
On the use of graph transformations
for model refactoring

Tom Mens

Software Engineering Lab
University of Mons-Hainaut
http://w3.umh.ac.be/genlog

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 2

Tutorial outline

•Introduction
– What is model-driven engineering, model

transformation, model refactoring?
– Where does graph transformation fit in?

•Graph transformation theory
•Graph transformation experiments

– In Fujaba: model refactoring plug-in
– In AGG: critical pair analysis
– With pencil and paper: behaviour preservation

•Conclusion

Introduction

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 4

Model-driven engineering

• Goal: Raise the level of software development
from source code to models

– models = software artifacts at higher level of
abstraction

– e.g. UML diagrams = design models

• Principle: "Everything is a model"
– Uniform approach to all kinds of software

artifacts
• source code is a kind of model
• the syntax of a model is described by a metamodel

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 5

Model Transformation

• Goal: Apply transformation techniques to
modify, refine and evolve models

• Classification of model transformations

formal refinement

refactoring

endogenous exogenous

code generationvertical

language migration,
bridging techn. spaces

horizontal

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 6

Model Transformation

• Endogenous versus exogenous
– Endogenous transformations

• transformations between models expressed within the same
metamodel

– Exogenous transformations
• transformations between models expressed in different

metamodels

• Horizontal versus vertical
– Horizontal transformation

• transformation between models residing at the same level of
abstraction

– Vertical transformatation
• transformation between models at different abstraction levels

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 7

Model Evolution

• Goal: Provide support for software evolution at the
level of models

• Better tool support needed for all these activities
• Formalisms can be helpful for some of these tools

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 8

Model Refactoring

• Goal: special kind of model evolution that improves
the structure of the model, while preserving (certain
aspects of) its behaviour

• Model refactoring is an example of an endogenous,
horizontal model transformation

• Model refactoring is based on the idea of program
refactoring

– "the process of changing a program in such a way that it does
not alter the external behavior of the code, yet improves its
internal structure" [Martin Fowler, 1999]

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 9

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Model refactorings can be applied to
different views of a UML model

– class diagrams
– sequence diagrams
– statecharts
– activity diagrams

• Some model refactorings have been proposed
by Boger et al.

M. Boger, T. Sturm, P. Fragemann. Refactoring Browser for UML.
Proc. 3rd Int'l Conf. on eXtreme Programming, pp. 77-81, 2002

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 10

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of class diagram refactorings
– Pull Up Method

Rectangle

rotate

Polygon

Triangle

rotate

UI

draw

Rectangle

Polygon

rotate

Triangle

UI

draw

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 11

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of statechart refactorings
– Merge states

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 12

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of statechart refactorings
– Merge states

• combine a set of states into a single composite state
– Decompose sequential composite state

• remove a composite state but keep its internal states
– Create composite state

• create a new composite state and move selected states
to the interior

– Sequentialise concurrent state
• replace a concurrent state by a product automaton

– Flatten states
• see next slide

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 13

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of statechart refactorings
– Flatten states: Incoming transitions

• Transition from state s1 to the boundary of a complex
state represents a transition from s1 to the initial state
of the complex state

a

s3

s2
s1 b a

s3

s2s1

b

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 14

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of statechart refactorings
– Flatten states: Outgoing transitions

• Transition from boundary of complex state to state s1
represents corresponding transitions from all substates
to s1

a

s3

s2
s1 b

a

s3

s2

s1 b
a

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 15

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of activity diagram refactorings
– Make actions concurrent

• Create a fork and a join pseudostate, and move several
sequential groups of actions between them, thus enabling
their concurrent execution

– Sequentialize concurrent actions
• Removes a pair of fork and join pseudostates, and links

the enclosed group of actions to another

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 16

Introduction
GT theory

Experiments
ConclusionModel Refactoring

• Examples of activity diagram refactorings
– Make actions concurrent

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 17

Model Refactoring

• Other related work
– Sunye et al. [UML 2001]

• statechart refactorings expressed using OCL pre- and
postconditions

– Van Gorp et al. [UML 2003]
• UML extension to support source consistent refactoring
• integrated as plug-in in Fujaba tool

– Correa and Werner [UML 2004]
• UML refactorings in OCL-script, and extension of OCL

– …

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 18

Research Context

• Several ongoing research projects

– "A Formal Foundation for Software Refactoring"
• Financed by FWO - Flanders, Belgium
• Duration: January 2003 - December 2006
• In collaboration with: Serge Demeyer and Dirk Janssens,

