Modal logic for concurrent processes: the μ -calculus

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

8 May, 2013

(ロ) (御) (唐) (唐) (唐) 2000

KORK ERKER ADE YOUR

Is Hennessy-Milner logic expressive enough?

Is Hennessy-Milner logic expressive enough?

- It cannot detect deadlock in an arbitrary process
- or general safety: all reachable states verify ϕ
- or general liveness: there is a reachable states which verifies ϕ
- \bullet ...
- ... essentially because

formulas in cannot see deeper than their modal depth

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Is Hennessy-Milner logic expressive enough?

Example

 $\phi =$ a taxi eventually returns to its Central

$$
\phi \;=\; \langle {\mathit{reg}} \rangle {\mathit{true}} \vee \langle - \rangle \langle {\mathit{reg}} \rangle {\mathit{true}} \vee \langle - \rangle \langle - \rangle \langle {\mathit{reg}} \rangle {\mathit{true}} \vee \langle - \rangle \langle - \rangle \langle {\mathit{reg}} \rangle {\mathit{true}} \vee \; ...
$$

[Motivation](#page-1-0) Andrew Modal μ **[-calculus](#page-6-0) [Examples](#page-24-0)** Examples μ [-calculus in mCRL2](#page-40-0)

Revisiting Hennessy-Milner logic

Adding regular expressions

ie, with regular expressions within modalities

$$
\rho ::= \epsilon \mid \alpha \mid \rho.\rho \mid \rho + \rho \mid \rho^* \mid \rho^*
$$

where

- α is an action formula and ϵ is the empty word
- concatenation $\rho.\rho$, choice $\rho + \rho$ and closures ρ^* and ρ^+

Laws

$$
\langle \rho_1 + \rho_2 \rangle \phi = \langle \rho_1 \rangle \phi \vee \langle \rho_2 \rangle \phi
$$

\n
$$
[\rho_1 + \rho_2] \phi = [\rho_1] \phi \wedge [\rho_2] \phi
$$

\n
$$
\langle \rho_1 \cdot \rho_2 \rangle \phi = \langle \rho_1 \rangle \langle \rho_2 \rangle \phi
$$

\n
$$
[\rho_1 \cdot \rho_2] \phi = [\rho_1] [\rho_2] \phi
$$

KORKA SERKER ORA

Revisiting Hennessy-Milner logic

Examples of properties

- $\langle \epsilon \rangle \phi = [\epsilon] \phi = \phi$
- $\langle a.a.b \rangle \phi = \langle a \rangle \langle a \rangle \langle b \rangle \phi$
- $\langle a.b + g.d \rangle \phi$

Safety

- [−[∗]]φ
- it is impossible to do two consecutive enter actions without a leave action in between:

[-*.enter. - leave^{*}.enter]false

• absence of deadlock: [-*] \langle ->true

KORKA SERKER ORA

Revisiting Hennessy-Milner logic

Examples of properties

Liveness

- $\bullet \ \langle -\rangle \phi$
- after sending a message, it can eventually be received: [send] \langle -*.receive \rangle true
- after a send a receive is possible as long as an exception does not happen:

[send. – excp^{*}] \langle -^{*}.receive)true

KORK ERKER ADE YOUR

The modal μ -calculus

- modalities with regular expressions are not enough in general
- ... but correspond to a subset of the modal μ -calculus [Kozen83]

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

 ϕ ::= X | true | false | ¬ ϕ | $\phi \wedge \phi$ | $\phi \vee \phi$ | $\phi \rightarrow \phi$ | $\langle a \rangle \phi$ | [a] ϕ | $\mu X \cdot \phi$ | $\nu X \cdot \phi$

KORK ERKER ADE YOUR

The modal μ -calculus

The modal μ -calculus (intuition)

- μX . ϕ is valid for all those states in the smallest set X that satisfies the equation $X = \phi$ (finite paths, liveness)
- νX . ϕ is valid for the states in the largest set X that satisfies the equation $X = \phi$ (infinite paths, safety)

Warning

In order to be sure that a fixed point exists, X must occur positively in the formula, ie preceded by an even number of negations.

