Introduction to process algebra

Luís S. Barbosa
DI-CCTC
Universidade do Minho
Braga, Portugal

March, 2010

Actions \& processes

Action

is a latency for interaction

$$
\text { Act }::=a|\bar{a}| \tau
$$

for $a \in L, L$ denoting a set of names
Process
is a description of how the interaction capacities of a system evolve, i.e., its behaviour
for example,

Actions \& processes

Action

is a latency for interaction

$$
\text { Act }::=a|\bar{a}| \tau
$$

for $a \in L, L$ denoting a set of names
Process
is a description of how the interaction capacities of a system evolve, i.e., its behaviour
for example,

$$
E \triangleq a . b . \mathbf{0}+a . E
$$

- analogy: regular expressions vs finite automata

Examples

Buffers

1-position buffer: $A(i n, o u t) \triangleq$ in. $\overline{o u t} .0$
... non terminating: $B($ in, out $) \triangleq$ in. $\overline{o u t} . B$
... with two output ports: $C\left(\right.$ in, $\left.o_{1}, o_{2}\right) \triangleq$ in. $\left(\overline{o_{1}} \cdot C+\overline{o_{2}} \cdot C\right)$
... non deterministic: $D\left(i n, o_{1}, o_{2}\right) \triangleq$ in. $\overline{o_{1}} \cdot D+$ in. $\overline{o_{2}} . D$
... with parameters: $B($ in, out $) \triangleq i n(x) . \overline{o u t}\langle x\rangle \cdot B$

Parallel composition

n-position buffers

1-position buffer:

$$
S \triangleq \operatorname{new}\{m\}(B\langle i n, m\rangle \mid B\langle m, \text { out }\rangle)
$$

n-position buffer:

$$
B n \triangleq \operatorname{new}\left\{m_{i} \mid i<n\right\}\left(B\left\langle i n, m_{1}\right\rangle\left|B\left\langle m_{1}, m_{2}\right\rangle\right| \cdots \mid B\left\langle m_{n-1}, \text { out }\right\rangle\right)
$$

Parallel composition

mutual exclusion

Sem \triangleq get.put.Sem

$$
\begin{aligned}
& P_{i} \triangleq \overline{\text { get. }} \cdot c_{i} \cdot \overline{p u t} . P_{i} \\
& S \triangleq \operatorname{new}\{\text { get, put }\}\left(\text { Sem } \mid\left(\left.\right|_{i \in I} P_{i}\right)\right)
\end{aligned}
$$

A language for processes

Questions

- Which syntax to use to describe processes?
- What's the meaning of such descriptions?
- Why some of our favourite programming languages' constructions are not considered?
- ...

Syntax

The set \mathbb{P} of processes is the set of all terms generated by the following BNF:

$$
E::=A\left(x_{1}, \ldots, x_{n}\right)|a . E| \sum_{i \in I} E_{i}\left|E_{0}\right| E_{1} \mid \text { new } K E
$$

for $a \in A c t$ and $K \subseteq L$

Syntax

The set \mathbb{P} of processes is the set of all terms generated by the following BNF:

$$
E::=A\left(x_{1}, \ldots, x_{n}\right)|a . E| \sum_{i \in I} E_{i}\left|E_{0}\right| E_{1} \mid \text { new } K E
$$

for $a \in A c t$ and $K \subseteq L$

Abbreviatures

$$
\begin{aligned}
E_{0}+E_{1} & \stackrel{\text { abv }}{=} \sum_{i \in\{0,1\}} E_{i} \\
\mathbf{0} & \stackrel{\text { abv }}{=} \sum_{i \in \emptyset} E_{i}
\end{aligned}
$$

Syntax

Process declaration

$$
A(\tilde{x}) \triangleq E_{A}
$$

with $\mathrm{fn}\left(E_{A}\right) \subseteq \tilde{x}$ (where $\mathrm{fn}(P)$ is the set of free variables of P).

