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Introduction

A product-line is a family of 
similar systems

Chrysler mini-vans, 
Motorola radios, 
software

Motivation: economics

amortize cost of building 
variants of program
design for family of systems

Key idea of product-lines

members of product-line 
are differentiated by 
features

feature is product 
characteristic that 
customers feel is important 
in describing and 
distinguishing members 
within a family

feature is increment in 
product functionality
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Introduction

Feature Oriented 
Programming (FOP) is the 
study of feature modularity 
in product-lines

features are first-class 
entities in design

often implemented by 
crosscuts

History of applications
1986 database systems
1989 network protocols
1993 data structures
1994 avionics
1997 extensible Java   

compilers
1998 radio ergonomics
2000 program verification 

tools
2002 ExCIS fire support 

simulator
2003 AHEAD tool suite
2004 robotics controllers
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Very Rich Technical Area...

 Integrates many different areas
compilers
grammars
artificial intelligence
databases
algebra
programming languages
compositional programming & reasoning
OO software design
software engineering
aspect-oriented programming 
others...
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Tutorial Overview

Part I

The FOP Paradigm
The Theory
AHEAD Tool Suite

Part II

Aspect Composition
 Verification and Design Rule Checking
Multi-Dimensional Models

buckle
up!
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The FOP Paradigm

a general approach to program 
development and product-line synthesis
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Motivation
Software products are:

increasing in complexity
increasing in costs to develop and maintain
decreasing in ability to understand

Basic goal of SE is to manage and control complexity
structured programming to
object oriented programming to
component-based programming to...

today’s design techniques are too low-level, 
exposing too much detail to make application’s design, 
construction and modification simple

Something is missing...
future design techniques generalize today’s techniques
tutorial to expose a bigger universe

progressively
increasing abstractions
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Keys to the Future

New paradigms will likely embrace:

Generative Programming (GP)
want software development to be automated

Domain-Specific Languages (DSLs)
not Java & C#, but high-level notations

Automatic Programming (AP)
declarative specs → efficient programs

Need simultaneous advance in all three fronts to 
make a significant change
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Not Wishful Thinking...

Example of this futuristic paradigm realized 
over 25 years ago

around time that AI researchers gave up on automatic 
programming

Relational Query Optimization

©dsbatory2005 10

Relational Query Optimization

Declarative query is mapped to an expression
Each expression represents a unique program
Expression is optimized using rewrite rules
Efficient program generated from expression

SQL
select

statement

parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient 
programdeclarative 

domain-specific 
language

generative
programming

automatic
programming
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Keys to Success
Automated development of query evaluation programs

hard-to-write, hard-to-optimize, hard-to-maintain
revolutionized and simplified database usage

Created an algebra-based science to specify and optimize query 
evaluation programs

Identified fundamental operations of this domain
relational algebra

Represented program designs as expressions
compositions of relational operations

Define algebraic identities among operations to optimize equations

Compositionality is hallmark of great engineering models
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Looking Back and Ahead

Query optimization (and concurrency control) helped bring DBMSs 
out of the stone age

Holy Grail Software Engineering:

Not obvious how to do so...

It can be done! Subject of this tutorial…

series of simple ideas that generalize notions of modularity
and lay groundwork for practical compositional programming
and an algebra-based science for software design

Repeat this success in other domains
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A Basis for a 
Science of Software Design

What motivates FOP and
how is it formalized?
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Today’s View of Software

Today’s models of software are too low level

expose classes, methods, objects as focal point of discourse 
in software design and implementation

difficult (impossible) to 
reason about construction of applications from components
produce software automatically from high-level specifications
(distance is too great)

We need a more abstract way to specify systems
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A Thought Experiment...

Look at how people describe programs now...
don’t say which DLLs are used...

Instead, say what features a program offers its clients

Program1 = feature_X + feature_Y + feature_Z

Program2 = feature_X + feature_Q + feature_R

why? because features align better with requirements

We should specify systems as compositions of features
nobody does this for software (now)
done in lots of other areas
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Dell Web Site

declarative DSL
to select features
of desired system
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Chinese Menu – Declarative DSL
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Methodology for Construction

What methodology builds systems by progressively 
adding details?

Step-Wise Refinement
Dijkstra, Wirth early 1970s

abandoned in early 1980s as it didn’t scale...

had to compose hundreds or thousands of transforms 
(rewrites) to produce admittedly small programs

recent work shows how SWR scales 
– scale individual transform to a feature
– composing a few refinements yields an entire system
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Terminology Disclaimer

We use OO meaning of term “refinement”

elaboration of an entity (entities) that introduces a new service, 
feature, or relationship

In algebraic communities

“refinement” means add detail, but no new capability
e.g., implement an interface

our use of ‘refinement’ is ‘extension’ in algebraic communities

“step wise development”

Henceforth follow the algebraic community terminology...
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What is a Feature?

Feature
an elaboration or augmentation of an entity(s) that introduces 
a new service, capability, or relationship
increment in functionality

Characteristics
abstract, mathematical concept
reusable
interchangeable
(largely) defined independently of each other

Illustrate in next few slides
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Tutorial on Features (Extensions)

©dsbatory2005 22

Features are Interchangable
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Features are Interchangable
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Features are Interchangable
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Features are Interchangable
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Features are Reusable
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Features are Functions!

PersonPhoto beanie(PersonPhoto x)

PersonPhoto uncleSam(PersonPhoto x)

PersonPhoto mustache(PersonPhoto x)

PersonPhoto lincolnBeard(PersonPhoto x)
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Composing Features

Feature composition = function composition

= lincolnBeard( uncleSam( ))
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Large Scale Features

Called Collaborations (1992)
simultaneously modify multiple objects/entities
extension of single entity is called role
recognize as crosscuts in software

Example: Positions in US Government
each defines a role

Prez
Vice
Prez

....
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Composing Collaborations

At election-time, collaboration remains constant, but 
objects that are extended are different

Prez
Vice
Prez

Example of dynamic composition of collaborations
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Other Collaborations

Parent-Child collaboration

Professor-Student collaboration

Parent Child

Prof Student
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Example

DonSteve AlexKelly Mark

Prof Student

Prof Student

Parent Child

Parent Child
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Same Holds for Software!

Highly complex entities and relationships
in software can be synthesized by

composing generic & reusable 
features
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Feature Oriented Programming

Feature Oriented Programming (FOP) is study of 
feature modularity and programming models for 
product-lines

a powerful form of FOP based on step-wise development
advocates complex programs constructed from simple 
programs by incrementally adding features

How are features and their compositions modeled?
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Part I:  The Theory

GenVoca and AHEAD
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A Clue...

Consider any Java class C
member could be a data field or method
class C below has 4 members m1—m4

class C {
member m1;
member m2;
member m3;
member m4;

}
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Have You Ever Noticed…

Contents of C can be distributed across an inheritance 
hierarchy?

class C1 {
member m1;

}

class C23 extends C1 {
member m2;
member m3;

}

class C4 extends C23 {
member m4;

}

class C extends C4 {}

class C {
member m1;
member m2;
member m3;
member m4;

}
=
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Another Example...

C23 decomposed further as:

class C23 extends C1 {
member m2;
member m3;

} =

class C2 extends C1 {
member m2;

}

class C3 extends C2
member m3;

}

class C23 extends C3 {}
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Observe…

Significance: class definition need not be monolithic, 
but can be built by incrementally composing reusable 
pieces via inheritance

Nothing special about the placement of members 
m1…m4 in this hierarchy except...

no-forward references: member can be introduced as long as 
all members it references are defined

requirement for compilation, step-wise development
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Look Familiar?? Remember Algebra?

Consider sets and union 
operation (∪ )

commutative
almost like inheritance...

C1 = { m1 }

C2 = { m2 }

C3 = { m3 }

C4 = { m4 }

C = C1 ∪ C2 ∪ C3 ∪ C4

= { m1, m2, m3, m4 }

Vector addition (+)

is commutative
almost like inheritance

C1 = (m1,0,0,0)

C2 = (0,m2,0,0)

C3 = (0,0,m3,0)

C4 = (0,0,0,m4)

C = C1 + C2 + C3 + C4

= ( m1, m2, m3, m4 )
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A Closer Analogy

Vector join (→)
Vector join lays vectors end-to-end to define a path
Not commutative! – Order of composition matters! 

