
On the use of graph transformations
for model refactoring

Tom Mens

Software Engineering Lab
University of Mons-Hainaut
http://w3.umh.ac.be/genlog

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 2

Tutorial outline

Introduction

Graph transformation theory

•Graph transformation experiments

•Conclusion

Graph Transformation Experiments

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 4

GT Experiments

Goal: provide graph transformation support for model
refactoring

dealing with conflicts and dependencies between refactorings
• In AGG
• Based on critical pair analysis

generating refactoring code from graph transformations
1. In Fujaba …
2. … or CASE-tool independent

proving that refactorings preserve certain behavioural
properties
• Formal approach

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 5

GT Experiments

Comparison of graph transformation and
refactoring concepts

Introduction
GT theory

Experiments
Conclusion

detecting refactoring conflictscritical pair analysis and parallel
dependence

well-formedness constraintstype graph and global graph
constraints

causal dependencies between refactoringssequential dependence

composite refactoringprogrammed GT

refactoring transformationgraph production

refactoring preconditionsnegative application conditions

refactoringgraph transformation

Refactoring dependencies

Experiment in AGG:
using critical pair analysis

(in collaboration with Gabriele Taentzer,
Technical University of Berlin)

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 7

Refactoring dependencies

• About AGG (Attributed Graph Grammar system)
– Algebraic approach to graph transformation
– Annotations are in Java
– Efficient graph parsing

• Parse grammar
• Critical pair analysis

– Easy integration with Java code

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 8

Refactoring dependencies

• About AGG : Technological Spaces

Introduction
GT theory

Experiments
Conclusion

grammarware
Java

XML

MDA
UML

Java programs

UML models

XML repr. of UML models

XML repr. of Java programs

XMI
graphs and

graph
transformations

AGG
tool

graphware
graph transformation theoryimplemented as

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 9

Refactoring dependencies

• Concrete Scenario: Suggest refactoring opportunities
– What are the alternatives of a selected refactoring?
– Which other refactorings need to be applied first in order to make

the selected refactoring applicable?
– Which other refactorings are still applicable after applying the

selected refactoring?

• Goal: Automate the detection of
– mutual exclusion relationships between refactorings
– sequential dependencies between refactorings

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 10

Refactoring dependencies

• Example

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 11

Refactoring dependencies

• Refactoring opportunities
T1 Rename Method print in PrintServer to process
T2 Rename Method save in FileServer to process
T3 Create Superclass Server for PrintServer and FileServer
T4 Pull Up Method accept from PrintServer and FileServer to Server
T5 Move Method accept from PrintServer to Packet
T6 Move Method accept from FileServer to Packet
T7 Encapsulate Variable receiver in Packet
T8 Add Parameter p of type Packet to method print in PrintServer
T9 Add Parameter p of type Packet to method save in FileServer

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 12

Refactoring dependencies

×T9

××T8

×T7

×××T6

××T5

×××T4

×T3

×T2

×T1
T9T8T7T6T5T4T3T2T1

Introduction
GT theory

Experiments
Conclusion

× critical pairs
(negative sequential dependencies)

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 13

Refactoring dependencies

×T9

××T8

×T7

×××T6

××T5

×××T4

×T3
>>×T2

>>×T1
T9T8T7T6T5T4T3T2T1

Introduction
GT theory

Experiments
Conclusion

>> critical pairs that can be serialised

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 14

Refactoring dependencies

×T9

××T8

×T7

×××T6

××T5

×××T4

←×T3
>>←×T2

>>←×T1
T9T8T7T6T5T4T3T2T1

Introduction
GT theory

Experiments
Conclusion

← positive sequential dependencies

rename to process needed before
pull up of accept can be done

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 15

Refactoring dependencies

• Dependency graph

T1T2T3

T4

T5 T6

T7

T8T9

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 16

Refactoring dependencies

• Dependency graph (without self-cycles)

T1T2T3

T4

T5 T6

T7

T8T9

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 17

Refactoring dependencies

• Approach: Use critical pair analysis in AGG
– T1 and T2 form a critical pair if

• they can both be applied to the same initial graph G but
• applying T1 prohibits application of T2 and/or vice versa

