On the use of graph transformations
for model refactoring

el Dg

Q Lf
o
s
o .)
1 QF

E*’HEE“"

UMH

Tom Mens

Software Engineering Lab
University of Mons-Hainaut
http://w3.umh.ac.be/genlog

Tutorial outline

- Introduction
- What is model-driven engineering, model
transformation, model refactoring?
- Where does graph transformation fit in?
- Graph transformation theory
- Graph transformation experiments
-In Fujaba: model refactoring plug-in
-In AGG: critical pair analysis
- With pencil and paper: behaviour preservation
- Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

Introduction

UMH

Introduction
GT theory

5 sz
Model-driven engineering BXperiments | «, o

Conclusion SNt

- Goal: Raise the level of software development

from source code to models
-models = software artifacts at higher level of
abstraction
-e.g. UML diagrams = design models

- Principle: "Everything is a model"
- Uniform approach to all kinds of software

artifacts
- source code is a kind of model
* the syntax of a model is described by a metamodel/

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 4

Introduction
GT theory

MO del TPanSfOPmation Experiments

Conclusion

- Goal: Apply transformation techniques to
modify, refine and evolve models

- Classification of model transformations

endogenous exogenous

horizontal refactoring language migration,
bridging techn. spaces

vertical | formal refinement code generation

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 5

Introduction
GT theory

MO del TPanSfOPmation Experiments

Conclusion

- Endogenous versus exogenous

- Endogenous transformations
* fransformations between models expressed within the same
metamodel
- Exogenous transformations
* fransformations between models expressed in different
metamodels

- Horizontal versus vertical

- Horizontal transformation
* fransformation between models residing at the same level of
abstraction
- Vertical transformatation
- fransformation between models at different abstraction levels

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 6

Introduction
GT theory

Model Evolution Experiments

Conclusion

- Goal: Provide support for software evolution at the
level of models

Change propagation

‘ Traceability management . Inconsistency managemeant \
maodel
‘ Version control reposiony Model refactoring \
‘ Reverse engineering \ ‘ Code generation \

- Better tool support needed for all these activities
- Formalisms can be helpful for some of these tools

Impact analysis

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 7

Introduction
GT theory

Model Refactoring Experiments

Conclusion

- Goal: special kind of model evolution that improves
the structure of the model, while preserving (certain
aspects of) its behaviour

- Model refactoring is an example of an endogenous,
horizontal model transformation

- Model refactoring is based on the idea of program

refactoring
- "the process of changing a program in such a way that it does
not alter the external behavior of the code, yet improves its
internal structure” [Martin Fowler, 1999]

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 8

Model Refactoring

Introduction

GT theory

Experiments

Conclusion

- Model refactorings can be applied to

different views of a UML model

- class diagrams

- sequence diagrams
- statecharts
-activity diagrams

- Some model refactorings have been proposed

by Boger et al.

M. Boger, T. Sturm, P. Fragemann. Refactoring Browser for UML.
Proc. 3rd Int'l Conf. on eXtreme Programming, pp. 77-81, 2002

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

Introduction
GT theory

Model Refactoring Experiments

Conclusion

- Examples of class diagram refactorings
- Pull Up Method

Ul Polygon Ul Polygon

draw :> draw e » rotate

i Rec’féi’hg.l,g Triangle

rotate |‘ rotate

Rectangle Triangle

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 10

Model Refactoring

Introduction

GT theory | <

Experiments | m

Conclusion

- Examples of statechart refactorings
- Merge states

not varified

-

[gl=g]

{.- requested -\
antry / createRequestTickst()
exit / openRequestTicket()
retrioved

O<

{ verfied %

N

[infolsh alid (]

=N

not verified

-

[2l=a]

v

werfying

tntr'g.r ! createRaquesiTickat)

axit / opanRequesiTicket))

)

O<

.

linfolsVa lidi)]

