
Logics for processes (I)

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

8 April, 2011

Modal properties A modal language Modal equivalence and bisimulation

Motivation

System’s correctness wrt a specification

• equivalence checking (between two designs), through ∼ and =

• unsuitable to check properties such as

can the system perform action α followed by β?

which are best answered by exploring the process state space

Modal properties A modal language Modal equivalence and bisimulation

Motivation

The taxi network example

• φ0 = In a taxi network, a car can collect a passenger or be allocated
by the Central to a pending service

• φ1 = This applies only to cars already on service

• φ2 = If a car is allocated to a service, it must first collect the
passenger and then plan the route

• φ3 = On detecting an emergence the taxi becomes inactive

• φ4 = A car on service is not inactive

Modal properties A modal language Modal equivalence and bisimulation

Motivation

The taxi network example

• φ0 = 〈rec , alo〉true

• φ1 = [onservice]〈rec , alo〉true or
φ1 = [onservice]φ0

• φ2 = [alo]〈rec〉〈plan〉true

• φ3 = [sos][−]false

• φ4 = [onservice]〈−〉true

Modal properties A modal language Modal equivalence and bisimulation

Notes

• Modalities: 〈K 〉φ, [L]ψ for K , L ⊂ Act

• Valuations in non modal logics are based on valuations
V : Variables −→ 2: propositions are true or false depending on the
unique referential provided by V

• Valuations in a modal logic also depends on the current state of
computation: V : Variables× P −→ 2 or, equivalently, ,
V : Variables −→ PP: each variable is associated to the set of
processes in which its value is fixed as true

• In our case, models for such a logic are defined over the universe of
processes P (i.e., terms of our process language) equipped with

relations { x→ |x ∈ Act} defined by the operational semantics of the
language.

• ... but the topic modal logics has a longer story and a broad
spectrum of applications ...

Modal properties A modal language Modal equivalence and bisimulation

The language

Syntax

φ ::= true | false | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K]φ

Modal properties A modal language Modal equivalence and bisimulation

The language

Semantics: E |= φ

E |= true

E 6|= false

E |= φ1 ∧ φ2 iff E |= φ1 ∧ E |= φ2

E |= φ1 ∨ φ2 iff E |= φ1 ∨ E |= φ2

E |= 〈K 〉φ iff ∃
F∈{E ′|E a→E ′ ∧ a∈K} . F |= φ

E |= [K]φ iff ∀
F∈{E ′|E a→E ′ ∧ a∈K} . F |= φ

Modal properties A modal language Modal equivalence and bisimulation

Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi))

• Sem |= 〈get〉true holds because

∃
F∈{Sem′|Semget→Sem′}

. F |= true

with F = put.Sem.

• However, Sem |= [put]false also holds, because

T = {Sem′ | Sem
put→ Sem′} = ∅.

Hence ∀F∈T . F |= false becomes trivially true.

• The only action initially permmited to S is τ : |= [−τ]false.

Modal properties A modal language Modal equivalence and bisimulation

Example

Sem , get.put.Sem

Pi , get.ci .put.Pi

S , new {get, put} (Sem | (|i∈I Pi))

• Afterwards, S can engage in any of the critical events c1, c2, ..., ci :
[τ]〈c1, c2, ..., ci 〉true

• After the semaphore initial synchronization and the occurrence of cj
in Pj , a new synchronization becomes inevitable:
S |= [τ][cj](〈−〉true ∧ [−τ]false)

Modal properties A modal language Modal equivalence and bisimulation

Notes

• inevitability of a: 〈−〉true ∧ [−a]false

• progress: 〈−〉true

• deadlock or termination: [−]false

• what about
〈−〉false and [−]true ?

