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Introduction The underlying process algebra Deadlock & Termination Data

mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• with an axiomatic semantics

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org



Introduction The underlying process algebra Deadlock & Termination Data

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a | a(d) | α | α

• actions may be parametric on data

• the structure 〈N, |, τ〉 forms an Abelian monoid
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Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)
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Axioms: : +, ·, δ

A1 x + y = y + x

A2 (x + y) + z = x + (y + z)

A3 x + x = x

A4 (x + y).z = x .z + y .z

A5 (x .y).z = x .(y .z)

A6 x + δ = x

A7 δ · x = 0

• the equality relation is sound: if s = t holds for basic process terms,
then s ∼ t

• and complete: if s ∼ t holds for basic process terms, then s = t

• an axiomatic theory enables equational reasoning
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Axioms: : +, ·, δ

Exercise

• show that δ.(a + b) = δ · a + δ · b

• show that a + (δ + a) = a

• is it true that a.(b + c) = a.b + a.c ?
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mCRL2: A toolset for process algebra

Example

act order, receive, keep, refund, return;

proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;

ReceivedItem = return.OrderedItem + keep;

init Buy;
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Deadlock & Termination

Deadlock state
a reachable state that does not terminate and has no outgoing
transitions.

Termination
add a predicate ↓ s to the definition of a LTS

Termination vs deadlock

q1
d // q2

q0

a

>>

a
  
q4 e

// q3
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Trace equivalence

Trace (from language theory)
A word σ ∈ N∗ is a trace of a state s ∈ S iff there is another state t ∈ S
such that s

σ−→
∗
t

Trace (using X to witness final states)
s, the set of traces of state s, is the minimal set including

ε ∈s
X ∈s if ↓ s

aσ ∈s if ∃t · s
a−→ t ∧ σ ∈ t

Trace equivalence
Two states are trace equivalent if s = s ′
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Trace equivalence

In any case, fails to preserve deadlock

d //

p0

a

>>

a

  

q0

a

  
d
//

d
//

although preserving sequencing
e.g. before every c an a action b must be done
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Language equivalence

Language (from language theory)
A word σ ∈ N∗ is a run (or a complete trace) of a state s ∈ S iff there is

another state t ∈ S , such that s
σ−→
∗
t and ↓ t. The language

recognized by a state s ∈ S is the set of runs of s

Language (using X to witness final states)
s, the language recognized by a state s, is the minimal set including

ε ∈ s if s is a deadlock state

X ∈ s if ↓ s

aσ ∈ s if ∃t · s
a−→ t ∧ σ ∈ t
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Language equivalence

Two states are language equivalent if s = s ′, i.e., if both recognize the
same language.

... need more general models and theories:

• Several interaction points

• Need to distinguish normal from anomolous termination

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

• Moreover: the reactive character of systems entail that not only the
generated language is important, but also the states traversed
during an execution of the automata.
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Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

&&xx
· · ·

&&

· · ·

xx
Language Eq

��
Trace Eq

... collapses for deterministic transition systems: why?
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Example

Clock

act set, alarm, reset;

proc P = set.R

R = reset.P + alarm.R

init P
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Example

A refined clock

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P

R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P
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Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports flexible synchronization discipline (6= CCS)

p ::= · · · | p ‖ p | p | p | pTp
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Parallel composition

Example P ‖ Q



Parallelism and abstraction
Parallelism: example

P Q
r1 s2 r2 s3

Corresponding LTS:

r1|r2

r2

r1

s2|s3

s3

s2

r1|s3

s3

r1
s2|r2

r2

s2
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Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.



Introduction The underlying process algebra Deadlock & Termination Data

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t
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Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed
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Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,b|c}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur

Discuss: ∇{x,y}(Γ{a|c−>x,b|d−>y}(a.b ‖ c .d))
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Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked
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Interaction

Example ∂r2,s2((Γ{s2|r2→c2}(P ‖ Q))



Parallelism and abstraction
Communication: example

P Q
r1 s2

c2

r2 s3

Corresponding LTS:

r1

c2

r1|s3
s3

r1 s3

24/105
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Interaction

Enforce communication

• ∇{c}(Γ{a|b→c}(p))

• ∂{a,b}(Γ{a|b→c}(p))
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Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed
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Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ and δ cannot be renamed
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Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);
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Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;
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Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = flatten(t) ++ flatten(r);
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Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q
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Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Mini-project: Part 1

Aim: becoming proficient in process modelling

• Choose examples from the exercises sheets

• Model and simulate in mCRL2

To follow

• Specify relevant properties in a process logic

• Verify them in mCRL2

• Investigate other features of mCRL2 (e.g., time, semantics, ...)
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