
1

University of Namur
Institut d'informatique

LIBD - Laboratory of Database Application Engineering
www.info.fundp.ac.be/libd

LIBD

The Transformational Approach to
Database Engineering

Jean-Luc Hainaut

Braga Summer School on Generative and TransformationalBraga Summer School on Generative and Transformational
Techniques in Software EngineeringTechniques in Software Engineering

July 2005July 2005

2

LIBD

Introduction

This tutorial is not a mistake!

This school is about Software engineering

Every large business-oriented software includes a database

So, Database engineering is a part of Software engineering

2

3

LIBD

Contents

Transformational database engineering in a nutshell

(introductory demonstration)

4

LIBD

Contents

● Introduction

● Modelling data structures

● Schema transformations

● Semantics preservation properties of transformations

● Typology of practical transformations

● Transformational modelling of database engineering processes

● Schema transformations in CASE tools

● Conclusions and perspectives

● Appendices

Semantics of the GER
Proving the reversiblity of GER transformations
IDMS migration: a case study

3

5

LIBD

Introduction

6

LIBD

Introduction

What is a Database?

The structured collection of the data necessary to

• keep the memory of an organization (structures, rules and facts)

• to act as a reliable and efficient data server for an application system

schema Client
program

4

7

LIBD

Introduction

Programs and databases

• 1 database for N programs

• database is independent of the application programs

• the database is built before developing the programs, and generally
survives them,

• very long life span (20 to 30 years is not uncommon)

• disputable flexibility

• intrinsically not Object-oriented (despite some pathetic attempts in
SQL3);

8

LIBD

Introduction

First remark: a model is not (always) a model

5

9

LIBD

Introduction

● in UML:

a meta-model is a structured system of abstract constructs that can be used to
describe any situation of an application domain

a model is an artefact using the constructs of a meta-model, and that specifies the
structures of a definite situation of an application domain

● in the Database realm:

a model is a structured system of abstract constructs that can be used to describe
any situation of an application domain;

 can be given N notations/languages;

a schema is an artefact using the constructs of a model, and that specifies the
structures of one definite situation of an application domain

● Examples: the relational model
the Entity-relationship model
the schema of the GTTSE'05 database.

10

LIBD

Introduction

Specialization of Jean Bézivin’s framework

real world
system

fact
classes

a way to see
the world philosophy

schema meta-schema meta-meta-schema

model meta-model meta-
meta-model

describes describes describes describes

instance
of

instance
of

instance
of

expressed
into

expressed
into

expressed
into

Is modelled
by constitutes Is a domain

of

6

11

LIBD

Introduction

Is the database domain so complex anyway?

12

LIBD

Introduction

Some facts about databases (1)

● a company may use more than 10 DMSs (Data Management Systems) to
implement its information system;

● a new version of a DMS appears every 4 years, most often involving
changes in the data and in the programs;

● a database may be used by several thousands programs;

● the schema of a database may include more than 1,000 entity types and
30,000 attributes (technically, 1,250 files/tables and 40,000
fields/columns); SAP = 15,000-30,000 tables and 200,000 columns;

● some database schemas have become so large and complex that no
single data administrator can master them any longer;

7

13

LIBD

Introduction

Some facts about databases (2)

● the precise description of one entity type and its attributes may span from
1 to 100 pages (what does a banking company mean by product?)

● the functional documentation of a large database may (should) comprise
more than 5,000 pages;

● the SQL-DDL code of a database (tables, constraints, indexes, triggers,
checks, etc.) may comprise 200,000 LOC (5,000 pages);

● however, many databases have no documentation.

14

LIBD

Introduction

Some facts about databases (3)

● database schemas share some interesting properties with programs:

bugs
awkward design
dead parts (never used but the system crashes without them)
obscure sections (terra incognita)
(nearly) duplicated sections
developed on obsolete platforms
poorly documented (if ever)

● corrective, preventive and adaptive maintenance (no added value) of an
program/database system may require more than 50% of development
effort;

8

15

LIBD

Introduction

What is Database Engineering?

Technologies, theories, models, techniques, methods and tools
dedicated to

● specifying, modeling, designing, implementing, optimizing databases

● extracting, migrating, web-publishing data from a database

● reverse engineering legacy databases

● maintaining, reengineering, evolving, migrating existing databases

● integrating, federating, wrapping, mediating a set of independent
databases

16

LIBD

Introduction

Is the database domain plagued by the MDA/MDE hype?

In some way:

BE has been intrinsically MDE-compliant and transformational, for
more than 30 years

9

17

LIBD

Introduction

Database Engineering and MDA/MDE

● Information Algebra, CODASYL, Comm. ACM , 1962

● A relational model of data for large shared data banks, Codd, Comm. ACM,
1970

● The Individual Model, first version of the Merise methodology,1974, first
proposal of a 3-level methodology;

● DIAM II: multilevel description of database structures (M. Senko), 1974

● The Entity-relationship model (P. Chen), 1976

● The ANSI/X3/SPARC DBMS framework (conceptual, logical, physical,
external), Information System, 1978

● ISO/TC97/SC5 proposals (identification of a hierarchy of modeling
abstractions), 1982

18

LIBD

Introduction

The schemas and models of a database

Models and meta-models

schema

Model = meta-schema

Meta-schema = meta-meta-schema

= instance of

10

19

LIBD

Introduction

The schemas and models of a database

Models in the ANSI-Sparc architecture

physical schema

logical schemaconceptual schema

external schema n
external schema 2

external schema 1

Client
program

= instance of

= mapping

= uses interface

20

LIBD

Introduction

The schemas and models of a database

Models in methodologies

= input/output

physical schema

logical schema

conceptual schema

external schema n
external schema 2
external schema 1

Conceptual designConceptual design

Logical designLogical design

Physical designPhysical design

View designView design

Users requirements

11

21

LIBD

Introduction

Rule-based vs Transformation-based engineering

22

LIBD

Introduction

● Rule-based engineering

the target specification is produced following a set of translation
rules.

● Transformation-based engineering

the target specification is produced by application of a chain of
substitution operators to the source specifications.

