Time-critical reactive systems (I)

Luís S. Barbosa

DI-CCTC Universidade do Minho Braga, Portugal

April, 2010

Motivation

Specifying an airbag saying that in a car crash the airbag eventually inflates

- in μ -calculus: νY . [crash](μX . [-airbag] $X \land \langle \rangle$ true) \land [-]Y
- in CTL: $\forall \Box (crash \Rightarrow \forall \Diamond airbag)$ or $AG(crash \Rightarrow AFairbag)$
- ...

maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Motivation

Specifying an airbag saying that in a car crash the airbag eventually inflates

- in μ -calculus: νY . [crash](μX . [-airbag] $X \land \langle \rangle$ true) \land [-]Y
- in CTL: $\forall \Box (crash \Rightarrow \forall \Diamond airbag)$ or $AG(crash \Rightarrow AFairbag)$
- ...

maybe not enough, but:

in a car crash the airbag eventually inflates within 20ms

Correctness in time-critical systems not only depends on the logical result of the computation, but also on the time at which the results are produced

[Baier & Katoen, 2008]

Examples of time-critical systems

Lip-synchronization protocol

Synchronizes the separate video and audio sources bounding on the amount of time mediating the presentation of a video frame and the corresponding audio frame. Humans tolerate less than 160 ms.

Bounded retransmission protocol

Controls communication of large files over infrared channel between a remote control unit and a video/audio equipment. Correctness depends crucially on

- transmission and synchronization delays
- time-out values for times at sender and receiver

And many others...

- medical instruments
- hybrid systems (eg for controlling industrial plants)

Timed LTS

Introduce delay transitions to capture the passage of time within a LTS:

 $s' \xleftarrow{a} s$ for $a \in Act$, are ordinary transitions due to action occurrence $s' \xleftarrow{d} s$ for $d \in \mathbb{R}^+$. are delay transitions

subject to a number of constraints, eg,

Timed LTS

time additivity

$$(s' \xleftarrow{d} s \land 0 \le d' \le d) \Rightarrow s' \xleftarrow{d-d'} s'' \xleftarrow{d'} s \text{ for some state } s''$$

delay transitions are deterministic

$$(s' \stackrel{d}{\longleftarrow} s \wedge s'' \stackrel{d}{\longleftarrow} s) \Rightarrow s' = s''$$

• a state can only reach itself without delay

$$s \stackrel{0}{\longleftarrow} s$$
 for all states s

Extension of Process Algebras with time

- TCCS [Yi,90] which introduced a new prefix:
 - $\epsilon(d)$. E delay d units of time and then behave as E
- TCSP [Reed& Roscoe, 88], ATP [Nicollin & Sifakis, 94], among many others

Emphasis on axiomatics, behavioural equivalences, expressivity

However, in general, expressive power is somehow limited and infinite-state LTS difficult to handle in practice

Example

TCCS is unable to express a system which has only one action *a* which can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

- 1. Set the stopwatch to 0
- 2. When the stopwatch measures 5, action a can occur. If a occurs go to 1., if not idle forever.

However, in general, expressive power is somehow limited and infinite-state LTS difficult to handle in practice

Example

TCCS is unable to express a system which has only one action *a* which can only occur at time point 5 with the effect of moving the system to its initial state.

This example has, however, a simple description in terms of time measured by a stopwatch:

- 1. Set the stopwatch to 0
- 2. When the stopwatch measures 5, action a can occur. If a occurs go to 1., if not idle forever.

This suggests resorting to an automaton-based formalism with an explicit notion of clock (stopwatch) to control availability of transitions.