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

11

Model Refactoring

Introduction

GT theory

Experiments

Conclusion

- Examples of statechart refactorings

- Merge states

* combine a set of states into a single composite state

- Decompose sequential composite state
* remove a composite state but keep its internal states

- Create composite state
- create a hew composite state and move selected states

to the interior

- Sequentialise concurrent state

- replace a concurrent state by a product automaton

- Flatten states
- see hext slide

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

12

Introduction
GT theory

Model Refactoring Exporiments

- Examples of statechart refactorings

- Flatten states: Incoming transitions
* Transition from state sI to the boundary of a complex
state represents a transition from s! to the initial state
of the complex state

(")

ik T

_ J

*—>

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 13

Introduction
GT theory

Model Refactoring Experiments

Conclusion

- Examples of statechart refactorings

- Flatten states: Outgoing transitions
» Transition from boundary of complex state to state sI
represents corresponding transitions from all substates
to sl

(")

= o 252
a b

k) :

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 14

Introduction
GT theory

Model Refactoring Experiments

Conclusion

- Examples of activity diagram refactorings

- Make actions concurrent
* Create a fork and a join pseudostate, and move several
sequential groups of actions between them, thus enabling
their concurrent execution

- Sequentialize concurrent actions
* Removes a pair of fork and join pseudostates, and links
the enclosed group of actions to another

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 15

Model Refactoring

Introduction | ° nnq ‘e

GT theory |<5 _
Experiments | m /* ©

: 1 >
Conclusion SNt

- Examples of activity diagram refactorings
- Make actions concurrent

{ varmeation=0

[emalilsvalld() && delAddrsvalld ()]

[else]

h''4
(verity emall _)

N Z

I varifcation=vericaton+1 V
verity dellvery
addrass
I varfcation=varcation+1

conrim customer
Informatlon

Fvarification=0

I'verffication=verification+1

&msillﬂ'ﬂidﬂ EE delAddriskalid{]]

[ale=]

warify dalivary

I'varification=varification+1

confirm customer
informalion

®

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

16

Introduction
GT theory

Model Refactoring Experiments

Conclusion

- Other related work
- Sunye et al. [UML 2001]

» statechart refactorings expressed using OCL pre- and
postconditions

- Van Gorp et al. [UML 2003]

- UML extension to support source consistent refactoring
- integrated as plug-in in Fujaba tool

- Correa and Werner [UML 2004]
* UML refactorings in OCL-script, and extension of OCL

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 17

Introduction
GT theory

Research Context Experiments

Conclusion

- Several ongoing research projects

- "A Formal Foundation for Software Refactoring"
* Financed by FWO - Flanders, Belgium
* Duration: January 2003 - December 2006
* In collaboration with: Serge Demeyer and Dirk Janssens,
University of Antwerp

- "Research Center on Structural Software Improvement"
» Financed by FNRS-FRFC, Belgium
* Duration: January 2005 - December 2008
* In collaboration with: Kim Mens, UCL - Roel Wuyts, ULB
* For more information, see

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 18

Introduction
GT theory

Research Context Experiments

Conclusion

. Several international research networks
- ESF Scientific Network RELEASE

« Research Links to Explore and Advance Software
Evolution »

- ERCIM Working Group on Software Evolution

European Research Consorium
for Informatics and Mathamatics

" ERCIM

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 19

Tutorial outline

vIntroduction
- Graph transformation theory
- Graph transformation experiments

« Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 20

Graph Transformation Theory

UMH

Introduction
GT theory

Models are Graphs Experiments

Conclusion

- Models can be represented naturally as
graphs
- many diagrams are intrinsically graph-based

» class diagrams, statecharts, collaboration diagrams, Petri-
nets, database schemas

