
Feature Oriented Programming
for Product-Lines

Don Batory
Department of Computer Sciences

University of Texas at Austin
batory@cs.utexas.edu

www.cs.utexas.edu/users/dsb/

February 2005

Presented at:
Summer School on Generative and Transformational
Techniques in Software Engineering,
July 4-8, Braga, Portugal

©dsbatory2005 1

Feature Oriented Programming
for Product-Lines

Don Batory
Department of Computer Sciences
University of Texas at Austin
batory@cs.utexas.edu
www.cs.utexas.edu/users/dsb/

©dsbatory2005 2

Introduction

A product-line is a family of
similar systems

Chrysler mini-vans,
Motorola radios,
software

Motivation: economics

amortize cost of building
variants of program
design for family of systems

Key idea of product-lines

members of product-line
are differentiated by
features

feature is product
characteristic that
customers feel is important
in describing and
distinguishing members
within a family

feature is increment in
product functionality

©dsbatory2005 3

Introduction

Feature Oriented
Programming (FOP) is the
study of feature modularity
in product-lines

features are first-class
entities in design

often implemented by
crosscuts

History of applications
1986 database systems
1989 network protocols
1993 data structures
1994 avionics
1997 extensible Java

compilers
1998 radio ergonomics
2000 program verification

tools
2002 ExCIS fire support

simulator
2003 AHEAD tool suite
2004 robotics controllers

©dsbatory2005 4

Very Rich Technical Area...

 Integrates many different areas
compilers
grammars
artificial intelligence
databases
algebra
programming languages
compositional programming & reasoning
OO software design
software engineering
aspect-oriented programming
others...

©dsbatory2005 5

Tutorial Overview

Part I

The FOP Paradigm
The Theory
AHEAD Tool Suite

Part II

Aspect Composition
 Verification and Design Rule Checking
Multi-Dimensional Models

buckle
up!

©dsbatory2005 6

The FOP Paradigm

a general approach to program
development and product-line synthesis

©dsbatory2005 7

Motivation
Software products are:

increasing in complexity
increasing in costs to develop and maintain
decreasing in ability to understand

Basic goal of SE is to manage and control complexity
structured programming to
object oriented programming to
component-based programming to...

today’s design techniques are too low-level,
exposing too much detail to make application’s design,
construction and modification simple

Something is missing...
future design techniques generalize today’s techniques
tutorial to expose a bigger universe

progressively
increasing abstractions

©dsbatory2005 8

Keys to the Future

New paradigms will likely embrace:

Generative Programming (GP)
want software development to be automated

Domain-Specific Languages (DSLs)
not Java & C#, but high-level notations

Automatic Programming (AP)
declarative specs → efficient programs

Need simultaneous advance in all three fronts to
make a significant change

©dsbatory2005 9

Not Wishful Thinking...

Example of this futuristic paradigm realized
over 25 years ago

around time that AI researchers gave up on automatic
programming

Relational Query Optimization

©dsbatory2005 10

Relational Query Optimization

Declarative query is mapped to an expression
Each expression represents a unique program
Expression is optimized using rewrite rules
Efficient program generated from expression

SQL
select

statement

parser

inefficient
relational
algebra

expression
optimizer

efficient
relational
algebra

expression

code
generator

efficient
programdeclarative

domain-specific
language

generative
programming

automatic
programming

©dsbatory2005 11

Keys to Success
Automated development of query evaluation programs

hard-to-write, hard-to-optimize, hard-to-maintain
revolutionized and simplified database usage

Created an algebra-based science to specify and optimize query
evaluation programs

Identified fundamental operations of this domain
relational algebra

Represented program designs as expressions
compositions of relational operations

Define algebraic identities among operations to optimize equations

Compositionality is hallmark of great engineering models

©dsbatory2005 12

Looking Back and Ahead

Query optimization (and concurrency control) helped bring DBMSs
out of the stone age

Holy Grail Software Engineering:

Not obvious how to do so...

It can be done! Subject of this tutorial…

series of simple ideas that generalize notions of modularity
and lay groundwork for practical compositional programming
and an algebra-based science for software design

Repeat this success in other domains

©dsbatory2005 13

A Basis for a
Science of Software Design

What motivates FOP and
how is it formalized?

©dsbatory2005 14

Today’s View of Software

Today’s models of software are too low level

expose classes, methods, objects as focal point of discourse
in software design and implementation

difficult (impossible) to
reason about construction of applications from components
produce software automatically from high-level specifications
(distance is too great)

We need a more abstract way to specify systems

©dsbatory2005 15

A Thought Experiment...

Look at how people describe programs now...
don’t say which DLLs are used...

Instead, say what features a program offers its clients

Program1 = feature_X + feature_Y + feature_Z

Program2 = feature_X + feature_Q + feature_R

why? because features align better with requirements

We should specify systems as compositions of features
nobody does this for software (now)
done in lots of other areas

©dsbatory2005 16

Dell Web Site

declarative DSL
to select features
of desired system

©dsbatory2005 17

Chinese Menu – Declarative DSL

©dsbatory2005 18

Methodology for Construction

What methodology builds systems by progressively
adding details?

Step-Wise Refinement
Dijkstra, Wirth early 1970s

abandoned in early 1980s as it didn’t scale...

had to compose hundreds or thousands of transforms
(rewrites) to produce admittedly small programs

recent work shows how SWR scales
– scale individual transform to a feature
– composing a few refinements yields an entire system

©dsbatory2005 19

Terminology Disclaimer

We use OO meaning of term “refinement”

elaboration of an entity (entities) that introduces a new service,
feature, or relationship

In algebraic communities

“refinement” means add detail, but no new capability
e.g., implement an interface

our use of ‘refinement’ is ‘extension’ in algebraic communities

“step wise development”

Henceforth follow the algebraic community terminology...

©dsbatory2005 20

What is a Feature?

Feature
an elaboration or augmentation of an entity(s) that introduces
a new service, capability, or relationship
increment in functionality

Characteristics
abstract, mathematical concept
reusable
interchangeable
(largely) defined independently of each other

Illustrate in next few slides

©dsbatory2005 21

Tutorial on Features (Extensions)

©dsbatory2005 22

Features are Interchangable

©dsbatory2005 23

Features are Interchangable

©dsbatory2005 24

Features are Interchangable

©dsbatory2005 25

Features are Interchangable

©dsbatory2005 26

Features are Reusable

©dsbatory2005 27

Features are Functions!

PersonPhoto beanie(PersonPhoto x)

PersonPhoto uncleSam(PersonPhoto x)

PersonPhoto mustache(PersonPhoto x)

PersonPhoto lincolnBeard(PersonPhoto x)

©dsbatory2005 28

Composing Features

Feature composition = function composition

= lincolnBeard(uncleSam())

©dsbatory2005 29

Large Scale Features

Called Collaborations (1992)
simultaneously modify multiple objects/entities
extension of single entity is called role
recognize as crosscuts in software

Example: Positions in US Government
each defines a role

Prez
Vice
Prez

....

©dsbatory2005 30

Composing Collaborations

At election-time, collaboration remains constant, but
objects that are extended are different

Prez
Vice
Prez

Example of dynamic composition of collaborations

©dsbatory2005 31

Other Collaborations

Parent-Child collaboration

Professor-Student collaboration

Parent Child

Prof Student

©dsbatory2005 32

Example

DonSteve AlexKelly Mark

Prof Student

Prof Student

Parent Child

Parent Child

©dsbatory2005 33

Same Holds for Software!

Highly complex entities and relationships
in software can be synthesized by

composing generic & reusable
features

©dsbatory2005 34

Feature Oriented Programming

Feature Oriented Programming (FOP) is study of
feature modularity and programming models for
product-lines

a powerful form of FOP based on step-wise development
advocates complex programs constructed from simple
programs by incrementally adding features

How are features and their compositions modeled?

©dsbatory2005 35

Part I: The Theory

GenVoca and AHEAD

©dsbatory2005 36

A Clue...

Consider any Java class C
member could be a data field or method
class C below has 4 members m1—m4

class C {
member m1;
member m2;
member m3;
member m4;

}

©dsbatory2005 37

Have You Ever Noticed…

Contents of C can be distributed across an inheritance
hierarchy?

class C1 {
member m1;

}

class C23 extends C1 {
member m2;
member m3;

}

class C4 extends C23 {
member m4;

}

class C extends C4 {}

class C {
member m1;
member m2;
member m3;
member m4;

}
=

©dsbatory2005 38

Another Example...

C23 decomposed further as:

class C23 extends C1 {
member m2;
member m3;

} =

class C2 extends C1 {
member m2;

}

class C3 extends C2
member m3;

}

class C23 extends C3 {}

©dsbatory2005 39

Observe…

Significance: class definition need not be monolithic,
but can be built by incrementally composing reusable
pieces via inheritance

Nothing special about the placement of members
m1…m4 in this hierarchy except...

no-forward references: member can be introduced as long as
all members it references are defined

requirement for compilation, step-wise development

©dsbatory2005 40

Look Familiar?? Remember Algebra?

Consider sets and union
operation (∪)

commutative
almost like inheritance...

C1 = { m1 }

C2 = { m2 }

C3 = { m3 }

C4 = { m4 }

C = C1 ∪ C2 ∪ C3 ∪ C4

= { m1, m2, m3, m4 }

Vector addition (+)

is commutative
almost like inheritance

C1 = (m1,0,0,0)

C2 = (0,m2,0,0)

C3 = (0,0,m3,0)

C4 = (0,0,0,m4)

C = C1 + C2 + C3 + C4

= (m1, m2, m3, m4)

©dsbatory2005 41

A Closer Analogy

Vector join (→)
Vector join lays vectors end-to-end to define a path
Not commutative! – Order of composition matters!

C1 = (m1,0,0,0)
C2 = (0,m2,0,0)
C3 = (0,0,m3,0)
C4 = (0,0,0,m4)

B

AA

B

A → B ≠ B → A

C1 → C2 → C3 → C4 ≠ C4 → C3 → C2 → C1

path followed by
A → B is different

than B → A;
end point is the same

©dsbatory2005 42

Operation We Want...