Timed Automata [Alur & Dill, 90]

 emphasis on decidability of the model-checking problem and corresponding practically efficient algorithms

Associate tools

- UPPAAL [Behrmann, David, Larsen, 04]
- Kronos [Bozga, 98]

Timed automata

Program graph equipped with a finite set of real-valued clock variables (clocks)

Clocks

- clocks can only be inspected or
- reset to zero, after which they start increasing their value implicitly as time progresses
- the value of a clock corresponds to time elapsed since its last reset
- all clocks proceed at the same rate

Timed automata

Definition

$$\langle L, L_0, Act, C, Tr, Inv \rangle$$

where

- L is a set of locations, and $L_0 \subseteq L$ the set of initial locations
- Act is a set of actions and C a set of clocks
- $Tr \subseteq L \times C(C) \times Act \times P(C) \times L$ is the transition relation

$$l_1 \stackrel{g,a,U}{\longleftarrow} l_2$$

denotes a transition from location l_1 to l_2 , labelled by a, enabled if guard g is valid, which, when performed, resets the set U of clocks

• $Inv : C(C) \leftarrow L$ is the invariant assignment function

where $\mathcal{C}(\mathcal{C})$ denotes the set of clock constraints over a set \mathcal{C} of clock variables

Example: the lamp interrupt

(extracted from UPPAAL)

Clock constraints

 $\mathcal{C}(\mathcal{C})$ denotes the set of clock constraints over a set \mathcal{C} of clock variables. Each constraint is formed according to

$$g ::= x \square n \mid x - y \square n \mid g \wedge g$$

where $x, y \in C, n \in \mathbb{N}$ and $\square \in \{<, \leq, >, \geq\}$ used in

- transitions as guards (enabling conditions)
 a transition cannot occur if its guard is invalid
- locations as invariants (safety specifications)
 a location must be left before its invariant becomes invalid

Note

Invariants are the only way to force transitions to occur

Clock constraints

 $\mathcal{C}(\mathcal{C})$ denotes the set of clock constraints over a set \mathcal{C} of clock variables. Each constraint is formed according to

$$g ::= x \square n \mid x - y \square n \mid g \wedge g$$

where $x, y \in C, n \in \mathbb{N}$ and $\square \in \{<, \leq, >, \geq\}$ used in

- transitions as guards (enabling conditions)
 a transition cannot occur if its guard is invalid
- locations as invariants (safety specifications)
 a location must be left before its invariant becomes invalid

Note

Invariants are the only way to force transitions to occur

Guards, updates & invariants

Transition guards & location invariants

Demo (in UPPAAL)

Parallel composition of timed automata

- Action labels as channel identifiers
- Communication by forced handshacking over a subset of common actions
- Can be defined as an associative binary operator (as in the tradition of process algebra) or as an automaton construction over a finite set of timed automata originating a so-called network of timed automata

Parallel composition of timed automata

Let $H \subseteq Act_1 \cap Act_2$. The parallel composition of ta_1 and ta_2 synchronizing on H is the timed automata

$$ta_1 \parallel_H ta_2 := \langle L_1 \times L_2, L_{0,1} \times L_{0,2}, Act_{\parallel_H}, C_1 \cup C_2, Tr_{\parallel_H}, Inv_{\parallel_H} \rangle$$

where

- $\bullet \ \textit{Act}_{\parallel_{\textit{H}}} = ((\textit{Act}_1 \cup \textit{Act}_2) \textit{H}) \cup \{\tau\}$
- $Inv_{\parallel_H}\langle l_1, l_2 \rangle = Inv_1(l_1) \wedge Inv_2(l_2)$
- Tr_{||H} is given by:
 - $\langle I'_1, I_2 \rangle \stackrel{g,a,U}{\leftarrow} \langle I_1, I_2 \rangle$ if $a \notin H \wedge I'_1 \stackrel{g,a,U}{\leftarrow} I_1$
 - $\langle I_1, I_2' \rangle \stackrel{g,a,U}{\longleftarrow} \langle I_1, I_2 \rangle$ if $a \notin H \wedge I_2' \stackrel{g,a,U}{\longleftarrow} I_2$
 - $\langle l_1', l_2' \rangle \stackrel{g,\tau,U}{\longleftarrow} \langle l_1, l_2 \rangle$ if $a \in H \land l_1' \stackrel{g_1,a,U_1}{\longleftarrow} l_1 \land l_2' \stackrel{g_2,a,U_2}{\longleftarrow} l_2$ with $g = g_1 \land g_2$ and $U = U_1 \cup U_2$

