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Introduction

From an Internet scripting language to a component integration
language and

A programming language for concurrency

Requirements for ...

• describe entities and their interactions

• model the passage of time

• allow birth and death of entities

• allow the construction (programming) of novel interactions

• support hierarchical composition
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Introduction

A typical scenario

Applications acquire data from services, compute over these data,
invoke yet other services with the results.
Additionally,

• invoke multiple services simultaneously for failure tolerance

• repeatedly poll a service

• ask a service to notify the user when it acquires the
appropriate data.

• download a service and invoke it locally.

• ...
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Orc — orc.csres.utexas.edu/

A process calculus for service orchestration

• A model for expressing coordination of independent services
using the following rationale: a Orc expression invokes
multiple (external or local) services to achieve a goal while
managing time-outs, priorities, and failures of services or
communications;

• assuming the form of a process calculus, with an operational
semantics based on a lts labelled by pairs (event, time),

• but, unlike classical concurrency models, introduces an
asymmetric relationship between a program and the services
that constitute its environment: An orchestration invokes and
receives responses from the external services, which do not
initiate communication.
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Orc — orc.csres.utexas.edu/

A full language for structured concurrent programming

• Structured programming: sequential component composition
(Dijkstra, 1968) vs concurrent component composition (cf,
paralelism, asynchrony, failures, timeouts, ...)

• functional flavour (yet handling many non-functional issues:
spawning of concurrent threads, time-outs, etc);

• particularly suitable to express workflows, internet scripting,
and, in general, service orchestration at large scale;

• efficient implementation, with easy integration with Java
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Sites

A site represents a service or component, local or remote, that can
be invoked

• called like procedures, but with a strict calling discipline: to
be called all its parameters must have values

• it returns at most one value, which is published
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Sites

A site may respond, halt (ie, report it will not respond, eg, when
facing an invalid operation, system error or non data availability)
or neither respond nor halt

Special sites

• let (the identity site): publishes its own argument

• if (conditional): responds with a signal if its argument is true,
and otherwise halts.

• signal (equivalent to if (true))

• stop (equivalent to if (false))

• Rtimer(t), for t an integer: responds with a signal t milisecs
later

• ...
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Sites

Special sites

• external services: Google Search, MySpace, CNN, ...

• any Java class instance

• any Orc program

• factory sites — sites that create sites: Semaphore, Buffer ...

• ...
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Combinators

A Orc program consists of a set of definitions and a goal
expression which calls sites and publishes values.

Sites are orchestrated in an expression through a set of 4
combinators (ordered by decreasing precedence):

• pipelining: f > x > g

• parallel composition: f | g

• pruning: f < x < g

• sequential composition: f ; g

... no notions of thread, channel, process, synchronization, etc.
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Parallel composition: f | g

example:
CNN(d) | BBC (d)

• f and g are evaluated independently

• publish all values from both

• no direct interaction between f and g (can communicate only
through sites).

• (commutative and associative)
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Pipelining: f > x > g

example:
(CNN(d) | BBC (d)) > r > email(addr , r)

• ie, for all values published by f , initiate a separate execution
of g wherein x is bound to that published value

• publish only values if any, returned by g

• execution of f continues in parallel with those of g

• (left associative)
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Pruning: f < x < g

example:
email(addr , r) < r < (CNN(d) | BBC (d))

• ie, for some value published by g , invoke f

• f and g evaluate in parallel

• calls (in f ) depending on x are suspended

• when g returns a first value, binds it to x , terminates and
resume suspended calls

• it is the only mechanism available to block or terminate parts
of a computation.

• (right associative)
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Otherwise: f ; g

example:
(CNN(d); BBC (d)) > x > email(addr , x)

• first invoke f

• if f publishes no values and then halts, then g executes.

• f halts if all site calls in f have either responded or halted, f
will never call any more sites and will never publish any more
values

• (associative)
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Examples

h > x > Println(x) >> stop; ”done”

Print all publications of h. When h halts, publish ”done”.

x < x < (M()|Rwait(10) >> 0)

Call site M. Publish its response if it arrives within 10 time units.
Otherwise publish 0.
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Definitions

example:
def metronome(t) = signal | Rtimer(t) >> metronome(t)

• similar to declaration of functions

• unlike a site call, a function call does not suspend if one of its
arguments is a variable with no value

• a function call may publish more than one value: it publishes
every value published by the execution of f

• definitions may be recursive
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The calculus

• bisimulation equalities (wrt to the lts sematics [Wehrman et al
2008])
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The calculus

• almost a Kleene algebra
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The functional core

• function definitions:
def sumto(n) = if n < 1 then 0 else n + sumto(n − 1)

• variable bindings:
val x = 1 + 2
val y = x + x

val x = 1/0
val y = 4 + 5
if false then x else y

• patterns:
val ((a, b), c) = ((1, true), (2, false))
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The functional core

Functions

def MailOnce(a) = Email(a,m) < m < (CNN(d)|BBC (d))

def MailLoop(a, t) = MailOnce(a) >> Rwait(t) >> MailLoop(a, t)

Notes

• A function is called like a procedure: it may publish many
values

• Site calls are strict; Function calls non-strict

• Functions are often called concurrently: each call starts a new
instance of function execution.