12

23

LIBD

Introduction

Rule-based view of Database Engineering

Example: producing a relational schema from a conceptual schema

1-1

0-N

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
Author[0-5]
DatePublished
id: ISBN

⇒

Conceptual schema (ER) Physical schema (MS Access)

24

LIBD

Introduction

Rule-based view of Database Engineering

Natural procedure: through translation rules
Conceptual schema Physical constructs

Entity type E table E
Level-1 multivalued
atomic attribute A of
entity type E

table A, comprising:
column A;
primary key made up of A.

table EA, comprising
column(s) copied from the primary key of table E;
column copied from the primary key of table A;
primary key comprising all these columns.

relationship-type R from
B (with card. 1-1) to A
(with card. 0-N)

in table B,
column(s) copied from the primary key of table A;
foreign key to A comprising these columns;
if R was part of a candidate (primary) key of B, then
add these attributes to the key.

13

25

LIBD

Introduction

Rule-based view of Database Engineering

OK, but what if:
• attribute A is at level 2, 3, …?
• attribute A is not atomic?
• relationship type R is many-to-many, or one-to-one, or N-ary?
• the primary key of E has not been translated yet (e.g., it comprises a FK still

untranslated)?

⇒ Combinatorial explosion and complexity of the set of rules.

26

LIBD

Introduction

Transformation-based view of Database Engineering

Transforming the multivalued attribute Author

1-1

0-N

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
Author[0-5]
DatePublished
id: ISBN

⇒ 1-N0-5 write0-N

1-1

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

14

27

LIBD

Introduction

Transformation-based view of Database Engineering

Transforming the many-to-many relationship type write

⇒1-N0-5 write0-N

1-1

of

COPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

1-1

0-N

of 1-1

0-5

bw

1-1

1-N

aw

WRITE
id: bw.BOOK

aw.AUTHORCOPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

28

LIBD

Introduction

Transformation-based view of Database Engineering

 Transforming the one-to-many relationship type aw (and the others)

No more than 5 WRITE rows
per BOOK row.

WRITE
AuthorName
ISBN
id: ISBN

AuthorName
ref: ISBN
ref: AuthorName

COPY
ISBN
CopyNbr
DatePurchased
id: ISBN

CopyNbr
ref: ISBN

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

⇒

1-1

0-N

of 1-1

0-5

bw

1-1

1-N

aw

WRITE
id: bw.BOOK

aw.AUTHORCOPY
CopyNbr
DatePurchased
id: of.BOOK

CopyNbr

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

15

29

LIBD

Introduction

Transformation-based view of Database Engineering

Coding (generally simple; rule-based or transformational)

No more than 5 WRITE rows
per BOOK row.

WRITE
AuthorName
ISBN
id: ISBN

AuthorName
ref: ISBN
ref: AuthorName

COPY
ISBN
CopyNbr
DatePurchased
id: ISBN

CopyNbr
ref: ISBN

BOOK
ISBN
Title
DatePublished
id: ISBN

AUTHOR
AuthorName
id: AuthorName

⇒

No more than 5 WRITE rows
per BOOK row.

30

LIBD

Introduction

Transformation-based view of Database Engineering

What if the attribute is multivalued, compound and comprises other
multivalued components ?

SALESMAN
PID
Name
Sales[0-N]

Year
Customer[0-N]

CustID
Volume

id: PID
id(Sales):

Year
id(Sales.Customer):

CustID

SALES
PID
Year
id: PID

Year
ref: PID

SALESMAN
PID
Name
id: PID

CUSTOMER
PID
Year
CustID
Volume
id: PID

Year
CustID

ref: PID
Year

⇒
rule?

16

31

LIBD

Introduction

Transformation-based view of Database Engineering

⇒

SALESMAN
PID
Name
Sales[0-N]

Year
Customer[0-N]

CustID
Volume

id: PID
id(Sales):

Year
id(Sales.Customer):

CustID

1-1

0-N

for

SALES
Year
Customer[0-N]

CustID
Volume

id: for.SALESMAN
Year

id(Customer):
CustID

SALESMAN
PID
Name
id: PID

Note: slightly different variant of the transformation of
an attribute into an entity type

32

LIBD

Introduction

Transformation-based view of Database Engineering

⇒

SALESMAN
PID
Name
Sales[0-N]

Year
Customer[0-N]

CustID
Volume

id: PID
id(Sales):

Year
id(Sales.Customer):

CustID

1-1

0-N

for

SALES
Year
Customer[0-N]

CustID
Volume

id: for.SALESMAN
Year

id(Customer):
CustID

SALESMAN
PID
Name
id: PID

1-1

0-N

to

1-1

0-N

for

SALESMAN
PID
Name
id: PID

SALES
Year
id: for.SALESMAN

Year

CUSTOMER
CustID
Volume
id: to.SALES

CustID

⇒

17

33

LIBD

Introduction

Transformation-based view of Database Engineering

⇒

SALESMAN
PID
Name
Sales[0-N]

Year
Customer[0-N]

CustID
Volume

id: PID
id(Sales):

Year
id(Sales.Customer):

CustID

1-1

0-N

for

SALES
Year
Customer[0-N]

CustID
Volume

id: for.SALESMAN
Year

id(Customer):
CustID

SALESMAN
PID
Name
id: PID

1-1

0-N

to

1-1

0-N

for

SALESMAN
PID
Name
id: PID

SALES
Year
id: for.SALESMAN

Year

CUSTOMER
CustID
Volume
id: to.SALES

CustID

⇒⇒
SALES
PID
Year
id: PID

Year
ref: PID

SALESMAN
PID
Name
id: PID

CUSTOMER
PID
Year
CustID
Volume
id: PID

Year
CustID

ref: PID
Year

34

LIBD

Introduction

Transformation-based view of Database Engineering

Observations

● no new operators

● iterative application of known operators

● compositional property of transformations (the composition of two
transformations still is a transformation)

● no combinatorial explosion, just the right (small) set of operators

● need for meta-rules for applying the operators (a transformation plan)

18

35

LIBD

Introduction

Beyond data structure transformation

If the schema under transformation is that of an existing, in-use, database,
then we also have to convert:

● the data
● the client programs

accordingly.

schema Client
program

?

?

transformed

36

LIBD

Introduction

What now?

19

37

LIBD

Introduction

Questions

● We need to represent schemas in a great variety of models (GER: a generic
ER model)

● What is a transformation and how to specify it?

● Does a transformation preserve the information contents of a schema?

● Let us be more concrete: what about PRACTICAL transformations?

● How do transformations help in REAL database engineering processes?

● what about Database design?

● and Database reverse engineering?

● Can transformations and CASE tools coexist?

38

LIBD

Introduction

● and now, for the DB geeks:

● is the GER just another nice way to draw schemas? (Semantics of the
GER)?

● Can one prove that a transformation always preserves the information
contents of the source schema?