Example: the lamp interrupt as a closed system

UPPAAL:

- takes $H = Act_1 \cap Act_2$ (actually as complementary actions denoted by the ? and ! annotations)
- only deals with closed systems

Example: worker, hammer, nail

Semantics

Syntax	Semantics
Process Languages (eg CCS)	LTS (Labelled Transition Systems)
Timed Automaton	TLTS (Timed LTS)

Semantics of TA:

Every TA ta defines a TLTS

 $\mathcal{T}(ta)$

whose states are pairs

(location, clock valuation)

with infinitely, even uncountably many states and infinite branching

Semantics

Syntax	Semantics
Process Languages (eg CCS)	LTS (Labelled Transition Systems)
Timed Automaton	TLTS (Timed LTS)

Semantics of TA:

Every TA ta defines a TLTS

 $\mathcal{T}(\textit{ta})$

whose states are pairs

(location, clock valuation)

with infinitely, even uncountably many states and infinite branching

Clock valuations

Definition

A clock valuation η for a set of clocks C is a function

$$\eta: \mathbb{R}_0^+ \longleftarrow C$$

assigning to each clock $x \in C$ its current value ηx .

Satisfaction of clock constraints

$$\eta \models x \square n \Leftrightarrow \eta x \square n
\eta \models x - y \square n \Leftrightarrow (\eta x - \eta y) \square n
\eta \models g_1 \land g_2 \Leftrightarrow \eta \models g_1 \land \eta \models g_2$$

Operations on clock valuations

Delay

For each $d \in \mathbb{R}^+_0$, valuation $\eta + d$ is given by

$$(\eta + d)x = \eta x + d$$

Reset

For each $R \subseteq C$, valuation $\eta[R]$ is given by

$$\begin{cases} \eta[R] x = \eta x & \Leftarrow x \notin R \\ \eta[R] x = 0 & \Leftarrow x \in R \end{cases}$$

From ta to $\mathcal{T}(ta)$

Let
$$ta = \langle L, L_0, Act, C, Tr, Inv \rangle$$

$$\mathcal{T}(ta) = \langle S, S_0 \subseteq S, N, T \rangle$$

where

- $S = \{\langle I, \eta \rangle \in L \times (\mathbb{R}_0^+)^C \mid \eta \models Inv(I)\}$
- $S_0 = \{\langle I_0, \eta \rangle \mid I_0 \in L_0 \land \eta x = 0 \text{ for all } x \in C\}$
- $N = Act \cup \mathbb{R}_0^+$ (ie, transitions can be labelled by actions or delays)
- $T \subseteq S \times N \times S$ is given by:

$$\langle I', \eta' \rangle \xleftarrow{a} \langle I, \eta \rangle \iff \exists_{I' \overset{g,a,U}{\longleftarrow} I \in Tr}. \ \eta \models g \ \land \ \eta' = \eta[U] \ \land \ \eta' \models Inv(I')$$
$$\langle I, \eta + d \rangle \xleftarrow{d} \langle I, \eta \rangle \iff \exists_{d \in \mathbb{R}^+_+}. \ \eta \models Inv(I) \ \land \ \eta + d \models Inv(I')$$

