
From modeling to programming:
Orc - a coordination language

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

May 2011

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Introduction

From an Internet scripting language to a component integration
language and

A programming language for concurrency

Requirements for ...

• describe entities and their interactions

• model the passage of time

• allow birth and death of entities

• allow the construction (programming) of novel interactions

• support hierarchical composition

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Introduction

A typical scenario

Applications acquire data from services, compute over these data,
invoke yet other services with the results.
Additionally,

• invoke multiple services simultaneously for failure tolerance

• repeatedly poll a service

• ask a service to notify the user when it acquires the
appropriate data.

• download a service and invoke it locally.

• ...

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Orc — orc.csres.utexas.edu/

A process calculus for service orchestration

• A model for expressing coordination of independent services
using the following rationale: a Orc expression invokes
multiple (external or local) services to achieve a goal while
managing time-outs, priorities, and failures of services or
communications;

• assuming the form of a process calculus, with an operational
semantics based on a lts labelled by pairs (event, time),

• but, unlike classical concurrency models, introduces an
asymmetric relationship between a program and the services
that constitute its environment: An orchestration invokes and
receives responses from the external services, which do not
initiate communication.

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Orc — orc.csres.utexas.edu/

A full language for structured concurrent programming

• Structured programming: sequential component composition
(Dijkstra, 1968) vs concurrent component composition (cf,
paralelism, asynchrony, failures, timeouts, ...)

• functional flavour (yet handling many non-functional issues:
spawning of concurrent threads, time-outs, etc);

• particularly suitable to express workflows, internet scripting,
and, in general, service orchestration at large scale;

• efficient implementation, with easy integration with Java

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sites

A site represents a service or component, local or remote, that can
be invoked

• called like procedures, but with a strict calling discipline: to
be called all its parameters must have values

• it returns at most one value, which is published

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sites

A site may respond, halt (ie, report it will not respond, eg, when
facing an invalid operation, system error or non data availability)
or neither respond nor halt

Special sites

• let (the identity site): publishes its own argument

• if (conditional): responds with a signal if its argument is true,
and otherwise halts.

• signal (equivalent to if (true))

• stop (equivalent to if (false))

• Rtimer(t), for t an integer: responds with a signal t milisecs
later

• ...

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sites

Special sites

• external services: Google Search, MySpace, CNN, ...

• any Java class instance

• any Orc program

• factory sites — sites that create sites: Semaphore, Buffer ...

• ...

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Combinators

A Orc program consists of a set of definitions and a goal
expression which calls sites and publishes values.

Sites are orchestrated in an expression through a set of 4
combinators (ordered by decreasing precedence):

• pipelining: f > x > g

• parallel composition: f | g

• pruning: f < x < g

• sequential composition: f ; g

... no notions of thread, channel, process, synchronization, etc.

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Parallel composition: f | g

example:
CNN(d) | BBC (d)

• f and g are evaluated independently

• publish all values from both

• no direct interaction between f and g (can communicate only
through sites).

• (commutative and associative)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Pipelining: f > x > g

example:
(CNN(d) | BBC (d)) > r > email(addr , r)

• ie, for all values published by f , initiate a separate execution
of g wherein x is bound to that published value

• publish only values if any, returned by g

• execution of f continues in parallel with those of g

• (left associative)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Pruning: f < x < g

example:
email(addr , r) < r < (CNN(d) | BBC (d))

• ie, for some value published by g , invoke f

• f and g evaluate in parallel

• calls (in f) depending on x are suspended

• when g returns a first value, binds it to x , terminates and
resume suspended calls

• it is the only mechanism available to block or terminate parts
of a computation.

• (right associative)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Otherwise: f ; g

example:
(CNN(d); BBC (d)) > x > email(addr , x)

• first invoke f

• if f publishes no values and then halts, then g executes.

• f halts if all site calls in f have either responded or halted, f
will never call any more sites and will never publish any more
values

• (associative)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Examples

h > x > Println(x) >> stop; ”done”

Print all publications of h. When h halts, publish ”done”.

x < x < (M()|Rwait(10) >> 0)

Call site M. Publish its response if it arrives within 10 time units.
Otherwise publish 0.

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Definitions

example:
def metronome(t) = signal | Rtimer(t) >> metronome(t)

• similar to declaration of functions

• unlike a site call, a function call does not suspend if one of its
arguments is a variable with no value

• a function call may publish more than one value: it publishes
every value published by the execution of f

• definitions may be recursive

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The calculus

• bisimulation equalities (wrt to the lts sematics [Wehrman et al
2008])

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The calculus

• almost a Kleene algebra

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The functional core

• function definitions:
def sumto(n) = if n < 1 then 0 else n + sumto(n − 1)

• variable bindings:
val x = 1 + 2
val y = x + x

val x = 1/0
val y = 4 + 5
if false then x else y

• patterns:
val ((a, b), c) = ((1, true), (2, false))

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

The functional core

Functions

def MailOnce(a) = Email(a,m) < m < (CNN(d)|BBC (d))

def MailLoop(a, t) = MailOnce(a) >> Rwait(t) >> MailLoop(a, t)

Notes

• A function is called like a procedure: it may publish many
values

• Site calls are strict; Function calls non-strict

• Functions are often called concurrently: each call starts a new
instance of function execution.

• If a function accesses shared data, concurrent invocations may
interfere.