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 22

Introduction
GT theory
Models are Graphs LXpOrinents
Conclusion
1/1. originate(p)
workstation 1
i ._) g Simple example: class diagram
workstation 3 e . .
fleserver 1 of a LAN simulation
|:| 2. send(p) = =
4. send(p)
prinrer 1 workstation 2
5. accept(p)
8.print(p) @ e MNode addressee Packet
7. accept(p) 6. send(p]) -
= A 3tring e -Ccontents: 3tring
#acceplp:Packet) void = +print() woid
#zend(p:Packet):void originator
Workstation FileServer PrintServer
+originate [p:Packet):void +save|p Packet)void +print{p:Packet): void
#accepl p:Packet)void #accepl p:Packet)void #acceplp:Packet):void

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 23

Introduction
GT theory
Models are Graphs EXpOTInOnts
Conclusion
Method
name="send" .hasF*aram » Parameter
visibility="public” name="p"
nuOfPars=1 Method hasPara
name="accepl’ |m—y|Carameter
visibility="public" name=p
: nuCfPars=1
‘u’arlablf _) contains |Variable
name="name pritains name="contents”
visibility="public" : type [Variable visibility="private"
containg name="onginator
contalns pe visibility="public"
\ariable
name="nextNode" type o Variable
visibility="private" genetalization name="addressee”

geneMlization visibility="public"

generalfzation

canlains

COngins

Method
name="print" Farameter
contains Yohod ‘;ljg;ggfrz';ﬂ1Ub|lﬂ" hasParam ~|name="p"
=" d order=1
name="save Parameter
visibility="public” hasParam .'name="p"
Method nuOfPars=1 m
name="originate" PParameter
visibility="public” hasParam name="p"
nuOfPars=1 arder=1__

Metamodels are type graphs

Introduction

GT theory

Experiments

Conclusion

. All models conform to a metamodel that

specifies their syntax

- All graphs conform to a type graph that

specifies their well-formedness constraints

represents
type graph metamodel
s typed by conforms to

represents
graph model

- Hence, type graphs are the graph-theoretic

equivalent of metamodels

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

25

Introduction

GT theory

Metamodels are type graphs Srezens

Conclusion

- Example of a type graph

-represents a simplified metamodel for UML class

diagrams
tgen
qgen
j Class __~ Parameter
String name string name
* hasParam
. contains int order
containg 1
Variable HCcosnes gt?itr:mdname 11 sentBy _
atring name ing name »{Message
String visibility String visibility y
int nuOfPars
updates 1.7
sentTo

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

26

Introduction
GT theory

Definitions Experiments

Conclusion

A (directed) graph is an algebraic structure
G=(V.E, ssE>V tE>V)

A graph homomorphism is a mapping h: 6; 2 6,
where h = (h,: V;2> V,, hz: E;, 2 E,) and
hc preserves source and target nodes

A graph G is typed by a type graph TG if there is a
homomorphismg: 6 2> TG

Direct extension of definitions to labeled graphs
where each node and edge may be labeled

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 27

Introduction
GT theory

=
Definitions Bxperifnonts |

Conclusion SNt

* A labeled graph is a graph where each node and edge

is labeled over an alphabet L
labeling function /: VUE — L

- An attributed graph is a graph where nodes an edge
are labeled over an abstract data type

Method Class m : Method c : Class
int nuOfPars String name int nuOfPars name = “Packet”
type level iInstance level

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 28

Introduction

Model transformations are GT theory

5
Experiments %

Graph transformations Conclusion | "/ el

- Model transformations can be naturally represented
as graph transformations

- GT theory offers many theoretical results that can
help during analysis
- type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

- 6T tools allow us to perform concrete experiments
- Fujaba, AGG, Progres, ...

