&5
§e00,

.

s

Braga Summer School on Generative and Transformational
Techniques in Software Engineering
July 2005

s Ui,

ie

i
1 3q 3

The Transformational Approach to
Database Engineering

Jean-Luc Hainaut

University of Namur

Institut d'informatique

LIBD - Laboratory of Database Application Engineering
www.info.fundp.ac.be/libd

€5 I
§ %

Rsip

Introduction 2

~WTES Uiy,

Y
3
:
:
7

&

+

e

This tutorial is not a mistake!

This school is about Software engineering

Every large business-oriented software includes a database

So, Database engineering is a part of Software engineering

b\‘}(:_.‘. o,)f% i
Contents 3

Vi

WIES UiV,

i
1 3q 3

W

A

Transformational database engineering in a nutshell

(introductory demonstration)

€5 I
§ %

A

Contents

NIES Ui

Y
3
:
:
7
s
&
+

W

P

@ Introduction

® Modelling data structures

® Schema transformations

® Semantics preservation properties of transformations

o Typology of practical transformations

o Transformational modelling of database engineering processes
® Schema transformations in CASE tools

@ Conclusions and perspectives

e Appendices

» Semantics of the GER
» Proving the reversiblity of GER transformations
> IDMS migration: a case study

A
&

WIES UiV,
i
1 3q 3

W

Introduction

£2

Introduction

s Uiy,

e 5
(E

W

What is a Database?

The structured collection of the data necessary to

o keep the memory of an organization (structures, rules and facts)
o to act as a reliable and efficient data server for an application system

Client
program

A
&

WIES UiV,
i
1 3q 3

W

Introduction

Programs and databases

o 1 database for N programs

o database is independent of the application programs

o the database is built before developing the programs, and generally
survives them,

o very long life span (20 to 30 years is not uncommon)

o disputable flexibility
o intrinsically not Object-oriented (despite some pathetic attempts in
SQL3);

£2

s Uiy,

W

Introduction

First remark: a model is not (always) a model

3 Mo,
£ Y .
£/ %% Introduction
\%ﬂnm\\'ﬁ?

® in UML:

» a meta-model is a structured system of abstract constructs that can be used to

describe any situation of an application domain

» a model is an artefact using the constructs of a meta-model, and that specifies the

structures of a definite situation of an application domain

@ in the Database realm:

» a model is a structured system of abstract constructs that can be used to describe

any situation of an application domain;

can be given N notations/languages;

» a schema is an artefact using the constructs of a model, and that specifies the

structures of one definite situation of an application domain

® Examples: the relational model

the Entity-relationship model

the schema of the GTTSE'05 database.

describes

instance

expressed
into

model

expressed
into

meta-model

be_«:_s I’O/;:
/%% Introduction 10
g B
BNV
e
Specialization of Jean Bézivin’s framework
Is modelled constitutes Isa Jo "
I 1d fact a way to see .
resaysvtv:':‘ classes the world ey
A A A
describes describes describes

instance instance
of of
ema meta-schema meta-meta-schema

expressed
into

meta-
meta-model

Vi

11

Introduction

WIES UiV,

W

Is the database domain so complex anyway?

£2

s Uiy,
) 5
(E

W

Introduction 12

Some facts about databases (1)

a company may use more than 10 DMSs (Data Management Systems) to
implement its information system;

a new version of a DMS appears every 4 years, most often involving
changes in the data and in the programs;

a database may be used by several thousands programs;

the schema of a database may include more than 1,000 entity types and

30,000 attributes (technically, 1,250 files/tables and 40,000
fields/columns); SAP = 15,000-30,000 tables and 200,000 columns;

some database schemas have become so large and complex that no
single data administrator can master them any longer;

Vi

WIES UiV,

€5 I
&%
13

X TIntroduction

F

i
1 3q 3

W

A

Some facts about databases (2)
the precise description of one entity type and its attributes may span from
1 to 100 pages (what does a banking company mean by product?)
the functional documentation of a large database may (should) comprise

more than 5,000 pages;

the SQL-DDL code of a database (tables, constraints, indexes, triggers,
checks, etc.) may comprise 200,000 LOC (5,000 pages);

however, many databases have no documentation.

€5 N
&%,
14

Introduction

£2

s Uiy,

e 5
(E

W

P

Some facts about databases (3)
® database schemas share some interesting properties with programs:

» bugs
» awkward design
» dead parts (never used but the system crashes without them)
> obscure sections (terra incognita)
» (nearly) duplicated sections
> developed on obsolete platforms
» poorly documented (if ever)
® corrective, preventive and adaptive maintenance (no added value) of an
program/database system may require more than 50% of development

effort;

€5 I
&%
15

X TIntroduction

Vi
F

WIES UiV,
i
1 3q 3

W

A

What is Database Engineering?

Technologies, theories, models, techniques, methods and tools
dedicated to
specifying, modeling, designing, implementing, optimizing databases

extracting, migrating, web-publishing data from a database

maintaining, reengineering, evolving, migrating existing databases

independent

°
°

@ reverse engineering legacy databases

°

) federating, wrapping, mediating a set of

integrating,
databases

€5 N
&%,
16

Introduction

£2

s Uiy,

Y
3
:
:
7

&

+

W

P

Is the database domain plagued by the MDA/MDE hype?

In some way:

BE has been intrinsically MDE-compliant and transformational, for
more than 30 years

&5
§e00,

17

A
&

Introduction

WIES UiV,

i
1 3q 3

W

A

Database Engineering and MDA/MDE

® Information Algebra, CODASYL, Comm. ACM , 1962

A relational model of data for large shared data banks, Codd, Comm. ACM,
1970

The Individual Model, first version of the Merise methodology,1974, first
proposal of a 3-level methodology;

DIAM II: multilevel description of database structures (M. Senko), 1974

® The Entity-relationship model (P. Chen), 1976

® The ANSI/X3/SPARC DBMS framework (conceptual, logical, physical,
external), Information System, 1978

® ISO/TC97/SC5 proposals (identification of a hierarchy of modeling
abstractions), 1982

€5 N
&%,
18

Introduction

£2

s Uiy,

e 5
(E

W

P

The schemas and models of a database

Models and meta-models

T= instance of

Introduction 19

The schemas and models of a database

Client
program

Models in the ANSI-Sparc architecture

= uses interface

|
'

= instance of

Introduction 20

The schemas and models of a database

Models in methodologies

Conceptual design

v

Logical design

v

—,
Physical design [————» physical schema -
-

v

View design

l = input/output

21

%,

HIES Uiy,

W

€5 Mg,
§ 0,

A

F

i
1 3q 3

Introduction

Rule-based vs Transformation-based engineering

22

AWIES UN“‘QYU

W

€5 I
§ %

Introduction

e 5
(E

P

@ Rule-based engineering
the target specification is produced following a set of translation

rules.

e Transformation-based engineering
the target specification is produced by application of a chain of
substitution operators to the source specifications.

&5
&0

£l

Introduction

~IES Uiy, 5

i
1 3q 3

W

A

Conceptual schema (ER)

BOOK
SBN = 1o
Title Title:
Au(hor[0-§] DatePublished
DatePublished
id: ISBN
0-N
COPY
11 ISBN
COPY DatePurchased
CopyNbr
DatePurchased
id: of BOOK
CopyNbr

Rule-based view of Database Engineering

Example: producing a relational schema from a conceptual schema

Physical schema (MS Access)

€5 I
§ %

=)

Introduction

AWIES UN“‘QYU

S
R £
EE

P

Natural procedure: through translation rules

Rule-based view of Database Engineering

Physical constructs

atomic attribute A of
entity type E

Ce ptual sch
Entity type E table E
Level-1 multivalued table A, comprising:
column A;

primary key made up of A.

table EA, comprising
column(s) copied from the primary key of table E;

column copied from the primary key of table A;
primary key comprising all these columns.

relationship-type R from
B (with card. 1-1)to A
(with card. 0-N)

in table B,
column(s) copied from the primary key of table A;

foreign key to A comprising these columns;
if R was part of a candidate (primary) key of B, then

add these attributes to the key.