Is not quite inheritance...

want to add new methods, new fields, and extend existing
methods like inheritance
also want constructors to be inherited and extended as well,
(inheritance doesn’t provide this)

class C2 {
constructor#2

}

class C12 {
constructor#1
constructor#2

}

=
class C1 {

constructor#1
}

The operation ● we want is called class extension

©dsbatory2005 43

Syntax of Class Extension

Suppose program P has
single class B

A extension R adds y, z()

Composition of R with P
defines a new program N:

class B { int x; }

extends class B {
int y;
void z(){...}

}

class B {
int x;
int y;
void z(){...}

}

©dsbatory2005 44

Algebraic Formulation

Base programs are constants

// constant P

class B { int x; }

Extensions are functions

// function R

extends class B {
int y;
void z(){...}

}

Composition is an expression or
equation

N = R(P)

= R ● P

yields:

class B {
int x;
int y;
void z(){...}

}

Treat programs as values

©dsbatory2005 45

Another Example

Composition is an expression or equation

class C { member m1; } // constant C1

extends class C { member m2; } // function C2
extends class C { member m3; } // function C3
extends class C { member m4; } // function C4

C = C4(C3(C2(C1)))

= C4 ● C3 ● C2 ● C1

Note:
both notations
are equivalent

©dsbatory2005 46

Method Extension ala Inheritance

result =

=

void foo() {
/* before stuff */
/* do something */
/* after stuff */

}

= (or an equivalent encoding)

void foo() {
/* before stuff */
super.foo();
/* after stuff */

}

method_extension

●

●

void foo() {
/* do something */

}

base_method

©dsbatory2005 47

Connecting the Dots...

Scalability

effects of extension not limited to a single class

collaborations encapsulate extensions of
multiple classes as well as adding new classes

adding new classes that can be extended is critical

©dsbatory2005 48

Connecting the Dots...

A collaboration has meaning when it implements a
feature

ever add a new feature to an existing OO program?

several classes must be extended as well as adding new
classes

crosscuts

©dsbatory2005 49

Program Synthesis Paradigm

class1 class2 class3 class4

Program P =

featureX

featureX

featureY

featureY ●

By composing features, packages of fully-formed classes are synthesized

Note: each
feature crosscuts
multiple classes

featureZ

featureZ ●

©dsbatory2005 50

Contributors to this view…

Many researchers have variants of this idea:

refinements - Dijkstra, Wirth 68
layers - Dijkstra 68, Batory 84
product-line architectures - Kang 90, Gomaa 92…
collaborations - Reenskaug 92, Lieberherr 95, Mezini 03
program verification - Boerger 96
aspects - Kiczales 97, et al.
concerns - Ossher-Harrison-Tarr 99

©dsbatory2005 51

Connecting the Dots...

You can always decompose software in this manner
trick is that your extensions be reusable
that’s the connection with features, product-lines
features are reusable – so too must be their implementations

software that is not designed to be reusable, composable, etc.
with other software won’t be – this is co-design or designing to a
standard
Architectural Mismatch (ICSE 1995)

Product-line design – feature implementations are
designed with compositionality, reusability in mind

©dsbatory2005 52

GenVoca (1988,1992)

Equates constants, functions
with features

Constants:

f – base program with feature f

h – base program with feature h

Functions

i ● x – adds feature i to program x

j ● x – adds feature j to program x

A domain model
or product-line model
or GenVoca model M

set of constants (base programs)

functions (program extensions)

M = { f, h, ... i, j, ... }

©dsbatory2005 53

Function Composition

Multi-featured applications are equations

app1 = i ● f

app2 = j ● h

app3 = i ● j ● f

- application with features f and i

- application with features h and j

- your turn...

Given a GenVoca model, we can
create a family of applications by

composing features

©dsbatory2005 54

Expression Optimization
Constants, functions represent both feature and its implementation

different functions with different implementations of the same feature

When application requires feature k, it is a matter of optimization to
determine the best implementation of k

counterpart of relational optimization
more complicated rewrites possible too…

See: Batory, Chen, Robertson, and Wang, Design Wizards and
Visual Programming Environments for GenVoca Generators,
IEEE Transactions on Software Engineering, May 2000, 441-452.

k1 ● x // adds k with implementation #1 to x
k2 ● x // adds k with implementation #2 to x

©dsbatory2005 55

Generalization of Relational Algebra

Keys to success of Relational Optimizers
expression representations of program designs
rewrite expressions using algebraic identities

Here’s the generalization:

domain model is an algebra for a domain or product-line

is set of operations (constants, functions) that represent stereo-typical
building blocks of programs/members
compositions define space of programs that can be synthesized

given an algebra:

there will always be algebraic identities among operations
these identities can be used to optimize expression representations of
programs, just like relational optimizers

©dsbatory2005 56

Composition Constraints

GenVoca constants, functions seem untyped...

Design Rules are domain-specific constraints that govern legal
compositions

ex: it is common that the selection of one feature may enable or
disable the selection of other features

 Lecture on Verification and Design Rule Checking

Where we were in the year 2000...

©dsbatory2005 57

AHEAD:
The Next Generation

Algebraic Hierarchical Equations for
Application Design

©dsbatory2005 58

Feature Encapsulation

A feature encapsulates multiple extensions, classes
ex: extension R extends class A, interface C, and adds class D

extends class A {
member m3;

}

extends interface C {
member m4;

}

class D {
member d1;
member d2;
...
member dn;

}

A C D

R

©dsbatory2005 59

How to Implement?

Group related files into a directory

Directory
Representation

R /
A
C
D

Algebraic
Representation

R = { A, C, D }

read as
“R encapsulates

A, C, and D”

A C D

R

Pictorial
Representation

©dsbatory2005 60

Consider constant P and extension R:

P = { AP, BP, CP }
R = { AR, CR, DR }

What is R ● P ?

Composition

©dsbatory2005 61

Align units by name:

P = { AP, BP, CP }
R = { AR, CR, DR }

R●P = { }

Compose units with same name (ignoring subscripts)
Copy units that aren’t extended

Do the obvious thing...

Composition

BP, CR●CP,AR●AP, DR

©dsbatory2005 62

Law of Composition

Fundamental algebraic rewrite of FOP

Says how composition distributes over encapsulation

Do you recognize this law?

R●P = { AR, CR, DR } ● { AP, BP, CP }

= { AR●AP, BP, CR●CP, DR }

©dsbatory2005 63

class P {
member AP;
member BP;
member CP;

}

class R {
member AR;
member CR;
member DR;

}

Inheritance

P = { AP, BP, CP }

R = { AR, CR, DR }

“class representation” “algebraic representation”

extends P

class R●P extends R {}
R●P = { AR●AP, BP, CR●CP, DR }

©dsbatory2005 64

Composition Corollaries

f1, f2 are functions
c1, c2 are constants

See examples of these ideas later

f1 ● f2 = f12 – composite function

c1 ● c2 = c1 – c1 overrides c2

c1 ● f1 = c1 – c1 overrides f1

©dsbatory2005 65

Scaling Program Generation
Generating code for an individual program is OK,
but not sufficient

Today’s systems are not individual programs,
but groups of collaborating programs

client-server systems, tool suites (IDEs)

Further, systems are not solely defined by code

architects routinely use many knowledge representations

formal models, UML models, makefiles, documents, ...

©dsbatory2005 66

Question

How does step-wise development scale to the
synthesis of multiple programs and multiple-program
representations?

Challenge is not possibility

lots of ad hoc ways
challenge is to define way that treats all representations
– code and non-code – uniformily

©dsbatory2005 67

Each program representation captures different information
in different languages

We want to encapsulate all these representations

.html.java

Insight #1: Platonic Forms and Languages

.perf.class .xml

program

©dsbatory2005 68

Insight #2: Generalize Modularity

A module is a containment hierarchy of related artifacts

Generalize module hierarchies to arbitrary depth, contents

methods fields

class

constantsmethods

interface

package

deployment
descriptors

HTML
files

J2EE EAR File

©dsbatory2005 69

Modular Encapsulation of Multiple Programs

system

code UML HTML code UML HTML

client server

*.java, *.class *.htmlstate-machines
...

*.java, *.class *.htmlclass diagrams
...

Modules encapsulate all needed representations of a system

©dsbatory2005 70

Simple Representation

Module hierarchies = nested sets

A = { Code, R.drc, Htm }

algebraic

Code = { X.java, Y.java }

Htm = { W.htm, Z.htm }X.java W.htmY.java Z.htm

Code
R.drc

Htm

A

directory

©dsbatory2005 71

Insight #3: Generalize Features

When a program is extended, any or all of its representations
may be updated

Ex: Add a new feature F to program P changes:

code (to implement F)
documentation (to document F)
makefiles (to build F)
formal properties (to characterize F)
performance properties (to profile F)
…

This is a crosscut

©dsbatory2005 72

#3: Generalize Features

Containment hierarchy is a “constant”
Feature is a “function” that maps (transforms)
containment hierarchies

adds new nodes (e.g., new .java, .html files)
extends existing nodes

= Feature()

©dsbatory2005 73

Simple Implementation

Feature composition = directory composition
produces directory isomorphic to inputs

X.java = X.java ● X.java

Code

X.javaY.java Z.htm

R.drc
Htm

A

●

X.java W.htmY.java

Code

R.drc
Htm

B

=

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C

©dsbatory2005 74

Simple Theory

Result computed algebraically by recursively
expanding and applying the law of composition

C = B ● A

= { CodeB, R.drcB, HtmB } ● { CodeA, R.drcA, HtmA }

= { CodeB ● CodeA, R.drcB ● R.drcA, HtmB ● HtmA }

= { { X.javaB, Y.javaB } ● { X.javaA, Y.javaA }, R.drcB ● R.drcA, { W.htmB } ● { Z.htmA } }

= { { X.javaB ● X.javaA, Y.javaB ● Y.javaA }, R.drcB ● R.drcA, { W.htmB, Z.htmA } }

©dsbatory2005 75

Note!

