Verilog Synthesis

Summer School on Generative and Transformational
Techniques in Software Engineering, 2005

Verilog Synthesis



Outline

e A Quick Tutorial on TL
e Overview of a Synthesis Problem

e Design and Implementation

Verilog Synthesis



A Quick Tutorial on TL

The Signature of a Rewrite Rule

From the perspective of type, a labelled rewrite rule has the
form:

id : pattern — s" [ if Boolean ]

Verilog Synthesis



A Quick Tutorial on TL

The Signature of a Rewrite Rule

From the perspective of type, a labelled rewrite rule has the
form:

id : pattern — s" [ if Boolean ]

@ the type id is the set of identifiers

@ the type pattern is the set of parse expressions over a
given grammar

@ the type s" is the set of strategies of order n
@ the Boolean condition is optional

Verilog Synthesis



A Quick Tutorial on TL

Parse Expression : Pattern

Definition
A parse expression is a notation for describing parse trees
(concrete syntax trees). Parse expressions are of type pattern .

Verilog Synthesis



A Quick Tutorial on TL

Parse Expression : Pattern

Definition
A parse expression is a notation for describing parse trees
(concrete syntax trees). Parse expressions are of type pattern .

@ LetG = (N, T,P,S) denote a context-free grammar.

o Ay is a parse expression if A € N. In the context of
matching, the parse expression Ay is a variable quantified
over the set {« | A::>a/\a €T}

e Ad'] is a parse expression if A % a The parse expression

A[«'] is quantified over the set {5 | A % e % BABeT*}

Verilog Synthesis



A Quick Tutorial on TL

Parse Expression Examples

stmtS = stmtstmtS | ()

stmt :=  blocking_assign “;" | par_block | ...
par_block = “fork” stmtS “join”

blocking_assign := Ivalue “="E

Ivalue =

E = id ] ..

stmtS;

stmtS[stmt; stmtS;]
stmtS[blocking_assign;; stmtS;]
stmtS[lvalue; = E;; stmtS;]
stmtS[lvalue; = Ey; ]
stmtS[stmt; stmt, stmts stmt,]

Verilog Synthesis



A Quick Tutorial on TL

Strategic Expression: Strategy

Definition
A strategic expression is an expression whose evaluation
yields a strategy . A strategic expression of order n has type s".

Verilog Synthesis



A Quick Tutorial on TL

Strategic Expression: Strategy

Definition
A strategic expression is an expression whose evaluation
yields a strategy . A strategic expression of order n has type s".

s¥ = a pattern

s"*l = |hs — s"

st is a first-order strategy

s? is a second-order strategy

s" where n > 1 is a higher-order strategy

the result of applying a strategy of type s"*1 to atree t is a
strategy of type s"

Verilog Synthesis



A Quick Tutorial on TL

An Example of a First-Order Strategy

wrap: stmt[ blocking_assign;; | — stmt[ fork blocking_assign;; join |

stmtS = stmtstmtS | ()

stmt :=  blocking_assign “;" | par_block | ...
par_block = “fork” stmtS “join”

blocking_assign := Ivalue “="E

Ivalue =

E = id ] ..

Verilog Synthesis



A Quick Tutorial on TL

An Example of a Second-Order Strategy

propagate: blocking_assign[id; =E; ] — E[id1 ] — E1

stmtS = stmtstmtS | ()

stmt :=  blocking_assign “;" | par_block | ...
par_block = “fork” stmtS “join”

blocking_assign := Ivalue “="E

Ivalue =

E = id ] ..