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

B

AA

B

A → B ≠ B → A

C1 → C2 → C3 → C4  ≠ C4 → C3 → C2 → C1

path followed by
A → B is different

than B → A; 
end point is the same
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Operation We Want...

Is not quite inheritance...

want to add new methods, new fields, and extend existing 
methods like inheritance
also want constructors to be inherited and extended as well, 
(inheritance doesn’t provide this)

class C2 {
constructor#2

}

class C12 {
constructor#1
constructor#2

}

=
class C1 {

constructor#1
} 

The operation ● we want is called class extension
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Syntax of Class Extension

Suppose program P has 
single class B

A extension R adds y, z()

Composition of R with P 
defines a new program N:

class B { int x; }

extends class B { 
int y;
void z(){...}

}

class B { 
int x;
int y;
void z(){...}

}
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Algebraic Formulation

Base programs are constants

// constant P

class B { int x; }

Extensions are functions

// function R

extends class B {
int y;
void z(){...}

}

Composition is an expression or 
equation

N = R( P )

= R ● P

yields:

class B {
int x;
int y;
void z(){...}

}

Treat programs as values
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Another Example

Composition is an expression or equation

class C { member m1; } // constant C1

extends class C { member m2; } // function C2
extends class C { member m3; } // function C3
extends class C { member m4; } // function C4

C   = C4( C3( C2( C1 ) ) )

= C4 ● C3 ● C2 ● C1

Note:
both notations 
are equivalent

©dsbatory2005 46

Method Extension ala Inheritance

result =

=

void foo() {
/* before stuff */
/* do something */
/* after stuff  */

}

= (or an equivalent encoding)

void foo() {
/* before stuff */
super.foo();
/* after stuff */

}

method_extension

●

●

void foo() {
/* do something */

}

base_method
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Connecting the Dots...

Scalability

effects of extension not limited to a single class

collaborations encapsulate extensions of 
multiple classes as well as adding new classes

adding new classes that can be extended is critical
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Connecting the Dots...

A collaboration has meaning when it implements a 
feature

ever add a new feature to an existing OO program?

several classes must be extended as well as adding new 
classes

crosscuts
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Program Synthesis Paradigm

class1 class2 class3 class4

Program P =

featureX

featureX

featureY

featureY ●

By composing features, packages of fully-formed classes are synthesized

Note: each 
feature crosscuts
multiple classes

featureZ

featureZ ●
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Contributors to this view…

Many researchers have variants of this idea:

refinements - Dijkstra, Wirth 68
layers - Dijkstra 68, Batory 84
product-line architectures - Kang 90, Gomaa 92…
collaborations - Reenskaug 92, Lieberherr 95, Mezini 03
program verification - Boerger 96
aspects - Kiczales 97, et al.
concerns - Ossher-Harrison-Tarr 99
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Connecting the Dots...

You can always decompose software in this manner
trick is that your extensions be reusable
that’s the connection with features, product-lines
features are reusable – so too must be their implementations

software that is not designed to be reusable, composable, etc. 
with other software won’t be – this is co-design or designing to a 
standard
Architectural Mismatch (ICSE 1995)

Product-line design – feature implementations are 
designed with compositionality, reusability in mind
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GenVoca (1988,1992)

Equates constants, functions 
with features

Constants:

f  – base program with feature f

h – base program with feature h

Functions

i ● x – adds feature i to program x

j ● x – adds feature j to program x

A domain model
or product-line model
or GenVoca model M

set of constants (base programs)

functions (program extensions)

M = { f, h, ...  i, j, ... }
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Function Composition

Multi-featured applications are equations

app1 = i ● f

app2 = j ● h

app3 = i ● j ● f

- application with features f and i

- application with features h and j

- your turn...

Given a GenVoca model, we can 
create a family of applications by

composing features
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Expression Optimization
Constants, functions represent both feature and its implementation

different functions with different implementations of the same feature

When application requires feature k, it is a matter of optimization to 
determine the best implementation of k

counterpart of relational optimization
more complicated rewrites possible too…

See: Batory, Chen, Robertson, and Wang, Design Wizards and 
Visual Programming Environments for GenVoca Generators, 
IEEE Transactions on Software Engineering, May 2000, 441-452.

k1 ● x // adds k with implementation #1 to x
k2 ● x // adds k with implementation #2 to x
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Generalization of Relational Algebra

Keys to success of Relational Optimizers 
expression representations of program designs
rewrite expressions using algebraic identities

Here’s the generalization:

domain model is an algebra for a domain or product-line

is set of operations (constants, functions) that represent stereo-typical 
building blocks of programs/members
compositions define space of programs that can be synthesized

given an algebra:

there will always be algebraic identities among operations
these identities can be used to optimize expression representations of 
programs, just like relational optimizers
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Composition Constraints

GenVoca constants, functions seem untyped...

Design Rules are domain-specific constraints that govern legal 
compositions

ex: it is common that the selection of one feature may enable or
disable the selection of other features

 Lecture on Verification and Design Rule Checking

Where we were in the year 2000...
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AHEAD:
The Next Generation

Algebraic Hierarchical Equations for 
Application Design
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Feature Encapsulation

A feature encapsulates multiple extensions, classes
ex: extension R extends class A, interface C, and adds class D

extends class A {
member m3;

}

extends interface C {
member m4;

}

class D {
member d1;
member d2;
...
member dn;

}

A C D

R
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How to Implement?

Group related files into a directory

Directory
Representation

R  / 
A
C
D

Algebraic
Representation

R  = {  A,  C,  D  }

read as
“R encapsulates

A, C, and D”

A C D

R

Pictorial
Representation
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Consider constant P and extension R:

P = { AP, BP, CP  }
R = { AR, CR, DR  }

What is R ● P ?

Composition
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Align units by name:

P   = {    AP, BP,    CP           }
R   = {    AR,        CR,  DR    }

R●P = {                       } 

Compose units with same name (ignoring subscripts)
Copy units that aren’t extended

Do the obvious thing...

Composition

BP, CR●CP,AR●AP, DR
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Law of Composition

Fundamental algebraic rewrite of FOP

Says how composition distributes over encapsulation

Do you recognize this law? 

R●P = { AR, CR, DR } ● { AP, BP, CP }

= { AR●AP, BP, CR●CP, DR }

©dsbatory2005 63

class P { 
member AP;
member BP;
member CP;

}

class R           {
member AR;
member CR;
member DR;

}

Inheritance

P   = { AP,   BP, CP }

R   = { AR,       CR,    DR }

“class representation” “algebraic representation”

extends P 

class R●P extends R {}
R●P = { AR●AP, BP, CR●CP, DR }
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Composition Corollaries

f1, f2 are functions
c1, c2 are constants

See examples of these ideas later

f1 ● f2  = f12 – composite function

c1 ● c2 = c1 – c1 overrides c2

c1 ● f1 = c1 – c1 overrides f1
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Scaling Program Generation
Generating code for an individual program is OK, 
but not sufficient

Today’s systems are not individual programs, 
but groups of collaborating programs

client-server systems, tool suites (IDEs)

Further, systems are not solely defined by code

architects routinely use many knowledge representations

formal models, UML models, makefiles, documents, ...
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Question

How does step-wise development scale to the 
synthesis of multiple programs and multiple-program 
representations?

Challenge is not possibility

lots of ad hoc ways
challenge is to define way that treats all representations
– code and non-code – uniformily
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Each program representation captures different information 
in different languages

We want to encapsulate all these representations

.html.java

Insight #1: Platonic Forms and Languages

.perf.class .xml

program
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Insight #2: Generalize Modularity

A module is a containment hierarchy of related artifacts

Generalize module hierarchies to arbitrary depth, contents

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File
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Modular Encapsulation of Multiple Programs

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines
...

*.java, *.class *.htmlclass diagrams
...

