Logics for processes (I)

Luís S. Barbosa
DI-CCTC
Universidade do Minho
Braga, Portugal

April, 2010

Motivation

System's correctness wrt a specification

- equivalence checking (between two designs), through \sim and $=$
- unsuitable to check properties such as

$$
\text { can the system perform action } \alpha \text { followed by } \beta \text { ? }
$$

which are best answered by exploring the process state space

Motivation

The taxi network example

- $\phi_{0}=$ In a taxi network, a car can collect a passenger or be allocated by the Central to a pending service
- $\phi_{1}=$ This applies only to cars already on service
- $\phi_{2}=$ If a car is allocated to a service, it must first collect the passenger and then plan the route
- $\phi_{3}=$ On detecting an emergence the taxi becomes inactive
- $\phi_{4}=A$ car on service is not inactive

Motivation

The taxi network example

- $\phi_{0}=\langle r e c$, alo \rangle true
- $\phi_{1}=$ [onservice $]\langle r e c$, alo \rangle true or $\phi_{1}=[$ onservice $] \phi_{0}$
- $\phi_{2}=[a l o]\langle r e c\rangle\langle p l a n\rangle$ true
- $\phi_{3}=[s o s][-]$ false
- $\phi_{4}=[$ onservice $]\langle-\rangle$ true

Notes

- Modalities: $\langle K\rangle \phi,[L] \psi$ for $K, L \subset$ Act
- Valuations in non modal logics are based on valuations
$V: \mathbf{2}$ Variables: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V:2 \longleftarrow Variables $\times \mathbb{P}$ or, equivalently, $V: \mathcal{P} \mathbb{P} \longleftarrow$ Variables: each variable is associated to the set of processes in which its value is fixed as true
- In our case, models for such a logic are defined over the universe of processes \mathbb{P} (i.e., terms of our process language) equipped with relations $\{\stackrel{*}{\leftarrow} \mid x \in A c t\}$ defined by the operational semantics of the language.
but the topic modal logics has a longer story and a broad spectrum of applications

Notes

- Modalities: $\langle K\rangle \phi,[L] \psi$ for $K, L \subset$ Act
- Valuations in non modal logics are based on valuations
$V: \mathbf{2}$ Variables: propositions are true or false depending on the unique referential provided by V
- Valuations in a modal logic also depends on the current state of computation: V:2 \longleftarrow Variables $\times \mathbb{P}$ or, equivalently, $V: \mathcal{P} \mathbb{P} \longleftarrow$ Variables: each variable is associated to the set of processes in which its value is fixed as true
- In our case, models for such a logic are defined over the universe of processes \mathbb{P} (i.e., terms of our process language) equipped with relations $\{\stackrel{x}{\leftarrow} \mid x \in A c t\}$ defined by the operational semantics of the language.
- ... but the topic modal logics has a longer story and a broad spectrum of applications ...

The language

Syntax

$$
\phi::=\text { true | false }\left|\phi_{1} \wedge \phi_{2}\right| \phi_{1} \vee \phi_{2}|\langle K\rangle \phi|[K] \phi
$$

The language

Semantics: $E \models \phi$

$$
\begin{array}{lll}
E \models \text { true } \\
E \not \models \text { false } & & \\
E \models \phi_{1} \wedge \phi_{2} & \text { iff } & E \models \phi_{1} \wedge E \models \phi_{2} \\
E \models \phi_{1} \vee \phi_{2} & \text { iff } & E \models \phi_{1} \vee E \models \phi_{2} \\
E \models\langle K\rangle \phi & \text { iff } & \exists_{F \in\left\{E^{\prime} \mid E^{\prime} \longleftarrow E \wedge a \in K\right\}} . F \models \phi \\
E \models[K] \phi & \text { iff } & \forall_{F \in\left\{E^{\prime} \mid E^{\prime} \longleftarrow E \wedge a \in K\right\}} . F \models \phi
\end{array}
$$

Example

$$
\begin{aligned}
\text { Sem } & \triangleq \text { get.put.Sem } \\
P_{i} & \triangleq \overline{\text { get. }} \cdot c_{i} \cdot \overline{p u t} . P_{i} \\
S & \triangleq \text { new }\{\text { get, put }\}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right)
\end{aligned}
$$

- Sem $\models\langle$ get \rangle true holds because

$$
\left.\exists_{F \in\left\{\text { Sem }^{\prime} \mid \text { Sem }^{\prime} \stackrel{\text { get }}{ }\right.} \text { Sem }\right\} . F \models \text { true }
$$

with $F=$ put.Sem.

- However, Sem \vDash [put]false also holds, because
$T=\left\{\right.$ Sem $^{\prime} \mid$ Sem $^{\prime} \stackrel{\text { put }}{\leftrightarrows}$ Sem $\}=\emptyset$. Hence $\forall_{F \in T} . F \models$ false becomes trivially true.
- The only action initially permmited to S is τ : $\models[-\tau]$ false.