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

• Operators become site call:
1 + (2 + 3) to add(1, x) < x < add(2, 3)
if t then f else g to (if (b)f | not(b) > c > if (c)g) < b < t

• Bidings become combinator expressions:
val x = g f to f < x < g

• Function definitions become ... standard Orc definitions

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Orc expressions may contain functional expressions and vice-versa
example: (1 + 2) | (2 + 3) becomes
((let(x) | let(y)) < x < add(1, 2)) < y < add(2, 3)

example: (1|2) + (2|3) becomes
(add(x , y) < x < (1 | 2)) < y < (2 | 3)

example: [1, 2] translates to
cons(1, t) < s < cons(2, t) < t < nil()

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Orc expressions may contain functional expressions and vice-versa
example: (1 + 2) | (2 + 3) becomes
((let(x) | let(y)) < x < add(1, 2)) < y < add(2, 3)

example: (1|2) + (2|3) becomes
(add(x , y) < x < (1 | 2)) < y < (2 | 3)

example: [1, 2] translates to
cons(1, t) < s < cons(2, t) < t < nil()

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Translation into the basic calculus

Orc expressions may contain functional expressions and vice-versa
example: (1 + 2) | (2 + 3) becomes
((let(x) | let(y)) < x < add(1, 2)) < y < add(2, 3)

example: (1|2) + (2|3) becomes
(add(x , y) < x < (1 | 2)) < y < (2 | 3)

example: [1, 2] translates to
cons(1, t) < s < cons(2, t) < t < nil()

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Taking time seriously

example (interrupt):
email(addr , x) < x < (BBC (d) | Rtimer(5000) >> ”error”)

example (count replies within a time interval):
def callCount([]) = 0
def callCount(H : T) =

(H() >> 1 | Rtimer(10) >> 0) + callCount(T)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Taking time seriously

example (interrupt):
email(addr , x) < x < (BBC (d) | Rtimer(5000) >> ”error”)

example (count replies within a time interval):
def callCount([]) = 0
def callCount(H : T) =

(H() >> 1 | Rtimer(10) >> 0) + callCount(T)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Fork-Join pattern

is expressed just as (P,Q), which equivales to
((x , y) < x < P) < y < Q

example (electronic auction):
def auction([]) = 0
def auction(b : bs) = max(b.ask(), auction(bs))

Note that all bidders are called simultaneously.
But what if one of them fails to reply?

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Fork-Join pattern

example (electronic auction with time-out):

def auction([]) = 0
def auction(b : bs) =

val bid = b.ask() | Rtimer(5000) >> 0
max(bid , auction(bs))

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Synchronization barrier

from

P() > x > F | Q() > x > G

to

(P(),Q()) > (x , y) > (F | G)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Sequential Fork-Join pattern

example (print lines, signal the end):
F > x > println(x) >> stop ; signal

• A recursive fork-join solution requires lines be stored in a
traversable data structure like a list, rather than streamed as
publications from F

• Here, since ; only evaluates its RHS if the LHS does not
publish, suppress the publications on the LHS using stop

• Need to assume detection of F halting (what if the sending
party never closes the socket?)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Priority

• publish Qs response asap, but no earlier than 1 unit from now:
val (u,) = (Q(),Rtimer(1))

• call P,Q: P result is published immediately, but Q’s result is
held until the time interval has elapsed. If neither P or Q
publishes a result within one second, then the first result from
either is published

val x = P

val y = Q

let(x |Rtimer(1000) >> y)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Parallel Disjunction pattern

let(
val a = P
val b = Q
(a||b) | if (a) >> true | if (b) >> true
)

• expression (a||b) waits for both a and b to become available
and then publishes their disjunction

• however if either a or b is true publish true immediately
regardless of whether the other variable is available

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Network of iterative processes

example (iterative process: input from c , output to e):

def P(c , e) = c .get() > x > Compute(x) > y > e.put(y) >>
P(c , e)

example (network: input from c , d , output to e):

def Net(c , d , e) = P(c, e) | P(d , e)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Timeout

let(F | Rtimer(1000) >> 0)

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Routing

example (generalised time-out):

val c = Buffer()
repeat(c .get) <<

P > x > c .put(x) >> stop
| Rtimer(1000) >> c .closenb()

• allows P to execute for one second and then terminates it

• each value by P is routed through channel c to avoid end P

• after one second, Rtimer(1000) responds, triggering the call
c.closenb() which closes c and publishes a signal

• function repeat repeatedly take and publish values from c
until it is closed

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Routing

example (interrupt based on a signal from elsewhere):

val c = Buffer()
val done = Semaphore(0)
repeat(c .get) <<

P > x > c .put(x) >> stop
| done.acquire() >> c .closenb()

• dot notation

• instead of waiting for a timer wait for the semaphore done to
be released

• any call to done.release will terminate the expression, because
it will cause done.acquire() to publish

• but otherwise P executes normally and may publish any
number of values

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Note

Semaphore

• absence of any locking mechanisms built into the language

• resort the Semaphore site to create semaphores which enable
synchronization and mutual exclusion

• Semaphore(k) creates a semaphore with the initial value k
(i.e. it may be acquired by up to k parties simultaneously)

• Given a semaphore s, s.acquire() attempts to acquire s,
blocking if it cannot be acquired yet because its value is zero.
The call s.release() releases s, increasing is value by one.

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

• Introduction

• Basic calculus

• Functional core

• Orc(hestration) examples

• Conclusion

Introduction Basic Calculus Functional Core Orc(hestration) Examples Conclusion

Conclusion

Where shall I go from here, please Your Majesty?
asked Alice

That depends a great deal on where you want to get to
said the Cat.

	Introduction
	Basic Calculus
	Functional Core
	Orc(hestration) Examples
	Conclusion

