
Modal logic for concurrent processes

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

24 April, 2013

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?

• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL22)

• The modal µ-calculus (offered in mCRL2)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

The language

Syntax

φ ::= p | true | false | ¬φ | φ1 ∧ φ2 | φ1→ φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation. The

signature of the basic modal language is determined by sets PROP of

propositional symbols (typically assumed to be denumerably infinite) and

MOD of modality symbols.

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ♦φ and �φ

• the language has some redundancy: in particular modal connectives
are dual (as qualifiers are in first-order logic): [m]φ is equivalent to
¬〈m〉¬φ

• define modal depth in a formula φ, denoted by mdφ as the
maximum level of nesting of modalities in φ

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

The language

Semantics
A model for the language is a pair M = 〈F,V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W , one for each modality symbol m ∈ MOD.
Elements of W are called points, states, worlds or simply vertices in
the directed graphs corresponding to the modality symbols.

• V : PROP −→ P(W) is a valuation.

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

The language

Safistaction: for a model M and a point w

M,w |= true

M,w 6|= false

M,w |= p iff w ∈ V (p)

M,w |= ¬φ iff M,w 6|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1→ φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st wRmv and M, v |= φ

M,w |= [m]φ iff for all v ∈W st wRmv and M, v |= φ

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

The language

Safistaction
A formula φ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied in M (M |= φ) if it is satisfied at all points in M

• valid (|= φ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= φ) if for all
models M and all points w , if M,w |= Γ then M,w |= φ

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Examples

Temporal logic

• W is a set of instants

• there is a unique modality corresponding to the transitive closure of
the next-time relation

• origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

p |= [K]φ iff ∀
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ1 = This applies only to cars already on service

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ3 = On detecting an emergence the taxi becomes inactive

• φ4 = A car on service is not inactive

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Examples

Process logic: The taxi network example

• φ0 = 〈rec , alo〉true

• φ1 = [onservice]〈rec , alo〉true or
φ1 = [onservice]φ0

• φ2 = [alo]〈rec〉〈plan〉true

• φ3 = [sos][−]false

• φ4 = [onservice]〈−〉true

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Process logic: typical properties

• inevitability of a: 〈−〉true ∧ [−a]false

• progress: 〈−〉true

• deadlock or termination: [−]false

• what about
〈−〉false and [−]true ?

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Hennessy-Milner logic

... propositional logic with action modalities

Syntax

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K]φ

Semantics: E |= φ

E |= true

E 6|= false

E |= φ1 ∧ φ2 iff E |= φ1 ∧ E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 ∨ E |= φ2

E |= 〈K 〉φ iff ∃
F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ

E |= [K]φ iff ∀
F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi))

• Sem |= 〈get〉true holds because

∃
F∈{Sem′|Sem get−→Sem′}

. F |= true

with F = put.Sem.

• However, Sem |= [put]false also holds, because

T = {Sem′ | Sem
put−→ Sem′} = ∅.

Hence ∀F∈T . F |= false becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ]false.

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi))

• Afterwards, S can engage in any of the critical events c1, c2, ..., ci :
[τ]〈c1, c2, ..., ci 〉true

• After the semaphore initial synchronization and the occurrence of cj
in Pj , a new synchronization becomes inevitable:
S |= [τ][cj](〈−〉true ∧ [−τ]false)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Exercise

Verify:

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉¬φ
〈a〉false = false

[a]true = true

〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a](φ ∧ ψ) = [a]φ ∧ [a]ψ

〈a〉φ ∧ [a]ψ ⇒ 〈a〉(φ ∧ ψ)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

||[K]|| and ||〈K 〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[K]||(X) = {F ∈ P | if F
a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||(X) = {F ∈ P | ∃F ′∈X ,a∈K . F
a−→ F ′}

Note
These combinators perform a reduction to the previous state indexed by
actions in K

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

||[K]|| and ||〈K 〉||

Example

q1

a

~~

a

m

a

��
q2

c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

A denotational semantics

E |= φ iff E ∈ ||φ||

Example: 0 |= [−]false
because

||[−]false|| = ||[−]||(||false||)
= ||[−]||(∅)

= {F ∈ P | if F
x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {0}

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

A denotational semantics

E |= φ iif E ∈ ||φ||

Example: ?? |= 〈−〉true
because

||〈−〉true|| = ||〈−〉||(||true||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a−→ F ′}

= P \ {0}

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

A denotational semantics

Complement
Any property φ divides P into two disjoint sets:

||φ|| and P− ||φ||

The characteristic formula of the complement of ||φ|| is φc:

||φc|| = P− ||φ||

where φc is defined inductively on the formulae structure:

truec = false falsec = true

(φ1 ∧ φ2)c = φc
1 ∨ φc

2

(φ1 ∨ φ2)c = φc
1 ∧ φc

2

(〈a〉φ)c = [a]φc

... but negation is not explicitly introduced in the logic.

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X)

A � A′ but A' A′

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X)

A � A′ but A' A′

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X)

A � A′ but A' A′

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act

Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof

⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction

	Modal languages
	Hennessy-Milner logic
	Modal equivalence and bissimulation

