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Introduction The underlying process algebra Deadlock & Termination Data

mCRL2: A toolset for process algebra

mCRL2 provides:

® a generic process algebra, based on AcP (Bergstra & Klop, 82), in
which other calculi can be embedded

e extended with data and (real) time
e with an axiomatic semantics
e the full p-calculus as a specification logic

e powerful toolset for simulation and verification of reactive systems

www.mcrl2.org
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Actions

Interaction through multisets of actions
e A multiaction is an elementary unit of interaction that can execute

itself atomically in time (no duration), after which it terminates
successfully

a = 717lalald ]| ala

e actions may be parametric on data

e the structure (N, |,7) forms an Abelian monoid
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Sequential processes

Sequential, non deterministic behaviour

The set [P of processes is the set of all terms generated by the following
BNF, for a € N,

pi=oal|d|p+tpl|pp]|Pd)

e atomic process: a for allae N
e choice: +

e sequential composition: -

e inaction or deadlock: §

e process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Sequential Processes

Exercise

Describe the behaviour of
e ab.d.c+a

(a+ b).d.c

(a+ b).e+d.c

a+(d+a)

a.(b+c).d.(b+c)

Data
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Axioms: : +, -, 0

Al x+y =y+x

A2 (x+y)+z =x+(y+2)
A3 X+ x =X

A4 (x+y)z =xz+yz
A5 (x.y).z = x.(y.z)
Ab x+9 =X

A7 0-x =0
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Axioms: : +, -, 0

Al x+y =y+x

A2 (x+y)+z =x+(y+2)
A3 X+ x =X

A4 (x+y)z =xz+yz
A5 (x.y).z = x.(y.z)
Ab x+9 =X

A7 d-x =0

o the equality relation is sound: if s = t holds for basic process terms,
then s ~ t

e and complete: if s ~ t holds for basic process terms, then s =t

e an axiomatic theory enables equational reasoning
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Axioms: : +, -, 0

Exercise

e show that 6.(a+b) = d-a+d-b
e show that a+ (0 +a) = a

e isit true that a.(b+c) = ab+a.c?



Introduction The underlying process algebra Deadlock & Termination

mCRL2: A toolset for process algebra

Example

act order, receive, keep, refund, return;
proc Buy = order.OrderedItem

OrderedItem = receive.ReceivedItem + refund.Buy;
ReceivedItem = return.OrderedItem + keep;

init Buy;

Data
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Deadlock & Termination

Deadlock state
a reachable state that does not terminate and has no outgoing

transitions.

Termination
add a predicate | s to the definition of a LTS

Termination vs deadlock
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Trace equivalence

Trace (from language theory)

A word o € N* is a trace of a state s € S iff there is another state t € S
such that s %5 ¢

Trace (using v to witness final states)

s, the set of traces of state s, is the minimal set including

€ES
vV Es if |s

aces if 3y -s—tAoet

Trace equivalence
Two states are trace equivalent if s = 5
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Trace equivalence

In any case, fails to preserve deadlock

although preserving sequencing
e.g. before every ¢ an a action b must be done

Data
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Language equivalence

Language (from language theory)
A word o € N* is a run (or a complete trace) of a state s € S iff there is

*
another state t € S, such that s ==t and | t. The language
recognized by a state s € S is the set of runs of s

Language (using v* to witness final states)
s, the language recognized by a state s, is the minimal set including

e €s if sis a deadlock state
ves if |s

aces if - s tAhoet
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Language equivalence

Two states are language equivalent if s = ¢/, i.e., if both recognize the
same language.

. need more general models and theories:

e Several interaction points
e Need to distinguish normal from anomolous termination

e Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

e Moreover: the reactive character of systems entail that not only the

generated language is important, but also the states traversed
during an execution of the automata.
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Notes

The Van Glabbeek linear - branching time spectrum

Bisimilary

>~

Language Eq

|

Trace Eq

. collapses for deterministic transition systems: why?
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Example

Clock

act set, alarm, reset;

proc P = set.R
R = reset.P + alarm.R

init P

Deadlock & Termination

Data
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Example

A refined clock

act set:N, alarm, reset, tick;

proc P = (sum n:N . set(n).R(n)) + tick.P
R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))

init P
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Parallel composition

| = interleaving + synchronization

e modelling principle: interaction is the key element in software design

e modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

e mCRL2: supports flexible synchronization discipline (# CCS)

pu=-—|plplprlplerl,
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Parallel composition