KORK ERKER ADE YOUR

Temporal properties as limits

Example

$$
A \triangleq \sum_{i\geq 0} A_i \quad \text{with} \quad A_0 \triangleq \mathbf{0} \in A_{i+1} \triangleq a.A_i
$$

$$
A' \triangleq A + D \quad \text{with} \quad D \triangleq a.D
$$

• $A \nsim A'$

- \bullet but there is no modal formula in to distinguish A from A'
- notice $A' \models \langle a \rangle^{i+1}$ true which A_i fails
- a distinguishing formula would require infinite conjunction
- what we want to express is the possibility of doing a in the long run

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Temporal properties as limits

idea: introduce recursion in formulas

$$
X \triangleq \langle a \rangle X
$$

meaning?

• the recursive formula is interpreted as a fixed point of function

 $\|\langle a \rangle\|$

in $\mathcal{P}\mathbb{P}$

• i.e., the solutions, $S \subseteq \mathbb{P}$ such that of

 $S = ||\langle a \rangle||(S)$

• how do we solve this equation?

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Solving equations ...

over natural numbers

- $x = 3x$ one solution $(x = 0)$
- $x = 1 + x$ no solutions
	- $x = 1x$ many solutions (every natural x)

over sets of integers

$$
x = \{22\} \cap x \text{ one solution } (x = \{22\})
$$

$$
x = \mathbf{N} \setminus x \text{ no solutions}
$$

$$
x = \{22\} \cup x \text{ many solutions (every } x \text{ st } \{22\} \subseteq x)
$$

KORKA SERKER ORA

Solving equations ...

In general, for a monotonic function f , i.e.

$$
X \subseteq Y \;\Rightarrow\; f X \subseteq f Y
$$

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

• unique maximal fixed point:

$$
\nu_f = \bigcup \{ X \in \mathcal{P} \mathbb{P} \, | \, X \subseteq f X \}
$$

• unique minimal fixed point:

$$
\mu_f = \bigcap \{ X \in \mathcal{P} \mathbb{P} \mid f X \subseteq X \}
$$

• moreover the space of its solutions forms a complete lattice

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Back to the example ...

```
S \in \mathcal{P} \mathbb{P} is a pre-fixed point of \| \langle a \rangle \|iff
```
 $\|\langle a \rangle \| (S) \subseteq S$

Recalling,

$$
\langle a \rangle \langle s \rangle = \{ E \in \mathbb{P} \mid \exists_{E' \in S} \cdot E \stackrel{a}{\longrightarrow} E' \}
$$

the set of sets of processes we are interested in is

$$
\begin{aligned} \mathsf{Pre} &= \{ S \subseteq \mathbb{P} \, | \, \{ E \in \mathbb{P} \, | \, \exists_{E' \in S} \, . \, E \xrightarrow{a} E' \} \subseteq S \} \\ &= \{ S \subseteq \mathbb{P} \, | \, \forall_{Z \in \mathbb{P}} \, . \, (Z \in \{ E \in \mathbb{P} \, | \, \exists_{E' \in S} \, . \, E \xrightarrow{a} E' \} \Rightarrow Z \in S) \} \\ &= \{ S \subseteq \mathbb{P} \, | \, \forall_{E \in \mathbb{P}} \, . \, ((\exists_{E' \in S} \, . \, E \xrightarrow{a} E') \Rightarrow E \in S) \} \end{aligned}
$$

which can be characterized by predicate

$$
(\mathsf{PRE}) \qquad (\exists_{E' \in \mathcal{S}} \, . \, E \stackrel{a}{\longrightarrow} E') \Rightarrow E \in \mathcal{S} \qquad \text{(for all } E \in \mathbb{P})
$$

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

Back to the example ...