20

39

LIBD

Modelling data structures

40

LIBD

Modelling data structures

Dealing with multiple models

A typical organization uses N different data models. E.g., it

commonly uses DB2 databases,
also uses a legacy IDMS database,
writes its conceptual schemas in the ER model,
quite often transfers data between databases,
exchanges data with its environment,
standardizes on XML format,
plans to migrate some databases to other platforms,
prepares the development of a datawarehouse,
study the feasibility to merge several departments (and their information
systems),
etc.

21

41

LIBD

Modelling data structures

Dealing with multiple models

ETL

data warehouse

application
program

operational data

environment

designdesign

conceptual
schema

migrate

XML

extract
& export

XML

import

organization

42

LIBD

Modelling data structures

Dealing with multiple models

Considering all the inter-model and intra-model conversions,
the organization requires N x N different mappings (= 16).

Relational
Model

CODASYL
Model XML Model

ER Model

Σrel>rel

Σcod>cod

Σer>er

Σxml>xml

Σrel>er

Σrer>rel

Σcod>xml

Σxml>cod

Σer>xml

Σxml>er

Σrel>cod

Σcod>rel

Σxml>rel

Σrel>xml

Σcod>er

Σer>cod

22

43

LIBD

Modelling data structures

Dealing with multiple models

The usual answer: introducing a pivot model.
Considering all the inter-model and intra-model conversions,
the organization requires 2 x N + 1 different mappings (= 9).

Pivot Model

Σp>p

Relational
Model

CODASYL
Model XML Model

Σrel>p

Σp>rel

Σp>cod

Σcod>p

Σer>p

Σp>er

Σp>xml

Σxml>p

ER Model

44

LIBD

Modelling data structures

Dealing with multiple models

Example: relational logical design.

Pivot Model

Σp>p

Relational ModelΣp>relΣer>pER Model

logical schemaconceptual schema Logical designLogical design

23

45

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

A large spectrum data structure model

● Encompasses several paradigms: ER, UML, SQL, CODASYL, IMS, file
structures, XML, etc.

● Encompasses several levels of abstraction: conceptual, logical,
physical, external

Chosen as the pivot model in this tutorial

Pivot Model GER Model:=

46

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

position in the MDA

GER Model

PIM

PSM

Code

specializes

sp
ec

ial
ize

s

transformed

transformed

24

47

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

Conceptual schema fragment (1)

1-1

0-N

of

T

PERSON
Name
Address

EMPLOYEE
Employe Nbr
Date Hired
id: Employe Nbr

CUSTOMER
Customer ID
id: Customer ID

ACCOUNT
Account NBR
Amount
id: of.CUSTOMER

Account NBR

entity type

Is-a

attribute

all-attribute ID

hybrid ID

relationship type

role (with
cardinality)

48

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

Conceptual schema fragment (2)

0-N0-N

0-N

sold
Date
Volume

PRODUCTCUSTOMER

 SALESMAN
PID
Name
Phone[0-5]
Mobile[0-1]
Address

Street
City

multivalued attribute

compound
attribute

optional attribute

N-ary relationship type

25

49

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

Logical schema fragment

record set / table

foreign key

array multivalued field

ORDER
ORD-ID
DATE_RECEIVED
ORIGIN
DETAIL[1-5] array

REFERENCE
QTY-ORD

id: ORD-ID
ref: ORIGIN

CUSTOMER
CUSTOMER ID
id: CUSTOMER ID

50

LIBD

Modelling data structures

GER: the Generic Entity-Relationship model

Physical schema fragment: RDB

unique index

storage space

index

PRODUCT
PRO_CODE
CATEGORY
DESCRIPTION
UNIT_PRICE
id: PRO_CODE

acc
acc: CATEGORY

PRODUCT.DAT

PRODUCT

26

51

LIBD

Modelling data structures

Specifying operational models in the GER

Operational = in practical use in the organization

● DB2, ER, UML diagrams, IDMS, IMS, standard file structures, XML Schema
are usual operational models.

● The GER is not an operational model (yet)

52

LIBD

Modelling data structures

Specifying operational model M in the GER

Procedure

● identifying the concepts of the GER that are pertinent in M

● specifying the structural constraints that hold in valid M schemas

● renaming the selected constructs according to the taxonomy of M.

GER Model

Relat. Model

UML Class Model

XML ModelΣrel>ger

Σuml>gerΣer>ger

Σxml>ger

ER Model

27

53

LIBD

Modelling data structures

Specifying operational model M in the GER

Application to the relational model (SQL2)

relational constructs GER constructs assembly rules
database schema schema
table entity type an entity type includes at least one

attribute
domain simple domain
nullable column single-valued and atomic

attribute with cardinality [0-1]
not null column single-valued and atomic

attribute with cardinality [1-1]
primary key primary identifier a primary identifier comprises

attributes with cardinality [1-1]
unique constraint secondary identifier
foreign key reference group the composition of the reference

group must be the same as that of
the target identifier

SQL names GER names the GER names must follow the
SQL syntax

54

LIBD

Modelling data structures

Specifying operational model M in the GER

Notion of M-compliant schema

This schema is SQL2-compliant:

This schema is not SQL2-compliant:

1-10-N has

P

PERSON
PID
Name
id: PID

EMPLOYEE
RegNbr
Service
id: RegNbr

CUSTOMER

ACCOUNT
AccNbr
Deposit[0-N]

Amount
Date

id: AccNbr

is-a hierarchy no attributes rel-type non-elementary attribute

ORDER
ORD-ID
DATE_RECEIVED
ORIGIN
id: ORD-ID
ref: ORIGIN

DETAIL
ORD-ID
SEQ_NBR
REFERENCE
QTY-ORD
id: ORD-ID

SEQ_NBR
ref: ORD-ID

CUSTOMER
CUSTOMER ID
id: CUSTOMER ID table

column

foreign key

primary key

28

55

LIBD

Schema transformations

56

LIBD

Schema transformations

A transformation T replaces a construct C in a schema S1 with
 another construct C', leading to schema S2

T

schemasS1 S2C C'

29

57

LIBD

Schema transformations

If the schema describes actual data, the transformation should also tell
how to convert the data (t) ...

t

data

T

schemasS1 S2C C'

c c'

58

LIBD

Schema transformations

A transformation Σ is defined by two mappings T and t

Σ = <T,t>

T: structural mapping = syntax of Σ

t: instance mapping = semantics of Σ

C' = T(C)

c' = t(c)c

C T

t

inst_ofinst_of

30

59

LIBD

Schema transformations

Mapping T can be specified with two predicates:

P: minimal pre-condition

Q: maximal post-condition

Σ = <T,t> = <P,Q,t>

60

LIBD

Schema transformations

Expressing structural predicates

through any logic-based language

entity-type(E) there exists an entity type with name E

entity-type(e) e is an entity type

relational (more concise, a name denotes an object)

object-based (more general, a name is a property of an object)

name(e,E) the name of e is E

must allow specification AND reasoning (e.g., DL)

31

61

LIBD

Schema transformations

Expressing structural predicates

intuitive example

entity-type(E) there exists an entity type with name E

attribute(O,A,m,M,T) object (with name) O has an attribute with name A, cardinality m-M
and type T

id(O,Cp) object (with name) O has an identifier comprising components Cp

rel-type(R) there exists a rel-type with name R

role(R,r,E,m,M) rel-type R has a role with name r, played by E, with cardinality m-M

62

LIBD

Schema transformations

Specifying an entity type:

 entity-type(CUSTOMER)

 ∧ attribute(CUSTOMER,Cust#,1,1,integer)

 ∧ attribute(CUSTOMER,Name,1,1,string)

 ∧ attribute(CUSTOMER,Phone,0,5,string)

 ∧ id(CUSTOMER,{Cust#})

32

63

LIBD

Schema transformations

Practically, a structural predicate can be defined graphically:

 entity-type(CUSTOMER)

 ∧ attribute(CUSTOMER,Cust#,1,1,integer)

 ∧ attribute(CUSTOMER,Name,1,1,string)

 ∧ attribute(CUSTOMER,Phone,0,5,string)

 ∧ id(CUSTOMER,{Cust#})

CUSTOMER
Cust#
Name
Phone[0-5]
id: Cust#

=

64

LIBD

Schema transformations

The structural mapping of a transformation can be defined graphically:

CUSTOMER
Cust#
Name
Phone[0-5]
id: Cust#

P Q
P = entity-type(CUSTOMER)
∧ attribute(CUSTOMER,Cust#,1,1,integer)
∧ attribute(CUSTOMER,Name,1,1,string)
∧ attribute(CUSTOMER,Phone,0,5,string)
∧ id(CUSTOMER,{Cust#})

Q = entity-type(CUSTOMER)
∧ attribute(CUSTOMER,Name,1,1,string)
∧ attribute(CUSTOMER,Phone,0,5,string)
∧ id(CUSTOMER,{Cust#})
∧ entity-type(PHONE)
∧ attribute(PHONE,Phone,1,1,string)
∧ id(PHONE,{Phone})
∧ rel-type(has)
∧ role(has,,CUSTOMER,0,5)
∧ role(has,,PHONE,1,N)

1-N0-5 has

PHONE
Phone
id: Phone

CUSTOMER
Cust#
Name
id: Cust#

= =
⇐

33

65

LIBD

Schema transformations

From now on:

CUSTOMER
Cust#
Name
Phone[0-5]
id: Cust#

P Q

1-N0-5 has

PHONE
Phone
id: Phone

CUSTOMER
Cust#
Name
id: Cust#

⇐

66

LIBD

Schema transformations

Inverse transformation

Σ2 = Σ1 iff

∀C: P1(C) ⇒ C = T2(T1(C))

-1

CUSTOMER
Cust#
Name
Phone[0-5]
id: Cust#

1-N0-5 has

PHONE
Phone
id: Phone

CUSTOMER
Cust#
Name
id: Cust#

⇐
⇒

T1

T2

• Intuitively, Σ2 undoes the effect of Σ1 at the structural level

• Σ1 not necessarily the inverse of Σ2

34

67

LIBD

Semantics preservation properties
of transformations

68

LIBD

Semantics preservation properties of
transformations

A transformation can ...

● augment the information contents of the schema

● decrease the information contents of the schema

● preserve the information contents of the schema

● more complex patterns exist

CUSTOMER
Cust#
Name
Address

CUSTOMER
Cust#
Name
Address
Phone

⇐

CUSTOMER
Cust#
Name
Address
Phone

⇐ CUSTOMER
Cust#
Name
Phone

CUSTOMER
Cust#
Name
Phone

⇔

1-N1-1 has
PHONE

Phone
id: Phone

CUSTOMER
Cust#
Name

35

69

LIBD

Semantics preservation properties of
transformations

A transformation can be ...

● not reversible: not semantics-preserving

● reversible: "half" semantics-preserving

● symmetrically reversible: fully semantics-preserving

70

LIBD

Semantics preservation properties of
transformations

Examples

P: R(A,B,C);
Q: R1(A,B);

R2(A,C);

P: R(A,B,C);
A →→ B|C

Q: R1(A,B);
R2(A,C);

P: R(A,B,C);
A →→ B|C

Q: R1(A,B);
R2(A,C);
R1[A] = R2[C];

not reversible

reversible (Fagin's theorem)

symmetrically reversible

36

71

LIBD

Semantics preservation properties of
transformations

Reversible transformation

A transformation is reversible if
there is an inverse mapping for instances as well

Σ1 is reversible iff ∃ Σ2 = Σ1 :

∀ C: P(C) ⇒ C = T2(T1(C))

∧

∀ c ∈ inst(C): c = t2(t1(c))

-1

72

LIBD

Semantics preservation properties of
transformations

Symmetrically reversible transformation

Σ is symmetrically reversible iff both Σ and Σ are reversible

Σ = <P,Q,t> ⇒ Σ = <Q,P,t'>

● SR-transformations are first class operators

● They preserve the information contents of the source schema

● SR-transformation are semantics-preserving

-1

-1

37

73

LIBD

Semantics preservation properties of
transformations

Big question

How can we prove that a transformation

is semantics-preserving, i.e., that it is SR

Answer in the proceedings

74

LIBD

Typology of practical
transformations

Elementary transformations

38

75

LIBD

Typology of practical transformations

The working example

0-N 1-Nwritten

0-1

0-N

works on

0-N
responsible0-1

responsible-for

0-N

0-N

reserved
Reservation date

1-1

0-N

of

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

D

REPORT
Report Code
Version
id': Report Code

PROJECT
ProjCode
Title
ContractNo[0-1]
Company
id: ProjCode
id': ContractNo

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COPY
Serial-No
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Serial-No

BORROWER
PID
Name
Address

Street
City

Phone[1-5]
id: PID

BOOK
ISBN
Publisher
id': ISBN

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

76

LIBD

Typology of practical transformations

The main classes of elementary SR-transformations

● mutation transformations

● ISA transformations

● other elementary transformations

39

77

LIBD

Typology of practical transformations

Mutation transformations

A mutation changes the gender of an object while preserving its information
contents