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 29

GT tools - PROGRI]

Introduction | 4 -

GT theory | < Lz

Experiments | ' o
1,

Conclusion

= FerryMan: PROGRES-View—1 (V 9.4)

|

production LoadFerry (* Pults one carge into the ferry
(% and emply.

|‘1 : CARGO |
Oon
HithoutCargo

: A 4 at \

H |'2 RIVER_SIDE ‘3 : Ferry
]l 2= fe=esssscssssssssssssssssssssssEsssssEssssssEsEssss
| H In
- : |1' = 1 I

ndition *1.Hin Payment;
1’ .Expenditu 1= ‘1.Expenditu Payment
— 3’ . Incom 3. Incom Payment
hd d
1
=] B

(¢ if the ferry Is on the same side *

- Graphical/textual

language to specify
graph transformations

- Graph rewrite rules with

complex and negative
conditions

- Cross compilation in

Modula 2, C and Java

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 30

Introduction
GT theory

GT tools - Fujaba EXperiments

‘OO0 Fujaba [Plain Pattern Catalog] - Refactoring3.fpr.gz
File Edit Diagrams Activity Diagram ImportExport Tools Options Help Window

DEH & 28 =R

R Class diagrams Ta execute(ASGElement)

T ASG : 2

T Refactoring

5y Activity diagrams

@ 5 EncapsulateField

@ 95 PullUpMethod
Ta checkParametersl | -
Ta checkPreconditior]
Ta execute :

FullUpmethod: execute (target ASGElement): Boolean

!

[failure]
fujaba__ Success = this.checkPreconditionftargef;)—9(systerm.ert.printin precondition not satisfied";

Fuccess |

4 suhclass
comtainer :UMLClass stub :UMLGeneralization

MH MK 880

15

soigatroys
¥ methods —— suplerclass

gl

method := (UMLMethod) target superclass :UMLClass

A

[j;’h:ceas] failurf]

(Systerm.err.printin"BLUIG in PullUpMethod"y;)

o execute(ASGE...

GT tools - AGG

Introduction

GT theory

Experiments

Conclusion

‘D00 AGG V1.2.6

File Edit Mode Transform Parser Analyzer Preferences Help

7% B r M 5K
76/ BIBE < lsnr N BS(RIDJIAIF=T (MBS s bl |

v "i::_@ Refactorings O q — sentTo

GraCras Node Type Edge Type
’V Message ’V

T‘ [Em]Type_Craph

%+ Graph z

MaveVariable VariableAbsentinNewAncestors MoveVariable of Refactorings

MoveMethod
PullUpVariable
PullUpMethod
CreateSuperclass

contains

EncapsulateVariabl ¢ ¥+ RC

AddParameter "

RemoveParameter Graph of Refactorings
RenameClass

Class

Class

RenameVariable name="Mada"
RenameMethod
TransClosurel
TransClosure

TransitiveGen

contains

Variable
narme="naxtMNoda”

containg

SelfGeneralization
MultipleVariable
MultipleMethod
MultipleClass
MultipleTransClosur
Generalization
NoMultiple

BCCESFES

Mathad
nama="sand"

Method
name="accepl’

Y Y Y Y Y Y Y Y Y Y Y YYYYYTYTYY

hasParam

santTo

santBy

Mathod
name="griginate”

A
A
A
A
A
A
c

cC

Class
name="Packat’

contains .
contajr

Variable
name="sandar

Class

name="Workslation”

gniBy accessaE

sentBy
Varable
name="recaear

name="FileServer

sontains

Method
name="save"

contains

Method
name="accapt

hasHaram
acce
Variabla
name="contents" Methad
name="accept”

contgins

Graph Production

Introduction

GT theory

Experiments

Conclusion

- A graph production p: L—=R is a structure-
preserving partial mapping between (directed,

labeled, typed) graphs

-Preserves sources and targets of edges

-Preserves node and edge types
- Preserves node and edge labels

- Partial means that nodes or edges may be deleted

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

33

Introduction
GT theory

G‘Pa,ph Production Experiments

Conclusion

- Exemple: Pull Up Method refactoring

left-hand side L right-hand side R

- -

PullUpMethod of Refactorings

I:l"_"\ I:l"_"\

: 2:Class
2.Class contains
1:Method
Stgen [Rame=x 5iigen 1:Method
- names=x
contains