&5
§e00,

25

s

Introduction

~IES Uiy, 5
>
1 3q 3

W

A

Rule-based view of Database Engineering

OK, but what if:

o attribute Ais at level 2, 3, ...?

¢ attribute A is not atomic?

o relationship type R is many-to-many, or one-to-one, or N-ary?

o the primary key of E has not been translated yet (e.g., it comprises a FK still
untranslated)?

= Combinatorial explosion and complexity of the set of rules.

€5 I
§ %

Introduction

AWIES UN“‘QYU

26

g2
E
™
o
&
s
&
&

W

D

Transformation-based view of Database Engineering

Transforming the multivalued attribute Author

BOOK BOOK >
ISBN ISBN AUTHOR
ﬂex Title / AuthorName
{Author{0-5] DatePublishdd [id: AuthorName |
[DatePubTished | _'d_, =N
id: ISBN —
0-N

COLY COPY
CopyNbr CopyNbr
DatePurchased DatePurchased
id: of. BOOK id: of. BOOK

CopyNbr CopyNbr

&5
&0

27

F

Introduction

~IES Uiy, 5

W

i
1 3q 3

A

Transformation-based view of Database Engineering

Transforming the many-to-many relationship type write

BOOK BOOK
AUTHOR
ISBN ISBN AUTHOR
Title AuthorName Title AuthorN
DatePublished id: AuthorName DatePublished uthorName
G 19BN /\‘lﬂ'\AuthorName
I g 1
a1
141 WRITE
| id: bw.BOOK
COPY COPY aw.AUTHOR
CopyNbr CopyNbr
DatePurchased DatePurchased
id: of. BOOK id: of. BOOK
CopyNbr CopyNbr
5 My
0%
¢/%% Introduction
3 &
= £y
\.}3‘ §

P

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName

id: AuthorName

COPY

id: bw.BOOK
aw.AUTHOR

CopyNbr

DatePurchased

id: of. BOOK
CopyNbr

Transformation-based view of Database Engineering

Transforming the one-to-many relationship type aw (and the others)

BOOK AUTHOR
ISBN AuthorName
Title id: AuthorName
DatePublished
id: ISBN

COPY __WRITE
TSBN AuthorName
CopyNbr B — |
DatePurchased id: ISBN

~ISBN AuthorName
Copy! ref:
ref: ISBN > (ref: AuthorName

No more than 5 WRITE rows
per BOOK row.

29

&5
&0

£l

Introduction

~IES Uiy, 5

o
ke
UEE

A

Transformation-based view of Database Engineering

Coding (generally simple; rule-based or transformational)

BOOK AUTHOR N BOOK N
ISBN AuthorName ': 1SBN
Title id: AuthorName Title
DatePublished DatePublished
id: ISBN
COPY WRITE :
1SBN AuthorName
CopyNbr I1SBN
DatePurchased id: ISBN ey m
id: ISBN AuthorName sy IE“""'E"‘e
CopyNbr ref: ISBN atepurchased BN
ref: ISBN ref: AuthorName

No more than 5 WRITE rows 7 No more than 5 WRITE rows
per BOOK row. per BOOK row.

€5 N
&%
30

Introduction

=)

AWIES UN“‘QYU

W

Ty !
(E

P

Transformation-based view of Database Engineering

What if the attribute is multivalued, compound and comprises other
multivalued components ?

SALESMAN
PID
SALESMAN Name
PID id: PID
Nay
Sales[0-N] rule? SALES
Year PID
Customer[0-N] Year
CustiD : id: PID
Volume Year
id: PID ref: PID
id(Sales):
Year CUSTOMER)|
id(Sales.Customer): PID
CustiD Year
CustiD
Volume
id: PID
Year
CustiD
ref: PID
Year

A

SALESMAN

Sales[0-N]
Year
Customer[0-N]

CustiD
Volume
idPID
id(Sales):
Year
id(Sales.Customer):
CustiD

SALESMAN
PID

Name

id: PID

1
SALES

id: for SALESMAN

Year

Customer[0-N]
CustiD
Volume

Year
id(Customer):

CustiD

Note: slightly different variant of the transformation of
an attribute into an entity type

Transformation-based view of Database Engineering

Q&g.‘.ﬁo)%\
£/ %% Introduction 31
o

P

SALESMAN

PID
Name
Sales[0-N]
Year
Customer{0-N]
CustiD
Volume
id: PID
id(Sales):
Year
id(Sales.Customer):
CustiD

SALESMAN
PID

Name

id: PID

T
0-N

1-1

1
SALES

Year

Tustomer[0-N] Y

< CustiD
Volume

id: for. SALESMAN
Year

id(Customer):
CustiD

SALESMAN

PID
Name
id: PID

T
0-N

1-1
L

SALES

Year
id: for. SALESMAN

1
CUSTOMER
CustiD
Volume
id: to.SALES
CustiD

Transformation-based view of Database Engineering

&2 ho’v%,
2/%% Introduction 32
:é%‘ §

<5 10,

s

Introduction

33

~IES Uiy, 5
%

W

i
1 3q 3

A

Transformation-based view of Database Engineering

SALESMAN SALESMAN SALESMAN SALESMAN
PID PID PID PID
Name Name Name Name
Sales[0-N] id: PID id: PID id: PID
Year T
Cucsto:r;r[o-N] oN ON SALES
ust
Volume : ﬁ %el:;r
id: PID . 1-1 [id: PID |
id(Sales): 1‘1 < Year
Year SALES SALES ref: PID
id(Sales.Customer): Year Year
CustiD Customer{0-N] id: for SALESMAN CUSTOMER
CustiD Year PID
Volume 0N Year
id: for SALESMAN CustiD
Year o Volume
id(Customer): id- PID
CustiD 11 " Year
CUSTOMER b
CustiD " Vear >
Volume
id: to.SALES
CustiD
€5 ho,
Fo%
&] .
o] S
¢/%% Introduction s
8 3
- &
2,
\.}3‘ _S‘?

D

Observations

Transformation-based view of Database Engineering

® no new operators
o iterative application of known operators

o compositional property of transformations (the composition of two
transformations still is a transformation)

@ no combinatorial explosion, just the right (small) set of operators

o need for meta-rules for applying the operators (a transformation plan)

&5
§e00,

Introduction

AWIES UN“‘QYU

5 Pk .
£/ %% Introduction 35
B g
AT
s
Beyond data structure transformation
transformed
Client ?
program
?
If the schema under transformation is that of an existing, in-use, database,
then we also have to convert:
o the data
® the client programs
accordingly.
g0,
36

g2
E
™
o
&
s
&
&

W

D

What now?

37

&5
&0

Vi

Introduction

WIES UiV,
e 5
1 3q 3

W

A

Questions

o We need to represent schemas in a great variety of models (GER: a generic
ER model)

o What is a transformation and how to specify it?

o Does a transformation preserve the information contents of a schema?

o Let us be more concrete: what about PRACTICAL transformations?

o How do transformations help in REAL database engineering processes?
® what about Database design?
® and Database reverse engineering?

o Can transformations and CASE tools coexist?

€5 N
&%,
38

Introduction

£2

s Uiy,

Y
3
:
:
7

&

+

W

P

e and now, for the DB geeks:
) Ié th()eoGER just another nice way to draw schemas? (Semantics of the
ER)?
@ Can one prove that a transformation always preserves the information
contents of the source schema?

&5
§e00,

39

A
&

WIES UiV,

i
1 3q 3

W

A

Modelling data structures

£2

€5 N
&%,
40

Modelling data structures

s Uiy,

e 5
(E

W

P

Dealing with multiple models

A typical organization uses N different data models. E.g., it
> commonly uses DB2 databases,
> also uses a legacy IDMS database,

> writes its conceptual schemas in the ER model,

quite often transfers data between databases,

> exchanges data with its environment,

» standardizes on XML format,

plans to migrate some databases to other platforms,

prepares the development of a datawarehouse,

study the feasibility to merge several departments (and their information
systems),

> etc.