Modules encapsulate all needed representations of a system
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Simple Representation

Module hierarchies = nested sets

A = {  Code, R.drc, Htm }

algebraic

Code = { X.java, Y.java }

Htm = { W.htm, Z.htm }X.java W.htmY.java Z.htm

Code
R.drc

Htm

A

directory

©dsbatory2005 71

Insight #3: Generalize Features

When a program is extended, any or all of its representations 
may be updated

Ex: Add a new feature F to program P changes:

code (to implement F)
documentation (to document F)
makefiles (to build F)
formal properties (to characterize F)
performance properties (to profile F)
…

This is a crosscut
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#3: Generalize Features

Containment hierarchy is a “constant”
Feature is a “function” that maps (transforms) 
containment hierarchies

adds new nodes (e.g., new .java, .html files)
extends existing nodes

=      Feature(                     )
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Simple Implementation

Feature composition = directory composition
produces directory isomorphic to inputs

X.java =     X.java ● X.java

Code

X.javaY.java Z.htm

R.drc
Htm

A

●

X.java W.htmY.java

Code

R.drc
Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C
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Simple Theory

Result computed algebraically by recursively
expanding and applying the law of composition

C = B ● A

= { CodeB, R.drcB, HtmB } ● { CodeA, R.drcA, HtmA }

= { CodeB ● CodeA, R.drcB ● R.drcA, HtmB ● HtmA }

= { { X.javaB, Y.javaB } ● { X.javaA, Y.javaA }, R.drcB ● R.drcA, { W.htmB } ● { Z.htmA } }

= { { X.javaB ● X.javaA, Y.javaB ● Y.javaA }, R.drcB ● R.drcA, { W.htmB, Z.htmA } }
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Note!

Each expression defines an artifact to be produced

C = { { X.javaB ● X.javaA, Y.javaB ● Y.javaA }, R.drcB ● R.drcA, { W.htmB, Z.htmA } }

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C
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Polymorphism...

Composition operation ● is polymorphic

composition law defines how sets are composed

different implementation of ● for each representation
● for code

another ● for html files, etc.

But what does extending a non-code artifact mean?
what general principle guides extension?
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Example: Makefiles

Instructions to build parts of a system
it is a language for synthesizing programs

When we synthesize code for a system, 
we also have to synthesize a makefile for it

Sounds good, but...
what is a extension of a makefile?????  
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Makefile

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends

command line> make main
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Makefile Extensions

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends
base

foocompile D compile F

delete *.ser

barcompile E

Question: what is a general paradigm for extending
non-code artifact types?

note
crosscuts!
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<project myMake>
<target main depends=“common”>

<compile A>
<compile B>
<compile C>

</target>
<target common>

<compile X>
<compile Y>
<compile Z>

</target>
...

</project>

Makefiles

class myMake {
void main {
{ ...

}
void common {
...

}
...

}

Have a Class Structure!
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<project myMake>
<target main depends=“common”>

<compile A/>
<compile B/>
<compile C/>

</target>
<target common>

<compile X/>
<compile Y/>
<compile Z/>

</target>
...

</project>

Makefile Extension is Code Extension

<compile D>

<compile Q>

new instructions
added after existing
instructions

correspondence
generalizes to 
makefile properties
such as data members,
etc.
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Insight #4: Principle of Uniformity

Principle of Uniformity

create analog in OO representation:
treat all artifacts equally, as objects or classes

extend non-code representations same as code representations

That is, you can extend any artifact
understand it as an object, collection of objects, or classes

We are creating a theory of information structure based on features
it works for code and other representations
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Big Picture

Most artifacts today (HTML, XML, etc.) have or can have a 
hierarchical structure

But there is no extension relationship among artifacts!

what’s missing are extension operations for artifacts

Need tools to extend instances of each artifact type

MS Word?
given such tools, scale step-wise extension scales without bounds...

Encapsulate changes/additions to all representations of a system
so all artifacts (code, makefiles, etc.) are updated consistently

Compositions yield consistent representations of a system
exactly what we want
simple, elegant theory behind simple implementation
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Product Member Synthesis Overview

Engineer

h1●g1●f1

h2●g2●f2

h3●g3●f3

generator

generator

generator

equation
composition

and optimization

h●g●f

declarative DSL

artifact1

artifact2

...

artifacts of
specified system

• generalizes RQO paradigm
• scales to large systems
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AHEAD Tool Suite

kick the tires...
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Composer Tool
Key tool in AHEAD Tool Suite (ATS) is composer
composer expands AHEAD equation to yield target system

feat1

feat2

feat3

composer
feat321

> composer –target=feat321 feat1 feat2 feat3

feat321 = feat3 ● feat2 ● feat1
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Jak Files

Program in extended-Java files
Jak(arta) files

Java + feature declarations, etc.
Jak is an extensible language

AHEAD is bootstrapped
Most AHEAD tools are written in Jak
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Other Tools...
Besides composer

jak2java – translates Jak files to Java files
javac – javac compiler
reform – Jak or Java file formatter/pretty-printer
others...

feat1

feat2

feat3

composer
feat321 feat321jak2java javac feat321

> cd <model-directory>
> composer –target=...
> reform *.jak
> jak2java *.jak
> reform *.java
> javac *.java
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Jak-File Composition Tools

composer invokes Jak-specific tools to compose 
Jak files

two tools now: jampack and mixin
jak2java translates Jak to Java

A.jak
(from feat 1)

A.jak
(from feat 3)

A.jak
(from feat 2)

jampack
or mixin

A.jak
(composed)

step #1

jak2java A.java

step #2
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jampack

Flattens “inheritance” hierarchies
takes expression as input, produces single file as output
basically macro expansion with a twist...

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

class top {
int a;
void foo() {...}
int b;
int bar() {...}

}
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jampack

jampack may not be composition tool of choice
look at typical debugging cycle
problem: manual propagation of changes
reason: jampack doesn’t preserve feature boundaries

A.jak
(from feat 1)

A.jak
(from feat 2)

A.jak
(from feat 3)

jampack A.jak
(composed)

jak2java A.java

translate
debug
update

compose

propagate
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mixin

Encodes class, extensions as inheritance hierarchy

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

SoUrCe “A/top.jak”

abstract class top$$A {
int a;
void foo() {...}

}

SoUrCe “B/mid.jak”

public class top extends top$$A {
int b;
int bar() {...}

}
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unmixin

Edit, debug composed A.jak files
unmixin propagates changes from composed file to original 
feature files automatically

A.jak
(composed)

jak2java A.java

translate
debug
update

A.jak
(from feat 1)

A.jak
(from feat 2)

A.jak
(from feat 3)

unmixin

propagate
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Composable Representations

Current list...

*.jak – extended Java files (Jakarta)
class

interface

state machine  (ex: embedded DSL)

*. equation – equation files
*. b – grammar files
*. drc – design rule files
others...

AHEAD tools 
are written in 

extended Java.

AHEAD has been
bootstrapped so

that its tools have
been written using

AHEAD tools.

See Lecture on Origami
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Demo... see files,
compositions

model
tree
view

file view ©dsbatory2005 111

Note algebraic underpinning...

Same algebraic paradigm as AHEAD
progressively elaborating a containment hierarchy
can optimize expression (not this one...)
can generate a makefile from it...

javac feat321

javac(                                    )

Cultural Enrichment

feat1

feat2

feat3

composer
feat321

P =                   feat3 ● feat2 ● feat1

feat321jak2java

jak2java(                          )
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To see connection, watch how containment hierarchy is formed...
adding new artifacts is example of module extension

Big picture: lots of operators on AHEAD modules
seems that lots of optimizations are possible too... (current work)

Cultural Enrichment

feat1

feat2

feat3

composer
feat321

module
produced:

feat321jak2java javac feat321
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A Simple Example

to illustrate concepts, tools
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Domain of Graph Applications

Simple way to express family of related applications 
is as a grammar

different members distinguished by different sets of features

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...choose one
choose at least one

choose one
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Example Family Members

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...
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It is Easy to...

Imagine a GUI tool that 
allows you to specify any 
possible combination

declarative language

tool generates an 
explanation of your 
specification

and identifies errors 
(and suggests corrections) 
when combinations of 
features are not possible

See lecture on 
Design Rule Checking
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That’s Easy... 

GPL = { directed -- directed graphs
undirected -- undirected graphs

bfs -- breadth first search
dfs -- depth first search

cycle -- cycle checking
number -- vertex numbering
regions -- connected regions
...