• If a function accesses shared data, concurrent invocations may
interfere.
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Translation into the basic calculus

• Operators become site call:
1 + (2 + 3) to add(1, x) < x < add(2, 3)
if t then f else g to (if (b)f | not(b) > c > if (c)g) < b < t

• Bidings become combinator expressions:
val x = g f to f < x < g

• Function definitions become ... standard Orc definitions
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Translation into the basic calculus



Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus
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Translation into the basic calculus

Orc expressions may contain functional expressions and vice-versa
example: (1 + 2) | (2 + 3) becomes
((let(x) | let(y)) < x < add(1, 2)) < y < add(2, 3)

example: (1|2) + (2|3) becomes
(add(x , y) < x < (1 | 2)) < y < (2 | 3)

example: [1, 2] translates to
cons(1, t) < s < cons(2, t) < t < nil()
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Taking time seriously

example (interrupt):
email(addr , x) < x < (BBC (d) | Rtimer(5000) >> ”error”)

example (count replies within a time interval):
def callCount([]) = 0
def callCount(H : T ) =

(H() >> 1 | Rtimer(10) >> 0) + callCount(T )
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Fork-Join pattern

is expressed just as (P,Q), which equivales to
((x , y) < x < P) < y < Q

example (electronic auction):
def auction([]) = 0
def auction(b : bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously.
But what if one of them fails to reply?
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Fork-Join pattern

example (electronic auction with time-out):

def auction([]) = 0
def auction(b : bs) =

val bid = b.ask() | Rtimer(5000) >> 0
max(bid , auction(bs))
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Synchronization barrier

from

P() > x > F | Q() > x > G

to

(P(),Q()) > (x , y) > (F | G )
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Sequential Fork-Join pattern

example (print lines, signal the end):
F > x > println(x) >> stop ; signal

• A recursive fork-join solution requires lines be stored in a
traversable data structure like a list, rather than streamed as
publications from F

• Here, since ; only evaluates its RHS if the LHS does not
publish, suppress the publications on the LHS using stop

• Need to assume detection of F halting (what if the sending
party never closes the socket?)
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Priority

• publish Qs response asap, but no earlier than 1 unit from now:
val (u, ) = (Q(),Rtimer(1))

• call P,Q: P result is published immediately, but Q’s result is
held until the time interval has elapsed. If neither P or Q
publishes a result within one second, then the first result from
either is published

val x = P

val y = Q

let(x |Rtimer(1000) >> y)
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Parallel Disjunction pattern

let(
val a = P
val b = Q
(a||b) | if (a) >> true | if (b) >> true
)

• expression (a||b) waits for both a and b to become available
and then publishes their disjunction

• however if either a or b is true publish true immediately
regardless of whether the other variable is available
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Network of iterative processes

example (iterative process: input from c , output to e):

def P(c , e) = c .get() > x > Compute(x) > y > e.put(y) >>
P(c , e)

example (network: input from c , d , output to e):

def Net(c , d , e) = P(c, e) | P(d , e)
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Timeout

let(F | Rtimer(1000) >> 0)
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Routing

example (generalised time-out):

val c = Buffer()
repeat(c .get) <<

P > x > c .put(x) >> stop
| Rtimer(1000) >> c .closenb()

• allows P to execute for one second and then terminates it

• each value by P is routed through channel c to avoid end P

• after one second, Rtimer(1000) responds, triggering the call
c.closenb() which closes c and publishes a signal

• function repeat repeatedly take and publish values from c
until it is closed
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Routing

example (interrupt based on a signal from elsewhere):

val c = Buffer()
val done = Semaphore(0)
repeat(c .get) <<

P > x > c .put(x) >> stop
| done.acquire() >> c .closenb()

• dot notation

• instead of waiting for a timer wait for the semaphore done to
be released

• any call to done.release will terminate the expression, because
it will cause done.acquire() to publish

• but otherwise P executes normally and may publish any
number of values
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Note

Semaphore

• absence of any locking mechanisms built into the language

• resort the Semaphore site to create semaphores which enable
synchronization and mutual exclusion

• Semaphore(k) creates a semaphore with the initial value k
(i.e. it may be acquired by up to k parties simultaneously)

• Given a semaphore s, s.acquire() attempts to acquire s,
blocking if it cannot be acquired yet because its value is zero.
The call s.release() releases s, increasing is value by one.
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Conclusion

Where shall I go from here, please Your Majesty?
asked Alice

That depends a great deal on where you want to get to
said the Cat.


	Introduction
	Basic Calculus
	Functional Core
	Orc(hestration) Examples
	Conclusion