Each expression defines an artifact to be produced

C = { { X.javaB ● X.javaA, Y.javaB ● Y.javaA }, R.drcB ● R.drcA, { W.htmB, Z.htmA } }

X.java W.htmY.java Z.htm

Code

R.drc
Htm

C

©dsbatory2005 76

Polymorphism...

Composition operation ● is polymorphic

composition law defines how sets are composed

different implementation of ● for each representation
● for code

another ● for html files, etc.

But what does extending a non-code artifact mean?
what general principle guides extension?

©dsbatory2005 77

Example: Makefiles

Instructions to build parts of a system
it is a language for synthesizing programs

When we synthesize code for a system,
we also have to synthesize a makefile for it

Sounds good, but...
what is a extension of a makefile?????

©dsbatory2005 78

Makefile

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends

command line> make main

©dsbatory2005 79

Makefile Extensions

mymake

main

compile A
compile B
compile C

common

compile X
compile Y
compile Z

clean

delete *.classdepends
base

foocompile D compile F

delete *.ser

barcompile E

Question: what is a general paradigm for extending
non-code artifact types?

note
crosscuts!

©dsbatory2005 80

<project myMake>
<target main depends=“common”>

<compile A>
<compile B>
<compile C>

</target>
<target common>

<compile X>
<compile Y>
<compile Z>

</target>
...

</project>

Makefiles

class myMake {
void main {
{ ...

}
void common {
...

}
...

}

Have a Class Structure!

©dsbatory2005 81

<project myMake>
<target main depends=“common”>

<compile A/>
<compile B/>
<compile C/>

</target>
<target common>

<compile X/>
<compile Y/>
<compile Z/>

</target>
...

</project>

Makefile Extension is Code Extension

<compile D>

<compile Q>

new instructions
added after existing
instructions

correspondence
generalizes to
makefile properties
such as data members,
etc.

©dsbatory2005 82

Insight #4: Principle of Uniformity

Principle of Uniformity

create analog in OO representation:
treat all artifacts equally, as objects or classes

extend non-code representations same as code representations

That is, you can extend any artifact
understand it as an object, collection of objects, or classes

We are creating a theory of information structure based on features
it works for code and other representations

©dsbatory2005 83

Big Picture

Most artifacts today (HTML, XML, etc.) have or can have a
hierarchical structure

But there is no extension relationship among artifacts!

what’s missing are extension operations for artifacts

Need tools to extend instances of each artifact type

MS Word?
given such tools, scale step-wise extension scales without bounds...

Encapsulate changes/additions to all representations of a system
so all artifacts (code, makefiles, etc.) are updated consistently

Compositions yield consistent representations of a system
exactly what we want
simple, elegant theory behind simple implementation

©dsbatory2005 84

Product Member Synthesis Overview

Engineer

h1●g1●f1

h2●g2●f2

h3●g3●f3

generator

generator

generator

equation
composition

and optimization

h●g●f

declarative DSL

artifact1

artifact2

...

artifacts of
specified system

• generalizes RQO paradigm
• scales to large systems

©dsbatory2005 85

Recommended Readings

Batory and O'Malley. “The Design and Implementation of Hierarchical Software Systems with
Reusable Components“. ACM Transactions on Software Engineering and Methodology, 1(4):355-
398, October 1992.

Batory, Sarvela, Rauschmayer, "Scaling Step-Wise Extension", IEEE Transactions on Software
Engineering, June 2004.

Batory, Johnson, MacDonald, and von Heeder, "Achieving Extensibility Through Product-Lines
and Domain-Specific Languages: A Case Study", ACM Transactions on Software Engineering and
Methodology, Vol. 11#2, April 2002, 191-214.

Batory, Chen, Robertson, and Wang, “Design Wizards and Visual Programming Environments for
GenVoca Generators“, IEEE Transactions on Software Engineering, May 2000, 441-452.

Batory, Singhal, Thomas, and Sirkin. Scalable Software Libraries. ACM SIGSOFT 1993,
December 1993.

Batory, Concepts for a Database System Compiler, ACM PODS 1988.

Baxter, “Design Maintenance Systems”, CACM, April 1992.

Czarnecki and Eisenecker, Generative Programming – Methods, Tools and Applications, Addison-
Wesley 2000.

©dsbatory2005 86

Recommended Readings
Czarnecki, Bednasch, Unger, and Eisenecker, “Generative Programming for Embedded Software:
An Industrial Experience Report”, Generative Programming and Component Engineering 2002.

Dijkstra, A Discipline of Programming. Prentice-Hall, 1976.

Ernst, “Higher-Order Hierarchies”, ECOOP 2003.

Garlan, Allen, and Ockerbloom, “Architectural Mismatch or Why it is hard to build Systems out of
existing parts”, ICSE 1995.

Flatt, Krishnamurthi, and Felleisen. “Classes and Mixins”. ACM Principles of Programming
Languages, San Diego, California, 1998, 171-183.

Harrison and Ossher. “Subject-Oriented Programming (A Critique of Pure Objects)”, OOPSLA
1993, 411-427.

Kang, et al., “Feature Oriented Domain Analysis Feasibility Study”, SEI 1990.

Kang, et al. “FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference
Architectures”, Annals of Software Engineering 1998, 143-168.

Kiczales, et al. “Aspect-Oriented Programming”, ECOOP 97, 220-242.

Kiczales, et al. “An Overview of AspectJ”. ECOOP 2001.

©dsbatory2005 87

Recommended Readings
Lieberherr, Adaptive Object-Oriented Software, PWS publishing, 1995.

Mezini and Lieberherr, “Adaptive Plug-and-Play Components for Evolutionary Software
Development”, OOPSLA 1998, 97-116.

Mezini and Ostermann, “Conquering Aspects with Caesar”, AOSD 2003.

Mezini and Ostermann, “Variability Management with Feature-Oriented Programming and
Aspects”, SIGSOFT 2004.

McDirmid, Flatt, and Hsieh, “Jiazzi: new-Age Components for Old-Fashioned Java”, OOPSLA
2001.

Ossher and Tarr. “Using Multi-Dimensional Separation of Concerns to (Re)Shape Evolving
Software.” CACM October 2001.

Ossher and Tarr, “Multi-dimensional separation of concerns and the Hyperspace approach.” In
Software Architectures and Component Technology (M. Aksit, ed.), 293-323, Kluwer, 2002

Reenskaug, et al., “OORASS: Seamless Support for the Creation and Maintenance of Object-
Oriented Systems”, Journal of Object-Oriented Programming, 5(6): October 1992, 27-41.

Simonyi, “The Death of Computer Languages, the Birth of Intentional Programming”, NATO
Science Committee Conference, 1995.

©dsbatory2005 88

Recommended Readings

Smaragdakis and Batory, “Implementing Layered Designs with Mixin Layers”. 12th European
Conference on Object-Oriented Programming, ECOOP, July 1998.

Smaragdakis and Batory, “Scoping Constructs for Program Generators”. Generative and
Component-Based Software Engineering (GCSE), September 1999.

Smaragdakis and Batory, “Mixin Layers: An Object-Oriented Implementation Technique for
Extensions and Collaboration-Based Designs “, ACM Transactions on Software Engineering and
Methodology, Vol.11#2, April 2002, 215-255.

Tarr, et al., “N Degrees of Separation: Multi-Dimensional Separation of Concerns”, ICSE 1999.

Van Hilst and Notkin, “Using Role Components to Implement Collaboration-Based Designs”,
OOPSLA 1996, 359-369.

©dsbatory2005 100

AHEAD Tool Suite

kick the tires...

©dsbatory2005 101

Composer Tool
Key tool in AHEAD Tool Suite (ATS) is composer
composer expands AHEAD equation to yield target system

feat1

feat2

feat3

composer
feat321

> composer –target=feat321 feat1 feat2 feat3

feat321 = feat3 ● feat2 ● feat1

©dsbatory2005 102

Jak Files

Program in extended-Java files
Jak(arta) files

Java + feature declarations, etc.
Jak is an extensible language

AHEAD is bootstrapped
Most AHEAD tools are written in Jak

©dsbatory2005 103

Other Tools...
Besides composer

jak2java – translates Jak files to Java files
javac – javac compiler
reform – Jak or Java file formatter/pretty-printer
others...

feat1

feat2

feat3

composer
feat321 feat321jak2java javac feat321

> cd <model-directory>
> composer –target=...
> reform *.jak
> jak2java *.jak
> reform *.java
> javac *.java

©dsbatory2005 104

Jak-File Composition Tools

composer invokes Jak-specific tools to compose
Jak files

two tools now: jampack and mixin
jak2java translates Jak to Java

A.jak
(from feat 1)

A.jak
(from feat 3)

A.jak
(from feat 2)

jampack
or mixin

A.jak
(composed)

step #1

jak2java A.java

step #2

©dsbatory2005 105

jampack

Flattens “inheritance” hierarchies
takes expression as input, produces single file as output
basically macro expansion with a twist...

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

class top {
int a;
void foo() {...}
int b;
int bar() {...}

}

©dsbatory2005 106

jampack

jampack may not be composition tool of choice
look at typical debugging cycle
problem: manual propagation of changes
reason: jampack doesn’t preserve feature boundaries

A.jak
(from feat 1)

A.jak
(from feat 2)

A.jak
(from feat 3)

jampack A.jak
(composed)

jak2java A.java

translate
debug
update

compose

propagate

©dsbatory2005 107

mixin

Encodes class, extensions as inheritance hierarchy

class top {
int a;
void foo() {...}

}

refines class top {
int b;
int bar() {...}

}

SoUrCe “A/top.jak”

abstract class top$$A {
int a;
void foo() {...}

}

SoUrCe “B/mid.jak”

public class top extends top$$A {
int b;
int bar() {...}

}

©dsbatory2005 108

unmixin

Edit, debug composed A.jak files
unmixin propagates changes from composed file to original
feature files automatically

A.jak
(composed)

jak2java A.java

translate
debug
update

A.jak
(from feat 1)

A.jak
(from feat 2)

A.jak
(from feat 3)

unmixin

propagate

©dsbatory2005 109

Composable Representations

Current list...

*.jak – extended Java files (Jakarta)
class

interface

state machine (ex: embedded DSL)

*. equation – equation files
*. b – grammar files
*. drc – design rule files
others...