G H1

H2

T1

T2

X

T2

X
T1

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 18

Refactoring dependencies

Step 1: Express object-oriented metamodel as
(attributed) type graph

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 19

Refactoring dependencies

Step 2: Express refactorings as (typed attributed)
graph transformations

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 20

Refactoring dependencies

Step 3: Statically detect critical pairs between
refactoring transformations

– Potential conflicts between refactorings

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 21

Refactoring dependencies

Create
superclass

Rename
class

for class refactorings

Step 4: Analyse dependency graph

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 22

Refactoring dependencies

Step 4: Analyse dependency graph

Move
variable

Pull up
variable

Encapsulate
variable

Rename
variable

Create
superclass

Rename
class

for variable
refactorings

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 23

Refactoring dependencies

Step 4: Analyse dependency graph

Move
variable

Pull up
variable

Encapsulate
variable

Rename
variable

Move
method

Pull up
method

Add
parameter

Remove
parameter

Rename
method

Create
superclass

Rename
class

for method
refactorings

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 24

Refactoring dependencies

Step 5: Fine-tune critical pairs in context of concrete input graph

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 25

Introduction
GT theory

Experiments
ConclusionRefactoring dependencies

Step 5: Fine-tune critical pairs in context of concrete input graph

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 26

Refactoring dependencies

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 27

Refactoring dependencies

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 28

Refactoring dependencies

• Step 6: Perform sequential dependency
analysis

To identify dependencies between
refactorings that are applicable

Not fully supported in AGG

Introduction
GT theory

Experiments
Conclusion

Generating Refactoring Code

1. Experiment in Fujaba

(in collaboration with Pieter Van Gorp
and Niels Van Eetvelde, University of Antwerp)

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 30

Generating refactoring code

• About Fujaba (From UML to Java and Back
Again)

– Round trip engineering with UML, Java, and design
patterns

– Class, collaboration and activity diagrams for story
diagrams

• Dynamic behavior
• Automatic generation

– Reverse engineering

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 31

Generating refactoring code

• About Fujaba : Technological Spaces

Introduction
GT theory

Experiments
Conclusion

grammarware
Java

MDA
UML

Java programs

UML models graph transformations
specified as story diagrams

Fujaba
tool

graphware
graph transformation theory

implemented as

extended
notation

round-trip
engineering

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 32

Generating refactoring code

• About Fujaba : Technological Spaces

Introduction
GT theory

Experiments
Conclusion

Java programs

UML models graph transformations
specified as story diagrams

Fujaba
tool refactoring

specification

refactoring
execution

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 33

Generating Refactoring Code

• Experiment in Fujaba
– Specify refactorings as Fujaba graph transformations using

story diagram notation
– Generate refactoring code from these transformations

• Advantages
– easier to specify and understand refactorings (visual

notation)
– easier to implement refactorings (automatic code generation)

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 34

Generating Refactoring Code

• Fujaba's metamodel

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 35

Generating Refactoring Code

• Refactoring framework in Fujaba

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 36

Generating Refactoring Code

1. Match method
 > (Hidden) Cast target

2. Match container
 > Link Navigation

3. Match stub
 > Link Navigation

4. Match superclass
 > Link Navigation

5. Remove method
 from container

6. Add method
 to superclass

Pull Up Method model refactoring
as Graph Transformation

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 37

Generating Refactoring Code

[failure]

[p1.getIndex()]

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 38

Generating Refactoring Code

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 39

Generating Refactoring Code

Fujaba Plugin

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 40

Generating Refactoring Code

Import Java Sources
(by directory)

Rearrange diagrams

Execute Refactoring

New SourcesOld Sources

regenerate
parse1

2

3

4

• Running Prototype

Introduction
GT theory

Experiments
Conclusion

Generating Refactoring Code

2. CASE-tool independent approach

(by Pieter Van Gorp and Hans Schippers, University of
Antwerp)

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 42

Generating refactoring code

• Evaluation
– Fujaba experiment was successful

• Intuitive story diagram notation
• GT can be used to express refactorings
• Refactoring code can be generated
• Refactoring plug-ins can be written

– But…
• Fujaba’s internal metamodel not MOF/UML compliant

– Generated code not reusable in other MDE tools
• Story diagram notation only available in Fujaba

– No commercial, industrial support

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 43

Generating refactoring code

• Solution
– Provide UML profile support for story diagram

notation
– Make generated refactoring code CASE tool

independent
• using MOF, XMI, JMI, EMF, …

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 44

Generating refactoring code

• Proposed architecture

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 45

Generating refactoring code

• Proposed architecture (continued)

CASE
tool

XMI

e.g. NetBeans MDR

e.g. Poseidon

metamodel
represented as UML

class diagram;
story diagram

notation as UML
profile

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 46

Generating refactoring code
Fujaba versus JMI code

JMI:
// delete link
method.setOwner(null)
// create link
method.setOwner(superclass);