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 34

Introduction
GT theory

Graph Production Experiments

Conclusion

- Exemple: Pull Up Method refactoring

- Some nodes and edges are preserved

PullUpMethod of Refactorings

al al
. 2:Class
2.Class ™y contains
>
1:Method
S19en hame=x figen ~|1:Method
. - name=x
contains |
3:.Class 1 3:Class .
¥ ¥
C N > & . 4k

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 35

Introduction
GT theory

Graph Production Experiments

Conclusion

- Exemple: Pull Up Method refactoring

- Some nodes and edges are deleted

PullUpMethod of Refactorings

o o
: 2:Class
2:Class contains
1:Method
- name=x
A:Class Y
h h
¥ ¥
{_ - - |

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 36

Introduction
GT theory

Graph Production Experiments

Conclusion

- Exemple: Pull Up Method refactoring
- Some nodes and edges are added

PullUpMethod of Refactorings

™ ™
2:.Class
1:Method
Sitgen [hame=x
- names=x
contains |
3:Class . 3:Class .
¥ ¥
{_ __} - "= {_ E - "=

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 37

Introduction
GT theory

G‘Pa,ph TPa,nSfO rmation Experiments

Conclusion

- A graph transformation +: 6=H is the
application of a graph production p: L—R that

is matched in the context of a given graph &
t = (p,m) where m: L—6G is an injective graph
morphism (match)

L paﬂ
©

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 38

Introduction
GT theory

G‘Pa,ph TPa,nSfO rmation Experiments

Conclusion

- A graph transformation t: G=His the
application of a graph production p: L—R that
is matched in the context of a given graph &

t = (p,m) where m: L—6G is an injective graph
morphism (match)

L P s R

dl
S—H

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 39

Introduction
GT theory

G‘Pa,ph TI’a,I]_SfOPm ation Experiments

Conclusion

- Alternative definition: algebraic double-
pushout (DPO) approach

- Explicit presentation of intersection K=L N R

deleted part glue part added part

- - -

L K > R

1
S K]

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 40

Graph Transformation Step

Introduction

GT theory

Experiments

Conclusion

- Operational description

- prepare transformation by
- selecting rule p: L 2 R
- selecting matchm: L 2 &6

- create new graph H by
» removing from G the occurrence of L \ R
» adding to result a copy of R\ L

L P s R

di
G »ﬂ

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

41

Introduction
GT theory

G‘Pa,ph Tra,nSfOPmatlon Step Experiments

Conclusion

- Declarative description

- Set-theoretic
* 6 =pmy Hiff there exists a homomorphism
m: LUR — GUH such that
mL\R)=G\Handm(R\L)=H\G

- Category-theoretic (DPO):
* 6 =pmy Hiff (1) and (2) are pushouts

L < LhR —> R
lmL (1) lmK (2) J/mR
G < D > H

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 42

Advanced GT features

Introduction

GT theory

Experiments

Conclusion

- Negative application conditions

- Set nodes (multi objects)

- Attributed graphs and GTs

- Programmed graph transformation
- Graph grammars

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

43

Introduction | 4
GT theory | <5 /&

Negative application condition FEeuaess

2 e .é.
Conclusion SNt

- A negative application condition nac: L—N of a
graph production p: L—R represents a
forbidden context. In a graph transformation
t: G=H, no match N—& must be found

p

> R

2

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 44

Introduction
GT theory
Negative application condition zperments

- Example: Pull Up Method refactoring

- node attributes needed
* to express name and visibility of methods
* to constrain (or modify) visibility of methods
- negative application conditions (NAC) needed
* Method signature of method to be pulled up should be

absent in ancestors
* Method to be pulled up should not be private

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 45

Introduction 00*"' 2y -
GT theory TS LY 2
Negative application condition zperments e

- Example: Pull Up Method refactoring part 1 (P,)
NAC left-hand side L right-hand side R