41

€5 g
§° 00,

Vi,
F

Modelling data structures

WIES UiV,
iy
1 3q 3w

W

Dealing with multiple models

————
application '
program '

operational data

i

extracl
> & export
XML import

XML

organization

conceptual
schema

design

data warehouse

environment

42

ef_% L’s) %,

s,

Modelling data structures

s Uiy,

o &
1 30 3097

W

Dealing with multiple models

Considering all the inter-model and intra-model conversions
the organization requires N x N different mappings (= 16).

Relatlonal
ER Model

):cod>cod

~IES Uiy, S5

W

€5 g
§° 00,

F

Modelling data structures

i,
1 3q 3w

Dealing with multiple models

The usual answer: introducing a pivot model.
Considering all the inter-model and intra-model conversions
the organization requires 2 x N + 1 different mappings (= 9).

Relatnonal
Model v '_. o
Plvot Model
CODASYL
Model

ef_% L’s) %,

s,

Modelling data structures

s Uiy,

o &
1 30 3097

W

Dealing with multiple models

Example: relational logical design.

Pivot Model

ER Model

conceptual schema Logical design logical schema

Relational Model

A
&

WIES UiV,
i
1 3q 3

W

Modelling data structures 45

GER: the Generic Entity-Relationship model

A large spectrum data structure model

e Encompasses several paradigms: ER, UML, SQL, CODASYL, IMS, file
structures, XML, etc.
e Encompasses several levels of abstraction: conceptual, logical,

physical, external

Chosen as the pivot model in this tutorial

Pivot Model] GER Model

£2

s Uiy,

W

Modelling data structures

Y
3
:
:
7

&

+

GER: the Generic Entity-Relationship model

position in the MDA

GER Model

transformed

transformed

F

Modelling data structures

~IES Uiy, 5

o
ke
UEE

GER: the Generic Entity-Relationship model

Conceptual schema fragment (1)

A\ 4

A\ 4

all-attribute ID ——————»|

role (with —————————» 1“1

hybrid ID ——————>

EMPLOYEE
Employe Nbr
Date Hired
id: Employe Nbr

=

Modelling data structures

AWIES UN“‘QYU

S
R
EE

GER: the Generic Entity-Relationship model

Conceptual schema fragment (2)

SALESMAN

PID

multivalued attribute Name
\ Phonef0-5]
Mobile[0-1]

optional attribute ———————— |
Address

Street
compound / city

0-N

/ sold '\

»(Date

N-ary relationship type

>
O-N Volume

~IES Uiy, 5

W

&5
&0

£l

Modelling data structures

49

i
1 3q 3

GER: the Generic Entity-Relationship model

A

Logical schema fragment

CUSTOMER

record set/table —————» ORDER
ORDID [CUSTOMER D _|

DATE_RECEIVED id: CUSTOMER ID
ORIGIN
DETAIL[1-5] array

array multivalued field
REFERENCE
QTY-ORD

id: ORD-ID

foreign key ————————|"e - ORIGIN

v

€5 I
§ %

=)

Modelling data structures

50

AWIES UN“‘QYU

W

Ty !
(E

P

GER: the Generic Entity-Relationship model

Physical schema fragment: RDB

PRODUCT

PRO_CODE

CATEGORY

DESCRIPTION

UNIT_PRICE

index —p|id: PRO_CODE
acc

index — | acc: CATEGORY

q

PRODUCT.DAT

_
storage space PRODUCT

Vi

WIES UiV,

&5
&0

W

51

F

Modelling data structures

i
1 3q 3

Specifying operational models in the GER

A

Operational = in practical use in the organization

e DB2, ER, UML diagrams, IDMS, IMS, standard file structures, XML Schema
are usual operational models.

® The GER is not an operational model (yet)

5 I
& 0%,

£2

Modelling data structures

s Uiy,

52

e 5
(E

W

P

Specifying operational model M in the GER

Procedure
o identifying the concepts of the GER that are pertinent in M

e specifying the structural constraints that hold in valid M schemas

e renaming the selected constructs according to the taxonomy of M

ER Model
GER Model

UML Class Model

Relat. Model

&5
§e00,

ARTES Ui, 5

W

%

£l

Modelling data structures

53

i
1 3q 3

A

Specifying operational model M in the GER

Application to the relational model (SQL2)

assembly rules

relational constructs GER constructs

database schema schema

table entity type an entity type includes at least one
attribute

domain simple domain

nullable column

single-valued and atomic
attribute with cardinality [0-1]

not null column

single-valued and atomic
attribute with cardinality [1-1]

primary key

primary identifier

a primary identifier comprises
attributes with cardinality [1-1]

unique constraint

secondary identifier

reference group

the composition of the reference
group must be the same as that of

foreign key
the target identifier
SQL names GER names the GER names must follow the
SQL syntax

P

€5 hg,
£
= 2
g 3
z m
3 3
2)
=
& 5

Modelling data structures

54

Specifying operational model M in the GER

Notion of M-compliant schema

This schema is SQL2-compliant:

CUSTOMER
CUSTOMER D « \
table

column

DETAIL ORDER
ORD-ID ORD-ID.
SEQ_NBR DATE_RECEIVED id: CUSTOMER ID
REFERENCE ORIGIN
primary key \ QTY-ORD id: ORD-ID
id: ORD-ID ref: ORIGIN
SEQ_NBR / e
ref: ORD-ID
foreign key

is-a hierarchy

This schema is not SQL2-compliant:

no attributes

PERSON
PID
Name

id: PID

EMPLOYEE

RegNbr

Service

id: RegNbr

rel-type non-elementary attribute

ACCOUNT

A
Deposit[0-N]
| Amount
Date
id: AccNbr

55

&5
&0

5
5

~IES Uiy,

ie

i
1 3q 3

Schema ftransformations

56

5 I
& 0%,

£2

)

Schema transformations

WIES Uilgy,

P

e 5
(E

A transformation T replaces a construct C in a schema S1 with
another construct C', leading to schema S2

T

Schema transformations 57

If the schema describes actual data, the transformation should also tell
how to convert the data (t) ...

T

data

Schema transformations 58

A transformation X is defined by two mappings T and t

2=<Tt
c T > C'=T(C)
inst_of inst_of
c t > ' =t(c)

T: structural mapping = syntax of X

t: instance mapping = semantics of X~

~IES Uiy, 5

W

&5
&0

F

Schema transformations

59

i
1 3q 3

A

Mapping T can be specified with two predicates:
P: minimal pre-condition

Q: maximal post-condition

2 =<T,t>=<P,Qt>

€5 I
§ %

A

Schema transformations

NIES Ui

60

e 5
(E

W

Expressing structural predicates

P

through any logic-based language

relational (more concise, a name denotes an object)

entity-type(E) there exists an entity type with name E

object-based (more general, a name is a property of an object)

entity-type(e) e is an entity type

name(e,E) the name of e is E

must allow specification AND reasoning (e.g., DL)

.
P

s Ui,
i
1 3q 3

W

Schema transformations

61

entity-type(E)

attribute(O,A,m,M,T)

id(O,Cp)
rel-type(R)

role(R,r,E,m,M)

Expressing structural predicates

intuitive example

there exists an entity type with name E

object (with name) O has an attribute with name A, cardinality m-M
and type T

object (with name) O has an identifier comprising components Cp
there exists a rel-type with name R

rel-type R has a role with name r, played by E, with cardinality m-M

5y

WIES Uilgy,

S
e’ k)
EE

Schema transformations

Specifying an entity type:

entity-type(CUSTOMER)

A attribute(CUSTOMER, Cust#,1,1,integer)
A attribute(CUSTOMER,Name,1,1,string)
A attribute(CUSTOMER,Phone,0,5,string)
A id(CUSTOMER {Cust#})

53
&

.