AHEAD tools
are written in

extended Java.

AHEAD has been
bootstrapped so

that its tools have
been written using

AHEAD tools.

See Lecture on Origami

©dsbatory2005 110

Demo... see files,
compositions

model
tree
view

file view ©dsbatory2005 111

Note algebraic underpinning...

Same algebraic paradigm as AHEAD
progressively elaborating a containment hierarchy
can optimize expression (not this one...)
can generate a makefile from it...

javac feat321

javac()

Cultural Enrichment

feat1

feat2

feat3

composer
feat321

P = feat3 ● feat2 ● feat1

feat321jak2java

jak2java()

©dsbatory2005 112

To see connection, watch how containment hierarchy is formed...
adding new artifacts is example of module extension

Big picture: lots of operators on AHEAD modules
seems that lots of optimizations are possible too... (current work)

Cultural Enrichment

feat1

feat2

feat3

composer
feat321

module
produced:

feat321jak2java javac feat321

©dsbatory2005 113

A Simple Example

to illustrate concepts, tools

©dsbatory2005 114

Domain of Graph Applications

Simple way to express family of related applications
is as a grammar

different members distinguished by different sets of features

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...choose one
choose at least one

choose one

©dsbatory2005 115

Example Family Members

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

undirected

directed
graph

depth-first

breadth-first
search

cycle checking

vertex numbering

connected regions

...

©dsbatory2005 116

It is Easy to...

Imagine a GUI tool that
allows you to specify any
possible combination

declarative language

tool generates an
explanation of your
specification

and identifies errors
(and suggests corrections)
when combinations of
features are not possible

See lecture on
Design Rule Checking

©dsbatory2005 117

That’s Easy...

GPL = { directed -- directed graphs
undirected -- undirected graphs

bfs -- breadth first search
dfs -- depth first search

cycle -- cycle checking
number -- vertex numbering
regions -- connected regions
...

}

So too is creating the underlying FOP model:

constants

functions

©dsbatory2005 118

Constructing Applications

graph_app = region ● vertex ● dfs ● directed
= vertex ● region ● dfs ● directed

automatic
mapping

demo

©dsbatory2005 119

Further Reading

Batory, “A Tutorial on Feature Oriented Programming and the AHEAD Tool Suite”, January 2003.

Batory, Sarvela, Rauschmayer, "Scaling Step-Wise Refinement", IEEE Transactions on Software Engineering,
June 2004.

Batory, Cardone, and Smaragdakis, “Object-Oriented Frameworks and Product-Lines”. 1st Software Product-Line
Conference, Denver, Colorado, August 1999.

Ernst, “Higher-Order Hierarchies”, ECOOP 2003.

Holland, “Specifying Reusable Components Using Contracts”, ECOOP 1992, 287-308.

Lee, Siek, and Lumsdaine, “The Generic Graph Component Library”, OOPSLA 1999.

Lopez-Herrejon and Batory, “A Standard Problem for Evaluating Product-Line Methodologies”, Third International
Conference on Generative and Component-Based Software Engineering (GCSE 2001), September 9-13, 2001
Messe Erfurt, Erfurt, Germany.

Smaragdakis and Batory, “Implementing Layered Designs with Mixin Layers”, ECOOP 1998.

Smaragdakis and Batory, “Mixin Layers: An Object-Oriented Implementation Technique for Refinements and
Collaboration-Based Designs”, ACM Transactions on Software Engineering and Methodology, March 2002.

code-1

AHEAD Coding Examples
Class and Class Extension Specifications

import initial.stuff;

class myclass {
 int baseVariable;

 // original method is empty
 void baseMethod() {}
}

import more.stuff;

refines class myclass {

 // introduce new variable
 int refVariable = 0;

 // introduce new method
 int refMethod() {
 return refVariable;

}

 void baseMethod() {
 // extension of baseMethod
 // an "execution" around advice in AOP
 int before_stuff = 1;
 Super().baseMethod(); // AOP "proceed"
 int after_stuff = 2;
 }
}

base/myclass.jak

ref/myclass.jak

base
ref

baseRef.equation

code-2

JamPack Composition of Classes in baseRef.equation

layer baseRef;

import initial.stuff;
import more.stuff;

class myclass {
 int baseVariable;

 // introduce new variable
 int refVariable = 0;

 // original method is empty
 final void baseMethod$$base() {}

 void baseMethod() {
 // extension of baseMethod
 // an "execution" around advice in AOP
 int before_stuff = 1;
 baseMethod$$base(); // AOP "proceed"
 int after_stuff = 2;
 }

 // introduce new method
 int refMethod() {
 return refVariable;
 }
}

union of
imports

original
method

call to
original
method

baseRef/myclass.jak

code-3

Mixin Composition of Classes in baseRef.equation

layer baseRef;

import initial.stuff;
import more.stuff;

SoUrCe RooT base "../base/myclass.jak";

abstract class myclass$$base {
 int baseVariable;

 // original method is empty
 void baseMethod() {}
}

SoUrCe ref "../ref/myclass.jak";

class myclass extends myclass$$base {

 // introduce new variable
 int refVariable = 0;

 // introduce new method
 int refMethod() {
 return refVariable;

}

 void baseMethod() {
 // extension of baseMethod
 // an "execution" around advice in AOP
 int before_stuff = 1;
 Super().baseMethod(); // AOP "proceed"
 int after_stuff = 2;
 }
}

union of
imports

base
class

class
extension
or
refinement

baseRef/myclass.jak

code-4

AHEAD Coding Examples
State Machine and State Machine Extension Specifications

import something.*;

State_machine mysm {

Delivery_parameters(Evnt e);

// start, stop states implicity defineded
States midpoint;

Transition begin: start -> midpoint
condition e != null
do {

commonaction(e);
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction(e);
}

void commonaction(Evnt e) { /* something */
}

}

import evenmore.*;

refines State_machine mysm {

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

}

base/mysm.jak

ref/mysm.jak

base
ref

baseRef.equation

code-5

JamPack Composition of State Machines in baseRef.equation

layer baseRef;

import something.*;
import evenmore.*;

State_machine mysm {

Delivery_parameters(Evnt e);

// start, stop states implicity defineded
States midpoint;

Transition begin: start -> midpoint
condition e != null
do {

commonaction(e);
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction(e);
}

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

void commonaction(Evnt e) { /* ... */
}

}

union of
imports

baseRef/myclass.jak

new
transition

code-6

Mixin Composition of State Machines in baseRef.equation

layer baseRef;

import something.*;
import evenmore.*;

SoUrCe RooT base "../base/mysm.jak";

abstract State_machine mysm$$base {

Delivery_parameters(Evnt e);

// start, stop states implicitly defined
States midpoint;

Transition begin: start -> midpoint
condition e != null
do {

commonaction(e);
}

Transition end: midpoint -> stop
condition e != null
do {

commonaction(e);
}

void commonaction(Evnt e) { /* ... */
}

}

SoUrCe ref "../ref/mysm.jak";

State_machine mysm extends mysm$$base {

// add new transition
Transition loop : midpoint -> midpoint

condition e == null
do {}

}

union of
imports

base
class

machine
extension
or
refinement

baseRef/myclass.jak

code-7

AHEAD Coding Examples
Design Rules, Design Rule Extensions, and Composition

constant layer;

// attributes
extern flowleft Int scale;
extern flowright Bool A;

// preconditions
requires flowleft 4 <= scale;

// postconditions
provides flowright !A;

layer ref;

// attributes
extern flowleft Int scale;
extern flowright Bool B;

// preconditions
requires flowleft scale <= 4;

// postconditions
provides flowright B;

constant layer baseRef;

// externally defined attributes

extern flowright Bool A;
extern flowright Bool B;
extern flowleft Int scale;

provides flowright !A and B;
requires flowleft scale == 4;

base/rules.drc

ref/rules.drc

baseRef/rules.drc

composition
of above two files

code-8

AHEAD Coding Examples
Grammars, Grammar Extensions, and Composition

// base grammar for mini-calculator
// IDENTIFIER is predefined
// Tokens here

"+" PLUS

// first production is start production

Expr
: IDENTIFIER
| IDENTIFIER Operator Expr :: Opr
;

Operator
: PLUS :: Plus
;

// adds minus operator
// add new token

"-" MINUS

// import previously defined left-hand side

require Operator;

// add new production

Operator
 : MINUS :: Minus
 ;

"-" MINUS
"+" PLUS

Expr
: IDENTIFIER
| IDENTIFIER Operator Expr :: Opr
;

Operator
: MINUS :: Minus
| PLUS :: Plus
;

base/grammar.b

ref/grammar.b

baseref/grammar.b

composition
of above two files

code-9

AHEAD Coding Examples
Equations, Equation Extensions, and Composition

base equation
= e . d . c (listed in left-2-right order)

c
d
e

equation extension
super references base equation

a
b
super
f
g

Generated
a
b
c
d
e
f
g

base/eq.equation

ref/eq.equation

baseRef/eq.equation

composition
of above two files

©dsbatory2005 200

Aspect Composition

Current Research...

©dsbatory2005 201

Introduction

Core of FOP is:
step-wise development (SWD)
inheritance-like extension of programs

AspectJ (AOP in general) seems to provide
these capabilities and then some

e.g. many more kinds of join-points

FOP and AOP are duals
NOT generalizations of each other
they are instances of more general model
lecture sketches beginnings of this model

©dsbatory2005 202

Overview

Step-wise development with AspectJ is hard

Illustrate example

Model of aspect composition using AspectJ

Present alternative model to support SWD
without sacrificing power of AspectJ

©dsbatory2005 203

An Example

of incremental development

assumes minimal knowledge of AspectJ

©dsbatory2005 204

Incremental Development Example

Step 1: Point defines 1-dimensional point

class Point1 {
int x;
void setX(int v) { x = v; }

}

©dsbatory2005 205

Step 2: Add Y Coordinate and Method

class Point2 {
int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

}

class Point1 {
int x;
void setX(int v) { x = v; }

}

aspect TwoD {
int Point.y;
void Point.setY(int v)
{ y = v }

}

ajc Point.java TwoD.java

©dsbatory2005 206

Step 3: Count # of Coordinate Changes
class Point2 {

int x;
void setX(int v) { x = v; }
int y;
void setY(int v) { y = v; }

}

class Point3 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }

}

aspect Counter {
int Point.counter = 0;
after (Point p) : execution(* Point.set*(..))