L

MethodAbsentinAncestors PullUpMethod of Refactorings

2:Class 2:.Class 2:Class
tgenT ‘ contains
containg S:tgen :
Method Class| | |A ~ | gent e . _ 5:tgen
name=x / ; contains 1:Method
tgen‘T‘ 3:.Class . name=x 3-Class
sl 1 e :
3 Class visibility=vis

— — ks,
: | - b e B Jr4F
&

i Attribute Context Current Attribute Customize 1

Parameters and Variables Conditions
In Oul Handle Type Marms Expression] 4 Expression DK
1 [] JavaE... String x M - lvis.equals(‘private”) [
1 [JavaE... String vis e t =

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal NAC 46

Set nodes

Introduction

GT theory

3
Experiments DY

Conclusion SNt

- Example: Pull Up Method refactoring part 2 (P,)
- Remove all remaining methods with same name in all
subclasses

* requires set nodes ...

tgen -
2:Class +«——— 3:Class J
contains J contains l
1:Method 4:Method J
name = x name = x

tgen

2:Class

R | 3:Class J

» contains J

1:Method

name = X

» ... or programmed GT

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

47

Introduction
GT theory

Pro gramme d GT Experiments

Conclusion

- For composite graph productions, we need to

control their order of application by means of
- sequencing
- branching
- looping
- For example

[as long as possibla]

e

[success)

[failure] [end]

© falzo @ true

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 48

Programmed GT

Introduction

GT theory

Experiments

Conclusion

Supported by tools

FulllpMethod::checkPrecaondition ardet: ASGElement): Boolean

!

like Fujaba

superclass :UMLClass

4 superclass

method := (UMLMethod) target + methods

stub :UML Generalization

class

container :UMLClass

using the story
diagram notation

[guccess |

[failure ©

false

superclass > methods methodFromSC :.UMLMethod
emchtime |
[|failure]
methodFromsC
failure] narme == method.get{amed

[Eiuccess]

)) s g

true

[success |
(fujaba__Success= checkParameterstatchimethod, methodFromSC); | = ©

false

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

49

Introduction
GT theory

Pro gfamme d GT Experiments

Conclusion

- Supported by tools like Fujaba

FullllpMethod: execute target: ASGElement): Boolean

!

(fujaba_Success = this.checkPreconditionitarget)%(Systern.err printin{' precondition not satisfied";)

[guccess]
4 suhclass
conmtainer ;UMLClass stub :UMLGeneralization
arigstroys: « methods
¥ methods - :ﬂsuperclass @
false
method := (UMLMethod) target superclass :.UMLClass
@ (Systerm arr printind"BUG in Pulllphethod™:)
triue

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 50

Introduction
GT theory

Pro gramme d GT Experiments

Conclusion

- Supported by tools like Fujaba
- using the story diagram notation

- Example
- Statechart flattening revisited

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 51

Introduction
GT theory

Pro gPa,mme d GT Experiments

Conclusion

- Example: Statechart flattening revisited
- Step 1: type graph for statecharts

| < elements
—> SCElement | — | StateChart
LN .
- ﬁ& y Stat
» > source ate
Transition I, 4 _]
_ on 0.1 | @ doAction : String
action : String > init : Boolean
e target ,
¥ label :String - I 1 ¥ name :String -
N -

0..n

¥ superState
0.1

OrState

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 52

Introduction
GT theory

Pro grammed GT Experiments

Conclusion

- Example: Statechart flattening revisited
- Step 2: statecharts as executable graphs

{& Dynamic Object Browsing System =101 x|

Browse Debugging Options Tools Help

Objects To Browse :

1 Shown objects : t4 : Transition
@[] State 50 "caller hangs up / disconnect™
@ [J OrState o1 Epaction : String = disconnect
@[] State 52 §§ @@label : String = caller hangs up -
@~ (] Transition 13 :

