
Overview
Motivation

Java Classloading

Summer School on Generative and Transformational
Techniques in Software Engineering, 2005

Java Classloading

Overview
Motivation

Outline

1 Overview

2 Motivation

Java Classloading

Overview
Motivation

An Overview of the SSP and Class Loading

The Sandia Secure Processor (SSP) is a hardware
implementation of a significant subset of the Java Virtual
Machine

Class loading for the SSP is performed statically (prior to
runtime)

Class File: a representation of a Java class (including all
fields and methods declared, the class name, the parent
class, and a constant pool)
Class Loading: act of resolving symbolic references within
a Class File while preserving the Class File structure

Java Classloading

Overview
Motivation

An Overview of the SSP and Class Loading

The Sandia Secure Processor (SSP) is a hardware
implementation of a significant subset of the Java Virtual
Machine

Class loading for the SSP is performed statically (prior to
runtime)

Class File: a representation of a Java class (including all
fields and methods declared, the class name, the parent
class, and a constant pool)
Class Loading: act of resolving symbolic references within
a Class File while preserving the Class File structure

Java Classloading

Overview
Motivation

An Overview of the SSP and Class Loading

The Sandia Secure Processor (SSP) is a hardware
implementation of a significant subset of the Java Virtual
Machine

Class loading for the SSP is performed statically (prior to
runtime)

Class File: a representation of a Java class (including all
fields and methods declared, the class name, the parent
class, and a constant pool)
Class Loading: act of resolving symbolic references within
a Class File while preserving the Class File structure

Java Classloading

Overview
Motivation

An Overview of the SSP and Class Loading

The Sandia Secure Processor (SSP) is a hardware
implementation of a significant subset of the Java Virtual
Machine

Class loading for the SSP is performed statically (prior to
runtime)

Class File: a representation of a Java class (including all
fields and methods declared, the class name, the parent
class, and a constant pool)
Class Loading: act of resolving symbolic references within
a Class File while preserving the Class File structure

Java Classloading

Overview
Motivation

An Overview of the Constant Pool

The Constant Pool (CP) is an implicitly indexed list of
constants that correspond to symbolic references in a
Class File, these constant include two types:

Simple constant values (ie. constant numeric values and
utf8 strings)
Complex constant values consisting of symbolic references
(indexes) into the constant pool (ie. field, method, and class
references)

Symbolic resolution of a Class File will replace symbolic
references (indexes) with the data they reference.

Java Classloading

Overview
Motivation

An Overview of the Constant Pool

The Constant Pool (CP) is an implicitly indexed list of
constants that correspond to symbolic references in a
Class File, these constant include two types:

Simple constant values (ie. constant numeric values and
utf8 strings)
Complex constant values consisting of symbolic references
(indexes) into the constant pool (ie. field, method, and class
references)

Symbolic resolution of a Class File will replace symbolic
references (indexes) with the data they reference.

Java Classloading

Overview
Motivation

An Overview of the Constant Pool

The Constant Pool (CP) is an implicitly indexed list of
constants that correspond to symbolic references in a
Class File, these constant include two types:

Simple constant values (ie. constant numeric values and
utf8 strings)
Complex constant values consisting of symbolic references
(indexes) into the constant pool (ie. field, method, and class
references)

Symbolic resolution of a Class File will replace symbolic
references (indexes) with the data they reference.

Java Classloading

Overview
Motivation

An Overview of the Constant Pool

The Constant Pool (CP) is an implicitly indexed list of
constants that correspond to symbolic references in a
Class File, these constant include two types:

Simple constant values (ie. constant numeric values and
utf8 strings)
Complex constant values consisting of symbolic references
(indexes) into the constant pool (ie. field, method, and class
references)

Symbolic resolution of a Class File will replace symbolic
references (indexes) with the data they reference.