Example: the simple switch

$\mathcal{T}(\mathsf{SwitchA})$

$$S = \{ \langle \textit{off}, t \rangle \mid t \in \mathbb{R}_0^+ \} \cup \{ \langle \textit{on}, t \rangle \mid 0 \le t \le 2 \}$$

where t is a shothand for η such that $\eta x = t$

Example: the simple switch

$\mathcal{T}(\mathsf{SwitchA})$

$$\begin{split} \langle off, t+d \rangle & \xleftarrow{d} \langle off, t \rangle \; \text{ for all } t, d \geq 0 \\ & \langle on, 0 \rangle \xleftarrow{in} \langle off, t \rangle \; \text{ for all } t \geq 0 \\ & \langle on, t+d \rangle \xleftarrow{d} \langle on, t \rangle \; \text{ for all } t, d \geq 0 \; \text{and } t+d \leq 2 \\ & \langle off, t \rangle \xleftarrow{out} \langle on, t \rangle \; \text{ for all } 1 \leq t \leq 2 \end{split}$$

Behaviours

- Paths in $\mathcal{T}(ta)$ are discrete representations of behaviours in ta
- Such paths can also be represented graphically through location diagrams
- However, as interval delays may be realized in uncountably many different ways, different paths may represent the same behaviour
- ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:

- time-convergent paths
- timelock paths
- zeno paths

Behaviours

- Paths in $\mathcal{T}(ta)$ are discrete representations of behaviours in ta
- Such paths can also be represented graphically through location diagrams
- However, as interval delays may be realized in uncountably many different ways, different paths may represent the same behaviour
- ... but not all paths correspond to valid (realistic) behaviours:

undesirable paths:

- time-convergent paths
- timelock paths
- zeno paths

Time-convergent paths

$$\cdots \xleftarrow{d_4} \langle I, \eta + d_1 + d_2 + d_3 \rangle \xleftarrow{d_3} \langle I, \eta + d_1 + d_2 \rangle \xleftarrow{d_2} \langle I, \eta + d_1 \rangle \xleftarrow{d_1} \langle I, \eta \rangle$$

such that

$$\forall_{i\in N}, d_i > 0 \land \sum_{i\in N} d_i = d$$

ie, the infinite sequence of delays converges toward d

- Time-convergent path are conterintuitive and a ignored in the semantics of Timed Automata
- Time-divergent paths are the ones in which time always progresses

Time-convergent paths

Definition

An infinite path fragment ρ is time-divergent if ExecTime(ρ) = ∞ Otherwise is time-convergent.

where

$$\begin{aligned} &\mathsf{ExecTime}(\rho) \ = \ \sum_{i=0..\infty} \mathsf{ExecTime}(\delta) \\ &\mathsf{ExecTime}(\delta) \ = \ \begin{cases} 0 & \Leftarrow \delta \in \mathit{Act} \\ d & \Leftarrow \delta \in \mathbb{R}_0^+ \end{cases} \end{aligned}$$

for ρ a path and δ a label in $\mathcal{T}(ta)$

Timelock paths

Definition

A path is timelock if it contains a state with a time lock, ie, a state from which there is not any time-divergent path

Note

- any teminal state in $\mathcal{T}(ta)$ contains a timelock
- ... but not all timelocks arise as terminal states in $\mathcal{T}(ta)$

Exercise

Identify two different types of timelocks in the following switch specifications:

Zeno

In a Timed Automaton

- The elapse of time only takes place at locations
- Actions occur instantaneously: at a single time instant several actions may take place

... it may perform infinitely many actions in a finite time interval (non realizable because it would require infinitely fast processors)

Definition

An infinite path fragment ρ is zeno if it is time-convergent and infinitely many actions occur along it

A timed automaton ta is non-zeno if there is not an initial zeno path in $\mathcal{T}(ta)$

Zeno

In a Timed Automaton

- The elapse of time only takes place at locations
- Actions occur instantaneously: at a single time instant several actions may take place

... it may perform infinitely many actions in a finite time interval (non realizable because it would require infinitely fast processors)

Definition

An infinite path fragment ρ is zeno if it is time-convergent and infinitely many actions occur along it

A timed automaton ta is non-zeno if there is not an initial zeno path in $\mathcal{T}(ta)$

Example

Suppose the user can press the *in* button when the light in *on* in

In doing so clock x is reset to 0 and light stays *on* for more 2 time units (unless the button is pushed again ...)