- . : targetTrans sourcekrans
@] Transition t4 7

Attributes targetFtate sourestate
[} Transition t3 S0 : State 01: OrState
D] action : String = get dial fone “dle do/null” "Active do /null”
D label : String = lift receiver @pdoAction : String = null ﬁﬁdu.&ctinnzstringznull
Methods || @ename : string = 1dle - @name : String = Active

[getaction 0: String : courcestate targetState outerBtate
[getLabel ¢ String
D getSourceState () State sourbeTrans targetTréns innenState
D getStateChart (: StateChart " 52 : State
D T tState 0: Stat t3 : Transition ——

e = == ift wver /et dial tone™ “DialTone do ! play dial tone*
[rernoy. Call Method recener /get dial tone e :
D = % @paction : String = get dial tone SpdoAction : String = play dial tone

setAct . ' B Hginit - =

m@lahel : String = lift receiver = Evinit bclmlefem tru_e

[setLa @pname : String = DialTane . 53
‘ : B ’ firdedl O™ s LTSN TN 41 1 JCOWAITL

Programmed GT

Introduction

GT theory

Experiments

Conclusion

- Example: Statechart flattening revisited
- Step 3: specifying the statechart flattening

StateChartFlattener::flattenStateChart (): Void

[$uccess l]

{ transitionFrominner() Il transitionTolnner() Il removeOuter() })

ﬂ/failure]

®

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

54

Introduction | ° &
GT theory -?:] / z
Experiments | m 0
Programmed GT | oo
- Example: Statechart flattening revisited
- Step 3: specifying the statechart flattening
StateChartFlattener::transitionTolnner (): Boolean
/ E.r statechart J sc :StateChart '—w elements or :OrState \
|
/
«destr
A superState
aToOr :Transition
inner :State
T «create» > target e
init==true
El/failure 1 [\Luccess]
© Tom Mens false 55

true

Introduction

GT theory

Pro gPa,mme d GT Experiments

Conclusion

- Example: Statechart flattening revisited
- Step 3: specifying the statechart flattening

StateChartFlattener:transitionFrominner () Boolean

’

||[sc StateChart |, * Statechart this III
‘ ¥ el{ments [failurs]
«{estroys | = @
| > target I
| or :OrState orToA Transitlon -ng—- a:State | | false
\ R '
\ /
[success]
[\
/ - \ (Inner @ II
[each tim |
/ \Ill || ﬁ—,ﬁl

f Lor

ﬁ
— J g «Crpalg:
4 sugerState «creales
erTran =
I Inner State .%. === || InnerToA Transltlon
| —— label ==orToAgetLael)) | |/ ‘
\ - jl"ll

\ abel =orToA getlLabal() |
| medim e T A =t A ey O
| action =orToA. getAction() = |
d
endl I| { maybe inner=—a } I|I
\ /
© Tom Mens @

tme

56

Introduction | ° &
GT theory -?:] / z
Experiments | » t
Programmed GT Zperiment .;,Ga_}m“&a
- Example: Statechart flattening revisited
- Step 3: specifying the statechart flattening
StateChartFlattener::removeQuter (): Boolean
oute ate sc :StateChart [w < statechart this
l\l“s"wrS{."e%ments | C \
«destroy»
incom sition % < source | outgoineTransition
— — [
‘su{erState
inner :State
init ==true
init :==or.isInit() =
[$uccess | [|failure]
/
© Tom Mens % g 57

Introduction
GT theory

Graph Grammars o e

- A graph grammar is a set of graph
productions
- No control structure is imposed on the graph

productions to be applied
-Productions are applied at random, whenever a
match is found

- Graph grammars are supported by AGG tool

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 58

Where it comes from ...

Introduction

GT theory

Experiments

Conclusion

Chomsky Term
Grammars Rewriting

!

Petri
Nets

!

Graph Transformation and Graph Grammars

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

59

Introduction
GT theory
4 3 Experiments
What it is good for ... Tpor e
Chomsky Term Petri
Grammars Rewriting Nets

!

