
code

 substitution targets: package, folder, class names, etc.

 information taken from several sources

 wizard dialog fields

 properties of existing code/meta-data gleaned by reflection

 Java code generation by syntax-directed translation for declarative
specifications

 Domain-specific specification languages designed to interoperate with
existing Java/Eclipse APIs

 N.B.: Some specification languages appear to be purely declarative, but
actually extend imperative Java with declarative syntax

 So: not constrained by power of declarative language; mixture of
declarative and imperative specification possible

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Code Generation (cont.)

 Two shortcomings of current template-based solution:

 round-tripping (of course)

 granularity

 Observation: some service implementations require incremental

additions to existing code structures

 e.g., add registration call to startup code

 In fact, all services require incremental additions to existing meta-data

 i.e., add one or more extension definitions to plugin.xml

class LPGRefactoringContributor implements IRefactoringContributor {

public IAction[] getRefactoringActions(UniversalEditor ed) {

return new IAction[] {

new FooRefactoringAction(editor),

new BarRefactoringAction(editor)

};

}

}

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Code Generation (cont.)

 Partial solution (under development): structural Java code manipulation via
AST’s and code templates

 Specify what’s being done (e.g. add method foo() to class Bar)

 Prevents overwriting of entities irrelevant to transformation

 Arbitrarily fine-grained (e.g. “add value to array initializer”)

 Builds on SAFARI AST transformation toolkit (declarative rewrite language)

 Handles most common cases, but not a complete solution

 In fact, similar problems for generating code by syntax translation (except for
granularity): solve the same way

 Also: need better reflection mechanisms to expose current state/structure of
code + meta-data

 Eclipse plugins consist of Java code + XML meta-data describing extensions

 Eclipse Plugin Development Environment (PDE) provides some meta-data
reflection, but not particularly convenient

 Eclipse Java Development Toolkit (JDT) provides considerable help in representing
Java code to be manipulated (find precise spot to modify)

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Outline

 Introduction

 SAFARI IDE Development Process Walk-through

 SAFARI Architecture

Status & Future Work

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Status and Future Work

 Implementation used @ IBM for ongoing IDE & language development

 Installation via IBM-internal Eclipse update site

 Current SAFARI-based IDE implementations:

 LPG, Java, X10 (IBM Watson Research)

 JavaScript (IBM Tokyo Research)

 Eclipse.org Technology Project proposal and initial open-source

release planned for 2Q07

 Support for

 Source formatting

 Language embedding

 Language inheritance

 Refactoring and transformation

 Refinements and extensions to static analysis infrastructure

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

The End

 SAFARI Meta-Tooling Platform

 http://www.research.ibm.com/safari/

 LPG (formerly JikesPG) Scanner/Parser Generator

 http://sourceforge.net/project/lpg

 The X10 Concurrent Programming Language

 http://x10.sourceforge.net/

 WALA (formerly DOMO) Static Analysis Framework

 http://wala.sourceforge.net/

 Polyglot Extensible Compiler Framework

 http://www.cs.cornell.edu/projects/polyglot/

Questions?

slides online here

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Backup Slides

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

 Language description

 Parser; message handling

 Token colorer

 Reference resolver
 Documentation provider

 Outline content provider
 Label provider
 Image decorator

 Content proposer

 Index contributor

 Folding updater
 Auto-edit strategy
 Formatter

 Dependency scanner
 Compiler
 Nature enabler

 Type analysis, IR construction

 Refactoring contributions

 Preference service and pages

User-Visible IDE Services

 Source editor

 Compiler annotations
 Annotation hover
 Resource markers

 Token coloring

 Hyperlinked navigation
 Hover help

 Outline view
 Quick outline

 Content assistance

 Indexed search

 Source folding
 Auto-editing
 Formatting

 Incremental compilation

 Call graph
 Type hierarchy

 Refactoring contributions

 Preference service and pages

IDE Developer Responsibilities

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Language Service Dispatching

Source Editor
Analysis

Scheduler

Ref Resolver

Doc Provider

Index Creator

Syntax Colorer

Outliner

Formatter

etc.

IDE Services for “leg”

Compiler Front-End

Call Graph Builder

Type Inferencer

Analysis Services for “leg”

etc.

Source File

“foo.leg”

…

{content type “leg”

“leg” language }

…

Language Registry

Call

Graph

Type

Hierarchy

Whole Program

Analysis Results

Tokens AST

etc.

Analysis Results

for “foo.leg”

Bindings

Service

Controller

Listeners

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Language Service Scheduling

m
o

re exp
en

sive an
alysis

Quick Fix, Refactoring

Outline, Pkg Explorer

Updates

Syntax color updates

Index Creation

Indexed Search

Lexical Analysis

Syntactic Analysis

Specialized Analyses

IReconcileStrategy

Explicit User Actions

Editing Actions

Background Jobs

IPresentationStrategyDamage IRegion

idle time

IDocument

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

SAFARI Static Analysis Support

 Uses WALA open-source extensible static analysis framework

 General framework encompassing many classic analyses

 pointer, type, escape & effects analysis, call graph construction, …

 multiple precisions (CHA, RTA, 0-CFA, 1-CFA, etc.)

 General iterative solver framework for expressing new analyses

 Robust, highly scalable (capable of analyzing MLOC programs)

 Handles static and dynamic languages

 Currently supports Java, JavaScript, PHP, X10

 Adding support to WALA for a new language:

 Implement translator from source AST’s into WALA AST’s

 Define new instruction types for WALA IR as needed (~10 for X10)

 Implement constraint handlers for new IR instructions to enable existing

analyses (e.g. pointer analysis, effects analysis, escape analysis)

http://wala.sourceforge.net

WALA IR Generation from Source Code

IBM JavaScript
AST

Polyglot Java AST

Polyglot X10 AST

JS CAst AST

Java CAst -> IR
translator

IBM JS -> CAst
translator

Rhino JavaScript
AST

Polyglot Java -> CAst
translator

Generic OO -> CAst
translator services

WALA IR

X10 -> CAst
translator

OO CAst AST

Java CAst AST

X10 CAst AST

Eclipse Java AST

Generic Java -> CAst
translator

Eclipse Java -> CAst
translator

Rhino JS -> CAst
translator

Generic JS -> CAst
translator

Generic OO
CAst -> IR
translator

X10 CAst -> IR
translator

JS CAst -> IR
translator

inheritance

data flow

Presentation Title | Presentation Subtitle | © 2007 by «Author»; made available under the EPL v1.0SAFARI | A Meta-Tooling Platform for Creating Language-Specific IDEs | © 2007 by IBM GTTSE 2007

Related Work

 GUIDE (Laffra/IBM Rational):

 inspiration, foundation for early SAFARI prototype

 Eclipse Language Development Toolkit (LDT):

 Eclipse Technology Project proposal, vaguely similar goals to SAFARI, withdrawn

 Eclipse Web Standard Tools (WTP):

 Focus on multi-language support

 Structured Source Editor (SSE) offers similar editing infrastructure

 API’s, no meta-tooling (?)

 May be possible to build parts of SAFARI on top of WTP/SSE (TBD)

 Eclipse Dynamic Languages Toolkit (Technology Project)

 Focuses on dynamic languages

 Uses single generic language model for program representation; SAFARI permits
custom ASTs, and can use your existing compiler front-end as is

 Not based on meta-tooling

 Aims for language interoperability, SAFARI for IDE and language extensibility