- used as, e.g., $A(a, b, c) \triangleq$ a.b. $\mathbf{0}+c . A\langle d, e, f\rangle$

Process declaration: fixed point expression

$$
\underline{f i x}\left(X=E_{X}\right)
$$

- syntactic substitution over $\mathbb{P}, c f$.,
- (internal variables renaming)
\square

Syntax

Process declaration

$$
A(\tilde{x}) \triangleq E_{A}
$$

with $\mathrm{fn}\left(E_{A}\right) \subseteq \tilde{x}$ (where $\mathrm{fn}(P)$ is the set of free variables of P).

- used as, e.g., $A(a, b, c) \triangleq$ a.b. $\mathbf{0}+c . A\langle d, e, f\rangle$

Process declaration: fixed point expression

$$
\underline{f i x}\left(X=E_{X}\right)
$$

- syntactic substitution over $\mathbb{P}, c f$.,
- $\{c / b\}$ a.b. 0
- (internal variables renaming) $\{x / y\}$ new $\{x\}$ y.x. $\mathbf{0}=$ new $\left\{x^{\prime}\right\} x \cdot x^{\prime} .0$

Sort

The sort of a process P is its interface, i.e., its iteraction possibilities

- minimal sort: $\bigcap\{K \subseteq L \mid P: K\}$
- syntactic sort, i.e., the set of free variables:

$$
\begin{aligned}
\mathrm{fn}(a . P) & =\{a\} \cup \mathrm{fn}(P) \\
\mathrm{fn}(\tau . P) & =\mathrm{fn}(P) \\
\mathrm{fn}\left(\sum_{i \in I} P_{i}\right) & =\bigcup_{i \in I} \mathrm{fn}\left(P_{i}\right) \\
\mathrm{fn}(P \mid Q) & =\mathrm{fn}(P) \cup \mathrm{fn}(Q) \\
\mathrm{fn}(\operatorname{new} K P) & =\mathrm{fn}(P)-(K \cup \bar{K})
\end{aligned}
$$

and, for each $P(\tilde{x}) \triangleq E, \mathrm{fn}(E) \subseteq \mathrm{fn}(P(\tilde{x}))=\tilde{x}$.

Sort

Warning

- new $\{a\}$ (a.b.c.0) has no transitions, so its sort is \emptyset
- however: $\mathrm{fn}(($ new $\{a\}$ a.b.c. 0$))=\{b, c\}$

Semantics

Two-level semantics

- arquitectural, expresses a notion of similar assembly configurations and is expressed through a structural congruence relation;
- comportamental given by transition rules which express how system's components interact

Semantics

Structural congruence

\equiv over \mathbb{P} is given by the closure of the following conditions:

- for all $A(\tilde{x}) \triangleq E_{A}, A(\tilde{y}) \equiv\{\tilde{x} / \tilde{y}\} E_{A}$, (i.e., folding/unfolding preserve \equiv)
- α-conversion (i.e., replacement of bounded variables).
- both \mid and + originate, with $\mathbf{0}$, abelian monoids
- forall $a \notin \mathrm{fn}(P)$ new $\{a\}(P \mid Q) \equiv P \mid$ new $\{a\} Q$
- new $\{a\} \mathbf{0} \equiv \mathbf{0}$

Semantics

$$
\begin{gathered}
\frac{E \stackrel{a}{\longleftarrow} a \cdot E}{}(\text { prefix }) \\
\frac{E^{\prime} \stackrel{a}{\longleftarrow}\{\tilde{k} / \tilde{x}\} E_{A}}{E^{\prime}{ }^{a} \longleftarrow A(\tilde{k})}(\text { ident })\left(\text { if } A(\tilde{x}) \triangleq E_{A}\right) \\
\frac{E^{\prime} \stackrel{a}{\longleftarrow} E}{E^{\prime} \stackrel{a}{\longleftarrow} E+F}(\text { sum }-I) \quad \frac{F^{\prime} \stackrel{a}{\longleftarrow} F}{F^{\prime} \stackrel{a}{\longleftarrow} E F}(\text { sum }-r)
\end{gathered}
$$