Verilog Synthesis



A Quick Tutorial on TL

Constructing Strategies

Definition
Combinators are operators that can be used to construct
strategies
Symbol  Description Example
<+ left-biased choice S1 <+ S»
+> right-biased choice S1 +> Sy
< left-to-right sequential composition s; <; S5
> right-to-left sequential composition s; ;> S5
transient a unary combinator transient(s)
hide a unary combinator hide(s)

Verilog Synthesis



A Quick Tutorial on TL

A Bottom-up Left-to-right(BUL) Generic Traversal

Verilog Synthesis



A Quick Tutorial on TL

A Top-down Left-to-right(TDL) Generic Traversal




A Quick Tutorial on TL
TDL Traversal from a Strategic Perspective

Verilog Synthesis



A Quick Tutorial on TL

TD Traversal from a Strategic Perspective

A
i1

Verilog Synthesis



A Quick Tutorial on TL

First-Order Strategy Application

%81%

Verilog Synthesis



A Quick Tutorial on TL

Definitions of Some First-Order Traversals

def BUL s = all_thread_left(BUL{s}) <; s
def TDL s = s <; all_thread_left(TDL{s})

def Special_ TD s

(par_block; — TDL{s}(par_block;))
<t
all_broadcast(Special_TD{s})

Verilog Synthesis



A Quick Tutorial on TL

Higher-Order Strategy Application

Ay

o

Ay

Verilog Synthesis



A Quick Tutorial on TL

Higher-Order Strategy Composition

n n n
C) D G G

Verilog Synthesis



A Quick Tutorial on TL

A Taxonomy of Some Generic Higher-Order Traversals

|

Traversal [ bottom-up [ top-down [ left-to-right [ right-to-left [ & |

rcond_tdl 4 Vv +>
rcond_tdr Vi Vv +
Icond_tdl V4 Vv <t
Icond_tdr vV Vv <+
rcond_bul v/ N4 +
rcond_bur v Vv +>
Icond_bul Vv Vv <+
Icond_bur Vi Vv <+
Iseq_tdl Vv Vv <
Iseq_tdr N v <
Iseq_bul Vv Vv <
Iseq_bur Vi Vv <

Verilog Synthesis



Verilog Synthesis

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)

@ Verilog has a C-like syntax

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)
@ Verilog has a C-like syntax

@ Verilog has constructs to describe parallel computation and
sequential computation

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)
@ Verilog has a C-like syntax

@ Verilog has constructs to describe parallel computation and
sequential computation

e The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)
@ Verilog has a C-like syntax

@ Verilog has constructs to describe parallel computation and
sequential computation
e The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
@ Blocks of the form [begin ... end] execute the statements in
their bodies in sequential order

Verilog Synthesis



Overview of a Synthesis Problem

An Overview of Verilog

@ Verilog is a hardware hardware description language (HDL)

@ Verilog has a C-like syntax

@ Verilog has constructs to describe parallel computation and
sequential computation

e The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)

@ Blocks of the form [begin ... end] execute the statements in
their bodies in sequential order

e Blocks of the form [fork ... join] execute the statements in
their bodies in parallel

Verilog Synthesis



Overview of a Synthesis Problem

Synthesis Goals

Develop a transformation-based synthesis system that removes
sequential computation from Verilog programs

Verilog Synthesis



Overview of a Synthesis Problem

Synthesis Goals

Develop a transformation-based synthesis system that removes
sequential computation from Verilog programs

Construct a transformation whose manipulations are guided by
correctness-preserving algebraic laws

Verilog Synthesis



Overview of a Synthesis Problem

Synthesis Example: Source

module example (outl, out2, in, cs);
input in;
output outl, out?;
always@(*) begin
outl = Ics;
ns = outl,
out2 = loutl || c2;
if (cs ==0) out2 = loutl;
else ns = 0;
end

endmodule

Verilog Synthesis



Overview of a Synthesis Problem

Intermediate Form

module example(outl, out2, in, cs);
input in;
output outl, out2;
always@(*) begin
fork outl = !cs; ns = ns; out2 = out2; join
fork ns = outl; outl = outl; out2 = out2; join
fork out2 = loutl || c2; outl = outl; ns = ns; join
if (cs == 0) fork out2 = loutl; outl = outl; ns = ns; join
else fork ns = 0; outl = outl; out2 = out2; join

end
endmodule

Verilog Synthesis



Overview of a Synthesis Problem

module example(outl, out2, in, cs);
input in;
output outl , out2;
always@(*) begin
fork
ns=(cs==0)?!cs:0;
outl = (cs==0) ? lcs: Ics;
out2 = (cs ==0) ? llcs : llcs || €2;
join
end
endmodule

Verilog Synthesis



Design and Implementation

Parallel assignment completion.
x,y,...=e,f,.)=(Xy,...,z:=e,f,..,2)

x,...,y,2,....=e,...,f,0,..)=(x,...,2,y,... .= e,...,0,f,...)