o,

s

P

£/%% Schema transformations 63
A \"’
’f‘fnm\\'f
Practically, a structural predicate can be defined graphically:
entity-type(CUSTOMER) CUSTOMER
A attribute(CUSTOMER, Cust#,1,1,integer) Cust#
A attribute(CUSTOMER,Name,1,1,string) - Name
q] Phone[0-5]
A attribute(CUSTOMER,Phone,0,5,string) 4 Custs
1a: Cus
A id(CUSTOMER{Cust#})
/%% Schema transformations 64
\ﬁ- ?{;

The structural mapping of a transformation can be defined graphically:
P Q

P = entity-type(CUSTOMER) Q = entity-type(CUSTOMER)

A attribute(CUSTOMER,Cust#,1,1,integer) A attribute(CUSTOMER,Name,1,1,string)
A attribute(CUSTOMER,Name, 1,1,string) A attribute(CUSTOMER,Phone,0,5,string)
A attribute(CUSTOMER,Phone,0,5,string) A id(CUSTOMER {Cust#})

A id(CUSTOMER {Cust#}) A entity-type(PHONE)
A attribute(PHONE,Phone, 1,1,string)

A id(PHONE,{Phone})
A rel-type(has)

ey A role(has,, CUSTOMER,0,5)
A role(has,,PHONE, 1,N)

CUSTOMER CUSTOMER PHONE
Custit Custi

Name Name M
ZT?;[(:;] P Cu‘st# id: Pr‘lone

0-5 1-N

€5 Mg,
§ 0,

%,
5

s Ui,

W

A

i
1 3q 3

Schema transformations

65

From now on:
CUSTOMER
— CUSTOMER PHONE
2 Cust#t
Name Name Phone
Phone[0-5] f—t 4 Custh id: Phone
id: Cust# . ‘

o-‘s 1-N

|

S5
Z/%% Schema transformations 66
D
Inverse transformation
-1
22=21" iff
VC: P1(C) = C =T2(T1(C))
CUSTOMER T1 CUSTOMER PHONE
Cust# e Cust# Phone
Name Name mone
Phone[0-5] <~ id: Cust# .
id: Cust# T2 ‘
0-51-N

¢ Intuitively, 2 undoes the effect of 21 at the structural level

* 31 not necessarily the inverse of 2

67

%,
5

s Ui,

i
1 3q 3

W

A

Semantics preservation properties
of transformations

€5 I
§ %

A

Semantics preservation properties of o8
transformations

NIES Ui

e 5
(E

W

P

A transformation can ...

e augment the information contents of the schema

CUSTOMER gUSt;'OMER
usf
Cust# :>
Name Name
Address Address
Phone

o decrease the information contents of the schema

gUSlZOMER CUSTOMER
usf
Name :} Cust#

Name
Address Phone
Phone

@ preserve the information contents of the schema

CUSTOMER CUSTOMER PHONE
ﬁ”s‘# L= Cust# 141 1-N - Phone

ame Name id: Phone
Phone

® more complex patterns exist

&5
§e00,

s

Semantics preservation properties of
transformations

5

~IES Uiy,

i
1 3q 3

69

ie

A transformation can be ...
@ not reversible: not semantics-preserving
e reversible: "half" semantics-preserving

e symmetrically reversible: fully semantics-preserving

g,
%,
)
5

Semantics preservation properties of
transformations

NIES Ui

ity 3
(E

70

e

T

Examples

P: R(A,B,C);
Q: R1(AB); not reversible

R2(A,C);

P: R(AB.C);
A ->— BJ|C i .
Q: R1(AB); reversible (Fagin's theorem)
R2(A,C);

P: R(A,B,C);
A »— B|C

Q: R1(A,B);
R2(A,C);
R1[A] = R2[C];

symmetrically reversible

€5 Mg, . . .
& % Semantics preservation properties of -
3/ 1% transformations
) }g;

Reversible transformation
A transformation is reversible if
there is an inverse mapping for instances as well
Y1 is reversible iff 3 X2 = 217"
YV C: P(C) = C=T2(T1(C))
A
Y c € inst(C): ¢ = t2(t1(c))

£ 9% Semantics preservation properties of "

5/ { & transformations

*) §

T

Symmetrically reversible transformation

Y=<PQt = X o <Q,P,t>

® SR-transformations are first class operators

® SR-transformation are semantics-preserving

-1
Y s symmetrically reversible iff both X and X are reversible

® They preserve the information contents of the source schema

€5 Mg, . . .
"ak Semantics preservation properties of 73
transformations

F

5

~IES Uiy,

O
UEE

Big question

How can we prove that a transformation

is semantics-preserving, i.e., that it is SR

Answer in the proceedings

K

s i
§ 0
74

A

5

WIES Uilgy,

e

gt e,
i1 30 ZWY

Typology of practical
transformations

Elementary transformations

F

Typology of practical fransformations

~IES Uiy, 5

o
ke
UEE

The working example

DOCUMENT
DoclD AUTHOR
Tile Name
Date-Published ON writien TN First-Name[0-1]
Keyword[0-10] Origin0-1]
id: DoclD
oN
A
reserved
Reservation date 0-1 responsibie
REPORT \Reservallon date_/ ON
Report Code ISBN
Version Publisher on BORROWER
id": Report Code i ISBN PID
Name
Address

o

Street

ity

c
o Phone{1-5]
i

PID

N
11
1

oN o4
CcoPY
SeriaNo @
Date-Acquired borrowing
Location Borrow-Date
Store L—onN. Return-Date[0-1] 0-N
Shelf ia: COPY
Row BorowDate />~ | PROJECT
id: ol BOOK -N_[ProiCode
Serial-No Title
ContractNo[0-1]
Company
a: ProjCode
id": ContractNo

=)

AWIES UN“‘QYU

S
R £
EE

Typology of practical transformati

ons

The main classes of elementary SR-transformations

o mutation transformations

@ ISA transformations

o other elementary transformations

&5
&0

F

Typology of practical fransformations

~IES Uiy, 5

i
1 3q 3

W

A

Mutation transformations

contents

3 genders = 6 mutations

RT-to-ET

ET-to-RT

Rel-type

Entity type

att-to-RT

att-to-ET
ET-to-att RT-to-att

A mutation changes the gender of an object while preserving its information

€5 I
§ %

Typology of practical transformations

AWIES UN“‘QYU

g2
E
™
o
&

s

&

&

W

D

Mutation transformations (SR)

Entity types and Rel-types (1)

DOCUMENT
DoclD
DOCUMENT Title
DoclD AUTHOR Date-Published
Title Name -
Date-Published 7°'N0'N7 First-Name <:> :Z?y,;v;:féo 9
Keyword[0-10] Origin
id: DoclD 0N

WRITTEN
@ 1-1—{id: doc.DOCUMENT
by.AUTHOR

F

Typology of practical fransformations

79

~IES Uiy, 5

o
ke
UEE

Mutation transformations (SR)

Entity types and Rel-types (2)

borrowing

Borrow-Date
Return-Date{0-1]

id: COPY

Borrow-Date

COPY PROJECT
CopyNo ProjCode
Date-Acquired Title
id: Copy-No Company

id: ProjCode

s

G

o-N

b

=)

AWIES UN“‘QYU

Typology of practical transformations

Ty !
(E

W

Mutation transformations (SR)

Entity types and Attributes

DOCUMENT

DoclD

Title
Date-Published
Keyword[0-10]

id: DoclD

DOCUMENT
DoclD
Title —0-101-N—
Date-Published
id: DoclD

PROJECT

PROJECT

ProiCode
Title
Company

ProjCod e
oCode |, o N
Title

id: Company

id: ProjCode

id: ProjCode

Typology of practical fransformations

su”

81

ARTES Ui, 5

SO
D)
%11 39

Mutation transformations (SR)

Rel-types and Attributes

BOOK
ISBN
Publisher
[id: TSBN” | coPY BOOK
[SBN | [1SBN |
oN Serial-No isher
<:> Date-Acquired [id: 1SBN |
o id: 1SBN
Serial-No
11 ref: ISBN
CcoPY
Serial-No
Date-Acquired
id: of BOOK
Serial-No