Example P || @
DI
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Parallel composition

e parallel p || g: interleaves and synchronises the actions of both
processes.

e synchronisation p | g: synchronises the first actions of p and g and
combines the remainder of p with g with ||, cf axiom:

(a.p) [ (b.g) ~ (a] b).(p Il q)

e left merge p||g: executes a first action of p and thereafter combines
the remainder of p with g with ||.
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Parallel composition

A semantic parentesis

Lemma: There is no sound and complete finite axiomatisation for this
process algebra with || modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

o left merge: ||

e synchronous product: |

such that

[Pt~ (plt+tlp)+p]t]
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Interaction

Communication I'¢(p) (com)

e applies a communication function C forcing action synchronization
and renaming to a new action:

al--lan = ¢

e data parameters are retained in action c, e.g.

[ alb—cy(a(8) | b(8)) = c(8)
alp—cy(a(12) | b(8)) = a(12) | b(8)
[ alb—cy(a(8) | a(12) [ b(8)) = a(12) | ¢(8)

e left hand-sides in C must be disjoint: e.g., {a|b— c,a|d — j}is
not allowed
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Interface control

Restriction: Vg(p) (allow)

e specifies which multiactions from a non-empty multiset of action
names are allowed to occur

o disregards the data parameters of the multiactions
Vid,blc3(d(12) +a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)
e 7 is always allowed to occur

Discuss: V{XJ}(r{a|c_>x,b\d—>y}(a'b | c.d))
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Interface control

Block: dg(p) (block)

e specifies which multiactions from a set of action names are not
allowed to occur

e disregards the data parameters of the multiactions
Oqpy(d(12) + a(8) + (b(false,4) | c)) = d(12) + a(8)

o the effect is that of renaming to §

e 7 cannot be blocked
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Interaction

Example 0y, s,((MMs|n—e} (P || Q))

ry S? ro S
o Q
C2

Corresponding LTS:
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Interaction

Enforce communication

* Vi (Mapoer(p))
® 0125} (Malp—cy(P))

Data
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Interface control

Renaming pu(p) (rename)

® renames actions in p according to a mapping M

e also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

Otd—ny(d(12) + s(8) | d(false) + d.a.d(T7))
= h(12) + s(8) | h(false) + h.a.h(7)

e 7 cannot be renamed
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Interface control

Hiding 74(p) (hide)

e hides (or renames to 7) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

e disregards the data parameters

7143 (d(12) + s(8) | d(false) + h.a.d(7))
= 7+58)| 7+ har = 7+5(8)+ hart

e 7 and J cannot be renamed
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Example

New buffers from old

act inn,outt,ia,ib,o0a,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oalib -> c}, BufferA || BufferB));

init hide({c}, 8);
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Data types

e Equalities: equality, inequality, conditional (if (-,-,-))

e Basic types: booleans, naturals, reals, integers, ... with the usual
operators

e Sets, multisets, sequences ... with the usual operators
e Function definition, including the A-notation

e Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort

cons

map

var

eqn

S, A;
s,t:S, b:set(d);

f: S xS ->A4;
c: A;

x:S;

f(x,s) = s;

Data
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Signatures and definitions

A full functional language ...

sort

map

var

eqn

BTree = struct leaf(Pos) | node(BTree, BTree);
flatten: BTree -> List(Pos);
n:Pos, t,r:BTree;

flatten(leaf(n))

= [n];
flatten(node(t,r)) =

flatten(t) ++ flatten(r);

Data
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Processes with data

Why?

e Precise modeling of real-life systems

e Data allows for finite specifications of infinite systems

How?

e data and processes parametrized
e summation over data types: > s(n)

e processes conditional on data: b — pogq
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Examples

A counter

act up, down;
setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)
+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos. (setcounter(m) .Ctr(m))

init Ctr(345);

Data
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc  X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Mini-project: Part 1

Aim: becoming proficient in process modelling

e Choose examples from the exercises sheets

e Model and simulate in mCRL2

To follow

e Specify relevant properties in a process logic
e Verify them in mCRL2

e Investigate other features of mCRL2 (e.g., time, semantics, ...)
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