The set of pre-fixed points of

 $\|\langle a \rangle \|$

is

$$
\begin{aligned} \mathsf{Pre} &= \{ S \subseteq \mathbb{P} \, | \, \|\langle \mathsf{a} \rangle\| (S) \subseteq S \} \\ &= \{ S \subseteq \mathbb{P} \, | \, \forall_{E \in \mathbb{P}} \, . \, \left((\exists_{E' \in S} \, . \, E \stackrel{\mathsf{a}}{\longrightarrow} E') \Rightarrow E \in S \right) \} \end{aligned}
$$

• Clearly,
$$
\{A \triangleq a.A\} \in \text{Pre}
$$

• but $\emptyset \in$ Pre as well

Therefore, its least solution is

$$
\bigcap \mathsf{Pre}~=~\emptyset
$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the least solution of the equation leads us to equate it to false

... but there is another possibility ... $S \in \mathcal{P} \mathbb{P}$ is a post-fixed point of

$\|\langle a \rangle \|$

iff

 $S \subseteq ||\langle a \rangle||(S)$

leading to the following set of post-fixed points

$$
\begin{aligned}\n\text{Post} &= \{ S \subseteq \mathbb{P} \mid S \subseteq \{ E \in \mathbb{P} \mid \exists_{E' \in S} \, . \, E \stackrel{a}{\longrightarrow} E' \} \} \\
&= \{ S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} \, . \, (Z \in S \Rightarrow Z \in \{ E \in \mathbb{P} \mid \exists_{E' \in S} \, . \, E \stackrel{a}{\longrightarrow} E' \}) \} \\
&= \{ S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} \, . \, (E \in S \Rightarrow \exists_{E' \in S} \, . \, E \stackrel{a}{\longrightarrow} E') \} \n\end{aligned}
$$

(POST) If $E \in S$ then $E \stackrel{a}{\longrightarrow} E'$ for some E (for all $E \in P$)

• i.e., if $E \in S$ it can perform a and this ability is maintained in its continuation**KORK ERKER ADE YOUR**

KORK ERKER ADE YOUR

... but there is another possibility ...

- i.e., if $E \in S$ it can perform a and this ability is maintained in its continuation
- the greatest subset of $\mathbb P$ verifying this condition is the set of processes with at least an infinite computation

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the greatest solution of the equation characterizes the property occurrence of a is possible

KORK EX KEY CRACK

The general case

- The meaning (i.e., set of processes) of a formula $X \triangleq \phi X$ where X occurs free in ϕ
- is a solution of equation

 $X = f(X)$ with $f(S) = ||{S/X}{\phi}||$

in $\mathcal{P}\mathbb{P}$, where ||.|| is extended to formulae with variables by $||X|| = X$

The general case

The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If $E \in f(S)$ then $E \in S$

to be denoted by

 $\mu X \cdot \phi$

• greatest solution: the union of all S such that

(POST) If $E \in S$ then $E \in f(S)$

to be denoted by

 νX . ϕ

In the previous example:

 $\nu X \cdot \langle a \rangle$ true $\mu X \cdot \langle a \rangle$ true

K ロ ▶ K @ ▶ K 할 X X 할 X → 할 X → 9 Q Q ^

KORK ERKER ADE YOUR

The general case

The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If $E \in f(S)$ then $E \in S$

to be denoted by

 $\mu X \cdot \phi$

• greatest solution: the union of all S such that

(POST) If $E \in S$ then $E \in f(S)$

to be denoted by

 νX . ϕ

In the previous example:

 $\nu X \cdot \langle a \rangle$ true $\mu X \cdot \langle a \rangle$ true

KORKA SERKER ORA

The modal μ -calculus: syntax

... Hennessy-Milner $+$ recursion (i.e. fixed points):

 ϕ ::= $X \mid \phi_1 \wedge \phi_2 \mid \phi_1 \vee \phi_2 \mid \langle K \rangle \phi \mid [K] \phi \mid \mu X \cdot \phi \mid \nu X \cdot \phi$

where $K \subset Act$ and X is a set of propositional variables

• Note that

true
$$
\stackrel{\text{abv}}{=} \nu X . X
$$
 and false $\stackrel{\text{abv}}{=} \mu X . X$