}

So too is creating the underlying FOP model:

constants

functions
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Constructing Applications

graph_app = region ● vertex ● dfs ● directed
= vertex ● region ● dfs ● directed

automatic
mapping

demo
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AHEAD Coding Examples
Class and Class Extension Specifications

import initial.stuff;

class myclass {
    int baseVariable;

    // original method is empty
    void baseMethod() {}
}

import more.stuff;

refines class myclass  {

    // introduce new variable
    int refVariable = 0;

    // introduce new method
    int refMethod() {
        return refVariable; 

}

    void baseMethod() {
        // extension of baseMethod
        // an "execution" around advice in AOP
        int before_stuff = 1;
        Super().baseMethod();  // AOP "proceed"
        int after_stuff = 2;
    }
}

base/myclass.jak

ref/myclass.jak

base
ref

baseRef.equation

code-2

JamPack Composition of Classes in baseRef.equation

layer baseRef;

import initial.stuff;
import more.stuff;

class myclass {
    int baseVariable;

    // introduce new variable
    int refVariable = 0;

    // original method is empty
    final void baseMethod$$base() {}

    void baseMethod() {
        // extension of baseMethod
        // an "execution" around advice in AOP
        int before_stuff = 1;
        baseMethod$$base(); // AOP "proceed"
        int after_stuff = 2;
    }

    // introduce new method
    int refMethod() {
        return refVariable; 
    }
}

union of 
imports

original
method

call to
original 
method

baseRef/myclass.jak
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Mixin Composition of Classes in baseRef.equation

layer baseRef;

import initial.stuff;
import more.stuff;

SoUrCe RooT base "../base/myclass.jak";

abstract class myclass$$base {
    int baseVariable;

    // original method is empty
    void baseMethod() {}
}

SoUrCe  ref "../ref/myclass.jak";

class myclass extends  myclass$$base {

    // introduce new variable
    int refVariable = 0;

    // introduce new method
    int refMethod() {
        return refVariable; 

}

    void baseMethod() {
        // extension of baseMethod
        // an "execution" around advice in AOP
        int before_stuff = 1;
        Super().baseMethod(); // AOP "proceed"
        int after_stuff = 2;
    }
}

union of 
imports

base
class

class
extension
or
refinement

baseRef/myclass.jak

code-4

AHEAD Coding Examples
State Machine and State Machine Extension Specifications

import something.*;

State_machine mysm {

Delivery_parameters( Evnt e );

// start, stop states implicity defineded
States midpoint;

Transition begin: start -> midpoint
condition e != null
do {

commonaction( e );
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction( e );
}

void commonaction( Evnt e ) { /* something */
}

}

import evenmore.*;

refines State_machine mysm {

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

}

base/mysm.jak

ref/mysm.jak

base
ref

baseRef.equation
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JamPack Composition of State Machines in baseRef.equation

layer baseRef;

import something.*;
import evenmore.*;

State_machine mysm {

Delivery_parameters( Evnt e );

// start, stop states implicity defineded
States midpoint; 

Transition begin: start -> midpoint
condition e != null
do {

commonaction( e );
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction( e );
}

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

void commonaction( Evnt e ) { /* ... */
}

}

union of 
imports

baseRef/myclass.jak

new
transition

code-6

Mixin Composition of State Machines in baseRef.equation

layer baseRef;

import something.*;
import evenmore.*;

SoUrCe RooT base "../base/mysm.jak";

abstract State_machine mysm$$base {

Delivery_parameters( Evnt e );

// start, stop states implicitly defined
States midpoint;

Transition begin: start -> midpoint
condition e != null
do {

commonaction( e );
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction( e );
}

void commonaction( Evnt e ) { /* ... */
}

}

SoUrCe  ref "../ref/mysm.jak";

State_machine mysm extends  mysm$$base {

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

}

union of 
imports

base
class

machine
extension
or
refinement

baseRef/myclass.jak
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AHEAD Coding Examples
Design Rules, Design Rule Extensions, and Composition

constant layer;

// attributes 
extern flowleft Int scale; 
extern flowright Bool A;

// preconditions
requires flowleft 4 <= scale;

// postconditions
provides flowright !A; 

layer ref;

// attributes
extern flowleft Int scale; 
extern flowright Bool B;

// preconditions
requires flowleft scale <= 4;

// postconditions
provides flowright B; 

constant layer baseRef;

// externally defined attributes

extern flowright Bool A;
extern flowright Bool B;
extern flowleft Int scale;

provides flowright !A and B;
requires flowleft scale == 4;

base/rules.drc

ref/rules.drc

baseRef/rules.drc

composition
of above two files

code-8

AHEAD Coding Examples
Grammars, Grammar Extensions, and Composition

// base grammar for mini-calculator
// IDENTIFIER is predefined
// Tokens here

"+"  PLUS

// first production is start production

Expr
: IDENTIFIER
| IDENTIFIER Operator Expr :: Opr
;

Operator
: PLUS   :: Plus
;

// adds minus operator
// add new token

"-" MINUS

// import previously defined left-hand side

require Operator;

// add new production

Operator
    : MINUS         :: Minus
    ;

"-"  MINUS
"+" PLUS

Expr
: IDENTIFIER
| IDENTIFIER Operator Expr :: Opr
;

Operator
: MINUS :: Minus
| PLUS   :: Plus
;

base/grammar.b

ref/grammar.b

baseref/grammar.b

composition
of above two files



code-9

AHEAD Coding Examples
Equations, Equation Extensions, and Composition

# base equation
# = e . d . c  (listed in left-2-right order)

c
d
e

# equation extension
# super references base equation

a
b
super
f
g

# Generated
a
b
c
d
e
f
g

base/eq.equation

ref/eq.equation

baseRef/eq.equation

composition
of above two files
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Aspect Composition

Current Research...
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Introduction

Core of FOP is:
step-wise development (SWD)
inheritance-like extension of programs

AspectJ (AOP in general) seems to provide 
these capabilities and then some

e.g. many more kinds of join-points

FOP and AOP are duals
NOT generalizations of each other
they are instances of more general model
lecture sketches beginnings of this model
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Overview

Step-wise development with AspectJ is hard

Illustrate example

Model of aspect composition using AspectJ

Present alternative model to support SWD
without sacrificing power of AspectJ
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An Example

of incremental development

assumes minimal knowledge of AspectJ
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Incremental Development Example

Step 1: Point defines 1-dimensional point

class Point1 {
int x;
void setX(int v) { x = v; }

}
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Step 2: Add Y Coordinate and Method

class Point2 {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

}

class Point1 {
int x;
void setX(int v) { x = v; }

}

aspect TwoD {
int Point.y;
void Point.setY(int v)
{ y = v }

}

ajc Point.java TwoD.java
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Step 3: Count # of Coordinate Changes
class Point2 {

int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

}

class Point3 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }

}

aspect Counter {
int Point.counter = 0;
after (Point p) : execution( * Point.set*(..))

&& target(p) { p.counter++; }
}
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Step 4: 
Add Color 
Information

aspect Color {
int Point.color = 0;
int Point.setColor(int c) { color = c; }

}

class Point3 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }

}

class Point4 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color = 0;
int setColor(int c) { color = c; }

}
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Surprise!

AspectJ produces something different!

ajc Point.java TwoD.java Counter.java Color.java

class Point’4 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color;
int setColor(int c) { color = c; counter++; }

}

Extra code! 
Counter

aspect applies 
to all files in 
ALL steps!
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Paradox of Using Aspects

Building software incrementally:
manually
automatically using AspectJ
may yield different results!

Redefine Counter could avoid this problem:

aspect Counter {
int Point.counter = 0;
after (Point p) : execution( * Point.setX(..) )

&& execution( * Point.setY(..) ) 
&& target(p) { p.counter++; }

}
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Well...