Example

$$
\begin{aligned}
\text { Sem } & \triangleq \text { get.put.Sem } \\
P_{i} & \triangleq \overline{\text { get. }} \cdot c_{i} \cdot \overline{p u t} \cdot P_{i} \\
S & \triangleq \text { new }\{\text { get, put }\}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right)
\end{aligned}
$$

- Afterwards, S can engage in any of the critical events $c_{1}, c_{2}, \ldots, c_{i}$: $[\tau]\left\langle c_{1}, c_{2}, \ldots, c_{i}\right\rangle$ true
- After the semaphore initial synchronization and the occurrence of c_{j} in P_{j}, a new synchronization becomes inevitable: $S \models[\tau]\left[c_{j}\right](\langle-\rangle$ true $\wedge[-\tau]$ false $)$

Notes

- inevitability of $a:\langle-\rangle$ true $\wedge[-a] f a l s e$
- progress: $\langle-\rangle$ true
- deadlock or termination: [-]false
- what about

$$
\langle-\rangle \text { false and }[-] \text { true ? }
$$

- satisfaction decided by unfolding the definition of ℓ : no need to compute the transition graph

Notes

- inevitability of $a:\langle-\rangle$ true $\wedge[-a]$ false
- progress: $\langle-\rangle$ true
- deadlock or termination: [-]false
- what about

$$
\langle-\rangle \text { false and }[-] \text { true ? }
$$

- satisfaction decided by unfolding the definition of k : no need to compute the transition graph

Notes

- inevitability of $a:\langle-\rangle$ true $\wedge[-a] f a l s e$
- progress: $\langle-\rangle$ true
- deadlock or termination: [-]false
- what about

$$
\langle-\rangle \text { false and }[-] \text { true ? }
$$

- satisfaction decided by unfolding the definition of \models : no need to compute the transition graph

Notes

- inevitability of $a:\langle-\rangle$ true $\wedge[-a] f a l s e$
- progress: $\langle-\rangle$ true
- deadlock or termination: [-]false
- what about

$$
\langle-\rangle \text { false and [-]true ? }
$$

- satisfaction decided by unfolding the definition of \models : no need to compute the transition graph

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true
ϕ vs $\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}$

$$
\begin{aligned}
\| \text { true } \| & =\mathbb{P} \\
\| \text { false } \| & =\emptyset \\
\left\|\phi_{1} \wedge \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cap\left\|\phi_{2}\right\| \\
\left\|\phi_{1} \vee \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cup\left\|\phi_{2}\right\|
\end{aligned}
$$

A denotational semantics

Idea: associate to each formula ϕ the set of processes that make it true
ϕ vs $\|\phi\|=\{E \in \mathbb{P} \mid E \models \phi\}$

$$
\begin{aligned}
\| \text { true } \| & =\mathbb{P} \\
\| \text { false } \| & =\emptyset \\
\left\|\phi_{1} \wedge \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cap\left\|\phi_{2}\right\| \\
\left\|\phi_{1} \vee \phi_{2}\right\| & =\left\|\phi_{1}\right\| \cup\left\|\phi_{2}\right\| \\
\|[K] \phi\| & =\|[K]\|(\|\phi\|) \\
\|\langle K\rangle \phi\| & =\|\langle K\rangle\|(\|\phi\|)
\end{aligned}
$$

$\|[K]\|$ and $\|\langle K\rangle\|$

Just as \wedge corresponds to \cap and \vee to \cup, modal logic combinators correspond to unary functions on sets of processes:

$$
\begin{gathered}
\|[K]\|=\lambda_{X \subseteq \mathbb{P}} \cdot\left\{F \in \mathbb{P} \mid \text { if } F^{\prime} \stackrel{a}{\leftarrow} F \wedge a \in K \text { then } F^{\prime} \in X\right\} \\
\|\langle K\rangle\|=\lambda_{X \subseteq \mathbb{P}} \cdot\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in X, a \in K} \cdot F^{\prime} \stackrel{a}{\longleftarrow} F\right\}
\end{gathered}
$$

Note
These combinators perform a reduction to the previous state indexed by actions in K

$\|[K]\|$ and $\|\langle K\rangle\|$

Example

$$
\begin{aligned}
\|\langle a\rangle\|\left\{q_{2}, n\right\} & =\left\{q_{1}, m\right\} \\
\|[a]\|\left\{q_{2}, n\right\} & =\left\{q_{2}, q_{3}, m, n\right\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iif } E \in\|\phi\|
$$

Example: $\mathbf{0} \models[-]$ false because

$$
\begin{aligned}
\|[-] \text { false } \| & =\|[-]\|(\| \text { false } \|) \\
& =\|[-]\|(\emptyset) \\
& =\left\{F \in \mathbb{P} \mid \text { if } F^{\prime} \longleftarrow \leftarrow \vdash \wedge x \in \text { Act then } F^{\prime} \in \emptyset\right\} \\
& =\{\mathbf{0}\}
\end{aligned}
$$