4 D > 4 P + 4 B + 4 B + B + 9 Q O

The modal μ -calculus: denotational semantics

• Presence of variables requires models parametric on valuations:

$$
V:X\longrightarrow \mathcal{P}\mathbb{P}
$$

• Then,

$$
\|X\|_{V} = V(X)
$$

\n
$$
\|\phi_1 \wedge \phi_2\|_{V} = \|\phi_1\|_{V} \cap \|\phi_2\|_{V}
$$

\n
$$
\|\phi_1 \vee \phi_2\|_{V} = \|\phi_1\|_{V} \cup \|\phi_2\|_{V}
$$

\n
$$
\|[K]\phi\|_{V} = \|[K]\|(\|\phi\|_{V})
$$

\n
$$
\|\langle K \rangle \phi\|_{V} = \|\langle K \rangle\|(\|\phi\|_{V})
$$

• and add

 $\|\nu X \cdot \phi\|_V = \bigcup \{S \in \mathbb{P} \mid S \subseteq \|\{S/X\}\phi\|_V\}$ $\|\mu X \cdot \phi\|_V = \bigcap \{S \in \mathbb{P} \mid \| \{S/X\} \phi \|_V \subseteq S\}$

イロト イ御 トイミト イミト ニミー りんぴ

where

$$
\| [K] \| X = \{ F \in \mathbb{P} \mid \text{if } F \stackrel{a}{\longrightarrow} F' \land a \in K \text{ then } F' \in X \}
$$

$$
\| \langle K \rangle \| X = \{ F \in \mathbb{P} \mid \exists_{F' \in X, a \in K} . F \stackrel{a}{\longrightarrow} F' \}
$$

KORK ERKER ADE YOUR

Modal μ -calculus

Intuition

- look at modal formulas as set-theoretic combinators
- introduce mechanisms to specify their fixed points
- introduced as a generalisation of Hennessy-Milner logic for processes to capture enduring properties.

References

- Original reference: Results on the propositional μ -calculus, D. Kozen, 1983.
- Introductory text: Modal and temporal logics for processes, C. Stirling, 1996

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

The modal μ -calculus [Kozen, 1983] is

- decidable
- strictly more expressive than PDL and CTL^*

Moreover

• The correspondence theorem of the induced temporal logic with bisimilarity is kept

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 → 9 Q @

Example 1: $X \triangleq \phi \vee \langle a \rangle X$

Look for fixed points of

 $f(X) \triangleq ||\phi|| \cup ||\langle a \rangle||(X)$

KORKA SERKER ORA

Example 1: $X \triangleq \phi \vee \langle a \rangle X$

(PRE) If
$$
E \in f(X)
$$
 then $E \in X$

\n⇒ If $E \in (\|\phi\| \cup \|\langle a \rangle\| \langle X \rangle)$ then $E \in X$

\n⇒ If $E \in \{F \mid F \models \phi\} \cup \{F \in \mathbb{P} \mid \exists_{F' \in X} \cdot F \xrightarrow{a} F'\}$ then $E \in X$

\n⇒ if $E \models \phi \lor \exists_{E' \in X} \cdot E \xrightarrow{a} E'$ then $E \in X$

The smallest set of processes verifying this condition is composed of processes with at least a computation along which a can occur until ϕ holds. Taking its intersection, we end up with processes in which ϕ holds in a finite number of steps.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Example 1: $X \triangleq \phi \vee \langle a \rangle X$

(POST) If
$$
E \in X
$$
 then $E \in f(X)$

\n \Leftrightarrow If $E \in X$ then $E \in (\|\phi\| \cup \|\langle a \rangle\| \langle X \rangle)$

\n \Leftrightarrow If $E \in X$ then $E \in \{F \mid F \models \phi\} \cup \{F \in X \mid \exists_{F' \in X} \cdot F \xrightarrow{a} F'\}$

\n \Leftrightarrow If $E \in X$ then $E \models \phi \lor \exists_{E' \in X} \cdot E \xrightarrow{a} E'$

The greatest fixed point also includes processes which keep the possibility of doing a without ever reaching a state where ϕ holds.