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 47

Generating refactoring code
Poseidon “proof of concept”

Metamodel Class Diagram

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 48

Transformation Component

graph transformation
specifications with story diagrams

Stereotypes as flags

Introduction
GT theory

Experiments
Conclusion

Generating refactoring code
Poseidon “proof of concept”

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 49

main story diagram

Introduction
GT theory

Experiments
Conclusion

Generating refactoring code
Poseidon “proof of concept”

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 50

Loop Activity
(using stereotype)

Introduction
GT theory

Experiments
Conclusion

Generating refactoring code
Poseidon “proof of concept”

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 51

Path NavigationCreate Links

Remove Links

Introduction
GT theory

Experiments
Conclusion

Generating refactoring code
Poseidon “proof of concept”

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 52

Introduction
GT theory

Experiments
Conclusion

Generating refactoring code
Poseidon “proof of concept”
• Poseidon Plugin

– Extra menu item for
launching refactoring
transformation

– generated from
transformation model

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 53

Introduction
GT theory

Experiments
ConclusionGenerating refactoring code

• CASE tool independent approach is feasible
– Using the proposed architecture

• UML profiles for story diagram notation
– Illustrated through Poseidon “proof of concept”
– Can be repeated for other case tools

• Magicdraw, Together, Objecteering, Poseidon, …
– Can be compared to, or integrated with, other MDE

frameworks
• EMF support, ATL framework, …

Behaviour preservation of refactorings

formal experiment

(in collaboration with Dirk Janssens
and Serge Demeyer, University of Antwerp)

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 55

workstation 1

fileserver 1

workstation 2printer 1

workstation 3

1. originate(p)

2. send(p)

3. accept(p)

4. send(p)

5. accept(p)

6. send(p)7. accept(p)

8.print(p)

Formal experiment
Behaviour preservation

• Case study: LAN simulation

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 56

originate(p:Packet)

Workstation

contents

Packet

accept(p:Packet)
send(p:Packet)

Node
originator

name

print(p:Packet)

PrintServer

addressee
nextNode

Formal experiment
Behaviour preservation

• UML class diagram

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 57

public class Node {
 public String name;
 public Node nextNode;
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 name +
 "sends to" +
 nextNode.name);
 nextNode.accept(p); }
 }

public class Packet {
 public String contents;
 public Node originator;
 public Node addressee;
 }

public class Printserver extends Node {
 public void print(Packet p) {
 System.out.println(p.contents);
 }
 public void accept(Packet p) {
 if(p.addressee == this)
 this.print(p);
 else
 super.accept(p);
 }
 }

public class Workstation extends Node {
 public void originate(Packet p) {
 p.originator = this;
 this.send(p);
 }
 public void accept(Packet p) {
 if(p.originator == this)
 System.err.println("no
destination");
 else super.accept(p);
 }
 }

Formal experiment
Behaviour preservation

• Java source code

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 58

Formal experiment
Behaviour preservation

• Program structure
– Directed, labelled, typed graph

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 59

Formal experiment
Behaviour preservation

• Program behaviour
– Behaviour of class Node

{this.send(p);}

{System.out.println(
 name+"sends to"+nextNode.name);
 nextNode.accept(p);}

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 60

Formal experiment
Behaviour preservation

• Type graph
– Represents OO metamodel
– Expresses well-formedness

constraints on the graph model
C

M MD

V VD
l

l
m

m

EP

e
a,u

a,u

t,p

t

p

i

ec

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 61

Formal experiment
Behaviour preservation

• Forbidden subgraphs
– WF-1: a class cannot define the same method twice
– WF-2: a method cannot refer to variables in

descendant classes
– WF-3: a method cannot refer to parameters of

other methods

C MD
m

V

l m i*
a | u

e*

E

MD MD

P

p
a | u

e*

E

m MC

MD
m

MD
m l

l

WF-1 WF-2 WF-3

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 62

Formal experiment
Behaviour preservation

• Pull up method
– Replace similar methods in subclasses by common

superclass method
– Precondition

• Replaced method should not refer to methods in
subclasses

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 63

Formal experiment
Behaviour preservation

public class Node {
 private String name;
 private Node nextNode;
 public String getName() {
 return this.name; }
 public void setName(String s) {
 this.name = s; }
 public Node getNextNode() {
 return this.nextNode; }
 public void setNextNode(Node n) {
 this.nextNode = n; }
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 this.getName() +
 "sends to" +
 this.getNextNode().getName());
 this.getNextNode().accept(p); }
 }

public class Node {
 public String name;
 public Node nextNode;
 public void accept(Packet p) {
 this.send(p); }
 protected void send(Packet p) {
 System.out.println(
 name +
 "sends to" +
 nextNode.name);
 nextNode.accept(p); }
 }

