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mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org
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mCRL2: A toolset for process algebra

Our aim

• To use mCRL2 to animate CCS models and verify modal and
temporal properties

• To introduce a method and a language to describe software
architectures on top of mCRL2

This lecture provides an overview and a demo
Refer to recommended reading for semantics

and the toolset algorithms
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Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α ::= τ | a(d) | α | α

• actions may be parametric on data

• the structure 〈N , |, τ〉 forms an Abelian monoid
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Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N ,

p ::= α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data
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Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)
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Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports flexible synchronization discipline (6= CCS)

p ::= · · · | p ‖ p | p | p | pTp
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Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.
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Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t
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Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed
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Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,a|b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + (b(false, 4) | c)

• τ is always allowed to occur
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Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | c)) = d(12) + a(8)

• the effect is that of renaming to δ

• τ cannot be blocked
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Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed
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Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ and δ cannot be renamed
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Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);
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Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)
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Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;
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Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = t++r;
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Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q
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Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);
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Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);
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Overview

The verification problem

• Given a specification of the system’s behaviour is in mCRL2

• and the system’s requirements are specified as properties in a
temporal logic,

• a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted;

• sometimes, witnesses or counter examples can be provided

Which logic?

µ-calculus with data, time and regular expressions
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From modal logic ...
Hennessy-Milner logic

... propositional logic with action modalities

φ ::= true | false | ¬φ | φ ∧ φ | φ ∨ φ | 〈a〉φ | [a]φ

Laws

¬〈a〉φ = [a]¬φ
¬[a]φ = 〈a〉¬φ
〈a〉false = false

[a]true = true

〈a〉(φ ∨ ψ) = 〈a〉φ ∨ 〈a〉ψ
[a](φ ∧ ψ) = [a]φ ∧ [a]ψ

〈a〉φ ∧ [a]ψ ⇒ 〈a〉(φ ∧ ψ)
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From modal logic ...
Hennessy-Milner logic + regular expressions
ie, with regular expressions within modalities

ρ ::= ε | α | ρ.ρ | ρ+ ρ | ρ∗ | ρ+

where

• α is an action formula and ε is the empty word

• concatenation ρ.ρ, choice ρ+ ρ and closures ρ∗ and ρ+

Laws

〈ρ1 + ρ2〉φ = 〈ρ1〉φ ∨ 〈ρ2〉φ
[ρ1 + ρ2]φ = [ρ1]φ ∧ [ρ2]φ

〈ρ1.ρ2〉φ = 〈ρ1〉〈ρ2〉φ
[ρ1.ρ2]φ = [ρ1][ρ2]φ
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From modal logic ...

Action formulas

α ::= a1 | · · · | an | true | false | −α | α ∪ α | α ∩ α

where

• a1 | · · · | an is a set with this single multiaction

• true (universe), false (empty set)

• −α is the set complement

Modalities with action formulas:

〈α〉φ =
∨
a∈α
〈a〉φ [α]φ =

∧
a∈α

[a]φ
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... to temporal logic

Examples of properties

• 〈ε〉φ = [ε]φ = φ

• 〈a.a.b〉φ = 〈a〉〈a〉〈b〉φ

• 〈a.b + g .d〉φ

Safety

• [true∗]φ

• it is impossible to do two consecutive enter actions without a leave
action in between:
[true∗.enter .− leave∗.enter ]false

• absence of deadlock:
[true∗]〈true〉true
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... to temporal logic

Examples of properties

Liveness

• 〈true∗〉φ

• after sending a message, it can eventually be received:
[send ]〈true∗.receive〉true

• after a send a receive is possible as long as it has not happened:
[send .− receive∗]〈true∗.receive〉true
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... to temporal logic

The modal µ-calculus

• modalities with regular expressions are not enough in general

• ... but correspond to a subset of the modal µ-calculus [Kozen83]

Add explicit minimal/maximal fixed point operators to Hennessy- Milner logic

φ ::= X | true | false | ¬φ | φ∧φ | φ∨φ | φ⇒φ | 〈a〉φ | [a]φ | µX . φ | νX . φ
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... to temporal logic

The modal µ-calculus (intuition)

• µX . φ is valid for all those states in the smallest set X that satisfies
the equation X = φ (finite paths, liveness)

• νX . φ is valid for the states in the largest set X that satisfies the
equation X = φ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.
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... to temporal logic
Laws & Notes (but see the µ-calculus slides!)

µX . φ ⇒ νX . φ

and self-duals:

¬µX . φ = νX .¬φ
¬νX . φ = µX .¬φ

Translation of regular formulas with closure

〈R∗〉φ = µX . 〈R〉X ∨ φ
[R∗]φ = νX . [R]X ∧ φ
〈R+〉φ = 〈R〉〈R∗〉φ
[R+]φ = [R][R∗]φ
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Example: The dining philosophers problem

Formulas to verify Demo

• No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

• there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))
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Overview

Strategies to deal with infinite models and specifications

• A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

• The specification is converted to a stricter format called Linear
Process Specification (x.lps)

• In this format the specification can be transformed and simulated

• In particular a Labelled Transition System (x.lts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)
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Architecture

Alexander/Process Algebra for Parallel and Distributed Processing C6486 C004 Finals Page 110 2008-10-22 #14
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FIGURE 4.1: mCRL2 toolset.

An LPS contains a single process definition of the linear form:∗

proc P(x : D) =
∑

i∈I

∑

yi :Ei

ci(x, yi) → αi (x, yi) · P(gi(x, yi));

init P(d0);

Here, data expressions of the form d(x1, . . . , xn) contain at most free variables from
{x1, . . . , xn}, so d0 is a closed data expression. Furthermore, I is a finite index set,∑

i∈I pi is a shorthand for p1 + · · · + pn when I = {1, . . . , n} and n > 0, or δ when
n = 0, and for each i ∈ I :

• ci(x, yi) is a boolean expression representing a condition

• αi (x, yi) is a multiaction a1
i (f

1
i (x, yi)) | · · · | ani

i (f
ni
i (x, yi)), where f k

i (x, yi)

(for 1 ≤ k ≤ ni) representing the parameters of action name ak
i

• gi(x, yi) is an expression of sort D representing the next state of the process
definition P

∗ Here, for the sake of simplicity, we present an untimed version of the LPS which cannot terminate.
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Mini-project

Aim: becoming proficient in mCRL2

• Choose examples from the exercises sheets

• Model and simulate in mCRL2

• Specify relevant properties and test them

• ... within 2 weeks
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