• satisfaction decided by unfolding the definition of |=: no need to
compute the transition graph

Modal properties A modal language Modal equivalence and bisimulation

A denotational semantics

Idea: associate to each formula φ the set of processes that make it true

φ vs ||φ|| = {E ∈ P | E |= φ}

||true|| = P
||false|| = ∅

||φ1 ∧ φ2|| = ||φ1|| ∩ ||φ2||
||φ1 ∨ φ2|| = ||φ1|| ∪ ||φ2||

||[K]φ|| = ||[K]||(||φ||)
||〈K 〉φ|| = ||〈K 〉||(||φ||)

Modal properties A modal language Modal equivalence and bisimulation

||[K]|| and ||〈K 〉||

Just as ∧ corresponds to ∩ and ∨ to ∪, modal logic combinators
correspond to unary functions on sets of processes:

||[K]|| = λX⊆P . {F ∈ P | if F
a→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉|| = λX⊆P . {F ∈ P | ∃F ′∈X ,a∈K . F
a→ F ′}

Note
These combinators perform a reduction to the previous state indexed by
actions in K

Modal properties A modal language Modal equivalence and bisimulation

||[K]|| and ||〈K 〉||

Example

q1

a

~~}}
}}

}}
}} a

 A
AA

AA
AA

A m

a

��
q2

c // q3 cgg n cdd

||〈a〉||{q2, n} = {q1,m}
||[a]||{q2, n} = {q2, q3,m, n}

Modal properties A modal language Modal equivalence and bisimulation

A denotational semantics

E |= φ iif E ∈ ||φ||

Example: 0 |= [−]false
because

||[−]false|| = ||[−]||(||false||)
= ||[−]||(∅)

= {F ∈ P | if F
x→ F ′ ∧ x ∈ Act then F ′ ∈ ∅}

= {0}

Modal properties A modal language Modal equivalence and bisimulation

A denotational semantics

E |= φ iif E ∈ ||φ||

Example: ?? |= 〈−〉true
because

||〈−〉true|| = ||〈−〉||(||true||)
= ||〈−〉||(P)

= {F ∈ P | ∃F ′∈P,a∈K . F
a→ F ′}

= P \ {0}

Modal properties A modal language Modal equivalence and bisimulation

A denotational semantics

Complement
Any property φ divides P into two disjoint sets:

||φ|| and P− ||φ||

The characteristic formula of the complement of ||φ|| is φc:

||φc|| = P− ||φ||

where φc is defined inductively on the formulae structure:

truec = false falsec = true

(φ1 ∧ φ2)c = φc
1 ∨ φc

2

(φ1 ∨ φ2)c = φc
1 ∧ φc

2

(〈a〉φ)c = [a]φc

... but negation is not explicitly introduced in the logic.

Modal properties A modal language Modal equivalence and bisimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E 'Γ F ⇔ ∀φ∈Γ . E |= φ⇔ F |= φ

Examples

a.b.0 + a.c .0 'Γ a.(b.0 + c .0)

for Γ = {〈x1〉〈x2〉...〈xn〉true | xi ∈ Act}

(what about 'Γ for Γ = {〈x1〉〈x2〉〈x3〉...〈xn〉[−]false | xi ∈ Act} ?)

Modal properties A modal language Modal equivalence and bisimulation

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

E ' F ⇔ E 'Γ F for every set Γ of well-formed formulae

Lemma

E ∼ F ⇒ E ' F

Note
the converse of this lemma does not hold, e.g. let

• A ,
∑

i≥0 Ai , where A0 , 0 and Ai+1 , a.Ai

• A′ , A + fix (X = a.X)

A � A′ but A' A′

Modal properties A modal language Modal equivalence and bisimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

Image-finite processes
E is image-finite iff {F | F a→ E} is finite for every action a ∈ Act

Modal properties A modal language Modal equivalence and bisimulation

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

E ∼ F ⇔ E ' F

for image-finite processes.

proof

⇒ : by induction of the formula structure

⇐ : show that ' is itself a bisimulation, by contradiction

	Modal properties
	A modal language
	Modal equivalence and bisimulation