&& target(p) { p.counter++; }
}

©dsbatory2005 207

Step 4:
Add Color
Information

aspect Color {
int Point.color = 0;
int Point.setColor(int c) { color = c; }

}

class Point3 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }

}

class Point4 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color = 0;
int setColor(int c) { color = c; }

}

©dsbatory2005 208

Surprise!

AspectJ produces something different!

ajc Point.java TwoD.java Counter.java Color.java

class Point’4 {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color;
int setColor(int c) { color = c; counter++; }

}

Extra code!
Counter

aspect applies
to all files in
ALL steps!

©dsbatory2005 209

Paradox of Using Aspects

Building software incrementally:
manually
automatically using AspectJ
may yield different results!

Redefine Counter could avoid this problem:

aspect Counter {
int Point.counter = 0;
after (Point p) : execution(* Point.setX(..))

&& execution(* Point.setY(..))
&& target(p) { p.counter++; }

}

©dsbatory2005 210

Well...

It would solve this problem, but not others
Ex: if we used the updated Counter, but wanted to
build program below, we couldn’t do it

would need to update Counter again

class Point {
int counter = 0;
int x;
void setX(int v) { x = v; counter++; }
int y;
void setY(int v) { y = v; counter++; }
int color;
int setColor(int c) { color = c; counter++; }

}

This
code would
be missing

©dsbatory2005 211

The Big Picture

Premise of Component-Based Software Engineering
(CBSE) is step-wise development

progressively build programs by composing components
one at a time
reuse components “as is”

We want to reuse aspect modules “as is”
difficult to do

Core problem:
aspect composition does not distinguish development stages

©dsbatory2005 212

How We Will Proceed

Create a model of how AspectJ composes aspects to discover
source of problem

Present an alternative model of composition that:

retains power of AspectJ
support incremental development
simplifies reasoning with aspects

Full treatment in:

“Taming Aspect Composition: A Functional Approach”
by R. Lopez-Herrejon and D. Batory, May 2005

©dsbatory2005 213

A Model of Introduction

Introduction Addition (+)

©dsbatory2005 214

Model of Introduction

Introduction is a function that maps an input
program to an augmented output program

Appealing to intuition, rewrite above as summation:

Point2 = TwoD(Point1)

Point2 = TwoD + Point1

©dsbatory2005 215

Introduction Addition
Program fragment is set of methods, variables of
1+ classes

+ adds program fragments

class A { .. }

class B { .. }

P1

aspect I1 {
A.a;
B.b;

}

class C { .. }

+

A +

=

class C { .. }

class A { .. a .. }

class B { .. b .. }

= P2

©dsbatory2005 216

Properties of Introduction Addition

+ is set union of program fragments

Identity – denoted by 0
0 is the empty program fragment
if X is a program fragment

X = X + 0 = 0 + X

Commutative – order in which program fragments
are added does not matter

Associative: (A + B) + C = A + (B + C)

©dsbatory2005 217

Properties of Introduction Addition

Substitution (from associativity)
TwoD is a composite Introduction

can substitute to produce equivalent defn of Point2

TwoD = y + setY

aspect TwoD {
int Point.y;
void Point.setY(int v)
{ y = v }

}

Point2 = TwoD + Point1

= y + setY + Point1

©dsbatory2005 218

A Model of Advice

Advice Weaving (*)

©dsbatory2005 219

Advice

Advice code (in italics above) can be regarded as
implicit method declaration and call

Separate concerns by
make advice body an explicit method
name each advice

aspect Log {
pointcut logP() : execution(* Point.set*(..));
after() : logP()

{ System.out.println(“set called”); }
}

©dsbatory2005 220

Pure Advice – Rewrite Log Aspect

Not standard AspectJ syntax
Called Pure Advice – separates implicit
introduction from advice

aspect Log {
static void Point.setCalled()

{ System.out.println(“set called”); }

LogP is after(): execution(* Point.set*(..))
--> Point.setCalled();

}

introduction

pure advice

©dsbatory2005 221

Model of Aspects

Model as 2-D vector
1st entry is pure advice (advice part)
2nd entry is introduction (introduction part)

Log = [LogP, setCalled]

aspect Log {
static void Point.setCalled()

{ System.out.println(“set called”);

LogP is after(): execution(* Point.set*(..))
--> Point.setCalled();

}

©dsbatory2005 222

Another Example

Modeled by vector:

Counter = [CounterP, counter + IncCtr]

aspect Counter {
int Point.counter = 0;
static void Point.IncCtr(Point p)

{ p.counter++; }

CounterP is after (Point p) :
execution(* Point.set(..)) && target(p)
--> Point.CounterA(p);

}

©dsbatory2005 223

Advice Weaving

Application of pure advice is operation *

Let a pure advice and P be a program

a*P = program resulting from advice a
woven into P

©dsbatory2005 224

Advice Weaving

a2 and a1 are pure advice

a2*a1*P means apply a1 first to P, then a2

Defines precedence ordering of advice

©dsbatory2005 225

Properties of Advice Weaving

Identity – denoted by 1
1 is the null advice – a pointcut that captures no joinpoints
if P is a program and a is a pure advice:

P = 1*P
a*P = 1*a*P = a*1*P

Non-commutative – order in which weaving occurs
matters

commutative only when join point sets are disjoint

©dsbatory2005 226

Properties of Advice Weaving

Right-Associative:
a2*a1*P means apply a1 first to P, then apply a2

Distributive: Advice weaving distributes over
introduction addition

P’ = a*P
= a*(A + B + C)

= a*A + m*B + m*C

©dsbatory2005 227

Aspect Composition: Vector Model

Composition:
aspect A1 = [a1, i1]
aspect A2 = [a2, i2]

◊ is AspectJ composition operation

◊ akin to vector addition:

A2 ◊ A1 = [a2, i2] ◊ [a1, i1]

= [a2*a1, i2+i1]

©dsbatory2005 228

Aspect Composition

Let program P = [1, p]

What is the resulting program?

A2 ◊ A1 ◊ P = [a2, i2] ◊ [a1, i1] ◊ [1, p]

= [a2*a1*1, i2+i1+p]

= [a2*a1, i2+i1+p]

©dsbatory2005 229

Aspect Composition

Is “length” of vector V

So:

Consistent with observable AspectJ semantics

|V| = |[a,i]| = a*i

|A2 ◊ A1 ◊ P| = a2*a1*(i2+i1+p)

|An ◊ An-1 ◊ ... A1 ◊ P| =

(an*an-1*...*a1)*(in+in-1+...+i1+p)

©dsbatory2005 230

Incremental Development & AspectJ

Problem seen in expansion

AspectJ programmer needs to know if any advice
applied in earlier steps affects the code added by
the current or later steps

|A2 ◊ A1 ◊ P| = a2*a1*(i2+i1+p)
= a2*a1*i2 + a2*a1*i1

+ a2*a1*p

aj-1*aj-2*...*a1*ij

©dsbatory2005 231

A Simple Fix...

©dsbatory2005 232

A Functional Model of Composition

Treat aspects as functions
Aspect composition is function composition

The terms we don’t want (a1*i2) are gone!

A(P) = A•P = a*(i + p)

A2•A1•P = a2*(i2 + a1*(i1 + p))

= a2*i2 + a2*a1*i1 + a2*a1*p

©dsbatory2005 233

Comparison of Composition Models

Functional Model has more power than AspectJ
provided that aspects are reused as is

set of programs
that can be
synthesized

by Functional
Model

programs that
can be synthesized
by AspectJ Model

©dsbatory2005 234

Proof

Every AspectJ composition can be expressed
as a Functional composition

|A2 ◊ A1 ◊ P| = a2*a1*(i2+i1+p)

[a2,0] [1,i2] [1, p][a1,0] [1,i1][a2,0] • [a1,0] • [1,i2] • [1,i1] • [1, p]
= a2*a1*(i2+i1+p)

©dsbatory2005 235

Proof Continued

Translating arbitrary Functional Model
expression into AspectJ composition is not
possible by reusing aspects “as is”

can do it if you modify the aspects...

Reason: Vector Model does not distinguish
different development stages

A2•A1•P = a2*(i2 + a1*(i1 + p))
= a2*i2 + a2*a1*i1 + a2*a1*p

©dsbatory2005 236

Implication – Recall Point Example

Can add 3rd dimension to Point, ThreeD

Can build 3 different programs

program that counts executions of setX and setY

Color • ThreeD • Counter • TwoD • Point

program that counts execution of setX, setY, setZ

Color • Counter • ThreeD • TwoD • Point

program that counts all set methods

Counter • Color • ThreeD • TwoD • Point

Using AspectJ
we would need

3 different versions
of Counter

©dsbatory2005 237

Features are Increments in Program Functionality

Aspects are features, and vice versa
they are the same

It’s their composition-design models that differ!

FOP is based on step-wise development
distinguish different stages of program development

AOP (AspectJ) uses a different methodology
does not distinguish different stages of development

FOP and AOP are not directly comparable
but they are instances of a more general model
preserves power of AspectJ
preserves power of step-wise development

KEY

KEY

©dsbatory2005 238

Current Work

Working with abc group (Oxford, England)
and University of Passau

to integrate models

Stay tuned...

FOP AOP

Integrated Model

special cases

©dsbatory2005 239

Recommended Readings
Aspect Bench Compiler. http://www.aspectbench.org

Aspect Development Tools. http://www.eclipse.org/ajdt

AspectJ. Programming Guide. http://aspectj.org/ doc/proguide

Concern Manipulation Environment (CME) http://www.eclipse.org/cme/

R.E. Filman, T. Elrad, S. Clarke, M. Aksit. Aspect-Oriented Software Development. Addison-Wesley, 2004

Gregor Kiczales and Mira Mezini. “Aspect-Oriented Programming and Modular Reasoning”. ICSE 2005.