Example

Typical paths: The user presses in infinitely fast:

$$\cdots \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{off}, 0 \rangle$$

The user presses in faster and faster:

$$\cdots \stackrel{0.125}{\longleftarrow} \langle on, 0 \rangle \stackrel{0.25}{\longleftarrow} \langle on, 0 \rangle \stackrel{0.5}{\longleftarrow} \langle on, 0 \rangle \stackrel{in}{\longleftarrow} \langle off, 0 \rangle$$

How can this be fixed?

Example

Typical paths: The user presses in infinitely fast:

$$\cdots \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{on}, 0 \rangle \xleftarrow{in} \langle \textit{off}, 0 \rangle$$

The user presses in faster and faster:

$$\cdots \overset{0.125}{\longleftarrow} \langle \textit{on}, 0 \rangle \overset{0.25}{\longleftarrow} \langle \textit{on}, 0 \rangle \overset{\textit{o.5}}{\longleftarrow} \langle \textit{on}, 0 \rangle \overset{\textit{in}}{\longleftarrow} \langle \textit{off}, 0 \rangle$$

How can this be fixed?

Sufficient criterion for nonzenoness

A timed automaton is nonzeno if on any of its control cycles time advances with at least some constant amount (≥ 0). Formally, if for every control cycle

$$I_n \stackrel{g_n,a_n,U_n}{\longleftarrow} \cdots \stackrel{g_2,a_2,U_2}{\longleftarrow} I_1 \stackrel{g_0,a_0,U_0}{\longleftarrow} I_0$$

with $I_0 = I_n$,

- 1. there exists a clock $x \in C$ such that $x \in U_i$ (for $0 \le i \le n$)
- 2. for all clock valuations η , there is a $c \in \mathbb{N}_{>0}$ such that

$$\eta \, x < 0 \ \Rightarrow \ (\eta \not\models g_j \ \lor \ \mathit{Inv}(\mathit{I}_j)) \ \text{for some} \ 0 < j \leq n$$

UPPAAL

... an editor, simulator and model-checker for TA with extensions ...

Extensions (modelling view)

- templates with parameters and an instantiation mechanism
- data expressions over bounded integer variables (eg, int[2..45]
 x) allowed in guards, assigments and invariants
- rich set of operators over integer and booleans, including bitwise operations, arrays, initializers ... in general a whole subset of C is available
- non-standard types of synchronization
- non-standard types of locations

The toolkit

Editor.

- Templates and instantiations
- Global and local declarations
- System definition

Simulator.

- Viewers: automata animator and message sequence chart
- Control (eg, trace management)
- Variable view: shows values of the integer variables and the clock constraints defining symbolic states

Verifier.

• (see next session)

Extension: broadcast synchronization

- A sender can synchronize with an arbitrary number of receivers
- Any receiver than can synchronize in the current state must do so
- Broadcast sending is never blocking.

Extension: urgent synchronization

Channel a is declared urgent chan a if both edges are to be taken as soon as they are ready (simultaneously in locations l_1 and s_1). Note the problem can not be solved with invariants because locations l_1 and s_1 can be reached at different moments

- No delay allowed if a synchronization transition on an urgent channel is enabled
- Edges using urgent channels for synchronization cannot have time constraints (ie, clock guards)

Extension: urgent location

- Both models are equivalent: no delay at an urgent location
- but the use of urgent location reduces the number of clocks in a model and simplifies analysis

Extension: committed location

- Our aim is to pass the value k to variable j (via global variable t)
- Location n is committed to ensure that no other automata can assign j before the assignment j := t
- In general, a committed state cannot delay and next transition must involve an outgoing edge of at least one of the committed locations

Hints

- Modelling patterns: see the UPPAAL tutorial
- Further examples: see the demo folder in the standard distribution