It would solve this problem, but not others
Ex: if we used the updated Counter, but wanted to 
build program below, we couldn’t do it

would need to update Counter again

class Point {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color;
int setColor(int c) { color = c; counter++; }

}

This 
code would 
be missing
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The Big Picture

Premise of Component-Based Software Engineering 
(CBSE) is step-wise development

progressively build programs by composing components 
one at a time
reuse components “as is”

We want to reuse aspect modules “as is”
difficult to do

Core problem:
aspect composition does not distinguish development stages
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How We Will Proceed

Create a model of how AspectJ composes aspects to discover 
source of problem

Present an alternative model of composition that:

retains power of AspectJ
support incremental development
simplifies reasoning with aspects

Full treatment in:

“Taming Aspect Composition: A Functional Approach”
by R. Lopez-Herrejon and D. Batory, May 2005
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A Model of Introduction

Introduction Addition (+)
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Model of Introduction

Introduction is a function that maps an input 
program to an augmented output program

Appealing to intuition, rewrite above as summation:

Point2 = TwoD( Point1 ) 

Point2 = TwoD +  Point1
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Introduction Addition
Program fragment is set of methods, variables of 
1+ classes

+ adds program fragments

class A { .. }

class B { .. }

P1

aspect I1 {
A.a;
B.b;

}

class C { .. }

+

A +

=

class C { .. }

class A { .. a ..  }

class B { .. b ..  }

= P2
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Properties of Introduction Addition

+ is set union of program fragments

Identity – denoted by 0
0 is the empty program fragment
if X is a program fragment

X  =  X + 0  =  0 + X

Commutative – order in which program fragments 
are added does not matter

Associative:  (A + B) + C = A + (B + C)
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Properties of Introduction Addition

Substitution (from associativity)
TwoD is a composite Introduction

can substitute to produce equivalent defn of Point2

TwoD = y + setY

aspect TwoD {
int Point.y;
void Point.setY(int v)
{ y = v }

}

Point2 = TwoD + Point1

= y + setY + Point1
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A Model of Advice

Advice Weaving (*)
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Advice

Advice code (in italics above) can be regarded as 
implicit method declaration and call

Separate concerns by
make advice body an explicit method
name each advice

aspect Log {
pointcut logP() : execution(* Point.set*(..));
after() : logP() 

{ System.out.println(“set called”); }
}
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Pure Advice – Rewrite Log Aspect

Not standard AspectJ syntax
Called Pure Advice – separates implicit 
introduction from advice

aspect Log {
static void Point.setCalled()

{ System.out.println(“set called”); }

LogP is after(): execution(* Point.set*(..))
--> Point.setCalled();

}

introduction

pure advice
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Model of Aspects

Model as 2-D vector
1st entry is pure advice (advice part)
2nd entry is introduction (introduction part)

Log = [ LogP, setCalled ]

aspect Log {
static void Point.setCalled()

{ System.out.println(“set called”); 

LogP is after(): execution(* Point.set*(..))
--> Point.setCalled();

}
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Another Example

Modeled by vector:

Counter = [ CounterP, counter + IncCtr ]

aspect Counter {
int Point.counter = 0;
static void Point.IncCtr(Point p)

{ p.counter++; }

CounterP is after (Point p) : 
execution( * Point.set(..)) && target(p) 
--> Point.CounterA(p);

}
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Advice Weaving

Application of pure advice is operation *

Let a pure advice and P be a program

a*P = program resulting from advice a 
woven into P
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Advice Weaving

a2 and a1 are pure advice

a2*a1*P means apply a1 first to P, then a2

Defines precedence ordering of advice
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Properties of Advice Weaving

Identity – denoted by 1
1 is the null advice – a pointcut that captures no joinpoints
if P is a program and a is a pure advice:

P   = 1*P
a*P = 1*a*P = a*1*P

Non-commutative – order in which weaving occurs 
matters

commutative only when join point sets are disjoint
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Properties of Advice Weaving

Right-Associative:
a2*a1*P means apply a1 first to P, then apply a2

Distributive: Advice weaving distributes over 
introduction addition 

P’ = a*P
= a*(A + B + C)

= a*A + m*B + m*C
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Aspect Composition: Vector Model

Composition:
aspect  A1 = [a1, i1]
aspect  A2 = [a2, i2]

◊ is AspectJ composition operation

◊ akin to vector addition:

A2 ◊ A1 = [a2, i2] ◊ [a1, i1]

= [a2*a1, i2+i1]
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Aspect Composition

Let program P = [1, p]

What is the resulting program?

A2 ◊ A1 ◊ P = [a2, i2] ◊ [a1, i1] ◊ [1, p]

= [ a2*a1*1, i2+i1+p ]

= [ a2*a1, i2+i1+p ]
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Aspect Composition

Is “length” of vector V 

So:

Consistent with observable AspectJ semantics

|V| = |[a,i]| = a*i

|A2 ◊ A1 ◊ P| =  a2*a1*( i2+i1+p )

|An ◊ An-1 ◊ ... A1 ◊ P| =

(an*an-1*...*a1)*( in+in-1+...+i1+p )
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Incremental Development & AspectJ

Problem seen in expansion

AspectJ programmer needs to know if any advice 
applied in earlier steps affects the code added by 
the current or later steps

|A2 ◊ A1 ◊ P| =  a2*a1*( i2+i1+p )
=  a2*a1*i2 + a2*a1*i1 

+ a2*a1*p

aj-1*aj-2*...*a1*ij
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A Simple Fix...
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A Functional Model of Composition

Treat aspects as functions
Aspect composition is function composition

The terms we don’t want (a1*i2) are gone!

A(P) = A•P = a*(i + p)

A2•A1•P = a2*(i2 + a1*(i1 + p))

= a2*i2 + a2*a1*i1 + a2*a1*p
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Comparison of Composition Models

Functional Model has more power than AspectJ
provided that aspects are reused as is

set of programs
that can be 
synthesized

by Functional 
Model

programs that
can be synthesized
by AspectJ Model
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Proof

Every AspectJ composition can be expressed 
as a Functional composition

|A2 ◊ A1 ◊ P| =  a2*a1*( i2+i1+p )

[a2,0] [1,i2] [1, p][a1,0] [1,i1][a2,0] • [a1,0] • [1,i2] • [1,i1] • [1, p] 
= a2*a1*( i2+i1+p )
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Proof Continued

Translating arbitrary Functional Model 
expression into AspectJ composition is not 
possible by reusing aspects “as is”

can do it if you modify the aspects... 

Reason: Vector Model does not distinguish 
different development stages

A2•A1•P = a2*(i2 + a1*(i1 + p))
= a2*i2 + a2*a1*i1 + a2*a1*p
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Implication – Recall Point Example

Can add 3rd dimension to Point, ThreeD

Can build 3 different programs

program that counts executions of setX and setY

Color • ThreeD • Counter • TwoD • Point

program that counts execution of setX, setY, setZ

Color • Counter • ThreeD • TwoD • Point

program that counts all set methods

Counter • Color • ThreeD • TwoD • Point

Using AspectJ
we would need

3 different versions
of Counter
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Features are Increments in Program Functionality

Aspects are features, and vice versa
they are the same

It’s their composition-design models that differ!

FOP is based on step-wise development
distinguish different stages of program development

AOP (AspectJ) uses a different methodology
does not distinguish different stages of development

FOP and AOP are not directly comparable
but they are instances of a more general model
preserves power of AspectJ
preserves power of step-wise development

KEY

KEY
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Current Work

Working with abc group (Oxford, England) 
and University of Passau

to integrate models

Stay tuned...

FOP AOP

Integrated Model

special cases
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Recommended Readings
Aspect Bench Compiler. http://www.aspectbench.org

Aspect Development Tools. http://www.eclipse.org/ajdt

AspectJ. Programming Guide. http://aspectj.org/ doc/proguide

Concern Manipulation Environment (CME) http://www.eclipse.org/cme/

R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-Wesley, 2004

Gregor Kiczales and Mira Mezini. “Aspect-Oriented Programming and Modular Reasoning”. ICSE 2005. 

R. Lopez-Herrejon and D. Batory, “Improving Incremental Development in AspectJ using Bounded Quantification”, 
SPLAT 2005.

R. Lopez-Herrejon and D. Batory, “Taming Aspect Composition: A Functional Approach”, May 2005

R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support for Features in Advanced 
Modularization Technologies”, ECOOP 2005.

G. Murphy, A. Lai, R.J. Walker, M.P. Robillard, “Separating Features in Source Code: An Exploratory Study”. 
ICSE 2001.

H. Rajan and K. Sullivan, “Classpects: Unifying Aspect- and Object-Oriented Language Design”, ICSE 2005.
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Design Rule Checking

how to verify compositions automatically
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Introduction

Fundamental problem: not all compositions of 
features are correct

but code can still be generated!
and maybe code will still compile!
and maybe code will run for a while!
impossible for users to figure out what went wrong!
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Introduction

Must verify compositions automatically

not all features are compatible
selection of a feature may enable others, disable others

Design rules are domain-specific constraints that identify illegal 
compositions

Design Rule Checking (DRC) is process of applying design rules 
automatically

Presentation overview:

review fundamental relationships of models, grammars, 
feature diagrams, and propositional formulas
tool support
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AHEAD Models and Grammars

AHEAD
Model

Attribute
Grammar

?