 3 genders ⇒ 6 mutations

Entity type

Attribute

Rel-typeET-to-RT

RT-to-ET

att-to-ET
ET-to-att

att-to-RT
RT-to-att

78

LIBD

Typology of practical transformations

Mutation transformations (SR)

Entity types and Rel-types (1)

⇔

0-N0-N written

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

AUTHOR
Name
First-Name
Origin

1-1

0-N

doc 1-1

0-N

by
WRITTEN

id: doc.DOCUMENT
by.AUTHOR

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

AUTHOR
Name
First-Name
Origin

40

79

LIBD

Typology of practical transformations

Mutation transformations (SR)

Entity types and Rel-types (2)

⇔

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date PROJECT
ProjCode
Title
Company
id: ProjCode

COPY
Copy-No
Date-Acquired
id: Copy-No

BORROWER
PID
Name
id: PID

1-1

0-N

what 1-1

0-N

for

1-1

0-N

by

PROJECT
ProjCode
Title
Company
id: ProjCode

COPY
Copy-No
Date-Acquired
id: Copy-No

BORROWING
Borrow-Date
Return-Date[0-1]
id: what.COPY

Borrow-Date

BORROWER
PID
Name
id: PID

80

LIBD

Typology of practical transformations

Mutation transformations (SR)

Entity types and Attributes

1-N1-1 for

1-N0-10 describe

PROJECT
ProjCode
Title
id: ProjCode

PROJECT
ProjCode
Title
Company
id: ProjCode

KEYWORD
Keyword
id: Keyword

DOCUMENT
DocID
Title
Date-Published
id: DocID

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COMPANY
Company
id: Company

⇔

⇔

41

81

LIBD

Typology of practical transformations

Mutation transformations (SR)

Rel-types and Attributes

⇔0-N

1-1

of

COPY
ISBN
Serial-No
Date-Acquired
id: ISBN

Serial-No
ref: ISBN

COPY
Serial-No
Date-Acquired
id: of.BOOK

Serial-No

BOOK
ISBN
Publisher
id: ISBN

BOOK
ISBN
Publisher
id: ISBN

82

LIBD

Typology of practical transformations

ISA transformations (SR)

 Materialization Downward inheritance Upward inheritance

D

REPORT
Report Code
Version
id': Report Code

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

BOOK
ISBN
Publisher
id': ISBN

1-1

0-1

r-isa-doc

1-1

0-1

b-isa-doc

REPORT
Report Code
Version
id': Report Code

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID
excl: b-isa-doc.BOOK

r-isa-doc.REPORT

BOOK
ISBN
Publisher
id': ISBN

excl(REPORT.DocID, DOCUMENT.DocID, BOOK.DocID)

REPORT
DocID
Title
Date-Published
Keyword[0-10]
Report Code
Version
id: DocID
id': Report Code

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

BOOK
DocID
Title
Date-Published
Keyword[0-10]
ISBN
Publisher
id: DocID
id': ISBN

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
Report[0-1]

Report Code
Version

Book[0-1]
ISBN
Publisher

id: DocID
id': Report.Report Code
id': Book.ISBN
excl: Report

Book

42

83

LIBD

Typology of practical transformations

Other elementary transformations

Non-set attributes (SR)

⇔

⇔

⇔

DOCUMENT
DocID
Title
Keyword[0-10]

Multiplicity
Value

id: DocID
id(Keyword):

Value

DOCUMENT
DocID
Title
Keyword[0-10]

Sequence
Value

id: DocID
id(Keyword):

Sequence

DOCUMENT
DocID
Title
Keyword[10-10]

Index
Value[0-1]

id: DocID
id(Keyword):

Index

DOCUMENT
DocID
Title
Keyword[0-10] array
id: DocID

DOCUMENT
DocID
Title
Keyword[0-10] list
id: DocID

DOCUMENT
DocID
Title
Keyword[0-10] bag
id: DocID

84

LIBD

Typology of practical transformations

Other elementary transformations

Compound attribute: disagregation and concatenation

BORROWER
PID: char (6)
Name: char (30)
Address: char (80)
id: PID

BORROWER
PID: char (6)
Name: char (30)
Add_Street: char (40)
Add_City: char (40)
id: PIDBORROWER

PID: char (6)
Name: char (30)
Address: compound (80)

Street: char (40)
City: char (40)

id: PID

⇔

⇔

Very common but not SR

?

?

43

85

LIBD

DOCUMENT
DocID: char (12)
Title: char (30)
Date-Published: date (10)
Keywords[0-1]: char (150)
id: DocID

DOCUMENT
DocID: char (12)
Title: char (30)
Date-Published: date (10)
Keyword1[0-1]: char (30)
Keyword2[0-1]: char (30)
Keyword3[0-1]: char (30)
Keyword4[0-1]: char (30)
Keyword5[0-1]: char (30)
id: DocID

DOCUMENT
DocID: char (12)
Title: char (30)
Date-Published: date (10)
Keyword[0-5]: char (30)
id: DocID

Typology of practical transformations

Other elementary transformations

Multivalued attribute: instanciation and concatenation

⇔

⇔

?

?

Very common but not SR

86

LIBD

Typology of practical
transformations

Complex transformations

44

87

LIBD

Typology of practical transformations

Elementary transformations are just
building blocks for more complex operators

Challenge

Developing higher-level transformations
with elementary SR-transformations

in such a way that the SR property is preserved

88

LIBD

Typology of practical transformations

The main classes of complex SR-transformations

● compound transformations

● predicate-driven transformations

● model-driven transformations

45

89

LIBD

Typology of practical transformations

Compound transformations

The composition of two transformations is a transformation

The composition of two SR-transformations is an SR-transformation

Σ1 = <T1, t1>

Σ2 = <T2, t2>

Σ12 = Σ2 ο Σ1 = <T2 ο T1, t2 ο t1>

90

LIBD

Typology of practical transformations

Compound transformations

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

PROJECT
ProjCode
Title
id: ProjCode

COPY
Copy-No
Date-Acquired
id: Copy-No

BORROWER
PID
Name
Phone[1-5]
id: PID

PROJECT
ProjCode
Title
id: ProjCode

COPY
Copy-No
Date-Acquired
id: Copy-No

BORROWING
Copy-No
Borrow-Date
Return-Date[0-1]
PID
ProjCode
id: Copy-No

Borrow-Date
ref: Copy-No
ref: PID
ref: ProjCode

BORROWER
PID
Name
Phone[1-5]
id: PID

⇔

intuitively: Σ = RT-to-ET ο RT-to-att

new!

