
Introduction to mCRL2
(modelling)

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

15 April, 2013

Introduction The underlying process algebra Deadlock & Termination Data

mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• with an axiomatic semantics

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction The underlying process algebra Deadlock & Termination Data

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a | a(d) | α | α

• actions may be parametric on data

• the structure 〈N, |, τ〉 forms an Abelian monoid

Introduction The underlying process algebra Deadlock & Termination Data

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction The underlying process algebra Deadlock & Termination Data

Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)

Introduction The underlying process algebra Deadlock & Termination Data

Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning

Introduction The underlying process algebra Deadlock & Termination Data

Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning

Introduction The underlying process algebra Deadlock & Termination Data

Axioms: : +, ·, δ

Exercise

• show that δ.(a + b) = δ · a + δ · b

• show that a + (δ + a) = a

• is it true that a.(b + c) = a.b + a.c ?

Introduction The underlying process algebra Deadlock & Termination Data

mCRL2: A toolset for process algebra

Example

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;

Introduction The underlying process algebra Deadlock & Termination Data

Deadlock & Termination

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination
add a predicate ↓ s to the definition of a LTS

Termination vs deadlock

q1
d // q2

q0

a

>>

a

q4 e

// q3

Introduction The underlying process algebra Deadlock & Termination Data

Trace equivalence

Trace (from language theory)
A word σ ∈ N∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→
∗
t

Trace (using X to witness final states)
s, the set of traces of state s, is the minimal set including

ε ∈s
X ∈s if ↓ s

aσ ∈s if ∃t · s
a−→ t ∧ σ ∈ t

Trace equivalence
Two states are trace equivalent if s = s ′

Introduction The underlying process algebra Deadlock & Termination Data

Trace equivalence

In any case, fails to preserve deadlock

d //

p0

a

>>

a

q0

a

d
//

d
//

although preserving sequencing
e.g. before every c an a action b must be done

Introduction The underlying process algebra Deadlock & Termination Data

Language equivalence

Language (from language theory)
A word σ ∈ N∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→
∗
t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
s, the language recognized by a state s, is the minimal set including

ε ∈ s if s is a deadlock state

X ∈ s if ↓ s

aσ ∈ s if ∃t · s
a−→ t ∧ σ ∈ t

Introduction The underlying process algebra Deadlock & Termination Data

Language equivalence

Two states are language equivalent if s = s ′, i.e., if both recognize the
same language.

... need more general models and theories:

• Several interaction points

• Need to distinguish normal from anomolous termination

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.

Introduction The underlying process algebra Deadlock & Termination Data

Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&xx
· · ·

&&

· · ·

xx
Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?

Introduction The underlying process algebra Deadlock & Termination Data

Example

Clock

act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P

Introduction The underlying process algebra Deadlock & Termination Data

Example

A refined clock

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P

Introduction The underlying process algebra Deadlock & Termination Data

Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports flexible synchronization discipline (6= CCS)

p ::= · · · | p ‖ p | p | p | pTp

Introduction The underlying process algebra Deadlock & Termination Data

Parallel composition

Example P ‖ Q

Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2

22/105

Introduction The underlying process algebra Deadlock & Termination Data

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.

Introduction The underlying process algebra Deadlock & Termination Data

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

Introduction The underlying process algebra Deadlock & Termination Data

Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed

Introduction The underlying process algebra Deadlock & Termination Data

Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,b|c}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur

Discuss: ∇{x,y}(Γ{a|c−>x,b|d−>y}(a.b ‖ c .d))

Introduction The underlying process algebra Deadlock & Termination Data

Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked

Introduction The underlying process algebra Deadlock & Termination Data

Interaction

Example ∂r2,s2((Γ{s2|r2→c2}(P ‖ Q))

Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105

Introduction The underlying process algebra Deadlock & Termination Data

Interaction

Enforce communication

• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))

Introduction The underlying process algebra Deadlock & Termination Data

Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed

Introduction The underlying process algebra Deadlock & Termination Data

Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ and δ cannot be renamed

Introduction The underlying process algebra Deadlock & Termination Data

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

Introduction The underlying process algebra Deadlock & Termination Data

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction The underlying process algebra Deadlock & Termination Data

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

Introduction The underlying process algebra Deadlock & Termination Data

Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);

Introduction The underlying process algebra Deadlock & Termination Data

Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

Introduction The underlying process algebra Deadlock & Termination Data

Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

Introduction The underlying process algebra Deadlock & Termination Data

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

Introduction The underlying process algebra Deadlock & Termination Data

Mini-project: Part 1

Aim: becoming proficient in process modelling

• Choose examples from the exercises sheets

• Model and simulate in mCRL2

To follow

• Specify relevant properties in a process logic

• Verify them in mCRL2

• Investigate other features of mCRL2 (e.g., time, semantics, ...)

	Introduction
	The underlying process algebra
	Deadlock & Termination
	Data

