
Labelled Transition Systems (I)

Lúıs S. Barbosa

DI-CCTC
Universidade do Minho

Braga, Portugal

22 February, 2010

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

• in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

• observation ⇔ interaction

• behaviour ⇔ a structured record of interactions

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Reactive systems

Concurrency vs interaction

x := 0;

x := x + 1 | x := x + 2

• both statements in parallel could read x before it is written

• which values can x take?

• which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Models of computation for continuous interaction

two reactive systems you are already familiar with

Functions f : O ←− I

• one-step, input-output behaviour

• but what about functions manipulating infinite data structures?

merge : Aω ←− Aω × Aω

Automata

• multi-step behaviour: accepted language

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Models of computation for continuous interaction

two reactive systems you are already familiar with

Functions f : O ←− I

• one-step, input-output behaviour

• but what about functions manipulating infinite data structures?

merge : Aω ←− Aω × Aω

Automata

• multi-step behaviour: accepted language

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

Streams are coalgebraic structures: specified by observers

〈hd, tl〉 : A× Aω ←− Aω

• Function 〈hd, tl〉 is the observation structure of Aω.

• The shape of such an observation is given by functor
T : A× X ←− X for which 〈hd, tl〉 is a coalgebra.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Coalgebra

a lens: ©_©

a tool box:
eee

an observation structure: ©_© universe
α←− universe

an assembly process: artifact
d←−

eee
artifact

α : FU ←− U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• compare with (initial) algebras and (finite) data structures

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Coalgebra

a lens: ©_©

a tool box:
eee

an observation structure: ©_© universe
α←− universe

an assembly process: artifact
d←−

eee
artifact

α : FU ←− U

• coalgebras describe transition systems

• and abstract behaviour types as (final) coalgebras

• compare with (initial) algebras and (finite) data structures

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

• Coalgebras
p = 〈at,m〉 : A× U ←− U

for the same functor, relate through morphisms:
structure-preserving functions,

U
〈at,m〉 //

h

��

A× U

id×h
��

V
〈at′,m′〉// A× V

at = at′ · h and h ·m = m′ · h

• The behaviour of 〈at,m〉, from an initial value u, is given by
successive observations:

[(p)] u = [at u, at (m u), at (m (m u)), ...]

originating a stream of A values.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

〈hd, tl〉 : A× Aω ←− Aω

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [(p)] st

Aω
〈hd,tl〉 // A× Aω νT

ωT // TνT

U
p //

[(p)]

OO

A× U

id×[(p)]

OO

U
p //

[(p)]

OO

TU

T[(p)]

OO

k = [(p)] ⇔ ωT · k = T k · p

from where one derives the usual toolkit:

cancelation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

〈hd, tl〉 : A× Aω ←− Aω

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [(p)] st

Aω
〈hd,tl〉 // A× Aω νT

ωT // TνT

U
p //

[(p)]

OO

A× U

id×[(p)]

OO

U
p //

[(p)]

OO

TU

T[(p)]

OO

k = [(p)] ⇔ ωT · k = T k · p

from where one derives the usual toolkit:

cancelation ωT · [(p)] = T [(p)] · p
reflection [(ωT)] = idνT

fusion [(p)] · h = [(q)] if p · h = T h · q

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

Behaviour is specified under all observers

Example:

Aω
〈hd,tl〉 // A× Aω

A

rep

OO

M // A× A

id×rep

OO

rep , [(M)]

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Definition by coinduction

(id× rep)· M = 〈hd, tl〉 · rep

⇔ { M definition }
(id× rep) · 〈id, id〉 = 〈hd, tl〉 · rep

⇔ { × abs and fusion }
〈id, rep〉 = 〈hd · rep, tl · rep〉

⇔ { structural equality }
hd · rep = id ∧ tl · rep = rep

⇔ { going pointwise }
hd (rep a) = a ∧ tl (rep a) = rep a

Exercise: define merge and twist.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Proof by coinduction: merge (aω, bω) = (ab)ω

merge · (rep× rep) = twist

= { merge definition }
[(〈hd · π1, s · (tl× id)〉)] · (rep× rep) = [(〈π1, s〉)]

⇐ { fusion }
〈hd · π1, s · (tl× id)〉 · (rep× rep) = id× (rep× rep) · 〈π1, s〉

= { × abs and reflection }
〈hd · rep · π1, s · ((tl · rep)× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { tl · rep = rep e hd · rep = id }
〈π1, s · (rep× rep)〉 = id× (rep× rep) · 〈π1, s〉