University of Antwerp

– "Research Center on Structural Software Improvement"
• Financed by FNRS-FRFC, Belgium
• Duration: January 2005 - December 2008
• In collaboration with: Kim Mens, UCL - Roel Wuyts, ULB
• For more information, see

http://www.info.ucl.ac.be/ingidocs/people/km/FRFC

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 19

• Several international research networks
– ESF Scientific Network RELEASE

« Research Links to Explore and Advance Software
Evolution »

http://www.esf.org/release/

– ERCIM Working Group on Software Evolution
http://w3.umh.ac.be/evol

Introduction
GT theory

Experiments
ConclusionResearch Context

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 20

Tutorial outline

Introduction

•Graph transformation theory

•Graph transformation experiments

•Conclusion

Graph Transformation Theory

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 22

Models are Graphs

• Models can be represented naturally as
graphs

– many diagrams are intrinsically graph-based
• class diagrams, statecharts, collaboration diagrams, Petri-

nets, database schemas

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 23

Models are Graphs

Introduction
GT theory

Experiments
Conclusion

Simple example: class diagram
of a LAN simulation

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 24

Models are Graphs

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 25

Metamodels are type graphs

• All models conform to a metamodel that
specifies their syntax

• All graphs conform to a type graph that
specifies their well-formedness constraints

• Hence, type graphs are the graph-theoretic
equivalent of metamodels

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 26

Metamodels are type graphs

• Example of a type graph
– represents a simplified metamodel for UML class

diagrams

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 27

Definitions

• A (directed) graph is an algebraic structure
G = (V, E, s: E V, t: E V)

• A graph homomorphism is a mapping h: G1 G2
where h = (hV: V1 V2, hE: E1 E2) and
hE preserves source and target nodes

• A graph G is typed by a type graph TG if there is a
homomorphism g : G TG

• Direct extension of definitions to labeled graphs
• where each node and edge may be labeled

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 28

Definitions

• A labeled graph is a graph where each node and edge
is labeled over an alphabet L
• labeling function l: V∪E → L

• An attributed graph is a graph where nodes an edge
are labeled over an abstract data type

Introduction
GT theory

Experiments
Conclusion

Class

String name

c : Class

name = “Packet”

type level instance level

Method

int nuOfPars

m : Method

int nuOfPars

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 29

Model transformations are
Graph transformations

• Model transformations can be naturally represented
as graph transformations

• GT theory offers many theoretical results that can
help during analysis

– type graph, negative application conditions, parallel and
sequential (in)dependence, confluence, critical pair analysis

• GT tools allow us to perform concrete experiments
– Fujaba, AGG, Progres, ...

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 30

GT tools - PROGRES

• Graphical/textual
language to specify
graph transformations

• Graph rewrite rules with
complex and negative
conditions

• Cross compilation in
Modula 2, C and Java

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 31

GT tools - Fujaba

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 32

GT tools - AGG

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 33

Graph Production

• A graph production p: L→R is a structure-
preserving partial mapping between (directed,
labeled, typed) graphs

– Preserves sources and targets of edges
– Preserves node and edge types
– Preserves node and edge labels
– Partial means that nodes or edges may be deleted

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 34

Graph Production

• Exemple: Pull Up Method refactoring

Introduction
GT theory

Experiments
Conclusion

left-hand side L right-hand side R

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 35

Graph Production

• Exemple: Pull Up Method refactoring
– Some nodes and edges are preserved

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 36

Graph Production

• Exemple: Pull Up Method refactoring
– Some nodes and edges are deleted

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 37

Graph Production

• Exemple: Pull Up Method refactoring
– Some nodes and edges are added

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 38

Graph Transformation

• A graph transformation t: G⇒H is the
application of a graph production p: L→R that
is matched in the context of a given graph G

t = (p,m) where m: L→G is an injective graph
morphism (match)

GG

LL RR
p

m

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 39

Graph Transformation

• A graph transformation t: G⇒H is the
application of a graph production p: L→R that
is matched in the context of a given graph G

t = (p,m) where m: L→G is an injective graph
morphism (match)

GG HH

LL RR
p

m

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 40

Graph Transformation

• Alternative definition: algebraic double-
pushout (DPO) approach

– Explicit presentation of intersection K = L ∩ R

K’K’ HH

KK RRLL

GG

glue part added partdeleted part

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 41

Graph Transformation Step

• Operational description
– prepare transformation by

• selecting rule p: L R
• selecting match m: L G

– create new graph H by
• removing from G the occurrence of L \ R
• adding to result a copy of R \ L

GG HH

LL RR
p

m

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 42

• Declarative description
– Set-theoretic

• G ⇒p(mL) H iff there exists a homomorphism
m: L∪R → G∪H such that
m(L \ R) = G \ H and m(R \ L) = H \ G

– Category-theoretic (DPO):
• G ⇒p(mL) H iff (1) and (2) are pushouts

L
K:=

L ∩ R R

G D H

mL mK mR
(2)(1)