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Example 1: $X \triangleq \phi \vee \langle a \rangle X$

• strong until:

$$
\mu X.\phi \,\vee\, \langle a \rangle X
$$

• weak until

$$
\nu X.\phi \vee \langle a \rangle X
$$

Relevant particular cases:

 \bullet ϕ holds after internal activity:

$$
\mu X.\phi \,\vee\, \langle \tau \rangle X
$$

• ϕ holds in a finite number of steps

$$
\mu X.\phi \vee \langle - \rangle X
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Example 2: $X \triangleq \phi \wedge \langle a \rangle X$

(PRE) If
$$
E \models \phi \land \exists_{E' \in X} \cdot E \stackrel{a}{\longrightarrow} E'
$$
 then $E \in X$

implies that

$$
\mu X \cdot \phi \land \langle a \rangle X \Leftrightarrow \text{false}
$$

(POST) If $E \in X$ then $E \models \phi \land \exists_{E' \in X} \cdot E \stackrel{a}{\longrightarrow} E'$

implies that

$$
\nu X.\,\phi\,\wedge\,\langle{\sf a}\rangle X
$$

denote all processes which verify ϕ and have an infinite computation

KORK ERKER ADE YOUR

Example 2: $X \triangleq \phi \wedge \langle a \rangle X$

Variant:

 \bullet ϕ holds along a finite or infinite a-computation:

 $\nu X \cdot \phi \wedge (\langle a \rangle X \vee [a]$ false)

In general:

• weak safety:

$$
\nu X.\phi\,\wedge\,(\langle\mathsf{K}\rangle X\vee[\mathsf{K}] \mathsf{false})
$$

• weak safety, for $K = Act$:

 $\nu X \cdot \phi \wedge (\langle - \rangle X \vee \Box$ false)

[Motivation](#page-1-0) $\text{Mod}_{\mathcal{U}}$ [-calculus](#page-6-0) $\text{Mod}_{\mathcal{U}}$ -calculus $\text{Example}_{\mathcal{U}}$ [Examples](#page-24-0) μ [-calculus in mCRL2](#page-40-0)

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Example 3:
$$
X \triangleq [-]X
$$

(POST) If $E \in X$ then $E \in ||[-]||(X)$ \Leftrightarrow If $E \in X$ then (if $E \stackrel{x}{\longrightarrow} E'$ and $x \in Act$ then $E' \in X$) implies νX . [–] $X \Leftrightarrow$ true

(PRE) If (if $E \stackrel{x}{\longrightarrow} E'$ and $x \in Act$ then $E' \in X$) then $E \in X$ implies μX . [-]X represent finite processes (why?)

KORK ERKER ADE YOUR

Safety and liveness

• weak liveness:

$$
\mu X.\phi \vee \langle - \rangle X
$$

• strong safety

 $\nu X \cdot \psi \wedge [-]X$

making $\psi = \neg \phi$ both properties are dual:

- there is at least a computation reaching a state s such that $s \models \phi$
- all states s reached along all computations maintain ϕ , ie, $s \models \neg \phi$

Safety and liveness

Qualifiers weak and strong refer to a quatification over computations

• weak liveness:

$$
\mu X.\phi \,\vee\, \langle - \rangle X
$$

(corresponds to Ctl formula E F ϕ)

• strong safety

$$
\nu X \cdot \psi \wedge [-]X
$$

(corresponds to Ctl formula A G ψ)

cf, liner time vs branching time

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

KORK STRATER STRAKES

$$
\neg(\mu X \cdot \phi) = \nu X \cdot \neg \phi
$$

$$
\neg(\nu X \cdot \phi) = \mu X \cdot \neg \phi
$$

Example:

• divergence:

 νX . $\langle \tau \rangle X$

• convergence $(=$ all non observable behaviour is finite)

 $\neg(\nu X \cdot \langle \tau \rangle X) = \mu X \cdot \neg(\langle \tau \rangle X) = \mu X \cdot [\tau] X$

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Safety and liveness

• weak safety:

$$
\nu X\,.\,\phi\wedge(\langle-\rangle X\vee[-]\mathsf{false})
$$

(there is a computation along which ϕ holds)

• strong liveness

$$
\mu X\,.\,\neg\phi\vee([-]X\wedge\langle-\rangle\mathsf{true})
$$

(a state where the complement of ϕ holds can be finitely reached)