AWIES UN“‘QYU
5
e

A
£
%1 39

Typology of practical transformations 82

ISA transformations (SR)

DOCUMENT
DoclD
Title
Date-Published
Keyword[0-10]
id: DocD

REPORT
Report Code
Version
id": Report Code

Materialization Downward inheritance Upward inheritance
DOCUMENT REPORT DOCUMENT BOOK DOCUMENT
DoclD DoclD DoclD DoclD DoclD
Title Title Title Title Title
Date-Published Date-Published Date-Published Date-Published Date-Published
Keyword[0-10] Keyword[0-10] Keyword[0-10] Keyword[0-10] Keyword[0-10]
id: DociD Report Code id: DoclD ISBN Report[0-1]
excl: b-isa-doc.BOOK Version Publisher Report Code
r-isa-doc. REPORT id: DoclD id: DoclD Version
id": Report Code id ISBN Book[0-1]
0-1 0-1 ISBN
Publisher
excl(REPORT.DocID, DOCUMENT.DoclD, BOOK.DoclID) j id: DoclD.
141 . id" Report.Report Code
id": Book.ISBN
REPORT excl: Report
Report Code Book
Version
id": Report Code

~IES Uiy, 5

W

&5
§e00,

83

s

Typology of practical fransformations

i
1 3q 3

A

Other elementary transformations

Non-set attributes (SR)

DOCUMENT
DOCUMENT DocD
DoclD
DoclD Keyword[0-10]
Title @ Multiplicity
Keyword[0-10] bag Valuo
id: DoclD 5 DodlD
id(Keyword):
Value
DOCUMENT
DOCUMENT .'?F:IC‘D
itle
DoclD
Keyword[0-10]
Tite = Sequence
Keyword[0-10] list Vo
id: DociD T o005
id(Keyword):
Sequence
DOCUMENT
DOCUMENT DoclD
DoclD Title
Title Yt Keyword[10-10]
Keyword[0-10] arra Index
yw y
id: DoclD Value[0-1]
id: DoclD
id(Keyword)
Index

o
2/%% Typology of practical transformations 84
S ¢

P

Other elementary transformations

Compound attribute: disagregation and concatenation

BORROWER
PID: char (6

Name: char (30)
Add_Street: char (40)
Add_City: char (40)

?
BORROWER @ id: PID
S
?

PID: char (6)
Name: char (30)
Address: compound (80)
Street: char (40)
City: char (40)
id: PID

BORROWER
PID: char (6
Name: char (30)
Address: char (80)
id: PID

Very common but not SR

A
&

WIES UiV,
i
1 3q 3

W

Typology of practical transformations 8

Other elementary transformations
Multivalued attribute: instanciation and concatenation

DOCUMENT
DoclD: char (12

Title: char (30)
Date-Published: date (10)
Keyword1[0-1]: char (30)
Keyword2[0-1]: char (30)

?
@ Keyword3[0-1]: char (30)

Keyword4[0-1]: char (30)

DOCUMENT

DoolD: char (12 Keyword5[0-1]: char (30)

Title: char (30) id: DoclD

Date-Published: date (10)

Keyword[0-5]: char (30)

id: DocID Q DOCUMENT
DoclD: char (12)

" Title: char (30)
Date-Published: date (10)
Keywords[0-1]: char (150)
id: DoclD

Very common but not SR

£2

s Uiy,
) 5
(E

W

86

Typology of practical
transformations

Complex transformations

%,

s Ui,

W

Typology of practical fransformations

87

Elementary transformations are just
building blocks for more complex operators

Challenge

Developing higher-level transformations
with elementary SR-transformations
in such a way that the SR property is preserved

£2

)

~FES UNhigy

oy

€5 Iy
& 0%

™ .
T 3q i

Typology of practical transformations

88

The main classes of complex SR-transformations
@ compound transformations
o predicate-driven transformations

® model-driven transformations

&5
§e00,

&0k

£/%% Typology of practical transformations 89

A \"’

’n,,m\\'f
Compound transformations
The composition of two transformations is a transformation
The composition of two SR-transformations is an SR-transformation
21 =<T1,t1>
22 =<T2,t2>
212 =3203%1 =<T20T1,t20t1>
5200,
¢71%% Typology of practical transformations %
f'n,;m;\\'}\
Compound transformations
BORROWER
PID
Name
Phone[1-5]
id: PID COPY BORROWING BORROWER
0-N new! Copy-No Copy-No PID
Date-Acquired Borrow-Date Name
v Bo"z::;:‘:g id: Copy-No FpZ:;um-Date[UJ ::N;r\lgﬂ-ﬁ]
g_ow N Return-Date[0-1] :m(;t;tN 5
id: Cop;No d ;g:;:v Date ;Bg"ow:fa‘e PROJECT
ON_[ProdecT Zf: PIony— ° :ﬁm

:r:eCode ref. ProjCode | — 175 ProjCode
id: ProjCode

intuitively: 2 = RT-to-ET o RT-to-att

&5
§e00,

DESCRIPTION
o 1-1—1id: by.KEYWORD
of DOCUMENT

a very popular mutation transformation

S8 %
2 B . .
[£
£/%% Typology of practical transformations o
g hd
ERYR
) &
s
Compound transformations
ACCOUNT
AcclD
Available new! ACCOUNT
Exp-Monday[0-1] “AcclD N exponses \ |
Exp-Tuesday_1[0-1] @ Available Amount 3D
Exp-Wednesday_2(0-1] id: AcclD 1d: Day
Exp-Thursday_3[0-1]
Exp-Friday_4[0-1]
id: AcclD
II known IIknown
ACCOUNT ACCOUNT ACCOUNT [oAv-of-week |
AcclD AcclD AcclD Day- leek
Available Available Available
Expenses(0-5] known 73 AcciD known T AcclD #
Day-of-Week C) T §
Amount 05 @ 0‘-5 1N
id: AcclD
id(Expenses): o
Day-of-Week
11 1 14
EXPENSES
Day-of-Week EXPENSES
Amount ‘Amount
13: of ACCOUNT id: ot ACCOUNT
Day-of Week on.DAY-0f-WEEK
dom(Day-of-Week) = {Monday', Tuesday’, .. ,'Friday} j
€5 Iy
S0%
& B . .
W B
Z/%% Typology of practical transformations 92
3 I
o ~
=] £
*) &
K
Compound transformations
DOCUMENT SOCUMENT
$‘:cln new! Dogg” DESCRIPTION
itle 20cd Keyword
Date-Published @ Title *0'101" id: Keyword
Keyword[0-10] z.m;:::;nsned of DOCUMENT
id- DoclD :
II known
II known
DOCUMENT
DoclD KEYWORD
Title Keyword
DOCUMENT known Date-Published id Keyword
DoclD KEYWORD <:> id: DoclD
Title —0—1017N— Keyword
Date-Published id- Keyword ‘ N
id: DociD 0-10

G

&5
§e00,

93

s

Typology of practical fransformations

~IES Uiy, 5

o
ke
UEE

A

Predicate-driven (conditional) transformations

Transformations that apply on a set of qualified objects in the current schema

Z (p)

where Y is a transformation

p is a structural predicate
interpretation: apply X to all the objects that satisfy p

ambiguous: if p(01) A p(02) A (apply X(01) = —p(02))
then should 02 be processed anyway?

usual strategy (snapshot): first compute the set of objects that satisfy p,
then apply X to each of its elements that survive.