Introduction
GT theory

Experiments
ConclusionGraph Transformation Step

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 43

Advanced GT features

• Negative application conditions
• Set nodes (multi objects)
• Attributed graphs and GTs
• Programmed graph transformation
• Graph grammars

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 44

Negative application condition

• A negative application condition nac: L→N of a
graph production p: L→R represents a
forbidden context. In a graph transformation
t: G⇒H, no match N→G must be found

GG HH

LL RR
p

mNN

nac

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 45

Negative application condition

• Example: Pull Up Method refactoring
– node attributes needed

• to express name and visibility of methods
• to constrain (or modify) visibility of methods

– negative application conditions (NAC) needed
• Method signature of method to be pulled up should be

absent in ancestors
• Method to be pulled up should not be private

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 46

Negative application condition

• Example: Pull Up Method refactoring part 1 (P1)
left-hand side L right-hand side RNAC

NAC

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 47

Set nodes

• Example: Pull Up Method refactoring part 2 (P2)
– Remove all remaining methods with same name in all

subclasses
• requires set nodes …

• … or programmed GT

Introduction
GT theory

Experiments
Conclusion

1:Method

name = x

2:Class

contains

3:Class
tgen

4:Method

name = x

contains

1:Method

name = x

2:Class

contains

3:Class
tgen

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 48

Programmed GT

• For composite graph productions, we need to
control their order of application by means of

– sequencing
– branching
– looping

• For example

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 49

Programmed GT

Supported by tools
like Fujaba

using the story
diagram notation

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 50

Programmed GT

• Supported by tools like Fujaba

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 51

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Supported by tools like Fujaba
– using the story diagram notation

• Example
– Statechart flattening revisited

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 52

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 1: type graph for statecharts

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 53

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 2: statecharts as executable graphs

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 54

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 3: specifying the statechart flattening

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 55

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 3: specifying the statechart flattening

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 56

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 3: specifying the statechart flattening

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 57

Introduction
GT theory

Experiments
ConclusionProgrammed GT

• Example: Statechart flattening revisited
– Step 3: specifying the statechart flattening

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 58

Graph Grammars

• A graph grammar is a set of graph
productions

• No control structure is imposed on the graph
productions to be applied

– Productions are applied at random, whenever a
match is found

• Graph grammars are supported by AGG tool

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 59

Where it comes from …

Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 60

What it is good for …

Chomsky
Grammars

Term
Rewriting

Petri
Nets

Graph Transformation and Graph Grammars

Diagram
Languages

Visual
Programming

Models of
Computation

Behaviour
Modelling

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 61

What it is good for …

• Behaviour modelling
– Detecting dependencies and conflicts in functional

behaviour
– Crucial in collaborative/parallel software

development

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 62

Confluence

• A graph grammar is confluent if it has
functional behaviour

– The end result does not depend on the order in
which graph productions are applied

H1H1

XX

GG

H2H2

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 63

Conflicts

• Two graph transformations T1 and T2 are in
conflict if

– it is not possible to apply T1 after T2, or T2 after
T1, or both, via the same match

H2H2 XX

GG H1H1
T1

T2

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 64

Parallel independence

• Two graph transformations T1 and T2 are
parallel independent if

– they are not in conflict

• They are parallel dependent if they are in
conflict

– In that case they may or may not be
sequentialisable

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 65

Critical pair analysis

• Needed to detect whether a graph grammar
has the confluence property

– p1 and p2 form a critical pair if
they can both be applied to the same minimal context graph

L
but applying p1 prohibits application of p2 and/or vice versa

R2R2 XX

LL R1R1
p1

p2

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 66

Critical pair analysis

• Conflicts between graph transformations can be
found by detecting critical pairs of graph productions

• Critical pair lemma
– For each pair H1 ⇐ G ⇒ H2 of graph transformations in

conflict, there is a critical pair R1 ⇐ L ⇒ R2 expressing the
same conflict in a minimal context

GG H2H2

LL R2R2
p2

m

H1H1

R1R1
p1

T1 T2

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 67

Critical pair analysis

• Supported by AGG tool
– potential conflicts can be detected statically
– e.g. critical pairs between refactoring productions

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 68

Critical pair analysis

• Concrete example of a critical pair
– PullUpMethod versus MoveMethod

Introduction
GT theory

Experiments
Conclusion

© Tom Mens, July 2005, GTTSE Summer School, Braga, Portugal 69

Sequential dependencies

• Given two graph productions p1 and p2 (not necessarily
applicable to the same initial graph), are there
sequential dependencies between them?

– Negative dependency
• p1 cannot be applied after p2
• p1 violates the truth of p2’s precondition
• Corresponds to a critical pair

– Positive dependency
• p1 can only be applied after p2
• p1 enables the truth of part of p2's precondition
• Not (yet) supported by AGG tool

Introduction
GT theory

Experiments
Conclusion