©dsbatory2005 304

Layered Designs 1992

GenVoca originated from layered designs
Layers are common form of program extensions

a

k = a

lowest layer

highest layer

b

b  ●

calls

cc  ●
calls
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M = {       y     ,        z     ,       w     ,        

g            ,    h            ,     i           }  

:S             :S :S

(x:S):R (x:S):R (x:R):R

Typing GenVoca Layers

Layers exported and imported standardized interfaces
interfaces == virtual machines (VM)
“legos”

Virtual Machines used as types
suppose S and R are virtual machines
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Types and Realms

g( x:S ):R means feature g:
exports virtual machine R 
imports layer x that implements 
virtual machine S
x is a parameter of “type” S

Realm is a set of units that 
implement the same virtual machine

S = {     y,    z,    w    }

R = {   g(x:S),   h(x:S),    i(x:R)   }

R

S

g

g is a layer
that maps
between VMs
R and S
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Product-Lines and Grammars

Model = ∪ set of realms Defines a grammar whose 
sentences are applications

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

S ::= y   | z   |  w   ; 

R ::= g S | h S |  i R ;

set of all sentences is a language
or product-line
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Symmetry

Just as recursion is fundamental to grammars;
symmetric layers are fundamental to GenVoca

export and import same virtual machine
composable in virtually arbitrary orders
composition order affects semantics, performance

Symmetric layer of realm W has parameter of type W

W = {  m(x:W),  n(x:W), p  }

ex:  m(n(p)),  n(m(p)),  m(m(p)),  n(n(p)),...
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A Symmetric Layer...

Augments or enriches existing abstractions

relational DBMS – add transposition, data cube ops
relational interface still the same, except it has been 
enriched

think of extending a class with a subclass 

same idea, except on a system level

enormous number of such features....

Happens in ALL domains...
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Example

What are the standard operations of a 
container?

call this layer “base”

All other operations are “optional”
encapsulate in separate layer that extends 
interface of base
these layers are “symmetric”
map container abstraction to augmented container 
abstraction
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Perspective...

Assign types to constants, functions...
so that all our equations are “typed”
catches type errors!

Syntax checking in this grammar guarantees type 
correctness of expressions

is this enough?

S = {  y,  z,  w  }

R = { g(x:S), h(x:S), i(x:R) }
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No!!

Syntax checking is not enough!
matching input/output signatures insufficient!
just because your Java program is syntactically correct 
doesn’t mean that it is semantically correct

DRC uses same techniques used by compilers!
use attribute grammars to define constraints

AHEAD model is an grammar
design rules are grammar attributes, predicates
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Feature Diagrams and Grammars

AHEAD
Model

Attribute
Grammar

Feature
Diagram

?
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Feature Diagrams

Feature diagrams are standard product-line notations
declarative way to specify products by selecting features

FDs are trees:
leaves are primitive features
internal nodes are compound features
parent-child are containment relationships

car 

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline
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Feature Diagrams

Mandatory – features that are required
Optional – features that are optional
And – all subfeatures (children) are selected
Alternative – only 1 subfeature can be selected
Or – 1+ or 0+ subfeatures can be selected

car 

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline

and

or: 1+choose1
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Example

What is a legal product specification?

E is ?

R is ?

S is ?

Sound familiar?
de Jonge and Visser (2002):
FDs are graphical representations of grammars
“GenVoca Grammars” 1992

and

choose1 and
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Mapping of FDs to Grammars

S  ::=  e1  [e2]   en  ;

S  ::=  e1 |  e2  |  en  ;

...  S+  ...

S  ::=  e1 |  e2  |  en  ;

Diagram Grammar

and

or: 1+

choose1
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Example: Convert FD to Grammar

E  ::=  R  S  ;

R  ::=  g  |  h  |  i  ;

S  ::=  a  [ b ]  c  ;

Application defined by FD = sentence of grammar E

Adding attributes allows further constraints to be expressed

Again back to attribute grammar foundation

and

choose1 and
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Grammars and Propositional 
Formulas

AHEAD
Model

Attribute
Grammar

Feature
Diagram

Propositional
Formula

?
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Propositional Formula

Set of boolean variables and propositional logic 
predicate that constrains values of these variables

Standard ¬, ∨, ∧, ⇒, ⇔ operations

Nonstandard:
choose1(e1...ek) – exactly one ei is true
choosen:m(e1...ek) – at least n, at most m
anything else...
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Insight

A grammar is a compact 
representation of a 
propositional formula

Variable is:
a token

name of a non-terminal

name of a pattern

How many variables in the 
production below?

R :  a  b    :: P1
|  c [R1]  :: P2
;

©dsbatory2005 322

Mapping Productions to Formulas

Given production R : P1 | ... | Pn ;

R can be referenced in two ways:

P1 ∨ P2 ∨ ... ∨ Pn

... R ...
(choose 1) choose1(P1,P2, ..., Pn)

... R+ ...
(choose 1 or more)

Pattern Predicate
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Mapping Patterns to Formulas

T1 T2 ... Tn :: P

formula:

T1 [T2] ... Tn :: Q

formula:

P⇔T1 ^ P⇔T2 ^ ... ^ P⇔Tn

Q⇔T1 ^ T2⇒Q ^ ... ^ Q⇔Tn
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Example: Grammars to Formulas
Convert each production, pattern to formula
Take conjunction of all formulas
Conjoin root=true (root is root of grammar)

E  ::=  R  S  ;

R  ::=  g  |  h  |  i  ;

S  ::=  a  [ b ]  c  ;

E ⇔ R ^  E ⇔ S

R ⇔ choose1( g,  h,  i )

S⇔a ^ b⇒S ^ S⇔c

^

^

E=true

^

grammar
propositional formula

A sentence of E satisfies the propositional formula
and vice versa
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Another Example

Eng ⇔(Ele v Gas) 

Tr⇔choose1(Auto,Man)

Car⇔CB ^ Car⇔Tr ^ Car⇔Eng ^ Pt⇒Car

car 

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline

^

^

Car = true

^
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Summarizing...

We can map any AHEAD model or FD to a 
propositional formula

a sentence of grammar = assignment to variables that satisfy 
the formula
but what about constraints?

Any additional, arbitrary propositional formulas 
conjoined onto grammar formula

Ex: if features i and b are incompatible, we would conjoin the 
formula

i ∨ b ⇒ ¬ (b ∧ i)
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In Summary

An AHEAD Model is a propositional formula!
primitive features are variables
compound features are variables
arbitrary set of propositional constraints supported
can be mapped to attribute grammars

Grammar:
specifies ordering constraints on features
ordering very important for AHEAD

Additional propositional constraints:
weed out incompatible features
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Declarative Domain-Specific 
Languages

AHEAD
Model

Attribute
Grammar

Feature
Diagram

Propositional
Formula

DSL

?

©dsbatory2005 329

Declarative Languages

Features enable declarative program specifications
that’s what feature diagrams are for!
counterpart of SQL

Want a declarative GUI DSL that acts like a syntax-
directed editor

user selects desired features
tool precludes specifying incorrect programs

guidsl tool...
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An Example

Recall GPL from Tools Lecture

Gpl = { DIRECTED -- directed graphs
UNDIRECTED -- undirected graphs

BFS -- breadth first search
DFS -- depth first search

CYCLE -- cycle checking
NUMBER -- vertex numbering
REGIONS -- connected regions
...