= { × abs }
〈π1, s · (rep× rep)〉 = 〈π1, (rep× rep) · s〉

= { s natural: (f × g) · s = s · (g × f) }
〈π1, s · (rep× rep)〉 = 〈π1, s · (rep× rep)〉

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata
Definition
A = 〈Σ,S , so ,F ,T 〉
where

• Σ is an alphabet

• S = {s0, s1, s2, ...} is a set of states

• s0 ∈ S is the initial state

• F ⊆ S is the set of final states

• T ⊆ S × Σ× S is the transition relation usually given as a
Σ-indexed family of realtions over S :

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

• deterministic

• finite

• image finite

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata
Definition
A = 〈Σ,S , so ,F ,T 〉
where

• Σ is an alphabet

• S = {s0, s1, s2, ...} is a set of states

• s0 ∈ S is the initial state

• F ⊆ S is the set of final states

• T ⊆ S × Σ× S is the transition relation usually given as a
Σ-indexed family of realtions over S :

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

• deterministic

• finite

• image finite

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

automaton behaviour ⇔ accepted language

Recall that finite automata recognize regular languages, i.e. generated by

• L1 + L2 , L1 ∪ L2 (union)

• L1 · L2 , {st | s ∈ L1, t ∈ L2} (concatenation)

• L∗ , {ε} ∪ L ∪ (L · L) ∪ (L · L · L) ∪ ... (iteration)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

There is a syntax to specify such languages:

E ::= ε | a | E + E | E E | E∗

where a ∈ Σ.

• which regular expression specifies {a, bc}?

• and {ca, cb}?

and an algebra of regular expressions:

(E1 + E2) + E3 = E1 + (E2 + E3)

(E1 + E2)E3 = E1 E3 + E2 E3

E1 (E2 E1)∗ = (E1 E2)∗ E1

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

After thoughts

(from the two examples of reactive systems discussed)

• characterise notions of observation and interaction

• syntax (support for modeling) and semantics (basis for calculation)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

After thoughts

... need more general models and theories:

• Several interaction points (6= functions)

• Non termination (no final states as in automata)

• Need to distinguish normal from anomolous termination (eg
deadlock)

• Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Relational characterization
A LTS over a set N of names is a pair 〈S ,T 〉 where

• S = {s0, s1, s2, ...} is a set of states

• T ⊆ S ×N × S is the transition relation, often given as an
N -indexed family of binary relations

s
a−→ s ′ ⇔ 〈s ′, a, s〉 ∈ T

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Relational characterization (morphism)
A morphism relating two LTS over N , 〈S ,T 〉 and 〈S ′,T ′〉, is a
functionh : S ′ ←− S st

s
a−→ s ′ ⇒ h s

a−→ h s ′

morphisms preserve transitions

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Coalgebraic characterization
A LTS over a set N of names is a pair 〈S , next〉 where

• S = {s0, s1, s2, ...} is a set of states

• next : PS ←− S ×N is the transition function

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Coalgebraic characterization (morphism)
A morphism h : 〈S ′, next′〉 ←− 〈S , next〉 is a function h : S ′ ←− S st the
following diagram commutes

S ×N

h×id
��

next // PS

Ph
��

S ′ ×N next′ // PS ′

i.e.,
Ph · next = next′ · (h × id)

or, going pointwise,

{h x | x ∈ next 〈s, a〉} = next′ 〈h s, a〉

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Coalgebraic characterization (morphism)
A morphism h : 〈S ′, next′〉 ←− 〈S , next〉

• preseves transitions:

s ′ ∈ next 〈s, a〉 ⇒ h s ′ ∈ next′ 〈h s, a〉

• reflects transitions:

r ′ ∈ next′ 〈h s, a〉 ⇒ 〈∃ s ′ ∈ S : s ′ ∈ next 〈s, a〉 : r ′ = h s ′〉

(why?)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ⇔ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next′ · (h × id)

How can these notions of morphism be used to compare LTS?

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Comparison

• Both definitions coincide at the object level:

〈s, a, s ′〉 ∈ T ⇔ s ′ ∈ next 〈s, a〉

• Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph · next ⊆ next′ · (h × id)

How can these notions of morphism be used to compare LTS?

	Reactive Systems
	M1: Functions over streams
	M2: Finite Automata
	Transition Systems