• EncapsulateVariable encapsulates public variables and
provides accessor methods

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 64

(t,1)  (t,1), (p,2), (t,3)
outgoing edgesincoming edges

Formal experiment
Behaviour preservation

• EncapsulateVariable(var,getter,setter)
– Parameterised transformation
– Embedding mechanism

var V
1

P1

var V
1

setter M
2

getter M
3

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 65

(m,0)  (m,0), (m,4), (m,5)(a,1)  (c,3) (u,1)  (c,2)
outgoing edgesincoming edges

Formal experiment
Behaviour preservation

• EncapsulateVariable(var,getter,setter)
– Parameterised transformation
– Embedding mechanism

P2

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 66

preconditions
for

EncapsulateVariable
P2

repeat

succeed

fail

P1

Formal experiment
Behaviour preservation

• Controlled graph rewriting is needed to
– Control the application order of productions
– Specify refactoring preconditions

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 67

Formal experiment
Behaviour preservation

• Use preconditions
– To satisfy wf-constraints
– to satisfy more specific constraints

• e.g. EncapsulateVariable should not introduce accessor
method names that exist in inheritance chain

• Express negative preconditions as forbidden
subgraphs

m l
getter M

i*
MDCCvar V

m
VD

l

m l
getter M

i*
MDCCvar V

m
VD

l

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 68

• Graph invariant

• EncapsulateVariable preserves access
behaviour

– variables remain accessible via transitive closure

Formal experiment
Behaviour preservation

MD V
?*a

var VEE getter M MD
1

c l ae
var V

a

853
MD

e*
EMD

e*

1

VD
l

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 69

• Graph invariant

• EncapsulateVariable preserves update
behaviour

– variables remain updatable via transitive closure

Formal experiment
Behaviour preservation

var VEE setter MD MD
1

c l ue
var V

1

u

MD V
?*u

742
MD

e*
EMD

e*

VD
l

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 70

• Graph invariant

• preserves call behaviour
• Trivially fulfilled for EncapsulateVariable

– all existing calls are preserved
– But: new calls are introduced for each variable

access/update!

Formal experiment
Behaviour preservation

MD M
?*c

MD
l

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 71

• PullUpMethod(parent,child,name)
– affects all subclasses
– need controlled graph rewriting

name M
4

child C

MD
m

parent C
1

2

3 l

i

P1

name M
4

child C

MD
m

parent C
1

2

3 l

i

Formal experiment
Behaviour preservation

P2

name M
4

C

MD
m

parent C
1

5

6
 l

i

name M
4

C

parent C
1

5

i

MD

 l

i

MD

 l

i

3 3

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 72

• PullUpMethod preserves calls, accesses, updates
– Only if we assume isomorphism between pulled up method

definitions in subclasses

Formal experiment
Behaviour preservation

C

name M
MD

m

parent C

 l

i
C

MD

m l

 c c
 a a

 u u

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 73

• PullUpMethod preserves calls, accesses, updates
– Need tracking function to express method equivalence

Formal experiment
Behaviour preservation

P2

name M
4

C

MD

m

parent C
1

5

6
 l

i

name M
4

C

parent C
1

5

i

MD

 l

i

MD

 l

i

3 3

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 74

Formal experiment
Summary

• Initial results promising, but …
• Need to understand what is

– behaviour
– behaviour preservation

• Different notions of behaviour require
different preservation properties

– real-time systems (time constraints)
– embedded systems (power & memory consumption)
– safety critical systems (liveness, …)

• What are good program invariants ? How to express
them ?

