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Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Which logic?

• Modal logic over transition systems

• The Hennessy-Milner logic (offered in mCRL22)

• The modal µ-calculus (offered in mCRL2)
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The language

Syntax

φ ::= p | true | false | ¬φ | φ1 ∧ φ2 | φ1→ φ2 | 〈m〉φ | [m]φ

where p ∈ PROP and m ∈ MOD

Disjunction (∨) and equivalence (↔) are defined by abbreviation. The

signature of the basic modal language is determined by sets PROP of

propositional symbols (typically assumed to be denumerably infinite) and

MOD of modality symbols.
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The language

Notes

• if there is only one modality in the signature (i.e., MOD is a
singleton), write simply ♦φ and �φ

• the language has some redundancy: in particular modal connectives
are dual (as qualifiers are in first-order logic): [m]φ is equivalent to
¬〈m〉¬φ

• define modal depth in a formula φ, denoted by mdφ as the
maximum level of nesting of modalities in φ
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The language

Semantics
A model for the language is a pair M = 〈F,V 〉, where

• F = 〈W , {Rm}m∈MOD〉
is a Kripke frame, ie, a non empty set W and a family of binary
relations over W , one for each modality symbol m ∈ MOD.
Elements of W are called points, states, worlds or simply vertices in
the directed graphs corresponding to the modality symbols.

• V : PROP −→ P(W ) is a valuation.
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The language

Safistaction: for a model M and a point w

M,w |= true

M,w 6|= false

M,w |= p iff w ∈ V (p)

M,w |= ¬φ iff M,w 6|= φ

M,w |= φ1 ∧ φ2 iff M,w |= φ1 and M,w |= φ2

M,w |= φ1→ φ2 iff M,w 6|= φ1 or M,w |= φ2

M,w |= 〈m〉φ iff there exists v ∈W st wRmv and M, v |= φ

M,w |= [m]φ iff for all v ∈W st wRmv and M, v |= φ
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The language

Safistaction
A formula φ is

• satisfiable in a model M if it is satisfied at some point of M

• globally satisfied in M (M |= φ) if it is satisfied at all points in M

• valid (|= φ) if it is globally satisfied in all models

• a semantic consequence of a set of formulas Γ (Γ |= φ) if for all
models M and all points w , if M,w |= Γ then M,w |= φ
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Examples

Temporal logic

• W is a set of instants

• there is a unique modality corresponding to the transitive closure of
the next-time relation

• origin: Arthur Prior, an attempt to deal with temporal information
from the inside, capturing the situated nature of our experience and
the context-dependent way we talk about it
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Examples

Process logic (Hennessy-Milner logic)

• PROP = ∅

• W = P is a set of states, typically process terms, in a labelled
transition system

• each subset K ⊆ Act of actions generates a modality corresponding
to transitions labelled by an element of K

Assuming the underlying LTS F = 〈P, {p K−→ p′ | K ⊆ Act}〉 as the
modal frame, satisfaction is abbreviated as

p |= 〈K 〉φ iff ∃
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ

p |= [K ]φ iff ∀
q∈{p′|p a−→p′ ∧ a∈K} . q |= φ
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Examples

Process logic: The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ1 = This applies only to cars already on service

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ3 = On detecting an emergence the taxi becomes inactive

• φ4 = A car on service is not inactive
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Examples

Process logic: The taxi network example

• φ0 = 〈rec , alo〉true

• φ1 = [onservice]〈rec , alo〉true or
φ1 = [onservice]φ0

• φ2 = [alo]〈rec〉〈plan〉true

• φ3 = [sos][−]false

• φ4 = [onservice]〈−〉true



Modal languages Hennessy-Milner logic Modal equivalence and bissimulation

Process logic: typical properties

• inevitability of a: 〈−〉true ∧ [−a]false

• progress: 〈−〉true

• deadlock or termination: [−]false

• what about
〈−〉false and [−]true ?

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph
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Hennessy-Milner logic

... propositional logic with action modalities

Syntax

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K ]φ

Semantics: E |= φ

E |= true

E 6|= false

E |= φ1 ∧ φ2 iff E |= φ1 ∧ E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 ∨ E |= φ2

E |= 〈K 〉φ iff ∃
F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ

E |= [K ]φ iff ∀
F∈{E ′|E a−→E ′ ∧ a∈K} . F |= φ
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Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi ))

• Sem |= 〈get〉true holds because

∃
F∈{Sem′|Sem get−→Sem′}

. F |= true

with F = put.Sem.

• However, Sem |= [put]false also holds, because

T = {Sem′ | Sem
put−→ Sem′} = ∅.

Hence ∀F∈T . F |= false becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ ]false.
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Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi ))

• Afterwards, S can engage in any of the critical events c1, c2, ..., ci :
[τ ]〈c1, c2, ..., ci 〉true

• After the semaphore initial synchronization and the occurrence of cj
in Pj , a new synchronization becomes inevitable:
S |= [τ ][cj ](〈−〉true ∧ [−τ ]false)
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Exercise

Verify:

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉¬φ
〈a〉false = false

[a]true = true

〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a](φ ∧ ψ) = [a]φ ∧ [a]ψ

〈a〉φ ∧ [a]ψ ⇒ 〈a〉(φ ∧ ψ)
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A denotational semantics

Idea: associate to each formula φ the set of processes that makes it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K ]φ|| = ||[K ]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)
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||[K ]|| and ||〈K 〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[K ]||(X ) = {F ∈ P | if F
a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||(X ) = {F ∈ P | ∃F ′∈X ,a∈K . F
a−→ F ′}

Note
These combinators perform a reduction to the previous state indexed by
actions in K
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||[K ]|| and ||〈K 〉||

Example

q1

a

~~

a

  

m

a

��
q2

c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}
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A denotational semantics

E |= φ iff E ∈ ||φ||

Example: 0 |= [−]false
because

||[−]false|| = ||[−]||(||false||)
= ||[−]||(∅)

= {F ∈ P | if F
x−→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {0}
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A denotational semantics

E |= φ iif E ∈ ||φ||

Example: ?? |= 〈−〉true
because

||〈−〉true|| = ||〈−〉||(||true||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a−→ F ′}

= P \ {0}
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A denotational semantics

Complement
Any property φ divides P into two disjoint sets:

||φ|| and P− ||φ||

The characteristic formula of the complement of ||φ|| is φc:

||φc|| = P− ||φ||

where φc is defined inductively on the formulae structure:

truec = false falsec = true

(φ1 ∧ φ2)c = φc
1 ∨ φc

2

(φ1 ∨ φ2)c = φc
1 ∧ φc

2

(〈a〉φ)c = [a]φc

... but negation is not explicitly introduced in the logic.
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Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)
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Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X )

A � A′ but A' A′
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | E a−→ F} is finite for every action a ∈ Act
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Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof

⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction
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