}

constants

functions
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GPL Grammar

Gpl : Alg+ [Src] Wgt Gtp :: MainGpl ;

Gtp : DIRECTED | UNDIRECTED ;

Wgt : WEIGHTED | UNWEIGHTED ;

Src : DFS | BFS ;

Alg : NUMBER | CONNECTED | 
| [TRANSPOSE] STRONGC :: StronglyC
| CYCLE | MSTPRIM | MSTKRUSKAL | SHORTEST ;
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Additional Constraints

Straight from Graph Algorithm Text
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Encode as Additional Predicates

NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
STRONGC implies DIRECTED and DFS;
CYCLE implies Gtp and DFS;
MSTKRUSKAL or MSTPRIM implies 

UNDIRECTED and WEIGHTED;
SHORTEST implies DIRECTED and WEIGHTED;
MSTKRUSKAL or MSTPRIM implies

not( MSTKRUSKAL and MSTPRIM );
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guidsl Specification 
Gpl : Alg+ [Src] Wgt Gtp :: MainGpl ;
Gtp : DIRECTED | UNDIRECTED ;
Wgt : WEIGHTED | UNWEIGHTED ;
Src : DFS | BFS ;
Alg : NUMBER | CONNECTED 

| [TRANSPOSE] STRONGC :: StronglyC
| CYCLE | MSTPRIM | MSTKRUSKAL 
| SHORTEST ;

%%
NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
STRONGC implies DIRECTED and DFS;
CYCLE implies Gtp and DFS;
MSTKRUSKAL or MSTPRIM implies 

UNDIRECTED and WEIGHTED;
SHORTEST implies DIRECTED and WEIGHTED;
MSTKRUSKAL or MSTPRIM implies

not( MSTKRUSKAL and MSTPRIM );

grammar

constraints
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Demo

Propagation of constraints involves
classic results from Artificial Intelligence
Logic Truth Maintenance System
improves quality of teaching material

Help to debug model using SAT solver
Satisfiability (SAT) Solver tries to find assignment to 
boolean values to make propositional formula true
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Generated DSL for GPL Spec

Demo!
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Key Papers

Batory, “Feature Models, Grammars, and Propositional 
Formulas”, SPLC 2005

Benavides, et al. “Automated Reasoning on Feature Models”, 
CAISE 2005

Generalize predicates to include numerical constraints

count number of products that satisfy constraints
select product that maximizes/minimizes criteria (performance)
restrict models based on feature requirements, criteria
standard constraint solvers

Next-generation FD tools based on these ideas
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Experience with DRC Tools

Have worked well...

Predicates are simple

Use off the shelf constraint solvers

Reason: architects think in terms of features
if predicates were really complicated

architects couldn’t design
people couldn’t program
because it would be too difficult

We are making explicit what is implicit now...

©dsbatory2005 339

Recommended Readings
Batory and O'Malley. “The Design and Implementation of Hierarchical Software Systems with Reusable 
Components”. ACM TOSEM, October 1992.

Batory and Geraci. “Composition Validation and Subjectivity in GenVoca Generators”, IEEE Transactions on 
Software Engineering (special issue on Software Reuse), February 1997, 67-82.

D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated Reasoning on Feature Models”, Conference
on Advanced Information Systems Engineering (CAISE), July 2005.

Beuche, Papajewski, and Schroeoder-Preikschat, “Variability Management with Feature Models”, Science of 
Computer Programming, Volume 53, Issue 3, Pages 333-352, December 2004. 

Czarnecki and Eisenecker. Generative Programming: Methods, Tools, and Applications. Addison-Wesley, Boston, 
MA, 2000

Czarnecki, Helson, Eisenecker, “Staged Confiruation Using Feature Models”, Software Product-Line Conference 
2004.

K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press 1993.

M. de Jong and J. Visser, “Grammars as Feature Diagrams”, 2002.
http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based Design Space Exploration and Model Synthesis”, 
EMSOFT 2003, LNCS 2855, p. 290-305.

Perry, “The Logic of Propagation in the Inscape Environment”, ACM SIGSOFT 1989.
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Multi-Dimensional Models

Synthesis of Tool Suites
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Multi-Dimensional Models (MDMs)

Are a fundamental design technique in FOP

Given model F = { F1, F2, ... Fn }

Let program G = F8 + F4 + F2 + F1

where + denotes composition operator ●
we’ll see shortly why the change in notation is useful

Can write G as:

G = Σ i∈ (8,4,2,1) Fi
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N-Dimensional Models

Use n FOP models called dimension models
to specify features or indices along a dimension

A 3-D model M with A, B, C 
as dimension models

A = {A1, ... Aa}
B = {B1, ... Bb}
C = {C1, ... Cc}

M has a*b*c entries
Mijk implements (Ai, Bj, Ck) A1 A2 A3 Aa

B1

B2

B3

Bb

C1

C2

C3

Cc

..

..

.. M
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N-Dimensional Models

A program is now specified by n equations
1 per dimension

Program P in product-line of M has 3 equations:

P = A6 + A3 + A1 = Σ i∈ (6,3,1) Ai

P = B7 + B4 + B3 + B2 = Σ j∈ (7,4,3,2) Bj

P = C9 + C1 = Σ k∈ (9,1) Ck
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Summing (Aggregating) Dimensions

The 3-eqn specification of P is translated into an M equation 
by summing M along each dimension

P = Σ i∈ (6,3,1) Σ j∈ (7,4,3,2) Σ k∈ (9,1) Mi,j,k

Order in which dimensions are summed does not 
matter

commutativity property of MDMs
provided that dimensions are orthogonal

A indices B indices C indices
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Significance of MDMs: Scalability!

Complexity of program is # of features

Given n dimensions with d feature per dimension

program complexity is O(dn)
using MDM model O(dn)

ex: program P specified by 3*4*2 features of M or
only 3 + 4 + 2 dimensional features!

FOP program specifications are exponentially 
shorter when using MDMs
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Academic Legacy

“Extensibility Problem” or “Expression Problem” (EP)
classical problem in Programming Languages
see papers by: Cook, Reynolds, Wadler, Torgensen

Multi-Dimensional Separation of Concerns (MDSoC)
Tarr, Ossher IBM

MDM is an algebraic formulation of MDSoC and EP
first present a micro example (15 line programs)

then a large example (30K line programs)
synthesis of the AHEAD Tool Suite
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A Micro Example

Model L defines a set of programs that implement an 
elementary linked list

L = { sglIns, // bare-bones singly-linked list with
// insert operation

}

dblIns, // extends sglIns to doubly-linked list

addDel, // adds deletion operation to sglIns

dblDel // extends addDel to deletion on 
// doubly-linked list
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Enumerated Product-Line

Set of all legal equations (designs) for L

sglIns

dblIns + sglIns

addDel + sglIns

dblDel + dblIns + addDel + sglIns =  

dblDel + addDel + dblIns + sglIns

Why are last two expressions equal?

slist w. 
ins

dlist w. 
ins

slist w. 
ins & del

dlist w. 
ins & del

Ans: orthogonal 
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Incorrect Compositions

dblIns + addDel + sglIns

insert method works on a 
doubly-linked list

delete method works on a 
singly-linked list

dblDel + addDel + sglIns

insert method works on 
singly-linked list

delete method works on a 
doubly-linked list

resulting programs have design errors, are inconsistent
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Common Problem in FOP
If list structure is extended (single–to–double)

all operations must be consistently updated
ex: both insert and delete must work on same structure

Equivalently, if a new method is added, then it should work for that 
structure and not some other structure

insert can’t work on singly-linked list, delete on doubly-linked list

Consistent Refinement Problem 

Representative of a large class of problems in FOP
models define features that are not truly independent
features must be applied in groups lock-step (all-or-nothing)
when this occurs, recognize groups implement “higher-level” features

MDMs abstract this complexity….
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Orthogonal Dimensional Models

Create operation model Ops

Model says nothing about list structure
could be single-linked, double-linked, keyed, non-keyed…

only 2 legal equations

Ops = { insert, delete }

adds delete 
operation to list

linked list with
insert operation

w_ins = insert
w_ins_and_del = delete + insert
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Orthogonal Dimensional Models

Create structure model Struct

Model says nothing about list operations
could have insert, deletion, update, ….
only 2 legal equations

Struct = { singleLink, doubleLink }

singly-linked list

single = singleLink
double = doubleLink + singleLink

extend to doubly-
linked list

©dsbatory2005 413

Given These Two Models

A list program is completely defined by 2 equations
P = doubly-linked list with ins and del operations

These equations must be equal
because they represent the same program
how to show their equivalence?