€5 I
§ %

Typology of practical transformations o4

AWIES UN“‘QYU

W

g2
E
™
o
&
s
&
&

D

Predicate-driven transformations

We need a language for p

e structural (e.g., DL): complex and leading to huge expressions

e ad hoc for the GER: expressive, concise, parametric,
but not generic, not closed

ROLE_per_RT(l J): the number of roles of the current rel-type is between | and J
ONE_ROLE_per_RT(1 2): the number of "one" roles (with cardinality ?-1)is between | and J
MAX_CARD_of ATT(l J): the maximum cardinality of the current attribute is between | and J

DEPTH_of _ATT(l J): the level of the current attribute is between | and J

A
&

Typology of practical fransformations

95

WIES UiV,
i
1 3q 3

W

RT_into_ET(ROLE_per_RT(3 N)):
RT_into_REF(ROLE_per_RT(2 2) and ONE_ROLE_per_RT(1 2)):

INSTANTIATE(MAX_CARD_of ATT(2 4)):

Predicate-driven transformations

% (p)

transform each rel-type into an entity type
(if tey are at least 3 roles)

transform each rel-type into referential attributes
(if they are binary and one-to-many or one-to-one)

instanciate each attribute
(if they are "slightly" multivalued: from 2 to 4values)
ATT_into_ET_VAL(DEPTH_of ATT(1 1) and MAX_CARD_of_ATT(5 N)):

transform each attribute into an entity type
(if they are at the top level and they are "strongly" multivalued: at least 5

values)

£2

s Uiy,
) 5
(E

W

Typology of practical transformations %

Model-driven transformation

Goal: considering schema S1 in model M1, transform S1 into S2 that complies
with model M2. Of course, as far as possible through SR-transformations!

Example: considering the Entity-relationship schema S1, transform S1 into S2 that
complies with the relational model. Of course, as far as possible without

information loss!

Structure: a compound transformation comprising predicate-driven trans-

formations.

Practical form: a transformation plan.

~IES Uiy, 5

W

€5 I
&

A

%

F

Typology of practical transformations o7

i
1 3q 3

Model-driven transformation

Principle:
Identify the constructs of M1 that violate M2

For each such construct C, choose a transformation <T,t> = <P,Q,t> such that

P(C)
T(C) satisfies M2
Things may be a bit more complex, requiring a compound transformation.
rel-types for relational compliance requires two

Example, processing N-ary
successive transformations

£2

s Uiy,

W

5 I
& 0%,

e 5
(E

P

Typology of practical transformations %8

Model-driven transformation
Example: ER to Binary (flat Bachman) conversion
The binary model is a variant of the ER model in which:

o there is no ISA relations

e the rel-types are functional (binary, one-to-many or one-to-one)

e the rel-types have no attributes

o each rel-type is defined on two distinct entity types (no cyclic rel-types)

e the attributes are single-valued and atomic.

&5
&0

P

Model-driven transformation

Flat Bachman schemas - processing invalid constructs:

® |SA relations: materialization

e cyclic rel-types: transform into entity types

e complex rel-types (with attributes, N-ary): transform into entity types
® many-to-many binary rel-types: transform into entity types

e multivalued attributes: transform into entity types

e compound attributes: disagregate.

£/%% Typology of practical transformations %
%"%m\\';ﬁ;
Model-driven transformation
Flat Bachman schemas - invalid constructs:
o ISA relations
e cyclic rel-types
e complex rel-types (with attributes, N-ary)
® many-to-many binary rel-types
e multivalued attributes
e compound attributes.
g0,
5 e, . .
¢71%% Typology of practical transformations 100
:é%‘ §

€5 Mg,
§ 0,

F

~IES Uiy, 5
%

o
ke
UEE

A

Typology of practical transformations 101

Model-driven transformation

Transformation plan for ER to Flat Bachman conversion
ISA_into_RT; transform ISA relations by materialization;

RT_into_ET(RECURSIVITY_in_RT(2 N)); transform rel-types in which the same entity type
appears more than once;

RT_into_ET(ATT_per_RT(1 N) or ROLE_per_RT(3 N)); transform complex rel-types;
RT_into_ET(ONE_ROLE_per_RT(0 0)); transform rel-types in which there is no "one" role;
LOOP; iteratively flatten the attribute structure
ATT_into_ET_INST(MAX_CARD_of_ATT(2 N))
DISAGGREGATE
ENDLOOP

€5 hg,
%

E

=

5

z

b
e

P

e 5
(E

Typology of practical transformations 102

Model-driven transformation

Example of ER to Flat Bachman conversion

DOCUMENT BORROWER

DoclD EO‘E‘D ? I
responsible 01 0-10—— Title dar;‘eD ~o-N
g i

Title
Date-Published oN 2:2!;—PL‘A;I\shed
Keyword[0-10] id: Docl

o o>

id: DoclD BORROWER
PID ot oN 1
gy ORDINRC)
A ia PID 0N RESPONSIBLE

1-1 1-1 11 1-1

|
KEYWORD BOOK RESERVED P'::(‘:J;E:T
oN Py Keyword TSEN G- by BORROWER BrolCode
id- d DOCUMENT || Publisher what DOCUMENT T
oN Keyword ia- 1SBN Q}} Prol
|
CoPY ON 1"1 @
Serial-No O-N
Date-Acquired Se":f:;"
Location o-NM 11 11
Sore Date-Acquired
ahatt Loc_Store ‘
Row PROJECT Loc_Shelf BORROWING
id: of BOOK ::T Code Loc_Row id: for PROJECT
6 orB e id: of BOOK by.BORROWER
Seria-No id: ProjCode Serial-No what.COPY

&5
&0

Vi

Typology of practical transformations 103

WIES UiV,

2
2
&
o
7
=
&
+

ie

Model-driven transformation

Other popular examples
» ER to UML
> UML to ER
> ER to relational
> relational to ER
» COBOL files to ER
» ER to XML

> relational to XML

5 I
& 0%,

£2

)

5

104

~FES UNhigy

P

e 5
(E

Transformational modelling of
database engineering processes

Transformational modeling of database engineering,

£
3/ /8 processes
A\

A

Most database engineering processes are high-level transformations

Example 1: database design

Conceptual design
Logical design

Physical design

Conceptual schema

Logical schema

Physical schema

DDL code

DDL code = DB-design(Users Requirements)

DB-design = Coding o PhysD o LogD o ConcD

2% Transformational modeling of database engineering,
3\ {7 processes
SLE

P

Logical design

Conceptual schema Logical design ‘ Logical schema

Logical_schema = Logical_design(Conceptual_schema)

Logical_design clearly is a model-driven transformation

Let us develop its transformation plan

~IES Uiy, 5

W

&5
§e00,

A

s

i
1 3q 3

Transformational modeling of database engineering,
processes

What are the invalid GER constructs in the relational model?

® [SA relations
@ relationship types
» complex
» functional
® multivalued attributes

® compound attributes
® names not compliant with the SQL syntax

s Uiy,

W

%
%,

S I,

P

S5

ity 3
(E

Transformational modeling of database engineering,
processes

How to get rid of them?

® ISA relations: transform by materialization; then go to functional rel-type

@ relationship types
» complex: transform into entity types, then go to functional rel-type
» functional: transform into foreign keys
® multivalued attributes: transform into entity types, goto functional rel-type
® compound attributes: disagregate
® names not compliant with the SQL syntax: change

&5
§e00,

JIES UNivey 5

Transformational modeling of database engineering,

processes

<
+ A
U

£
E
E

A transformation plan

7

transform
is-a relations

transform complex
rel-types

no

still non simple attri ?

yes

; transform functional
transform level-1 multi-

valued attributes rekiypes
no
- any failure ?
disaggregate level-1
compound attributes yes

Add technical Id
where needed

Process names

€5 I
§ %

WI€S UN“‘QYU
. £
T30 WY

s
)

P

Transformational modeling of database engineering.