Graph Transformation and Graph Grammars

|

Diagram Models of Behaviour Visual
Languages Computation Modelling Programming

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 60

What it is good for ...

Introduction

GT theory

Experiments

Conclusion

- Behaviour modelling

- Detecting dependencies and conflicts in functional

behaviour

- Crucial in collaborative/parallel software

development

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

61

Introduction
GT theory

COnﬂuenCG Experiments

Conclusion

- A graph grammar is confluent if it has

functional behaviour
- The end result does not depend on the order in
which graph productions are applied

il\
i

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 62

Introduction
GT theory

COIlﬂlCtS Experiments

Conclusion

- Two graph transformations T;and T, are in

conflict if
- it is not possible to apply T;after T,, or T,after
T;, or both, via the same match

T,

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 63

Introduction
GT theory

Parallel independence EXperiments

Conclusion

- Two graph ftransformations T;and T, are

parallel independent if
-they are not in conflict

- They are parallel dependent if they are in

conflict
-In that case they may or may not be
sequentialisable

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 64

Introduction
GT theory

CPitiC a,]_ pa,]r' a:na:].YSI g Experiments

Conclusion

- Needed to detect whether a graph grammar

has the confluence property

- p;and p, form a critical pair if

they can both be applied to the same minimal context graph
L
but applying p, prohibits application of p, and/or vice versa

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 65

Introduction
GT theory

CPlt,]_C a,]_ pa,lr ana:].ySI g Experiments

Conclusion

- Conflicts between graph transformations can be
found by detecting critical pairs of graph productions

- Critical pair lemma
- For each pair H; <= 6 = H, of graph transformations in
conflict, there is a critical pair R, <= L = R, expressing the
same conflict in a minimal context

P |
m

T [T

H1|< ! G 2 »HZ\

3 P2

> R,

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 66

Critical pair analysis

Introduction

GT theory

Experiments

Conclusion

- Supported by AGG tool

- potential conflicts can be detected statically
- e.g. critical pairs between refactoring productions

‘*ﬁ"ﬁ Crical Pairs
irst i second 1: Mo A A Pols 2 Pl S O 62 B, f2 R 1 HE.. W He.,
1: MowveYariahle

{22 M BAET

0: RenameClass
11z Renarmelfarkable
11: Renamehdet hosd

W o W6 o o BN o o o [o
o N o BN - BNEEEN o | - BN

o:pumipvariane | 06 I G [N 6 e

pepumenno: o [N o [N o IS SN SN o | o
5 CreateSupercioss (1811 1617 (6] (061 (010 6) [] e
s ncapsuancvanasi [N [N M2 2l © |0 |0 (e (o o [N

e oo/ ajo ofo|o llle ofoa]
: REFWEFr et er li- -|-|i- -l- -

SisifEiiTal

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal

67

Introduction
GT theory
341 q 1 Experiments
Critical pair analysis R
- Concrete example of a critical pair
- PullUpMethod versus MoveMethod
Class Class Class Class
name=p name=d ;Lé'r:hl‘é'[; name=p name=d
(m.c.p) contains
gene%liaation — — gener}liaaM‘—
Class Method Class Method
Contains
name=¢ ——=| Nameas=m name=g names=m
' Move ' Move
I Method I Mathod
Y im.e.d) ¥ (m.e.d)
Class Class X
names=p name=d ;L;.f}'hLé;;
gene r}nliaatia r contains l jm;c'ix
Class Method
names=g names=m

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 68

Introduction
GT theory | €35
Sequential dependencies “Conclusion | o v

- Given two graph productions p, and p, (not necessarily
applicable to the same initial graph), are there
sequential dependencies between them?

- Negative dependency
* p, cannot be applied after p,
- p, violates the truth of p,s precondition
- Corresponds to a critical pair

- Positive dependency
* p, can only be applied after p,
* p; enables the truth of part of p,'s precondition
* Not (yet) supported by AGG tool

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 69