KORK ERKER ADE YOUR

Conditional properties

 ϕ_1 = After collecting a passenger *(icr)*, the taxi drops him at destination *(fcr)* Second part of ϕ_1 is strong liveness:

$$
\mu X\,.\,[-\mathit{fcr}]X\wedge\langle-\rangle\mathsf{true}
$$

holding only after icr. Is it enough to write:

$$
[icr](\mu X . [-\textit{fcr}]X \wedge \langle - \rangle \text{true})
$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

 νY . [icr](μX . [−fcr]X \wedge (−)true) \wedge [−]Y

KORK ERKER ADE YOUR

Conditional properties

 ϕ_1 = After collecting a passenger *(icr)*, the taxi drops him at destination *(fcr)* Second part of ϕ_1 is strong liveness:

$$
\mu X\,.\,[-\mathit{fcr}]X\wedge\langle-\rangle\mathsf{true}
$$

holding only after icr. Is it enough to write:

$$
[icr](\mu X. [-fcr]X \wedge \langle -\rangle \mathsf{true})
$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

$$
\nu Y . [icr] (\mu X . [-fcr] X \wedge \langle - \rangle true) \wedge [-] Y
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ... 할 ... 900

Conditional properties

The previous example is conditional liveness but one can also have

• conditional safety:

$$
\nu Y.(\neg\phi\lor(\phi\land\nu X.\,\psi\land[-]X))\land[-]Y
$$

(whenever ϕ holds, ψ cannot cease to hold)

KORK ERKER ADE YOUR

Cyclic properties

$$
\phi = \text{every second action is out}
$$

is expressed by

$$
\nu X . [-]([-out] \text{false} \land [-]X)
$$

 $\phi = \omega t$ follows in, but other actions can occur in between

 νX . [out]false \wedge [in](μY . [in]false \wedge [out] $X \wedge$ [−out]Y) \wedge [−in]X

Note that the use of least fixed points imposes that the amount of computation between in and out is finite

K ロ ▶ K @ ▶ K 할 > K 할 > 1 할 > 1 이익어

Cyclic properties

 $\phi =$ a state in which *in* can occur, can be reached an infinite number of times

$$
\nu X\,.\, \mu Y\,.\,(\langle \textit{in} \rangle \textsf{true} \vee \langle - \rangle \,Y) \;\wedge\; ([-]X \;\wedge\; \langle - \rangle \textsf{true})
$$

 $\phi = i\pi$ occurs an infinite number of times

$$
\nu X \,.\, \mu Y \,.\,[-in] Y \wedge [-] X \wedge \langle - \rangle \mathrm{true}
$$

 $\phi = in$ occurs an finite number of times

$$
\mu X.\nu Y. [-in] Y \wedge [in] X
$$

μ -calculus in mCRL2

The verification problem

- Given a specification of the system's behaviour is in mCRL2
- and the system's requirements are specified as properties in a temporal logic,
- a model checking algorithm decides whether the property holds for the model: the property can be verified or refuted;
- sometimes, witnesses or counter examples can be provided

Which logic?

 μ -calculus with data, time and regular expressions

KORK ERKER ADE YOUR

KORK ERKER ADE YOUR

Example: The dining philosophers problem

Formulas to verify | Demo |

• No deadlock (every philosopher holds a left fork and waits for a right fork (or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

• there is no starvation: for all reachable states it should be possible to eventually perform an eat(p) for each possible value of p:Phil.

 $[true*](for all p:Phi. m u Y. ([leat(p)]Y \& x \le true \times true))$

[Motivation](#page-1-0) μ -**calculus in mCRL2**

KORK ERKER ADE YOUR

Pragmatics

Strategies to deal with infinite models and specifications

- A specification of the system's behaviour is written in mCRL2 $(x.mcr12)$
- The specification is converted to a stricter format called Linear Process Specification (x.lps)
- In this format the specification can be transformed and simulated
- In particular a Labelled Transition System (x.1ts) can be generated, simulated and analysed through symbolic model checking (boolean equation solvers)