46

91

LIBD

Typology of practical transformations

Compound transformations

⇔

ACCOUNT
AccID
Available
Exp-Monday[0-1]
Exp-Tuesday_1[0-1]
Exp-Wednesday_2[0-1]
Exp-Thursday_3[0-1]
Exp-Friday_4[0-1]
id: AccID

ACCOUNT
AccID
Available
Expenses[0-5]

Day-of-Week
Amount

id: AccID
id(Expenses):

Day-of-Week
1-1

0-5

of

EXPENSES
Day-of-Week
Amount
id: of.ACCOUNT

Day-of-Week

ACCOUNT
AccID
Available
id: AccID

1-N

1-1

on

0-5

1-1

of

EXPENSES
Amount
id: of.ACCOUNT

on.DAY-of-WEEK

DAY-of-WEEK
Day-of-Week
id: Day-of-Week

ACCOUNT
AccID
Available
id: AccID

0-5 1-N
expenses
Amount

DAY-of-WEEK
Day-of-Week
id: Day-of-Week

ACCOUNT
AccID
Available
id: AccID

dom(Day-of-Week) = {'Monday','Tuesday', .. ,'Friday'}

⇔

⇔⇔

⇔new!

known known

knownknown

92

LIBD

0-10 1-1of

1-1

0-10

of

0-10 1-Ndescribe

1-1

1-N

by

KEYWORD
Keyword
id: Keyword

KEYWORD
Keyword
id: Keyword

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

DOCUMENT
DocID
Title
Date-Published
id: DocID

DOCUMENT
DocID
Title
Date-Published
id: DocID

DOCUMENT
DocID
Title
Date-Published
id: DocID

DESCRIPTION
Keyword
id: Keyword

of.DOCUMENT

DESCRIPTION
id: by.KEYWORD

of.DOCUMENT

Typology of practical transformations

Compound transformations

⇔

⇔

⇔ ⇔

new!

known
known

known

a very popular mutation transformation

47

93

LIBD

Typology of practical transformations

Predicate-driven (conditional) transformations

Transformations that apply on a set of qualified objects in the current schema

Σ (p)

where Σ is a transformation

p is a structural predicate

interpretation: apply Σ to all the objects that satisfy p

ambiguous: if p(o1) ∧ p(o2) ∧ (apply Σ(o1) ⇒ ¬p(o2))
 then should o2 be processed anyway?

usual strategy (snapshot): first compute the set of objects that satisfy p,
 then apply Σ to each of its elements that survive.

94

LIBD

Typology of practical transformations

Predicate-driven transformations

We need a language for p

 • structural (e.g., DL): complex and leading to huge expressions

 • ad hoc for the GER: expressive, concise, parametric,
but not generic, not closed

ROLE_per_RT(I J): the number of roles of the current rel-type is between I and J

ONE_ROLE_per_RT(1 2): the number of "one" roles (with cardinality ?-1)is between I and J

MAX_CARD_of_ATT(I J): the maximum cardinality of the current attribute is between I and J

DEPTH_of_ATT(I J): the level of the current attribute is between I and J

48

95

LIBD

Typology of practical transformations

Predicate-driven transformations

Σ (p)
RT_into_ET(ROLE_per_RT(3 N)):

transform each rel-type into an entity type
(if tey are at least 3 roles)

RT_into_REF(ROLE_per_RT(2 2) and ONE_ROLE_per_RT(1 2)):
transform each rel-type into referential attributes
(if they are binary and one-to-many or one-to-one)

INSTANTIATE(MAX_CARD_of_ATT(2 4)):
instanciate each attribute
(if they are "slightly" multivalued: from 2 to 4values)

ATT_into_ET_VAL(DEPTH_of_ATT(1 1) and MAX_CARD_of_ATT(5 N)):
transform each attribute into an entity type
(if they are at the top level and they are "strongly" multivalued: at least 5
values)

96

LIBD

Typology of practical transformations

Model-driven transformation

Goal: considering schema S1 in model M1, transform S1 into S2 that complies
with model M2. Of course, as far as possible through SR-transformations!

Example: considering the Entity-relationship schema S1, transform S1 into S2 that
complies with the relational model. Of course, as far as possible without
information loss!

Structure: a compound transformation comprising predicate-driven trans-
formations.

Practical form: a transformation plan.

49

97

LIBD

Typology of practical transformations

Model-driven transformation

Principle:

Identify the constructs of M1 that violate M2

For each such construct C, choose a transformation <T,t> = <P,Q,t> such that

P(C)

T(C) satisfies M2

Things may be a bit more complex, requiring a compound transformation.

Example, processing N-ary rel-types for relational compliance requires two
successive transformations

98

LIBD

Typology of practical transformations

Model-driven transformation

Example: ER to Binary (flat Bachman) conversion

The binary model is a variant of the ER model in which:

● there is no ISA relations

● the rel-types are functional (binary, one-to-many or one-to-one)

● the rel-types have no attributes

● each rel-type is defined on two distinct entity types (no cyclic rel-types)

● the attributes are single-valued and atomic.

50

99

LIBD

Typology of practical transformations

Model-driven transformation

Flat Bachman schemas - invalid constructs:

● ISA relations

● cyclic rel-types

● complex rel-types (with attributes, N-ary)

● many-to-many binary rel-types

● multivalued attributes

● compound attributes.

100

LIBD

Typology of practical transformations

Model-driven transformation

Flat Bachman schemas - processing invalid constructs:

● ISA relations: materialization

● cyclic rel-types: transform into entity types

● complex rel-types (with attributes, N-ary): transform into entity types

● many-to-many binary rel-types: transform into entity types

● multivalued attributes: transform into entity types

● compound attributes: disagregate.