Verilog Synthesis



Design and Implementation

Parallel assignment constant propagation.
(7:: g V= h(v)) = (v:=h(g)) where v is an assignment
state.

Conditional constructor elimination.
(V:=g)<c>(V:=h))=(V:=(g<crh))

Verilog Synthesis



Design and Implementation

A Verilog Grammar Fragment

modulee :=  module module_id “;” m_item_0OorMore endmodule
m_item_OorMore := module_item m_item_OorMore | ()

module_item := continuous_assign | always_stmt | ...
continuous_assign 1= “assign” lvalue “=" E “}"

always_stmt = “always” stmt

stmtS = stmtstmtS | ()

stmt := blocking_assign “;” | seq_block | par_block | ...
seq_block = ‘“begin” stmtS “end”

par_block = “fork” stmtS “join”

blocking_assign Ivalue “=" E

Verilog Synthesis



Design and Implementation

Transformations yielding Assignment Normal Form

synthesize: ~ BUL{ wrap <; Lawl } <; BUL{ Law3 <; Law4 }

wrap: stmt[ blocking_assigni; |

stmt[ fork blocking_assign;; join |

Verilog Synthesis



Design and Implementation

Lawl: moduleeg

—

Special_TD{ Iseq_bul{ make_total }[moduleey] }(moduleeg)

make_total:  blocking_assign[id, = E;] — transient(check[id,] <+ add[id:])
check: id; — stmtS[ id; = E; ; stmtS3 ]| — stmtS[ id; = E; ; stmtS; |

add: id; — stmtS[ ]| — stmtS[id; = idy; ]

Verilog Synthesis



Design and Implementation

Law3:  stmtS[ par_block; par_block; ]

—

BUL{lIseq_tdI{propagate}[par_block;] }(stmtS[ par_block, ] )

propagate:  blocking_assign[idi =E; | — E[id; ] — Ex

Verilog Synthesis



Design and Implementation

Law4: stmt[ if ( E; ) stmt; else stmt;]

—

BUL{ Iseq_bul{ convert[E1] }[stmt;] }(stmty)

convert Eo
blocking_assign[ id; = E4]

blocking_assign][ id; = E;]

—

blocking_assign[idi = (Eo ) ? E1 : E5]

Verilog Synthesis



Design and Implementation

Result Summary

outl = Ics; fork

ns = outl; ns=(cs==0)7?!cs:0;

out2 = loutl || c2; = outl = (cs==0) ? lcs: Ics;

if (cs ==0) out2 = loutl; out2 = (cs ==0) ? !lcs : llcs || c2;
else ns = 0; join

Verilog Synthesis



Appendix For Further Reading

For Further Reading |

[@ J. Kyoda and H. Jifeng
Towards an Algebraic Synthesis of Verilog
Technical Report, UNU/IIST Report No. 218, 2001.

[{ V.L.Winter and M. Subramaniam
Dynamic Strategies, Transient Strategies, and the
Distributed Data Problem.
Science of Computer Programming (Special Issue on
Program Transformation), 52:165-212, Elsevier, 2004.

3 V.L.Winter

Strategy Construction in the Higher-Order Framework of
TL.

Electronic Notes in Theoretical Computer Science
(ENTCS), 124(1), 2004

Verilog Synthesis



	A Quick Tutorial on TL
	Overview of a Synthesis Problem
	Design and Implementation
	Appendix
	For Further Reading


