Labelled Transition Systems (1)

Luis S. Barbosa

DI-CCTC
Universidade do Minho
Braga, Portugal

22 February, 2010

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Reactive systems

Reactive system

system that computes by reacting to stimuli from its environment
along its overall computation

® in contrast to sequential systems whose meaning is defined by the
results of finite computations, the behaviour of reactive systems is
mainly determined by interaction and mobility of non-terminating
processes, evolving concurrently.

e observation < interaction

e behaviour < a structured record of interactions

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Reactive systems

Concurrency vs interaction

x:=0;
x:=x+1|x:=x+2

e both statements in parallel could read x before it is written
e which values can x take?

e which is the program outcome if exclusive access to memory and
atomic execution of assignments is guaranteed?

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Models of computation for continuous interaction

’two reactive systems you are already familiar with

Functions f : O «—— |

® one-step, input-output behaviour

e but what about functions manipulating infinite data structures?

merge : AY +— A“ x A¥

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Models of computation for continuous interaction

’two reactive systems you are already familiar with

Functions f : O «—— |

® one-step, input-output behaviour

e but what about functions manipulating infinite data structures?

merge : AY +— A“ x A¥

Automata

e multi-step behaviour: accepted language

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

Streams are coalgebraic structures: specified by observers

(hd,tl) : A x A% +— A

e Function (hd,tl) is the observation structure of A“.

e The shape of such an observation is given by functor
T:Ax X +— X for which (hd,tl) is a coalgebra.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Coalgebra
a lens: O~0O
(m
a tool box: 1]
an observation structure: O~O universe <— universe
m
. d .
an assembly process: artifact +—[]] artifact

M2: Finite Automata Transition Systems

Reactive Systems M1: Functions over streams
Coalgebra
a lens: O~0O
(m
a tool box: 1]
. . « .
an observation structure: O~—~0 universe +— universe
m
: d .
an assembly process: artifact +—[]] artifact
a:FU+—U

e coalgebras describe transition systems
e and abstract behaviour types as (final) coalgebras

e compare with (initial) algebras and (finite) data structures

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

o Coalgebras
p = {at,m):Ax U«+— U

for the same functor, relate through morphisms:
structure-preserving functions,

(at,m)
U——=AxU

hl \Lidxh
(at’,m")

— AxV

at=at'-h and h-m=m'-h

e The behaviour of (at,m), from an initial value u, is given by
successive observations:

[p)] u = [at u, at (m u), at (m (m u)),...]

originating a stream of A values.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

(hd,tl) : A x A% +— A

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [p] st

(hd, 1)

AY —5 A x A¥ vr —s Tur
) T Tid x[(p) (2 T TTKP)]
U—LsAxuU U—sTU

k=[p] © wr-k=Tk-p

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Functions over streams

(hd,tl) : A x A% +— A

is final, i.e. characterised by the following universal property: from any
other coalgebra p there is a unique morphism [p] st

(hd, 1)

AY —5 A x A¥ vr —s Tur
) T T idx[p] (2 T TTKP)]
U—LsAxuU U—sTU

k=[p] © wr-k=Tk-p
from where one derives the usual toolkit:

cancelation wrt-[p)] = Tlp)] p
reflection [(wr) idy,

fusion [p)]-h = [q)] if p-h=Th-q

Reactive Systems M1: Functions over streams M2: Finite Automata

Ex: Functions over streams

Behaviour is specified under all observers

Example:

(hd,tl)
AY —= A x A¥

repT T idxrep

A—2 > AxA

rep = [(A)

Transition Systems

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Definition by coinduction

(id x rep)- A = (hd,tl) - rep

<= { & definition }
(id x rep) - (id,id) = (hd,tl) - rep
& { x abs and fusion }

(id,rep) = (hd - rep,tl - rep)

& { structural equality }
hd-rep=id A tl-rep=rep

< { going pointwise }
hd (repa)=a A tl(repa)=repa

Exercise: define merge and twist.