R. Lopez-Herrejon and D. Batory, “Improving Incremental Development in AspectJ using Bounded Quantification”,
SPLAT 2005.

R. Lopez-Herrejon and D. Batory, “Taming Aspect Composition: A Functional Approach”, May 2005

R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating Support for Features in Advanced
Modularization Technologies”, ECOOP 2005.

G. Murphy, A. Lai, R.J. Walker, M.P. Robillard, “Separating Features in Source Code: An Exploratory Study”.
ICSE 2001.

H. Rajan and K. Sullivan, “Classpects: Unifying Aspect- and Object-Oriented Language Design”, ICSE 2005.

©dsbatory2005 300

Design Rule Checking

how to verify compositions automatically

©dsbatory2005 301

Introduction

Fundamental problem: not all compositions of
features are correct

but code can still be generated!
and maybe code will still compile!
and maybe code will run for a while!
impossible for users to figure out what went wrong!

©dsbatory2005 302

Introduction

Must verify compositions automatically

not all features are compatible
selection of a feature may enable others, disable others

Design rules are domain-specific constraints that identify illegal
compositions

Design Rule Checking (DRC) is process of applying design rules
automatically

Presentation overview:

review fundamental relationships of models, grammars,
feature diagrams, and propositional formulas
tool support

©dsbatory2005 303

AHEAD Models and Grammars

AHEAD
Model

Attribute
Grammar

?

©dsbatory2005 304

Layered Designs 1992

GenVoca originated from layered designs
Layers are common form of program extensions

a

k = a

lowest layer

highest layer

b

b ●

calls

cc ●
calls

©dsbatory2005 305

M = { y , z , w ,

g , h , i }

:S :S :S

(x:S):R (x:S):R (x:R):R

Typing GenVoca Layers

Layers exported and imported standardized interfaces
interfaces == virtual machines (VM)
“legos”

Virtual Machines used as types
suppose S and R are virtual machines

©dsbatory2005 306

Types and Realms

g(x:S):R means feature g:
exports virtual machine R
imports layer x that implements
virtual machine S
x is a parameter of “type” S

Realm is a set of units that
implement the same virtual machine

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

R

S

g

g is a layer
that maps
between VMs
R and S

©dsbatory2005 307

Product-Lines and Grammars

Model = ∪ set of realms Defines a grammar whose
sentences are applications

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

S ::= y | z | w ;

R ::= g S | h S | i R ;

set of all sentences is a language
or product-line

©dsbatory2005 308

Symmetry

Just as recursion is fundamental to grammars;
symmetric layers are fundamental to GenVoca

export and import same virtual machine
composable in virtually arbitrary orders
composition order affects semantics, performance

Symmetric layer of realm W has parameter of type W

W = { m(x:W), n(x:W), p }

ex: m(n(p)), n(m(p)), m(m(p)), n(n(p)),...

©dsbatory2005 309

A Symmetric Layer...

Augments or enriches existing abstractions

relational DBMS – add transposition, data cube ops
relational interface still the same, except it has been
enriched

think of extending a class with a subclass

same idea, except on a system level

enormous number of such features....

Happens in ALL domains...

©dsbatory2005 310

Example

What are the standard operations of a
container?

call this layer “base”

All other operations are “optional”
encapsulate in separate layer that extends
interface of base
these layers are “symmetric”
map container abstraction to augmented container
abstraction

©dsbatory2005 311

Perspective...

Assign types to constants, functions...
so that all our equations are “typed”
catches type errors!

Syntax checking in this grammar guarantees type
correctness of expressions

is this enough?

S = { y, z, w }

R = { g(x:S), h(x:S), i(x:R) }

©dsbatory2005 312

No!!

Syntax checking is not enough!
matching input/output signatures insufficient!
just because your Java program is syntactically correct
doesn’t mean that it is semantically correct

DRC uses same techniques used by compilers!
use attribute grammars to define constraints

AHEAD model is an grammar
design rules are grammar attributes, predicates

©dsbatory2005 313

Feature Diagrams and Grammars

AHEAD
Model

Attribute
Grammar

Feature
Diagram

?

©dsbatory2005 314

Feature Diagrams

Feature diagrams are standard product-line notations
declarative way to specify products by selecting features

FDs are trees:
leaves are primitive features
internal nodes are compound features
parent-child are containment relationships

car

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline
©dsbatory2005 315

Feature Diagrams

Mandatory – features that are required
Optional – features that are optional
And – all subfeatures (children) are selected
Alternative – only 1 subfeature can be selected
Or – 1+ or 0+ subfeatures can be selected

car

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline

and

or: 1+choose1

©dsbatory2005 316

Example

What is a legal product specification?

E is ?

R is ?

S is ?

Sound familiar?
de Jonge and Visser (2002):
FDs are graphical representations of grammars
“GenVoca Grammars” 1992

and

choose1 and

©dsbatory2005 317

Mapping of FDs to Grammars

S ::= e1 [e2] en ;

S ::= e1 | e2 | en ;

... S+ ...

S ::= e1 | e2 | en ;

Diagram Grammar

and

or: 1+

choose1

©dsbatory2005 318

Example: Convert FD to Grammar

E ::= R S ;

R ::= g | h | i ;

S ::= a [b] c ;

Application defined by FD = sentence of grammar E

Adding attributes allows further constraints to be expressed

Again back to attribute grammar foundation

and

choose1 and

©dsbatory2005 319

Grammars and Propositional
Formulas

AHEAD
Model

Attribute
Grammar

Feature
Diagram

Propositional
Formula

?

©dsbatory2005 320

Propositional Formula

Set of boolean variables and propositional logic
predicate that constrains values of these variables

Standard ¬, ∨, ∧, ⇒, ⇔ operations

Nonstandard:
choose1(e1...ek) – exactly one ei is true
choosen:m(e1...ek) – at least n, at most m
anything else...

©dsbatory2005 321

Insight

A grammar is a compact
representation of a
propositional formula

Variable is:
a token

name of a non-terminal

name of a pattern

How many variables in the
production below?

R : a b :: P1
| c [R1] :: P2
;

©dsbatory2005 322

Mapping Productions to Formulas

Given production R : P1 | ... | Pn ;

R can be referenced in two ways:

P1 ∨ P2 ∨ ... ∨ Pn

... R ...
(choose 1) choose1(P1,P2, ..., Pn)

... R+ ...
(choose 1 or more)

Pattern Predicate

©dsbatory2005 323

Mapping Patterns to Formulas

T1 T2 ... Tn :: P

formula:

T1 [T2] ... Tn :: Q

formula:

P⇔T1 ^ P⇔T2 ^ ... ^ P⇔Tn

Q⇔T1 ^ T2⇒Q ^ ... ^ Q⇔Tn

©dsbatory2005 324

Example: Grammars to Formulas
Convert each production, pattern to formula
Take conjunction of all formulas
Conjoin root=true (root is root of grammar)

E ::= R S ;

R ::= g | h | i ;

S ::= a [b] c ;

E ⇔ R ^ E ⇔ S

R ⇔ choose1(g, h, i)

S⇔a ^ b⇒S ^ S⇔c

^

^

E=true

^

grammar
propositional formula

A sentence of E satisfies the propositional formula
and vice versa

©dsbatory2005 325

Another Example

Eng ⇔(Ele v Gas)

Tr⇔choose1(Auto,Man)

Car⇔CB ^ Car⇔Tr ^ Car⇔Eng ^ Pt⇒Car

car

Car Body Transmission Engine Pulls Trailer

Automatic Manual Electric Gasoline

^

^

Car = true

^

©dsbatory2005 326

Summarizing...

We can map any AHEAD model or FD to a
propositional formula

a sentence of grammar = assignment to variables that satisfy
the formula
but what about constraints?

Any additional, arbitrary propositional formulas
conjoined onto grammar formula

Ex: if features i and b are incompatible, we would conjoin the
formula

i ∨ b ⇒ ¬ (b ∧ i)

©dsbatory2005 327

In Summary

An AHEAD Model is a propositional formula!
primitive features are variables
compound features are variables
arbitrary set of propositional constraints supported
can be mapped to attribute grammars

Grammar:
specifies ordering constraints on features
ordering very important for AHEAD

Additional propositional constraints:
weed out incompatible features

©dsbatory2005 328

Declarative Domain-Specific
Languages

AHEAD
Model

Attribute
Grammar

Feature
Diagram

Propositional
Formula

DSL

?

©dsbatory2005 329

Declarative Languages

Features enable declarative program specifications
that’s what feature diagrams are for!
counterpart of SQL

Want a declarative GUI DSL that acts like a syntax-
directed editor

user selects desired features
tool precludes specifying incorrect programs

guidsl tool...

©dsbatory2005 330

An Example

Recall GPL from Tools Lecture

Gpl = { DIRECTED -- directed graphs
UNDIRECTED -- undirected graphs

BFS -- breadth first search
DFS -- depth first search

CYCLE -- cycle checking
NUMBER -- vertex numbering
REGIONS -- connected regions
...