P = delete + insert // equation #1 uses Ops Model

P = doubleLink + singleLink // equation #2 uses Struct Model
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MDMs

Define relationship between 
Ops & Struct models by a 
matrix

Rows represent units of the 
Ops model (insert, delete)

Columns are units of the Struct
model (singleLink, doubleLink)

Entries are features of L

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

MDM Matrix for L
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doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+ + +

Sum (Aggregate) MDM Matrix by Rows

Ops equation   P = delete + insert 
Sum corresponding entries in each column

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns

single-linked w. 
ins and del

extends to 
doubly-linked
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Now Sum by Columns

Struct equation P = doubleLink + singleLink

Sum corresponding entries in each column

yields 1x1 matrix whose contents is first of the two equations that 
defines P (doubly-linked list structure with insert and delete methods)

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns+

+
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Again, But Sum Columns First

Struct equation P = doubleLink + singleLink
Means sum corresponding entries in each column

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+

+
extends by adding 

del operation

doubly-linked w.
ins operation
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Now Sum Rows
Ops equation P = delete + insert 
Sum corresponding entries in each column 

yields second of the two equations that defines doubly-linked 
list structure with insert and delete methods

+doubleLink singleLink

insert

delete

dblIns

dbldel

sglIns

addDel

+

+

+doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+

+

++

doubleLink singleLink

delete + insert dblDel + addDel dblIns + sglIns+

+
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Perspective

By abstracting model L as a pair of orthogonal 
dimensional models and specifying a program as a pair 
of equations, we generate only the legal equations of L

sgl

dbl + sgl

sgldel + sgl

dbldel + dbl + sgldel + sgl =  dbldel + sgldel + dbl + sgl

slist w. 
ins

dlist w. 
ins

slist w. 
ins & del

dlist w. 
ins & del
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A Macro Example

Synthesizing the AHEAD Tool Suite
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Perspective

So far, our models customize individual programs
set of all such programs is a product-line

Tool Suite is an integrated set of programs, 
each with different capabilities

MS Office (Excel, Word, Access, ...)

Question: Do features scale to tool suites?
product-line of tool suites
Ans: Yes!
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IDEs: A Tool Suite

Integrated Development Environment (IDE)
suite of tools to write, debug, document programs
AHEAD variant: Java language extensibility

compiler formatter edit debugger

Java

Sm
(state machine DSL)

In principle, features scale!!! 
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The Problem – Declarative IDE

From this declarative DSL specification, how do we generate AHEAD tools?



©dsbatory2005 424

Define Dimensional Model #1

AHEAD Model of Java Language Dialects

Dialects of Java specified by equation

Jak =  Tmpl + Sm + Java // java + state mach
// + templates

…

J = {  Java,  Sm, Tmpl, Ds,  ... }

functions (optional features)constant
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Define Orthogonal Model #2

Tools can be specified by a different, orthogonal model

Different tools have different equations

jak2java =  ToJava + Parse

jedi =  Doclet + Harvest + Parse

...

IDE = {  Parse,  ToJava, Harvest, Doclet, ... }

functions (optional features)constant
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Tool Specification

Defined by a pair of equations
one equation defines the tool in terms of its language features
other equation defines the tool in terms of its tool features

ex: jedi (i.e., javadoc) for the Jak dialect of Java

Synthesize jedi from these specs by defining and 
summing matrix that relates the J and IDE models

jedi = Tmpl + Sm + Java // using J Model

jedi = Doclet + Harvest + Parse // using IDE Model
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MDM Matrix for jedi

Rows are language features
Columns are tool features
Entries are modules that implement a language feature for a tool feature
Shows relationship between IDE and J models

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

MDM
Matrix for

jedi
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MDM Matrix

Composition of these modules yields jedi

Synthesize jedi equation by summing matrix 
according to its dimensional equations

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

MDM
Matrix for

jedi
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Sum the Matrix!

IDE equation jedi = Doclet + Harvest + Parse

Tells us the column summation order

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

Sum Harvest
with Parse

Sum remaining
columns

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

+

+

+
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Sum Rows

J equation jedi = Tmpl + Sm + Java

Tells us the row summation order

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

+

+

+

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

Sum remaining
Rows

+

+

+

+

+

+

+
JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

An Equation  
for jedi

+

+

+

+

+

+

+

+
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Application Produced by Aggregation

Result:

jedi = ( TDoclet + THarvest + TParse ) + 
( SDoclet + SHarvest + SParse ) +
( JDoclet + JHarvest + JParse )

Using MDM we can synthesize an equation for a 
language-dialect specific tool



©dsbatory2005 432

Using MDMs to Generate

Tool Suites...
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MDM Matrix

That relates J and IDE models
Rows are language features
Columns are tool features

Java

Sm

Tmpl

Ds

Parse ToJava Harvest Doclet Signat

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

DParse D2Java DHarvest

JDoclet

SDoclet

TDoclet

DDoclet

JSig

SSig

TSig

DSig
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To Synthesize IDE Tools

Remove unneeded rows and columns 
directly from IDE GUI
example: jedi, jak2java for Java + Sm + Tmpl

Java

Sm

Tmpl

Ds

Parse ToJava Harvest Doclet Signat

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

DParse D2Java DHarvest

JDoclet

SDoclet

TDoclet

DDoclet

JSig

SSig

TSig

DSig
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MDM Matrix for IDE Tools

Sum rows 
Note the semantics of the result...

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +
Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +

+ + + +
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Yields Equation For Each Tool Feature!

Parse     =   TParse +   SParse +   JParse

ToJava =   T2Java   +   S2Java   +   J2Java

Harvest  =   THarvest +   SHarvest +   JHarvest
...

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +

+ + + +
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Resulting Row

Is AHEAD model for IDE product-line!

And we know equations for each tool!

IDE = { Parse, ToJava, Harvest, Doclet, ... }

jak2java  = ToJava + Parse

jedi = Doclet + Harvest + Parse
...

Parse   = ...
ToJava = ...
Harvest = ...
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IDE Generator is Simple

For each selected tool, evaluate its eqn

And generate the code  
for each tool

automatically!
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Generator of IDE Tool Suite

Engineer h1+g1+f1

h2+g2+f2

h3+g3+f3

generator

generator

generator

jak2java

jedi

...
MDM

generator



©dsbatory2005 440

Bootstrapping AHEAD

We used 3-Dimensional (8x6x8) MDM Matrix to 
generate 5 tools of the AHEAD Tool Suite

Lang
Features

Tool Features

Lang
Features 3rd dimension captures

language feature interactions
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Bootstrapping AHEAD

Sum matrix to produce IDE model, from which we 
can generate tool equations

Tool Features

Lang
Features

Lang
Features

Sum 3rd dimension
Sum rows

IDE Model
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Results of AHEAD Bootstrap

90 distinct features

Typical tool contains 20-30 features
most tools share 10 features

Generated Java for each tool is ~34K LOC

Generating well close to 200K from simple, AHEAD declarative 
specifications

exactly what we want

Making designs for multiple tools to conform to a matrix
controlling the complexity of tool suites
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Allows you to add “advice” to existing programs
ex: before, after methods
ex: advising method calls

Summing rows of MDM matrix looks identical!

Cafter2 +                     Bafter2 +                     Aafter2 +

Relationship to AOP

Eqn =                             C +                            B +                           ACafter1 +                     Bafter1 +                    Aafter1 +

jedi = (                                       TParse ) + 
(                                        SParse ) +

(                                      JParse )

THarvest +   
SHarvest +  

JHarvest +

TDoclet + 
SDoclet + 

JDoclet +
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MDM Advising Architectural Specs!

Representing program designs as expressions is enormously powerful

ideal for generators

Algebraic representations scale!!

micro example ~150 LOC, AHEAD example ~150K LOC

3 orders of magnitude

ideas of MDM apply to all levels of abstraction equally

algebraic representations scale to much larger systems
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Final Words

As researchers in AOP, MDSoC scale their 
ideas to tool suites...

They’ll encounter MDM...
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Recap

Summary of Tutorial...
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FOP and Product-Lines

Design individual program think classes

Design product-line (program family) think features
members are distinguished by their features

FOP is study of feature modularity
raises features to first-class, quantum increments of design
features implemented by “cross-cuts”
close to OO framework designs
aspects are complimentary

AHEAD is example of FOP
step-wise development
builds complex systems by adding features incrementally
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Bigger Picture of Software Engineering

Future of Software Engineering is in automation

Most successful example of automated software engineering is 
relational query optimization

declarative specification efficient program
relational algebra
program (of family of equivalent programs) is expression

AHEAD product-line models are generalizations
declarative feature specifications program
domain models are algebras
program is an expression (equation)
code and non-code artifacts treated uniformly
synthesize consistent representations of all program artifacts
equational representations scale, simple, practical
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Thank you!

Questions?

For more information, papers, and AHEAD tools, visit our web site:

http://www.cs.utexas.edu/users/schwartz/


