Bisimulation

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

2 March, 2012

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Simulation

the quest for a behavioural equality: able to identify states that cannot be distinguished by any realistic form of observation

Simulation

A state q simulates another state p if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

 $\begin{array}{l} \mbox{Definition} \\ \mbox{Given } \langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle \mbox{ and } \langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle \mbox{ over } N, \mbox{ relation} \\ R \subseteq S_1 \times S_2 \mbox{ is a simulation iff, for all } \langle p, q \rangle \in R \mbox{ and } a \in N, \end{array}$

Example

 $q_0 \lesssim p_0$ cf. $\{\langle q_0, p_0
angle, \langle q_1, p_1
angle, \langle q_4, p_1
angle, \langle q_2, p_2
angle, \langle q_3, p_3
angle\}$

(日)、

æ

Similarity

Definition

 $p \lesssim q \iff \langle \exists \ R \ :: \ R \text{ is a simulation and } \langle p,q \rangle \in R \rangle$

Lemma

The similarity relation is a preorder (ie, reflexive and transitive)

Bisimulation

Definition

Given $\langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a bisimulation iff both R and its converse R° are simulations. I.e., whenever $\langle p, q \rangle \in R$ and $a \in N$,

(1)
$$p \downarrow_1 \Leftrightarrow q \downarrow_2$$

(2.1) $p \xrightarrow{a}_1 p' \Rightarrow \langle \exists q' : q' \in S_2 : q \xrightarrow{a}_2 q' \land \langle p', q' \rangle \in R \rangle$
(2.1) $q \xrightarrow{a}_2 q' \Rightarrow \langle \exists p' : p' \in S_1 : p \xrightarrow{a}_1 p' \land \langle p', q' \rangle \in R \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Bisimulation

The Game characterization

Two players R and I discuss whether the transition structures are mutually corresponding

- *R* starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- R wins if I fails to find a corresponding match
- *I* wins if it replies to all moves from *R* and the game is in a configuration where all states have been visited or *R* can't move further. In this case is said that *I* has a wining strategy

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Bisimilarity

Definition

 $p \sim q \iff \langle \exists R :: R \text{ is a bisimulation and } \langle p, q \rangle \in R \rangle$

Lemma

- 1. The identity relation id is a bisimulation
- 2. The empty relation \perp is a bisimulation
- 3. The converse R° of a bisimulation is a bisimulation
- 4. The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
- 5. The $\bigcup_{i \in I} R_i$ of a family of bisimulations $\{R_i \mid i \in I\}$ is a bisimulation

Bisimilarity

Lemma

The bisimilarity relation is an equivalence relation

(ie, reflexive, symmetric and transitive)

Lemma

The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim .

Bisimilarity

Warning

The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

$$q_0 \lesssim p_0, \; p_0 \lesssim q_0 \;\;$$
 but $\;\; p_0
ot\sim q_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Notes

Similarity as the greatest simulation

$$\leq \triangleq \bigcup \{S \mid S \text{ is a simulation} \}$$

Bisimilarity as the greatest bisimulation

 $\sim \triangleq \bigcup \{ S \mid S \text{ is a bisimulation} \}$

cf relational translation of definitions \lesssim and \sim as greatest fix points (Tarski's theorem)