}

constants

functions

©dsbatory2005 331

GPL Grammar

Gpl : Alg+ [Src] Wgt Gtp :: MainGpl ;

Gtp : DIRECTED | UNDIRECTED ;

Wgt : WEIGHTED | UNWEIGHTED ;

Src : DFS | BFS ;

Alg : NUMBER | CONNECTED |
| [TRANSPOSE] STRONGC :: StronglyC
| CYCLE | MSTPRIM | MSTKRUSKAL | SHORTEST ;

©dsbatory2005 332

Additional Constraints

Straight from Graph Algorithm Text

©dsbatory2005 333

Encode as Additional Predicates

NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
STRONGC implies DIRECTED and DFS;
CYCLE implies Gtp and DFS;
MSTKRUSKAL or MSTPRIM implies

UNDIRECTED and WEIGHTED;
SHORTEST implies DIRECTED and WEIGHTED;
MSTKRUSKAL or MSTPRIM implies

not(MSTKRUSKAL and MSTPRIM);

©dsbatory2005 334

guidsl Specification
Gpl : Alg+ [Src] Wgt Gtp :: MainGpl ;
Gtp : DIRECTED | UNDIRECTED ;
Wgt : WEIGHTED | UNWEIGHTED ;
Src : DFS | BFS ;
Alg : NUMBER | CONNECTED

| [TRANSPOSE] STRONGC :: StronglyC
| CYCLE | MSTPRIM | MSTKRUSKAL
| SHORTEST ;

%%
NUMBER implies Gtp and Src;
CONNECTED implies UNDIRECTED and Src;
STRONGC implies DIRECTED and DFS;
CYCLE implies Gtp and DFS;
MSTKRUSKAL or MSTPRIM implies

UNDIRECTED and WEIGHTED;
SHORTEST implies DIRECTED and WEIGHTED;
MSTKRUSKAL or MSTPRIM implies

not(MSTKRUSKAL and MSTPRIM);

grammar

constraints

©dsbatory2005 335

Demo

Propagation of constraints involves
classic results from Artificial Intelligence
Logic Truth Maintenance System
improves quality of teaching material

Help to debug model using SAT solver
Satisfiability (SAT) Solver tries to find assignment to
boolean values to make propositional formula true

©dsbatory2005 336

Generated DSL for GPL Spec

Demo!

©dsbatory2005 337

Key Papers

Batory, “Feature Models, Grammars, and Propositional
Formulas”, SPLC 2005

Benavides, et al. “Automated Reasoning on Feature Models”,
CAISE 2005

Generalize predicates to include numerical constraints

count number of products that satisfy constraints
select product that maximizes/minimizes criteria (performance)
restrict models based on feature requirements, criteria
standard constraint solvers

Next-generation FD tools based on these ideas

©dsbatory2005 338

Experience with DRC Tools

Have worked well...

Predicates are simple

Use off the shelf constraint solvers

Reason: architects think in terms of features
if predicates were really complicated

architects couldn’t design
people couldn’t program
because it would be too difficult

We are making explicit what is implicit now...

©dsbatory2005 339

Recommended Readings
Batory and O'Malley. “The Design and Implementation of Hierarchical Software Systems with Reusable
Components”. ACM TOSEM, October 1992.

Batory and Geraci. “Composition Validation and Subjectivity in GenVoca Generators”, IEEE Transactions on
Software Engineering (special issue on Software Reuse), February 1997, 67-82.

D. Benavides, P. Trinidad, and A. Ruiz-Cortes, “Automated Reasoning on Feature Models”, Conference
on Advanced Information Systems Engineering (CAISE), July 2005.

Beuche, Papajewski, and Schroeoder-Preikschat, “Variability Management with Feature Models”, Science of
Computer Programming, Volume 53, Issue 3, Pages 333-352, December 2004.

Czarnecki and Eisenecker. Generative Programming: Methods, Tools, and Applications. Addison-Wesley, Boston,
MA, 2000

Czarnecki, Helson, Eisenecker, “Staged Confiruation Using Feature Models”, Software Product-Line Conference
2004.

K.D. Forbus and J. de Kleer, Building Problem Solvers, MIT Press 1993.

M. de Jong and J. Visser, “Grammars as Feature Diagrams”, 2002.
http://www.cwi.nl/events/2002/GP2002/papers/dejonge.pdf

S. Neema, J. Sztipanovits, and G. Karsai, “Constraint-Based Design Space Exploration and Model Synthesis”,
EMSOFT 2003, LNCS 2855, p. 290-305.

Perry, “The Logic of Propagation in the Inscape Environment”, ACM SIGSOFT 1989.

©dsbatory2005 400

Multi-Dimensional Models

Synthesis of Tool Suites

©dsbatory2005 401

Multi-Dimensional Models (MDMs)

Are a fundamental design technique in FOP

Given model F = { F1, F2, ... Fn }

Let program G = F8 + F4 + F2 + F1

where + denotes composition operator ●
we’ll see shortly why the change in notation is useful

Can write G as:

G = Σ i∈ (8,4,2,1) Fi

©dsbatory2005 402

N-Dimensional Models

Use n FOP models called dimension models
to specify features or indices along a dimension

A 3-D model M with A, B, C
as dimension models

A = {A1, ... Aa}
B = {B1, ... Bb}
C = {C1, ... Cc}

M has a*b*c entries
Mijk implements (Ai, Bj, Ck) A1 A2 A3 Aa

B1

B2

B3

Bb

C1

C2

C3

Cc

..

..

.. M

©dsbatory2005 403

N-Dimensional Models

A program is now specified by n equations
1 per dimension

Program P in product-line of M has 3 equations:

P = A6 + A3 + A1 = Σ i∈ (6,3,1) Ai

P = B7 + B4 + B3 + B2 = Σ j∈ (7,4,3,2) Bj

P = C9 + C1 = Σ k∈ (9,1) Ck

©dsbatory2005 404

Summing (Aggregating) Dimensions

The 3-eqn specification of P is translated into an M equation
by summing M along each dimension

P = Σ i∈ (6,3,1) Σ j∈ (7,4,3,2) Σ k∈ (9,1) Mi,j,k

Order in which dimensions are summed does not
matter

commutativity property of MDMs
provided that dimensions are orthogonal

A indices B indices C indices

©dsbatory2005 405

Significance of MDMs: Scalability!

Complexity of program is # of features

Given n dimensions with d feature per dimension

program complexity is O(dn)
using MDM model O(dn)

ex: program P specified by 3*4*2 features of M or
only 3 + 4 + 2 dimensional features!

FOP program specifications are exponentially
shorter when using MDMs

©dsbatory2005 406

Academic Legacy

“Extensibility Problem” or “Expression Problem” (EP)
classical problem in Programming Languages
see papers by: Cook, Reynolds, Wadler, Torgensen

Multi-Dimensional Separation of Concerns (MDSoC)
Tarr, Ossher IBM

MDM is an algebraic formulation of MDSoC and EP
first present a micro example (15 line programs)

then a large example (30K line programs)
synthesis of the AHEAD Tool Suite

©dsbatory2005 407

A Micro Example

Model L defines a set of programs that implement an
elementary linked list

L = { sglIns, // bare-bones singly-linked list with
// insert operation

}

dblIns, // extends sglIns to doubly-linked list

addDel, // adds deletion operation to sglIns

dblDel // extends addDel to deletion on
// doubly-linked list

©dsbatory2005 408

Enumerated Product-Line

Set of all legal equations (designs) for L

sglIns

dblIns + sglIns

addDel + sglIns

dblDel + dblIns + addDel + sglIns =

dblDel + addDel + dblIns + sglIns

Why are last two expressions equal?

slist w.
ins

dlist w.
ins

slist w.
ins & del

dlist w.
ins & del

Ans: orthogonal

©dsbatory2005 409

Incorrect Compositions

dblIns + addDel + sglIns

insert method works on a
doubly-linked list

delete method works on a
singly-linked list

dblDel + addDel + sglIns

insert method works on
singly-linked list

delete method works on a
doubly-linked list

resulting programs have design errors, are inconsistent

©dsbatory2005 410

Common Problem in FOP
If list structure is extended (single–to–double)

all operations must be consistently updated
ex: both insert and delete must work on same structure

Equivalently, if a new method is added, then it should work for that
structure and not some other structure

insert can’t work on singly-linked list, delete on doubly-linked list

Consistent Refinement Problem

Representative of a large class of problems in FOP
models define features that are not truly independent
features must be applied in groups lock-step (all-or-nothing)
when this occurs, recognize groups implement “higher-level” features

MDMs abstract this complexity….

©dsbatory2005 411

Orthogonal Dimensional Models

Create operation model Ops

Model says nothing about list structure
could be single-linked, double-linked, keyed, non-keyed…

only 2 legal equations

Ops = { insert, delete }

adds delete
operation to list

linked list with
insert operation

w_ins = insert
w_ins_and_del = delete + insert

©dsbatory2005 412

Orthogonal Dimensional Models

Create structure model Struct

Model says nothing about list operations
could have insert, deletion, update, ….
only 2 legal equations

Struct = { singleLink, doubleLink }

singly-linked list

single = singleLink
double = doubleLink + singleLink

extend to doubly-
linked list

©dsbatory2005 413

Given These Two Models

A list program is completely defined by 2 equations
P = doubly-linked list with ins and del operations

These equations must be equal
because they represent the same program
how to show their equivalence?

P = delete + insert // equation #1 uses Ops Model

P = doubleLink + singleLink // equation #2 uses Struct Model

©dsbatory2005 414

MDMs

Define relationship between
Ops & Struct models by a
matrix

Rows represent units of the
Ops model (insert, delete)

Columns are units of the Struct
model (singleLink, doubleLink)

Entries are features of L

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

MDM Matrix for L

©dsbatory2005 415

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+ + +

Sum (Aggregate) MDM Matrix by Rows

Ops equation P = delete + insert
Sum corresponding entries in each column

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns

single-linked w.
ins and del

extends to
doubly-linked

©dsbatory2005 416

Now Sum by Columns

Struct equation P = doubleLink + singleLink

Sum corresponding entries in each column

yields 1x1 matrix whose contents is first of the two equations that
defines P (doubly-linked list structure with insert and delete methods)

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns

doubleLink singleLink

delete + insert dblDel + dblIns addDel + sglIns+

+

©dsbatory2005 417

Again, But Sum Columns First

Struct equation P = doubleLink + singleLink
Means sum corresponding entries in each column

doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+

+
extends by adding

del operation

doubly-linked w.
ins operation

©dsbatory2005 418

Now Sum Rows
Ops equation P = delete + insert
Sum corresponding entries in each column

yields second of the two equations that defines doubly-linked
list structure with insert and delete methods

+doubleLink singleLink

insert

delete

dblIns

dbldel

sglIns

addDel

+

+

+doubleLink singleLink

insert

delete

dblIns

dblDel

sglIns

addDel

+

+

++

doubleLink singleLink

delete + insert dblDel + addDel dblIns + sglIns+

+

©dsbatory2005 419

Perspective

By abstracting model L as a pair of orthogonal
dimensional models and specifying a program as a pair
of equations, we generate only the legal equations of L

sgl

dbl + sgl

sgldel + sgl

dbldel + dbl + sgldel + sgl = dbldel + sgldel + dbl + sgl

slist w.
ins

dlist w.
ins

slist w.
ins & del

dlist w.
ins & del

©dsbatory2005 420

A Macro Example

Synthesizing the AHEAD Tool Suite

©dsbatory2005 421

Perspective

So far, our models customize individual programs
set of all such programs is a product-line

Tool Suite is an integrated set of programs,
each with different capabilities

MS Office (Excel, Word, Access, ...)