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Proof by coinduction: merge (a¥, b*) = (ab)*

merge - (rep X rep) = twist
= { merge definition }

[((hd - 71,s - (tl x id))] - (rep x rep) = [(m1,s)]
= { fusion }

(hd - 7r1,s - (tl x id)) - (rep x rep) = id X (rep x rep) - {my,s)
= { x abs and reflection }

(hd - rep - 71,5 - ((tl - rep) x rep)) = id x (rep X rep) - (my,s)
= { tl-rep=repehd-rep=id }

(m1,s- (rep x rep)) = id x (rep x rep) - (my,s)
= { xabs }

(71,5 (rep x rep)) = (1, (rep X rep) - s)
= { snatural: (fxg)-s=s-(gxf) }
)

(1.5 (rep x rep)) = (m1,s- (rep x rep))

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata
Definition
A= (%,S,s,,F,T)
where

® Y is an alphabet

S ={s,51,%,...} is a set of states

Sp € S is the initial state

F C S is the set of final states

e T CS xX xS isthe transition relation usually given as a
> -indexed family of realtions over S:

s & (shas) eT

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

Definition
A= (LS,SO, F, T>
where

® Y is an alphabet

S ={s,51,%,...} is a set of states

Sp € S is the initial state
e F C S is the set of final states

e T CS xX xS isthe transition relation usually given as a
> -indexed family of realtions over S:

s & (shas) eT

e deterministic
e finite

e image finite

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

automaton behaviour < accepted language

Recall that finite automata recognize regular languages, i.e. generated by
e L1 +1Ly = LiULy (union)
o Ly Ly & {st|se€Ly,te Ly} (concatenation)
o [* £ {eJULU(L-L)U(L-L-L)U... (iteration)

Reactive Systems M1: Functions over streams M2: Finite Automata

Ex: Automata

There is a syntax to specify such languages:
E = ¢|a|E+E| EE | FE
where a € X

e which regular expression specifies {a, bc}?

e and {ca, cb}?

Transition Systems

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Ex: Automata

There is a syntax to specify such languages:
E = ¢|a|E+E| EE | FE
where a € X
e which regular expression specifies {a, bc}?
e and {ca, cb}?
and an algebra of regular expressions:

(EL+ B+ E = B +(E + E)
(E1+ E) E5 ELEs+EE;
E1 (E2 El)* (El E2))k El

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

After thoughts

(from the two examples of reactive systems discussed)

e characterise notions of observation and interaction

e syntax (support for modeling) and semantics (basis for calculation)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

After thoughts

. need more general models and theories:

e Several interaction points (# functions)
e Non termination (no final states as in automata)

e Need to distinguish normal from anomolous termination (eg
deadlock)

e Non determinisim should be taken seriously: the notion of
equivalence based on accepted language is blind wrt non
determinism

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Relational characterization
A LTS over a set N of names is a pair (S, T) where

o S={s,51,%,...} is a set of states

e T C S x N x & is the transition relation, often given as an
N-indexed family of binary relations

s-5s o (sdas)eT

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Relational characterization (morphism)
A morphism relating two LTS over N/, (S5, T) and (§', T'), is a
functionh : 8’ +— S st

a /

s——s = hs-hs

morphisms preserve transitions

Reactive Systems M1: Functions over streams M2: Finite Automata

Labelled Transition System

Coalgebraic characterization
A LTS over a set N of names is a pair (S, next) where

o S={s,51,%,...} is a set of states

e next: PS «— S x N is the transition function

Transition Systems

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Coalgebraic characterization (morphism)

A morphism h: (S’ next’) «— (S, next) is a function h: S’ +— S st the
following diagram commutes

next

SxN—PS
hxidi Ph

S/XNLH;'PS'

Ph-next = next'-(hxid)

or, going pointwise,

{hx|x €next (s,a)} = next' (hs,a)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Labelled Transition System

Coalgebraic characterization (morphism)
A morphism h: (S’ next’) «— (S, next)

® preseves transitions:
s’ € next (s,a) = hs’ € next’ (hs,a)
e reflects transitions:

r'enext’ (hs,a)=(3s €S : s’ enext(s,a): r=hs)

(why?)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Comparison

e Both definitions coincide at the object level:
(s,a,s'y € T & s €next(s,a)

e Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph-next C next'-(hxid)

Reactive Systems M1: Functions over streams M2: Finite Automata Transition Systems

Comparison

e Both definitions coincide at the object level:
(s,a,s'y € T & s €next(s,a)

e Wrt morphisms, the relational definition is more general,
corresponding, in coalgebraic terms to

Ph-next C next'-(hxid)

How can these notions of morphism be used to compare LTS?

	Reactive Systems
	M1: Functions over streams
	M2: Finite Automata
	Transition Systems

