
A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Verilog Synthesis

Summer School on Generative and Transformational
Techniques in Software Engineering, 2005

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Outline

1 A Quick Tutorial on TL

2 Overview of a Synthesis Problem

3 Design and Implementation

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

The Signature of a Rewrite Rule

Definition

From the perspective of type, a labelled rewrite rule has the
form:

id : pattern → sn [if Boolean]

the type id is the set of identifiers

the type pattern is the set of parse expressions over a
given grammar

the type sn is the set of strategies of order n

the Boolean condition is optional

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

The Signature of a Rewrite Rule

Definition

From the perspective of type, a labelled rewrite rule has the
form:

id : pattern → sn [if Boolean]

the type id is the set of identifiers

the type pattern is the set of parse expressions over a
given grammar

the type sn is the set of strategies of order n

the Boolean condition is optional

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Parse Expression : Pattern

Definition

A parse expression is a notation for describing parse trees
(concrete syntax trees). Parse expressions are of type pattern .

Let G = (N, T , P, S) denote a context-free grammar.
Aid is a parse expression if A ∈ N. In the context of
matching, the parse expression Aid is a variable quantified
over the set {α | A ∗⇒

G
α ∧ α ∈ T ∗}

AJα′K is a parse expression if A +⇒
G

α The parse expression

AJα′K is quantified over the set {β | A +⇒
G

α
∗⇒
G

β ∧ β ∈ T ∗}

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Parse Expression : Pattern

Definition

A parse expression is a notation for describing parse trees
(concrete syntax trees). Parse expressions are of type pattern .

Let G = (N, T , P, S) denote a context-free grammar.
Aid is a parse expression if A ∈ N. In the context of
matching, the parse expression Aid is a variable quantified
over the set {α | A ∗⇒

G
α ∧ α ∈ T ∗}

AJα′K is a parse expression if A +⇒
G

α The parse expression

AJα′K is quantified over the set {β | A +⇒
G

α
∗⇒
G

β ∧ β ∈ T ∗}

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Parse Expression Examples

stmtS ::= stmt stmtS | ()
stmt ::= blocking_assign “;” | par_block | ...
par_block ::= “fork” stmtS “join”
blocking_assign ::= lvalue “=” E
lvalue ::= ...
E ::= id | ...
...

stmtS1

stmtSJstmt1 stmtS1K
stmtSJblocking_assign1; stmtS1K
stmtSJlvalue1 = E1; stmtS1K
stmtSJlvalue1 = E1; K
stmtSJstmt1 stmt2 stmt3 stmt4K

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Strategic Expression: Strategy

Definition

A strategic expression is an expression whose evaluation
yields a strategy . A strategic expression of order n has type sn.

s0 = a pattern

sn+1 = lhs → sn

s1 is a first-order strategy

s2 is a second-order strategy

sn where n > 1 is a higher-order strategy

the result of applying a strategy of type sn+1 to a tree t is a
strategy of type sn

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Strategic Expression: Strategy

Definition

A strategic expression is an expression whose evaluation
yields a strategy . A strategic expression of order n has type sn.

s0 = a pattern

sn+1 = lhs → sn

s1 is a first-order strategy

s2 is a second-order strategy

sn where n > 1 is a higher-order strategy

the result of applying a strategy of type sn+1 to a tree t is a
strategy of type sn

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Example of a First-Order Strategy

wrap: stmtJ blocking_assign1; K → stmtJ fork blocking_assign1; join K

stmtS ::= stmt stmtS | ()
stmt ::= blocking_assign “;” | par_block | ...
par_block ::= “fork” stmtS “join”
blocking_assign ::= lvalue “=” E
lvalue ::= ...
E ::= id | ...
...

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Example of a Second-Order Strategy

propagate: blocking_assignJ id1 = E1 K → EJ id1 K → E1

stmtS ::= stmt stmtS | ()
stmt ::= blocking_assign “;” | par_block | ...
par_block ::= “fork” stmtS “join”
blocking_assign ::= lvalue “=” E
lvalue ::= ...
E ::= id | ...
...

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Constructing Strategies

Definition

Combinators are operators that can be used to construct
strategies

Symbol Description Example
<+ left-biased choice s1 <+ s2

+> right-biased choice s1 +> s2

<; left-to-right sequential composition s1 <; s2

;> right-to-left sequential composition s1 ;> s2

transient a unary combinator transient(s)
hide a unary combinator hide(s)

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

A Bottom-up Left-to-right(BUL) Generic Traversal

1 2

3

4 5

6

7 8

9

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

A Top-down Left-to-right(TDL) Generic Traversal

3 4

2

7 8

6

5 9

1

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

TDL Traversal from a Strategic Perspective

s

s1

0

s2

s3

s4 s5

s6

s7

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

TD Traversal from a Strategic Perspective

s

s' s' s'

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

First-Order Strategy Application

S1

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Definitions of Some First-Order Traversals

def BUL s = all_thread_left(BUL{s}) <; s

def TDL s = s <; all_thread_left(TDL{s})

def Special_TD s = (par_block1 → TDL{s}(par_block1))
<+
all_broadcast(Special_TD{s})

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Higher-Order Strategy Application

Sn+1 S1
n

Sn+1 S2
n

... ...
Sn+1 Sm

n

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Higher-Order Strategy Composition

S1
n S2

n ... Sm
n

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

A Taxonomy of Some Generic Higher-Order Traversals

Traversal bottom-up top-down left-to-right right-to-left ⊕
rcond_tdl

√ √
+>

rcond_tdr
√ √

+>

lcond_tdl
√ √

<+

lcond_tdr
√ √

<+

rcond_bul
√ √

+>

rcond_bur
√ √

+>

lcond_bul
√ √

<+

lcond_bur
√ √

<+

lseq_tdl
√ √

<;

lseq_tdr
√ √

<;

lseq_bul
√ √

<;

lseq_bur
√ √

<;