51

101

LIBD

Typology of practical transformations

Model-driven transformation

Transformation plan for ER to Flat Bachman conversion

ISA_into_RT; transform ISA relations by materialization;

RT_into_ET(RECURSIVITY_in_RT(2 N)); transform rel-types in which the same entity type
appears more than once;

RT_into_ET(ATT_per_RT(1 N) or ROLE_per_RT(3 N)); transform complex rel-types;

RT_into_ET(ONE_ROLE_per_RT(0 0)); transform rel-types in which there is no "one" role;

LOOP; iteratively flatten the attribute structure

 ATT_into_ET_INST(MAX_CARD_of_ATT(2 N))
 DISAGGREGATE

ENDLOOP

102

LIBD

Typology of practical transformations

Model-driven transformation

Example of ER to Flat Bachman conversion

1-1

0-N

what

1-10-N what

1-1

0-N

of

1-1

0-N

of

1-1

0-10

d

1-1

0-1

isa
1-1

0-1

is

1-1

0-N

for

1-1

0-N

by

1-1

0-N

by

RESERVED
id: by.BORROWER

what.DOCUMENT

RESPONSIBLE

PROJECT
ProjCode
Title
id: ProjCode

KEYWORD
Keyword
id: d.DOCUMENT

Keyword

DOCUMENT
DocID
Title
Date-Published
id: DocID

COPY
Serial-No
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
id: of.BOOK

Serial-No

BORROWING
id: for.PROJECT

by.BORROWER
what.COPY

BORROWER
PID
Name
id: PID

BOOK
ISBN
Publisher
id': ISBN

⇔

0-N
responsible 0-1

responsible-for

0-N0-N reserved

1-1

0-N

of

0-N

0-N

0-N

borrowing

PROJECT
ProjCode
Title
id: ProjCode

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COPY
Serial-No
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Serial-No

BORROWER
PID
Name
id: PID

BOOK
ISBN
Publisher
id': ISBN

52

103

LIBD

Typology of practical transformations

Model-driven transformation

Other popular examples

 ER to UML

 UML to ER

 ER to relational

 relational to ER

 COBOL files to ER

 ER to XML

 relational to XML

104

LIBD

Transformational modelling of
database engineering processes

53

105

LIBD
Most database engineering processes are high-level transformations

Example 1: database design

DDL code = DB-design(Users Requirements)

DB-design = Coding o PhysD o LogD o ConcD

Transformational modeling of database engineering
processes

Conceptual design

Logical design

Physical design

Coding

Logical schema

Physical schema

Users requirements Conceptual schema

DDL code

106

LIBD

Transformational modeling of database engineering
processes

Logical design

 Logical_schema = Logical_design(Conceptual_schema)

Logical_design clearly is a model-driven transformation

Let us develop its transformation plan

Logical design Logical schemaConceptual schema

54

107

LIBD

Transformational modeling of database engineering
processes

What are the invalid GER constructs in the relational model?

● ISA relations

● relationship types

 complex

 functional

● multivalued attributes

● compound attributes

● names not compliant with the SQL syntax

108

LIBD

Transformational modeling of database engineering
processes

How to get rid of them?

● ISA relations: transform by materialization; then go to functional rel-type

● relationship types

 complex: transform into entity types, then go to functional rel-type

 functional: transform into foreign keys

● multivalued attributes: transform into entity types, goto functional rel-type

● compound attributes: disagregate

● names not compliant with the SQL syntax: change

55

109

LIBD

Transformational modeling of database engineering
processes

A transformation plan

transform
is-a relations

transform complex
rel-types

transform level-1 multi-
valued attributes

disaggregate level-1
compound attributes

still non simple attributes ?
no

yes

transform functional
rel-types

any failure ?

Add technical Id
where needed

yes

no

Process names

110

LIBD

Transformational modeling of database engineering
processes

Application
written

Auth_ID
DocID
id: Auth_ID

DocID
ref: DocID
equ: Auth_ID

reserved
PID
DocID
Reservation date
id: DocID

PID
ref: DocID
ref: PID

REPORT
DocID
Report Code
Version
id: DocID

ref
id': Report Code

PROJECT
ProjCode
Title
Company
id: ProjCode

Phone
PID
Phone
id: PID

Phone
equ: PID

Keyword
DocID
Keyword
id: DocID

Keyword
ref: DocID

DOCUMENT
DocID
Title
Date-Published
REPORT[0-1]
BOOK[0-1]
id: DocID
excl: BOOK

REPORT

COPY
DocID
Serial-No
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
id: DocID

Serial-No
ref: DocID

ContractNo
ContractNo
ProjCode
id: ContractNo
id': ProjCode

ref

borrowing
DocID
Serial-No
Borrow-Date
PID
ProjCode
Return-Date[0-1]
id: DocID

Serial-No
Borrow-Date

ref: DocID
Serial-No

ref: PID
ref: ProjCode

BORROWER
PID
Name
Add_Street
Add_City
ProjCode[0-1]
Responsible[0-1]
id: PID
ref: Responsible
ref: ProjCode

BOOK
DocID
ISBN
Publisher
id: DocID

ref
id': ISBN

AUTHOR
Auth_ID
Name
First-Name[0-1]
Origin[0-1]
id: Auth_ID

0-N 1-Nwritten

0-1

0-N

works on

0-N
responsible 0-1

responsible-for

0-N

0-N

reserved
Reservation date

1-1

0-N

of

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

D

REPORT
Report Code
Version
id': Report Code

PROJECT
ProjCode
Title
ContractNo[0-1]
Company
id: ProjCode
id': ContractNo

DOCUMENT
DocID
Title
Date-Published
Keyword[0-10]
id: DocID

COPY
Serial-No
Date-Acquired
Location

Store
Shelf
Row

id: of.BOOK
Serial-No

BORROWER
PID
Name
Address

Street
City

Phone[1-5]
id: PID

BOOK
ISBN
Publisher
id': ISBN

AUTHOR
Name
First-Name[0-1]
Origin[0-1]

⇔

56

111

LIBD
Example 2: database reverse engineering

Conceptual schema = DB-REng(codeddl, codeprg)

DB-design = Concept o Clean o Refine o Parse

Transformational modeling of database engineering
processes

Cleaning

Parsing

Refinement

Logical schema

Physical schema

Conceptual schema

codeddl codeprg

Conceptualization

Raw physical schema

112

LIBD

Transformational modeling of database engineering
processes

Example 2: database reverse engineering

Interesting observations

Refine o Parse = Coding-1

Cleaning = Physical_design-1

Conceptualization = Logical_design-1

Conclusion: DB reverse engineering is (grossly speaking) the
inverse of DB engineering

57

113

LIBD

Transformational modeling of database engineering
processes

Hence the transformation plan of Conceptualization:

transform
is-a relations

transform complex
rel-types

transform level-1 multi-
valued attributes

disaggregate level-1
compound attributes

transform functional
rel-types

add technical Id
where needed

Remove technical Id

Transform FK into functional
rel-types

Aggregate heterogeneous
serial attributes

transform attribute entity types
into multi-valued attributes

transform relationship entity
types into rel-types

transform one-to-one rel-types
into is-a relations

transform functional
rel-types

Transform FK into functional
rel-types

114

LIBD

Transformational modeling of database engineering
processes

Experiment:

⇔

0-N 1-Nwritten

0-10-N
Responsible

Responsible

0-N

0-N

reserved
Reservation date

1-1

0-1

REP_DOC

1-1

0-N

COP_BOO 0-1

0-N

BOR_PRO_1

0-N

0-N

0-N

borrowing
Borrow-Date
Return-Date[0-1]
id: COPY

Borrow-Date

1-1

0-1

BOO_DOC

REPORT
Report Code
Version
id': Report Code

PROJECT
ProjCode
Title
Company
ContractNo[0-1]
id: ProjCode
id': ContractNo

DOCUMENT
DocID
Title
Date-Published
REPORT[0-1]
BOOK[0-1]
Keyword[0-N]
id: DocID
excl: BOOK

REPORT

COPY
Serial-No
Date-Acquired
Loc_Store
Loc_Shelf
Loc_Row
id: COP_BOO.BOOK

Serial-No

BORROWER
PID
Name
Add_Street
Add_City
Phone[1-N]
id: PID

BOOK
ISBN
Publisher
id': ISBN

AUTHOR
Auth_ID
Name
First-Name[0-1]
Origin[0-1]
id: Auth_ID

relational
logical schema

Convincing, but obviously
needs some polishing!

58

115

LIBD

Schema transformations in CASE
tools

116

LIBD

Schema transformations in CASE tools

CASE tools with DB design facilities offer explicit or implicit transformations
for the production of the database code and for (limited) reverse engineering.

 conceptual schema → DDL code

 conceptual schema → relational schema → DDL code

 DDL code → relational schema → conceptual schema

Few CASE tools include transformations as a major engineering paradigm.

Example DB-MAIN

59

117

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

● Toolset of about 30 elementary transformations. Most are SR. The others
trigger a warning.

● Predicate-driven transformations (through two transformation assistants)

 simplified (for the dummies)

 advanced (for the smarties)

● Model-driven transformations (through two transformation assistants)

 scripting facilities for developing transformation plans

 a dozen predefined, updatable, transformation plans

118

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Elementary transformations (Transforming attribute Phone
 into entity type PHONE)

1. select an object

2. select a transformation

3. if needed, select the variant

4. if needed, give target names

60

119

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Elementary transformations (Transforming bag attribute Keyword into a set attribute)

120

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Predicate-driven transformations: simplified assistant

1. choose a pattern 2. choose an action

3. execute

61

121

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Predicate-driven transformations: advanced assistant
1. select an operation 2. define the predicate

3. set its parameters

122

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Model-driven transformations: simplified assistant
1. build a couple (pattern,action) 2. write it

3. save script

4. execute script

62

123

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Model-driven transformations: advanced assistant

124

LIBD

Schema transformations in CASE tools

The DB-MAIN CASE environment

Model-driven transformations: advanced assistant

63

125

LIBD

Conclusions and perspectives

126

LIBD

Conclusions and perspectives

● Intuitively, most database engineering processes are transformational by
nature.

● By combining elementary transformations, we can give these processes a
precise transformational definition.

● A transformation can be formalized so that its preservation properties can
be proved.

● We need a small set of elementary transformations (20 - 40).

● Once correctly defined, a transformation is quite reliable, and is guaranteed
to preserve information whatever the context in which it is applied.

● Transformation are (sort of …) easy to implement in CASE tools.

64

127

LIBD

Conclusions and perspectives

However, some problems are not (completely) solved:

a transformation must address all the aspects of the data structures:
documentation, annotations, statistics, operations (methods).

complex problem: propagating the constraints; OK for uniqueness, but
others more complex.

how to efficiently transform the data, following schema transformation?

transforming a high-level abstract schema is nice, but how do we
propagate them to the lower-level schemas (including the code)?

transforming the data structures is nice, but what about the programs?
Notion of co-transformation. See Anthony’s presentation.

128

LIBD

Conclusions and perspectives

More information at

http://info.fundp.ac.be/libd

Education Edition of DB-MAIN at the same address

65

129

LIBD

Conclusions and perspectives

Exercise session

Expected time: 45 minutes

Requirements: Windows PC

● Copy the folder « Exercise » from the CD-ROM to your
desktop.

● Eject the CD-ROM and give it to your neighbour.

● Open « Exercise », then « Library »

● Run db_main.exe

● Open project « Library-2003 »

130

LIBD

Appendix 1
Semantics of the GER

66

131

LIBD

Semantics of the GER

Semantics of the GER

Problems:

● to reason rigorously, we need to associate a formal semantics with the GER,

● the GER is rich and complex

● therefore, its semantics is likely to be complex as well,

● complex formalisms tend to be unreliable.

General solution:

to build a (as far as possible) bijective mapping between the GER and a
simpler formalism with a well defined semantics.

132

LIBD

Semantics of the GER

Semantics of the GER

Specific solution:

to interpret the GER as a variant of the non first-normal-form (N1NF) relational
model, the Extended Relational Model (ERM).

Extended Relational
Model

Σerm>ger

Σger>erm

GER Model

67

133

LIBD

Semantics of the GER

Semantics of the GER

See proceedings

134

LIBD

Appendix 2
Proving the SR property of the GER

transformations

68

135

LIBD

Proving properties of GER transformations

Building a set of SR-transformations for the ERM is (reasonably) easy,
thanks to the underlying N1NF relational theory

Extended Rel.
Model

Σerm>erm

Σerm>ger

Σger>erm

GER Model

136

LIBD

Proving properties of GER transformations

A GER transformation Σg is SR if it can be proved that,

Σg = Σger>erm o Σe o Σerm>ger

where Σe is a (possibly complex) ERM SR-transformation

Extended Rel.
Model

Σerm>erm

Σerm>ger

Σger>erm

GER Model

Σger>ger

69

137

LIBD

Proving properties of GER transformations

The proceedings provides a proof of the SR-property

of the most useful variants of the six mutation transformations.

138

LIBD

Appendix 3
Actual project in IDMS reverse

engineering

70

139

LIBD

DBRE - Physical schema (IDMS) -Excerpt

140

LIBD

DBRE - Logical schema (IDMS) - Excerpt

71

141

LIBD

DBRE - Conceptual schema - Excerpt

142

LIBD

DBRE - Logical schema (Relational) - Excerpt