processes

Application

DOCUMENT written AUTHOR
|_DOCUMENT | AUTHOR Docld Auth_ID Auth_ID
DocD e Tite DoclD Name
Date-Published writen, First-Name{0-1] Date-Published iG: Auth_ID First-Name[0-1]
Keyword[0-10] Origin[0-1] 2522:;5‘]341 . D;c\DID (Znim[:rqj
id: DoclD - ref: Docl i uth_|

id: DoclD equ: Auth_ID | —

ON excl: BOOK
reserved DodD ﬁ
rerort || soox rosponsitle o Keyworg Erone
Report Code | [ISBN N id: Docld ‘ Phone
Version Publisher N SORROWER Keyword equ: PID
id": Report Code | |id": ISBN ref: DoclD
(11BN | o5
o Name @ BORROWER
Address reserved -
Street REPORT EID Name
(o> Sity odd Dodld Add_Street
Phone[1-5] Report Code Reservation date o
id: PID Version Add_City
1-1 id: DoclD ProjCode[0-1
| [id: DoclD Publisher D rojCode[0-1]
O-N 01 - Responsible{0-1]
corPY b id: DoclD ref: DoclD
id" Report Code ref- PID id: PID
Serial-No ref ref: Responsible
Date-Acquired works on > i@ 18N ref: Projcote
Store [-0-N—{_Return-Date[0-1] oN v
Shelf @ COPY | Docﬁ]op PROJECT
. BorowDate A prosecr e o :ro Code
SeriabNo lle
SerialNo ProjCode Date-Acquired Company
Thie Loc_Store
. - " id: ProjCode
Contractiofo-1) Loc_Shelf Retum-Date[0-1] .
ompany R
0c_Row id: DoclD
id: ProjCode id: DoolD ContractNo
id ContractNo c Serial-No
Serial-No Borrow-Date ContraciNo
ref: DoclD ref: DoclD ProjCode
Serial-No id: ContraciNo
ref: PID id: ProjCode
ref: ProjCode ref

Transformational modeling of database engineering.

processes

%,
%
it
s

s

WIES UiV,

e el
1 3q 3

W

A

Example 2: database reverse engineering

‘
Raw physical schema

Physical schema
Cleaning I Logical schema
Conceptualization Conceptual schema

Conceptual schema = DB-REng(code g, code,,)

DB-design = Concept o Clean o Refine o Parse

]

S I,

Transformational modeling of database engineering. .

%
%,
55

)
™ 3
(E

processes

NIES Ui

W

P

Example 2: database reverse engineering

Interesting observations

Refine o Parse = Coding"
Cleaning = Physical_design™'

Conceptualization = Logical_design™!

DB reverse engineering is (grossly speaking) the

Conclusion:
inverse of DB engineering

processes

ARTES Ui,

Transformational modeling of database engineering. .

W

7

transform
is-a relations.

v

transform complex
rel-types

transform level-1 muiti-
valued attributes

disaggregate level-1
compound attributes

transform functional
rel-types

add technical Id
where needed

transform functional
rel-types

Hence the transformation plan of Conceptualization:

7

Transform FK into functional
rel-types

Remove technical Id

v

Transform FK into functional
rel-types

Aggregate heterogeneous
serial attributes

transform attribute entity types
into multi-valued attributes

transform relationship entity
types into rel-types

transform one-to-one rel-types
into is-a relations

processes

~WTES Uiy,
g,

Transformational modeling of database engineering.

W

relational
logical schema

Convincing, but obviously
needs some polishing!

Experiment:
DOCUMENT
DoclD
Title AUTHOR
Date-Published Auth_ID
REPORT[0-1] Name
-on—oten 1|

BOOK[0-1) iten >t L amelo-]
Keyword[0-N] Origin[0-1]
id: DoclD id: Auth_ID
excl: BOOK

REPORT 0-N

l

0-1 0-1

reserved Responsible
Responsible

REP_DOC B00_DOC
oN
oN

01
1-1 11
BORROWER
REPORT BOOK PID
Report Code ISBN Name
Version Publisher AddﬁSfreet
id" Report Code | [id" ISBN Add_City
Phone[1-N]
O-N o-N” [1d PID
COP_BOO borrowing (07‘1
1.\1 Borrow-Date 'BOR_PRO_1
; Return-Date[0-1] i
CoPY id: COPY oN
Serial-No 0-N Borrow-Date I
' : PROJECT
Date-Acquired O-N Sroed
Loc_Store Froftode
Loc_Shelf Tile
Loc_Row Company
& COP BO0.B00R ContractNo[0-1]
b 'S falN id: ProjCode
e id ContractNo

~IES Uiy, 5

W

&5
§e00,

s

A

i
1 3q 3

115

Schema transformations in CASE
tools

£2

s Uiy,

5 I
& 0%,

W

116

Schema transformations in CASE tools

e 5
(E

P

CASE tools with DB design facilities offer explicit or implicit transformations
for the production of the database code and for (limited) reverse engineering.

» conceptual schema — DDL code

» conceptual schema —> relational schema — DDL code

» DDL code — relational schema — conceptual schema

Few CASE tools include transformations as a major engineering paradigm.

Example DB-MAIN

$E00,
Schema transformations in CASE tools "7
The DB-MAIN CASE environment
® Toolset of about 30 elementary transformations. Most are SR. The others
trigger a warning.
@ Predicate-driven transformations (through two transformation assistants)
» simplified (for the dummies)
» advanced (for the smarties)
® Model-driven transformations (through two transformation assistants)
» scripting facilities for developing transformation plans
» a dozen predefined, updatable, transformation plans
‘g&eﬁﬁo@p
£/%% Schema transformations in CASE tools 118

P

The DB-MAIN CASE environment

Elementary transformations (Transforming attribute Phone

1. select an object
into entity type PHONE)

e .
s
Entity type Transformation of an attribute inta st
> Reltype entily yp:
+ responsiple-for & instance [N 3. if needed, select the variant
Il lsadelpes Tesponsivle | (' yal fation (1-N)
U Feluses ks o on walue representation
[Solibege
Add Tech 1D | (i
Rel-type
> Entity typs
> Altribute -
[Atwibute Transtormation of attribute "Phane' into an entiy type. [Create
—» [Entiytype ity
| Disaggregation o . .
luki>Singe Name [PHONE <4— 4. if needed, give target names
Single > Muli ors o > o
Ul List Sihgle i
r ult Conversion ol Lenth
5tenialize domain
PROJECT peryp
brccl AT [FroiCade I~ Tatal I Disicint
Hola i AOTHOR
[MUIFET > RT k BOOK
ampany
[Group [FrofCode [cna | BORROWER
[e | [commee CoPY
[Zggecaion Reires| [proeer
> Mukivalued e
— 4 | ‘ I
Sem Tech Prop.
2. select a transformation
Hewent| Mewatt| Newproe Cancel

&5
&0

£l

Schema transformations in CASE tools 119

ARTES Ui, 5

W

i
1 3q 3

A

The DB-MAIN CASE environment

Elementary transformations (Transforming bag attribute Keyword into a set attribute)

Multivalued attribute conversion

DOCUMENT Convert collection type bag of multivalusd attribute
$°‘°'D “Kemword", [Choose new callection type]
itle L o
— Collection type— Unique| — Order— ~Gap—
£ Set[lnss] = = =
 Set[ho loss) =] =] =]
€ Bag (ioss) = = =
= Bag (o loss] = = =
[t ([oss) = = =
st o loss] = = =
 List (loss) - L =
£ Ligt [loss] = = =
) U-aray (Ioss] = = =]
11 £ Uearray (foloss) || = = =
oo | € Autay loss] = | = |=
Serial- No € fray (o oss] = = =
Date-Aequired
Loeation P
Store r Cancel
Shelf
Row

Q*EMO%
Schema transformations in CASE tools 120
S ¢

P

The DB-MAIN CASE environment

Predicate-driven transformations: simplified assistant

1. choose a pattern —l 17 2. choose an action

Global transformations B3
" Entity types into [et
I = B Add
& Relypes ina
Insert
[Cyelic 14 | [Referential atibutes = |
| || I=| Edt
 Attibutes inta
| || I= | Clear
Lol i
| IG5] i”‘D 7] || Proeined
© Miscellansous o Load_|
| | =l Save
" Generate :I' Capy | 3. execute