Java Classloading

Overview
Motivation

Fragment Goal

Goal

To further resolve all symbolic references to fields so that they
satisfy the Static Binding Property

Definition

The Static Binding Property states that the class component
of a symbolic field reference corresponds to the class that
declared the field

Java Classloading

Overview
Motivation

Fragment Goal

Goal

To further resolve all symbolic references to fields so that they
satisfy the Static Binding Property

Definition

The Static Binding Property states that the class component
of a symbolic field reference corresponds to the class that
declared the field

Java Classloading

Overview
Motivation

Static Binding Problem

The Static Binding Property is not universally true for all
symbolic field references because of inheritance

Animal

int walk

CockerSpanial

int walkalot

Dog

...
myCockerSpanial.walk = 0;
...

...
CockerSpanial walk I
...

Constant Pool

Java Classloading

Overview
Motivation

Source

. . .
1 java/lang/Object <init> ()V
2 CockerSpaniel
3 CockerSpaniel <init> ()V
4 bark
5 one step
6 CockerSpaniel walk I

7 two steps
8 CockerSpaniel walkalot I

. . .

Java Classloading

Overview
Motivation

Target

. . .
1 java/lang/Object <init> ()V
2 CockerSpaniel
3 CockerSpaniel <init> ()V
4 bark
5 one step
6 Animal walk I
7 two steps
8 CockerSpaniel walkalot I

. . .

Java Classloading

Overview
Motivation

Assumption

At this point in the execution, basic symbolic resolution has
been completed.

Assumption

Partial Ordering.
At this point in the execution, all Class Files of the program
have been ordered in a list such that for any two classes A and
B where B �∗ A, B appears in the list after A.

Java Classloading

Overview
Motivation

Law

Static Binding Property.
For any symbolic field reference "A x T" (where T stands for the
type of x), if a variable x of type T is declared in class A then "A
x T" is a static binding.

Law

Lifting through Hierarchy.
For any symbolic field reference "B x T" that is not a static
binding, if B � A then check if "A x T" is a static binding.

Java Classloading

Overview
Motivation

A Class File Grammar Fragment

...
classfile ::= cp this_class super_class fields methods
this_class ::= class
super_class ::= class
constant_fieldref_info ::= class name_and_type
field_info ::= access_flags name descriptor
class ::= data
name_and_type ::= data
name ::= data
descriptor ::= data
data ::= index | utf8 | name descriptor
...

Java Classloading

Overview
Motivation

TDL Traversal

1

2 5 8

3 4 6 7 9 10

Java Classloading

Overview
Motivation

Transformations Yielding Static Binding

def TDL s = s <; all_thread_left(TDL{s})

def rcond_tdl s = rcond(s, rcond_thread_left(rcond_tdl{ s }))

x_res: app0 → TDL{rcond_tdl{sbind}[app0] }(app0)

sbind: classfileJ cp1 classthis classsuper fields1 methods1 K
→
(hide(lift[classthis][classsuper])
+>
rcond_tdl{collect_decs[classthis]}[fields1]

Java Classloading

Overview
Motivation

lift: classthis →
classsuper →
constant_fieldref_infoJ classthis name1 descriptor1 K
→
constant_fieldref_infoJ classsuper name1 descriptor1 K

collect_decs: classthis →
field_infoJ access_flags1 name1 descriptor1 K →
constant_fieldref_infoJ classthis name1 descriptor1 K
→
constant_fieldref_infoJ classthis name1 descriptor1 K

Java Classloading

Appendix For Further Reading

For Further Reading I

V. L. Winter and M. Subramaniam
Dynamic Strategies, Transient Strategies, and the
Distributed Data Problem.
Science of Computer Programming (Special Issue on
Program Transformation), 52:165–212, Elsevier, 2004.

V. L. Winter
Strategy Construction in the Higher-Order Framework of
TL.
Electronic Notes in Theoretical Computer Science
(ENTCS), 124(1), 2004

Java Classloading

	Overview
	Motivation
	Appendix
	For Further Reading