Question: Do features scale to tool suites?
product-line of tool suites
Ans: Yes!

©dsbatory2005 422

IDEs: A Tool Suite

Integrated Development Environment (IDE)
suite of tools to write, debug, document programs
AHEAD variant: Java language extensibility

compiler formatter edit debugger

Java

Sm
(state machine DSL)

In principle, features scale!!!

©dsbatory2005 423

The Problem – Declarative IDE

From this declarative DSL specification, how do we generate AHEAD tools?

©dsbatory2005 424

Define Dimensional Model #1

AHEAD Model of Java Language Dialects

Dialects of Java specified by equation

Jak = Tmpl + Sm + Java // java + state mach
// + templates

…

J = { Java, Sm, Tmpl, Ds, ... }

functions (optional features)constant

©dsbatory2005 425

Define Orthogonal Model #2

Tools can be specified by a different, orthogonal model

Different tools have different equations

jak2java = ToJava + Parse

jedi = Doclet + Harvest + Parse

...

IDE = { Parse, ToJava, Harvest, Doclet, ... }

functions (optional features)constant

©dsbatory2005 426

Tool Specification

Defined by a pair of equations
one equation defines the tool in terms of its language features
other equation defines the tool in terms of its tool features

ex: jedi (i.e., javadoc) for the Jak dialect of Java

Synthesize jedi from these specs by defining and
summing matrix that relates the J and IDE models

jedi = Tmpl + Sm + Java // using J Model

jedi = Doclet + Harvest + Parse // using IDE Model

©dsbatory2005 427

MDM Matrix for jedi

Rows are language features
Columns are tool features
Entries are modules that implement a language feature for a tool feature
Shows relationship between IDE and J models

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

MDM
Matrix for

jedi

©dsbatory2005 428

MDM Matrix

Composition of these modules yields jedi

Synthesize jedi equation by summing matrix
according to its dimensional equations

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

MDM
Matrix for

jedi

©dsbatory2005 429

Sum the Matrix!

IDE equation jedi = Doclet + Harvest + Parse

Tells us the column summation order

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

Sum Harvest
with Parse

Sum remaining
columns

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

+

+

+

©dsbatory2005 430

Sum Rows

J equation jedi = Tmpl + Sm + Java

Tells us the row summation order

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

+

+

+

+

+

+

JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

Sum remaining
Rows

+

+

+

+

+

+

+
JDoclet

SDoclet

JHarvest

SHarvest

Java

Sm

Tmpl

Doclet Harvest Parse

SParse

JParse

TDoclet THarvest TParse

An Equation
for jedi

+

+

+

+

+

+

+

+

©dsbatory2005 431

Application Produced by Aggregation

Result:

jedi = (TDoclet + THarvest + TParse) +
(SDoclet + SHarvest + SParse) +
(JDoclet + JHarvest + JParse)

Using MDM we can synthesize an equation for a
language-dialect specific tool

©dsbatory2005 432

Using MDMs to Generate

Tool Suites...

©dsbatory2005 433

MDM Matrix

That relates J and IDE models
Rows are language features
Columns are tool features

Java

Sm

Tmpl

Ds

Parse ToJava Harvest Doclet Signat

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

DParse D2Java DHarvest

JDoclet

SDoclet

TDoclet

DDoclet

JSig

SSig

TSig

DSig

©dsbatory2005 434

To Synthesize IDE Tools

Remove unneeded rows and columns
directly from IDE GUI
example: jedi, jak2java for Java + Sm + Tmpl

Java

Sm

Tmpl

Ds

Parse ToJava Harvest Doclet Signat

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

DParse D2Java DHarvest

JDoclet

SDoclet

TDoclet

DDoclet

JSig

SSig

TSig

DSig

©dsbatory2005 435

MDM Matrix for IDE Tools

Sum rows
Note the semantics of the result...

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +
Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +

+ + + +

©dsbatory2005 436

Yields Equation For Each Tool Feature!

Parse = TParse + SParse + JParse

ToJava = T2Java + S2Java + J2Java

Harvest = THarvest + SHarvest + JHarvest
...

Java

Sm

Tmpl

Parse ToJava Harvest Doclet

JParse

SParse

TParse

J2Java

S2Java

T2Java

JHarvest

SHarvest

THarvest

JDoclet

SDoclet

TDoclet

+ + + +

+ + + +

©dsbatory2005 437

Resulting Row

Is AHEAD model for IDE product-line!

And we know equations for each tool!

IDE = { Parse, ToJava, Harvest, Doclet, ... }

jak2java = ToJava + Parse

jedi = Doclet + Harvest + Parse
...

Parse = ...
ToJava = ...
Harvest = ...

©dsbatory2005 438

IDE Generator is Simple

For each selected tool, evaluate its eqn

And generate the code
for each tool

automatically!

©dsbatory2005 439

Generator of IDE Tool Suite

Engineer h1+g1+f1

h2+g2+f2

h3+g3+f3

generator

generator

generator

jak2java

jedi

...
MDM

generator

©dsbatory2005 440

Bootstrapping AHEAD

We used 3-Dimensional (8x6x8) MDM Matrix to
generate 5 tools of the AHEAD Tool Suite

Lang
Features

Tool Features

Lang
Features 3rd dimension captures

language feature interactions

©dsbatory2005 441

Bootstrapping AHEAD

Sum matrix to produce IDE model, from which we
can generate tool equations

Tool Features

Lang
Features

Lang
Features

Sum 3rd dimension
Sum rows

IDE Model

©dsbatory2005 442

Results of AHEAD Bootstrap

90 distinct features

Typical tool contains 20-30 features
most tools share 10 features

Generated Java for each tool is ~34K LOC

Generating well close to 200K from simple, AHEAD declarative
specifications

exactly what we want

Making designs for multiple tools to conform to a matrix
controlling the complexity of tool suites

©dsbatory2005 443

Allows you to add “advice” to existing programs
ex: before, after methods
ex: advising method calls

Summing rows of MDM matrix looks identical!

Cafter2 + Bafter2 + Aafter2 +

Relationship to AOP

Eqn = C + B + ACafter1 + Bafter1 + Aafter1 +

jedi = (TParse) +
(SParse) +

(JParse)

THarvest +
SHarvest +

JHarvest +

TDoclet +
SDoclet +

JDoclet +

©dsbatory2005 444

MDM Advising Architectural Specs!

Representing program designs as expressions is enormously powerful

ideal for generators

Algebraic representations scale!!

micro example ~150 LOC, AHEAD example ~150K LOC

3 orders of magnitude

ideas of MDM apply to all levels of abstraction equally

algebraic representations scale to much larger systems

©dsbatory2005 445

Final Words

As researchers in AOP, MDSoC scale their
ideas to tool suites...

They’ll encounter MDM...

©dsbatory2005 446

Recommended Reading
Batory, Lopez-Herrejon, Martin, “Generating Product-Lines of Product Families”, Automated
Software Engineering 2002. Updated version submitted for journal publication.

Batory, Liu, Sarvela, “Refinements and Multi-Dimensional Separation of Concerns”, ACM Sigsoft
2003.

Cook, W.R. “Object-Oriented Programming versus Abstract Data Types”. Workshop on
Foundations of Object-Oriented Languages, Lecture Notes in Computer Science, Vol. 173.
Spring-Verlag, (1990) 151-178

W. Harrison and H. Ossher, “Subject-Oriented Programming (A Critique of Pure Objects)”,
OOPSLA 1993, 411-427.

Ossher and Tarr, “Using Multi-Dimensional Separation of Concerns to (Re)Shape Evolving
Software.” CACM 44(10): 43-50, October 2001.

Reynolds, J.C. “User-defined types and procedural data as complementary approaches to data
abstraction”. Reprinted in C.A. Gunter and J.C.Mitchell, Theoretical Aspects of Object-Oriented
Programming, MIT Press,1994.

Tarr, Ossher, Harrison, and Sutton, “N Degrees of Separation: Multi-Dimensional Separation of
Concerns”, ICSE 1999.

Torgensen, M., “The Expresion Problem Revisited. “Four new solutions using generics”, ECOOP
2004.

Wadler, P. “The expression problem”. Posted on the Java Genericity mailing list (1998)

©dsbatory2005 500

Recap

Summary of Tutorial...

©dsbatory2005 501

FOP and Product-Lines

Design individual program think classes

Design product-line (program family) think features
members are distinguished by their features

FOP is study of feature modularity
raises features to first-class, quantum increments of design
features implemented by “cross-cuts”
close to OO framework designs
aspects are complimentary

AHEAD is example of FOP
step-wise development
builds complex systems by adding features incrementally

©dsbatory2005 502

Bigger Picture of Software Engineering

Future of Software Engineering is in automation

Most successful example of automated software engineering is
relational query optimization

declarative specification efficient program
relational algebra
program (of family of equivalent programs) is expression

AHEAD product-line models are generalizations
declarative feature specifications program
domain models are algebras
program is an expression (equation)
code and non-code artifacts treated uniformly
synthesize consistent representations of all program artifacts
equational representations scale, simple, practical

©dsbatory2005 503

Other Results...

Domain-Specific Equation Optimization
IEEE Transactions on Software Engineering May 2000 (IEEE TSE)

Domain-Independent Equation Optimization
2004 Generative Programming and Component Engineering (GPCE)

Feature Interactions and Software Derivatives
2005 International Conference on Feature Interactions (ICFI)

Generative Programming Design Methodologies
to appear

Byte Code Composition
to appear

©dsbatory2005 504

Thank you!

Questions?

For more information, papers, and AHEAD tools, visit our web site:

http://www.cs.utexas.edu/users/schwartz/