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 75

Tutorial outline

Introduction

Graph transformation theory

Graph transformation experiments

•Conclusion

Conclusions

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 77

Conclusion

• This tutorial has
– Briefly introduced the theory of GT
– Presented two state-of-the-art GT tools
– Motivated the use of GT in software engineering
– Reported on three concrete experiments to apply

GT for model refactoring

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 78

Introduction
GT theory

Experiments
ConclusionConclusion

• Graph transformation is useful for specifying
refactorings

– Language independent
– Visual, flexible, precise representation
– Verifying different kinds of behaviour

preservation

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 79

Introduction
GT theory

Experiments
ConclusionConclusion

• Graph transformation is feasible for
specifying refactorings

– Powerful GT engines exist, with state-of-the-art
support for GT

– Critical pair analysis in AGG
– Story diagrams in Fujaba

– Initial experiments show that ideas can be made
independent of particular CASE tool

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 80

Conclusion

attributes and attribute conditions

refactoring transformationparameterised tranformation with
embedding mechanism

to compose primitive
transformations and to control
their order of application

controlled graph rewriting (Fujaba)

RefactoringGraph Transformation
wf-constraintstype graph, graph expressions

to detect parallel evolution
conflicts

critical pair analysis (AGG)

preconditionsnegative application conditions
(NAC)

behaviour preservavtiongraph invariants

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 81

Future work

• Apply GT ideas to other types of models
– sequence diagrams, statecharts, activity diagrams

• Compare theory of GT with other theories
and formalisms

– Description logics
– Model checking
– …

• Support co-evolution between models (of all
kinds and at all levels) and source code

– inconsistency management, traceability, change
propagation, impact analysis

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 82

Future work

• Increase efficiency and scalability of GT
tools

– Use relational database technology as underlying
engine for GT

• Varró et al.
– Use logic fact base to store graphs, and logic

programming language to perform and reason about
GT

• JTransformer, Contract, Condor (based on Prolog)
– Guenter Kniesel, University of Bonn

• Description logics (e.g., RACER)
– Ragnhild Van Der Straeten, Vrije Universiteit Brussel

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 83

Future work

• Use graph transformation to assist with
other aspects of refactoring
– (de)composition of refactorings
– analyse complexity of refactorings
– triple graph grammars to deal with co-evolution of

refactorings at different levels

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 84

More questions

• How can we build more open refactoring tools?
• How can we determine where and why to refactor?
• Where does refactoring fit in the software development

process?
• How to assess the effect of refactoring on software quality?
• How is refactoring related to other techniques ?

– design patterns, application frameworks, aspect-oriented
programming, generative programming, …

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 85

Further reading

• Handbook of Graph Grammars and Computing by
Graph Transformation, World Scientific, 1999

– Foundations
– Applications, Languages and Tools
– Concurrency, Parallelism, and Distribution

• Tutorial Introduction to Graph Transformation: A
Software Engineering Perspective

– L. Baresi, R. Heckel
Proc. 1st Intl. Conference on Graph Transformation (ICGT
2002), Barcelona, Spain
Springer LNCS 2505

• Bibliography website
http://www.informatik.uni-bremen.de/theorie//appligraph/bibliography.html

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 86

Further reading

• Journal articles
– A survey of software refactoring

• T. Mens, T. Tourwé
• IEEE Transactions on Software Engineering, February 2004

– Formalising refactorings with graph transformations
• T. Mens, N. Van Eetvelde, S. Demeyer, D. Janssens
• Journal of Software Maintenance and Evolution, July/August 2005

– A formal approach to model refactoring and model
refinement

• R. Van Der Straeten, T. Mens, V. Jonckers
• Software and System Modeling, July 2005. Conditionally accepted.

– Analysing refactoring dependencies using graph
transformations

• T. Mens, G. Taentzer, O. Runge
• Software and System Modeling, July 2005. Conditionally accepted.

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 87

Further reading

• Book chapters
– Using Graph Transformation for Practical Model Driven

Software Engineering
• L. Grunske, L. Geiger, A. Zündorf, N. Van Eetvelde, P. Van Gorp,

D. Varró
• Model-driven Software Development - Volume II of Research

and Practice in Software Engineering, edited by Sami Beydeda
and Volker Gruhn, July 18, 2005. ISBN: 3-540-25613-X

• Websites
– www.planetmde.org

• “Everything you always wanted to know about MDE but were
afraid to ask…”

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 88

Further reading

• Conference articles
– Supporting model refactorings through behaviour inheritance

consistencies
• R. Van Der Straeten, V. Jonckers, T. Mens
• Proc. UML 2004, LNCS 3273

– Using description logics to maintain consistency between
UML models

• R. Van Der Straeten, T. Mens, J. Simmonds, V. Jonckers
• Proc. UML 2003, LNCS 2863

– Towards automating source consistent UML refactorings
• P. Van Gorp, H. Stenten, T. Mens, S. Demeyer
• Proc. UML 2003. LNCS 2863

– Formalising behaviour preserving program transformations
• T. Mens, S. Demeyer, D. Janssens
• Proc. ICGT 2002. LNCS 2505

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 89