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Verilog Synthesis

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

An Overview of Verilog

Verilog is a hardware hardware description language (HDL)

Verilog has a C-like syntax

Verilog has constructs to describe parallel computation and
sequential computation

The items in a module execute in parallel (e.g., continuous
assignment statements and always statements)
Blocks of the form Jbegin ... endK execute the statements in
their bodies in sequential order
Blocks of the form Jfork ... joinK execute the statements in
their bodies in parallel

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Synthesis Goals

Goal

Develop a transformation-based synthesis system that removes
sequential computation from Verilog programs

Goal

Construct a transformation whose manipulations are guided by
correctness-preserving algebraic laws

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Synthesis Goals

Goal

Develop a transformation-based synthesis system that removes
sequential computation from Verilog programs

Goal

Construct a transformation whose manipulations are guided by
correctness-preserving algebraic laws

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Synthesis Example: Source

module example (out1, out2, in, cs);
input in;
output out1, out2;

always@(*) begin

out1 = !cs;
ns = out1;
out2 = !out1 || c2;
if (cs ==0) out2 = !out1;
else ns = 0;

end

endmodule

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Intermediate Form

module example(out1, out2, in, cs);
input in;
output out1, out2;
always@(*) begin

fork out1 = !cs; ns = ns; out2 = out2; join
fork ns = out1; out1 = out1; out2 = out2; join
fork out2 = !out1 || c2; out1 = out1; ns = ns; join
if (cs == 0) fork out2 = !out1; out1 = out1; ns = ns; join
else fork ns = 0; out1 = out1; out2 = out2; join

end
endmodule

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Target

module example(out1, out2, in, cs);
input in;
output out1 , out2;
always@(*) begin

fork
ns = (cs == 0) ? !cs : 0;
out1 = (cs == 0) ? !cs : !cs;
out2 = (cs == 0) ? !!cs : !!cs || c2;

join

end
endmodule

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Law
Parallel assignment completion.
(x , y , ... := e, f , ...) = (x , y , ..., z := e, f , ..., z)

Law
Parallel assignment reordering.

(x , ..., y , z, ... := e, ..., f , g, ...) = (x , ..., z, y , ... := e, ..., g, f , ...)

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Law
Parallel assignment constant propagation.
(
→
v := g;

→
v := h(

→
v)) = (

→
v := h(g)) where

→
v is an assignment

state.

Law

Conditional constructor elimination.
((~v := g) C c B (~v := h)) = (~v := (g C c B h))

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

A Verilog Grammar Fragment

modulee ::= module module_id “;” m_item_0orMore endmodule
m_item_0orMore ::= module_item m_item_0orMore | ()
module_item ::= continuous_assign | always_stmt | ...
continuous_assign ::= “assign” lvalue “=” E “;”
always_stmt ::= “always” stmt
stmtS ::= stmt stmtS | ()
stmt ::= blocking_assign “;” | seq_block | par_block | ...
seq_block ::= “begin” stmtS “end”
par_block ::= “fork” stmtS “join”
blocking_assign ::= lvalue “=” E
...

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Transformations yielding Assignment Normal Form

synthesize: BUL{ wrap <; Law1 } <; BUL{ Law3 <; Law4 }

wrap: stmtJ blocking_assign1; K
→
stmtJ fork blocking_assign1; join K

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Law1: modulee0

→
Special_TD{ lseq_bul{ make_total }[modulee0] }(modulee0)

make_total: blocking_assignJid1 = E1K → transient(check[id1] <+ add[id1])

check: id1 → stmtSJ id1 = E2 ; stmtS3 K → stmtSJ id1 = E2 ; stmtS3 K

add: id1 → stmtSJ K → stmtSJ id1 = id1; K

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Law3: stmtSJ par_block1 par_block2 K
→
BUL{lseq_tdl{propagate}[par_block1] }(stmtSJ par_block2 K)

propagate: blocking_assignJ id1 = E1 K → EJ id1 K → E1

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Law4: stmtJ if (E1) stmt1 else stmt2K
→
BUL{ lseq_bul{ convert[E1] }[stmt1] }(stmt2)

convert E0

blocking_assignJ id1 = E1K
:
blocking_assignJ id1 = E2K
→
blocking_assignJ id1 = (E0) ? E1 : E2K

Verilog Synthesis

A Quick Tutorial on TL
Overview of a Synthesis Problem

Design and Implementation

Result Summary

out1 = !cs;
ns = out1;
out2 = !out1 || c2;
if (cs ==0) out2 = !out1;
else ns = 0;

⇒

fork
ns = (cs == 0) ? !cs : 0;
out1 = (cs == 0) ? !cs : !cs;
out2 = (cs == 0) ? !!cs : !!cs || c2;

join

Verilog Synthesis

Appendix For Further Reading

For Further Reading I

J. Kyoda and H. Jifeng
Towards an Algebraic Synthesis of Verilog
Technical Report, UNU/IIST Report No. 218, 2001.

V. L. Winter and M. Subramaniam
Dynamic Strategies, Transient Strategies, and the
Distributed Data Problem.
Science of Computer Programming (Special Issue on
Program Transformation), 52:165–212, Elsevier, 2004.

V. L. Winter
Strategy Construction in the Higher-Order Framework of
TL.
Electronic Notes in Theoretical Computer Science
(ENTCS), 124(1), 2004

Verilog Synthesis

	A Quick Tutorial on TL
	Overview of a Synthesis Problem
	Design and Implementation
	Appendix
	For Further Reading