© Mame processing
™ Confin

© Comment

Cancel | Help |

%

&5
&0

£/%% Schema transformations in CASE tools 121
o

A

The DB-MAIN CASE environment

Predicate-driven transformations: advanced assistant

1. select an operation 2. define the predicate

Advanced global transformation x|

Serpt
add [[FT_into_ETROLE_per RTGN) o ATT_per_RT(1 M)

Insert
Remove |
— transformation parameter edit x|

Edit

& Piimiive ransformations

| Edit parameters of function = [RT_inio_£T

0N
ENDON Clear | Obiects Flues

LOoP L=
ENDLOOP — Relpes Add | [ROLE_per ATEN
0N ENDON = =

£ Library Load
| | —— ez | 3. set its parameters

Save

Copy

ATT_LENGTH_per_AT
ROLE_per AT
ONE_ROLE_per_RT

N AOLE per AT |

] o
o | | S
_per_f

Enter constraint parameter
Edtibrary
[TH
ok c
_ o | T Not ¥ And [

" Comment

Edit libr:

Cancel | Help

€5 I
§ %

Schema transformations in CASE tools 122

su

AWIES UN“‘QYU

A
£
%1 39

AR
The DB-MAIN CASE environment
Model-driven transformations: simplified assistant

2. write it

1. build a couple (pattern,action) —l

Global transformations x|
C Erfity tpes into S v
= = s |[lsinta reypes
L =] I=| _I Comples rebypes into entity types
RAektypes . Mulivalued atiributes inta entity types
Insent
s i [e |
I =[] | il
& Attributes inta
Disagorenaton 2 Clear
€ Groups inka il
| 3| 5] || Dot
" Miscelaneous into Load |
I I sae || 3. save script
€ Generste - .
com_| 4. execute script
 Name processing o f’/
o
€ Comment o | Cancel | Help

Schema transformations in CASE tools

su”

ARTES Ui, 5

SO
D)
%11 39

The DB-MAIN CASE environment

Model-driven transformations: advanced assistant

on x|

[advanced global transform:

& Primitive transformations

REF_into_R T = Add

ATT it ET_WAL

ATT inio ET_INST Insert

OBJATT nto_AT]

DISAGEREGATE

INSTANCIATE &

MATERIALIZE - o

£ Contral structures

O

ENDON 3

(ooP _ e |

ENDLOOP

OM.ENDON =] | Predsfinsd

£ Library Load
Save
Copy

@ EiE Ediit library

Schema transformations in CASE tools

AWIES UN“‘QYU
5
e

A
£
%1 39

The DB-MAIN CASE environment

Model-driven transformations: advanced assistant

Advanced global transformation

Script
Add |[7GOAL producing standard file structures fiom an ER schema
REF_mio_AT | 154 into, AT
ATT into ET WAL RT_into_ET(4TT_per_RT[1 N) or PROCUNIT_per_RT(1 M] or ROLE _per RT(3N
T et T NST [T eI o OLE pe TN

€= Primitive transfomations

OBJETT nte AT L0oP
DISAGEREGATE feneve | RT.ino_REF
INSTANCIATE SMERT ADD_TECH_ID
MaTERIALIZE =l

Edit ENDLOOP
MATERIALIZE

" Control stuctures AGGREGATE[COMP_per_GROUF{Z N) and ID_in_GROUP[YES] or COMP_per_GR

i GROUP_into_KEY(ID_in_GROUP[YES] ar REF_in_GROUPEYES])
ENDON
Coop Clear

ENDLOOP E
OM...ENDON x| || Predefined

© Library
Save
Copy
 Comment Edit library 4| | _’I

™ Confimation Ok Caricel | Help I

A
&

WIES UiV,
i
1 3q 3

125

W

Conclusions and perspectives

£2

s Uiy,
) 5
(E

W

Conclusions and perspectives 126

Intuitively, most database engineering processes are transformational by
nature.

By combining elementary transformations, we can give these processes a
precise transformational definition.

A transformation can be formalized so that its preservation properties can
be proved.

We need a small set of elementary transformations (20 - 40).

Once correctly defined, a transformation is quite reliable, and is guaranteed
to preserve information whatever the context in which it is applied.

Transformation are (sort of ...) easy to implement in CASE tools.

&5
§e00,

127

A
&

Conclusions and perspectives

WIES UiV,

i
1 3q 3

W

A

However, some problems are not (completely) solved:

a transformation must address all the aspects of the data structures:
documentation, annotations, statistics, operations (methods).

complex problem: propagating the constraints; OK for uniqueness, but

others more complex.

how to efficiently transform the data, following schema transformation?

transforming a high-level abstract schema is nice, but how do we
propagate them to the lower-level schemas (including the code)?

transforming the data structures is nice, but what about the programs?
Notion of co-transformation. See Anthony’s presentation.

€5 I
§ %

128

A

Conclusions and perspectives

NIES Ui

e 5
(E

W

P

More information at

http://info.fundp.ac.be/libd

Education Edition of DB-MAIN at the same address

&5
§e00,

.
P

s Ui,

ie

£

T

UEE

Conclusions and perspectives

129

Exercise session

Expected time: 45 minutes
Requirements: Windows PC

e Copy the folder « Exercise » from the CD-ROM to your
desktop.

o Eject the CD-ROM and give it to your neighbour.
e Open « Exercise », then « Library »
® Run db_main.exe

e Open project « Library-2003 »

€5 Iy
& D,

5y

~WTES Uiy,

e

K

gt e,
i1 30 ZWY

130

Appendix 1
Semantics of the GER

A
&

WIES UiV,
i
(e

W

131

Semantics of the GER

Semantics of the GER

Problems:
e to reason rigorously, we need to associate a formal semantics with the GER,
o the GER is rich and complex

o therefore, its semantics is likely to be complex as well,
e complex formalisms tend to be unreliable.

General solution:

to build a (as far as possible) bijective mapping between the GER and a
simpler formalism with a well defined semantics.

£2

AWIES Uiy,
™ .
T 3q i

W

132

Semantics of the GER

Semantics of the GER

Specific solution:
to interpret the GER as a variant of the non first-normal-form (N1NF) relational
model, the Extended Relational Model (ERM).

GER Model Extended Relational
Model

Semantics of the GER 133

Semantics of the GER

See proceedings

5510,

/"
=

134

NIES Ui

e

&
> A
(E

g
2
?

Appendix 2
Proving the SR property of the GER
transformations

135

&5
&0

F

5

Proving properties of GER transformations

WIES Uivey

ie

i
1 3q 3

Building a set of SR-transformations for the ERM is (reasonably) easy,
thanks to the underlying N1NF relational theory

GER Model Extended Rel.

€5 N
&%,
136

£2

)

Proving properties of GER fransformations

~FES UNhigy

P

e 5
(E

A GER transformation Xg is SR if it can be proved that,
Eg = der>erm 0o2eo Eerm>ger

where 2e is a (possibly complex) ERM SR-transformation

G o

GER Model Extended Rel.
Model

&5
&0

Vi

F

Proving properties of GER transformations

WIES UiV,

2
2
&
o
7
=
&
+

137

ie

The proceedings provides a proof of the SR-property

of the most useful variants of the six mutation transformations.

K

£2

)

€5 Iy
& D,

5

TES UNiey,

138

e 5
(E

P

Appendix 3
Actual project in IDMS reverse
engineering

139
JRETE]
laix]

140

~=lofx|

Size: 11586
Size: 11586

Excerpt
Excerpt

e Mark1 -

B

e

|[=lny @l

D

+

B

]
&

- Logical schema (IDMS)

=

E
s=-8°=i8
el

] Pl Ede. Product New. Trar

o

- e
EEI CTLEEFELE T
asfegccogge s
sgse

DBRE - Physical schema (IDMS) -

D

AME DE §,
¢ o by,

Lo
“iany ot >

€5 M
$ %
RN

141

Q&gs.n%\
Z/"%% DBRE - Conceptual schema - Excerpt
N3

142

£5 My
&%

A

DBRE - Logical schema (Relational) - Excerpt

NIES Ui

2
E
m
=1
@
EY
g

e

4

S