A denotational semantics

$$
E \models \phi \text { iif } E \in\|\phi\|
$$

Example: ?? $\models\langle-\rangle$ true because

$$
\begin{aligned}
\|\langle-\rangle \text { true } \| & =\|\langle-\rangle\|(\| \text { true } \|) \\
& =\|\langle-\rangle\|(\mathbb{P}) \\
& =\left\{F \in \mathbb{P} \mid \exists_{F^{\prime} \in \mathbb{P}, a \in K} \cdot F^{\prime} \stackrel{a}{\longleftarrow} F\right\} \\
& =\mathbb{P} \backslash\{\mathbf{0}\}
\end{aligned}
$$

A denotational semantics

Complement
Any property ϕ divides \mathbb{P} into two disjoint sets:

$$
\|\phi\| \text { and } \mathbb{P}-\|\phi\|
$$

The characteristic formula of the complement of $\|\phi\|$ is ϕ^{c} :

$$
\left\|\phi^{c}\right\|=\mathbb{P}-\|\phi\|
$$

where ϕ^{c} is defined inductively on the formulae structure:

$$
\begin{gathered}
\text { true }^{c}=\text { false } \quad \text { false }^{c}=\text { true } \\
\left(\phi_{1} \wedge \phi_{2}\right)^{c}=\phi_{1}^{c} \vee \phi_{2}^{c} \\
\left(\phi_{1} \vee \phi_{2}\right)^{c}=\phi_{1}^{c} \wedge \phi_{2}^{c} \\
(\langle a\rangle \phi)^{c}=[a] \phi^{c}
\end{gathered}
$$

... but negation is not explicitly introduced in the logic.

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\ulcorner } F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\ulcorner } F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Examples

$$
\begin{aligned}
\text { a.b. } \mathbf{0}+\text { a.c. } \mathbf{0} & \simeq_{\Gamma} \text { a. }(b .0+c .0) \\
\text { for } \Gamma & =\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \ldots\left\langle x_{n}\right\rangle \text { true } \mid x_{i} \in A c t\right\}
\end{aligned}
$$

(what about \simeq_{Γ} for $\Gamma=\{ \}$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq_{\ulcorner } F \quad \Leftrightarrow \quad \forall_{\phi \in \Gamma} . E \models \phi \Leftrightarrow F \models \phi
$$

Examples

$$
\begin{aligned}
& \text { a.b. } \mathbf{0}+\text { a.c. } \mathbf{0} \simeq_{\Gamma} \text { a. }(b .0+c .0) \\
& \text { for } \Gamma=\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle \ldots\left\langle x_{n}\right\rangle \text { true } \mid x_{i} \in A c t\right\} \\
& \text { (what about } \simeq_{\Gamma} \text { for } \Gamma=\left\{\left\langle x_{1}\right\rangle\left\langle x_{2}\right\rangle\left\langle x_{3}\right\rangle \ldots\left\langle x_{n}\right\rangle[-] \text { false } \mid x_{i} \in \text { Act }\right\} \text { ?) }
\end{aligned}
$$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

Note
the converse of this lemma does not hold, e.g. let

- $A \triangleq \sum_{i \geq 0} A_{i}$, where $A_{0} \triangleq 0$ and $A_{i+1} \triangleq a . A_{i}$
- $A^{\prime} \triangleq A+\underline{f i x}(X=$ a. $X)$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

$$
E \sim F \Rightarrow E \simeq F
$$

Note
the converse of this lemma does not hold, e.g. let

- $A \triangleq \sum_{i \geq 0} A_{i}$, where $A_{0} \triangleq 0$ and $A_{i+1} \triangleq a . A_{i}$
- $A^{\prime} \triangleq A+\underline{f i x}(X=$ a. $X)$

Modal Equivalence

For each (finite or infinite) set Γ of formulae,

$$
E \simeq F \quad \Leftrightarrow \quad E \simeq_{\Gamma} F \text { for every set } \Gamma \text { of well-formed formulae }
$$

Lemma

$$
E \sim F \Rightarrow E \simeq F
$$

Note

 the converse of this lemma does not hold, e.g. let- $A \triangleq \sum_{i \geq 0} A_{i}$, where $A_{0} \triangleq \mathbf{0}$ and $A_{i+1} \triangleq$ a. A_{i}
- $A^{\prime} \triangleq A+\underline{f i x}(X=a . X)$

$$
A \nsim A^{\prime} \text { but } A \simeq A^{\prime}
$$

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.

Image-finite processes

E is image-finite iff $\{F \mid F \stackrel{\square}{\leftarrow} E\}$ is finite for every action a \in Act

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.

Image-finite processes
E is image-finite iff $\{F \mid F \stackrel{a}{\longleftarrow} E\}$ is finite for every action $a \in$ Act

Modal Equivalence

Theorem [Hennessy-Milner, 1985]

$$
E \sim F \Leftrightarrow E \simeq F
$$

for image-finite processes.
proof
\Rightarrow : by induction of the formula structure
\Leftarrow : show that \simeq is itself a bisimulation, by contradiction