Semantics

$$
\begin{gathered}
\frac{E^{\prime} \stackrel{a}{\longleftarrow} E}{E^{\prime}|F \stackrel{a}{\longleftarrow} E| F}(\text { par }-I) \quad \frac{F^{\prime} \stackrel{a}{\longleftarrow} F}{E\left|F^{\prime} \stackrel{a}{\longleftarrow} E\right| F}(\text { par }-r) \\
\frac{E^{\prime} \stackrel{a}{\longleftarrow} E \quad F^{\prime} \stackrel{\bar{a}}{\longleftarrow} F}{E^{\prime}\left|F^{\prime}{ }^{\tau} \longleftarrow E\right| F}(\text { react }) \\
\frac{E^{\prime} \stackrel{a}{\longleftarrow} E}{\text { new }\{k\} E^{\prime} \stackrel{a}{\longleftarrow} \text { new }\{k\} E}(\text { res })(\text { if } a \notin\{k, \bar{k}\})
\end{gathered}
$$

Compatibility

Lemma

Structural congruence preserves transitions:
if $E^{\prime} \stackrel{a}{\longleftarrow} E$ and $E \equiv F$ there exists a process F^{\prime} such that $F^{\prime} \stackrel{a}{\longleftarrow} F$ and $E^{\prime} \equiv F^{\prime}$.

Semantics

These rules define a LTS

$$
\{\stackrel{a}{\leftarrow} \subseteq \mathbb{P} \times \mathbb{P} \mid a \in A c t\}
$$

Relation $\stackrel{a}{\longleftarrow}$ is defined inductively over process structure entailing a semantic description which is

Structural i.e., each process shape (defined by the most external combinator) has a type of transitions

Modular i.e., a process trasition is defined from transitions in its sup-processes

Complete i.e., all possible transitions are infered from these rules

> static vs dynamic combinators

Semantics

These rules define a LTS

$$
\{\stackrel{a}{\leftarrow} \subseteq \mathbb{P} \times \mathbb{P} \mid a \in A c t\}
$$

Relation $\stackrel{a}{\longleftarrow}$ is defined inductively over process structure entailing a semantic description which is

Structural i.e., each process shape (defined by the most external combinator) has a type of transitions
Modular i.e., a process trasition is defined from transitions in its sup-processes

Complete i.e., all possible transitions are infered from these rules

Graphical representations

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams
\square
Transition graph
- d'erivaitive, h-derivative, transition tree
- folds into a transition graph

Graphical representations

Synchronization diagram

- represent interfaces of processes
- static combinators are an algebra of synchronization diagrams

Transition graph

- derivative, n-derivative, transition tree
- folds into a transition graph

Transition tree

$B \triangleq$ in. $\overline{o 1} \cdot B+$ in. $\overline{o 2} \cdot B$

Transition graph

$B \triangleq$ in. $\overline{o 1} \cdot B+$ in. $\overline{o 2} \cdot B$

compare with $B^{\prime} \triangleq$ in. $\left(\overline{o 1} \cdot B^{\prime}+\overline{o 2} \cdot B^{\prime}\right)$

Transition graph

$B \triangleq$ in. $\overline{o 1} \cdot B+$ in. $\overline{o 2} \cdot B$

compare with $B^{\prime} \triangleq$ in. $\left(\overline{o 1} \cdot B^{\prime}+\overline{o 2} \cdot B^{\prime}\right)$

Data parameters

Language \mathbb{P} is extended to \mathbb{P}_{V} over a data universe V, a set V_{e} of expressions over V and a evaluation $V a l: V \longleftarrow V_{e}$
Example

$$
\begin{gathered}
B \triangleq \operatorname{in}(x) \cdot B_{x}^{\prime} \\
B_{v}^{\prime} \triangleq \overline{\text { out }}\langle v\rangle . B
\end{gathered}
$$

- Two prefix forms: $a(x) \cdot E$ and $\bar{a}\langle e\rangle \cdot E$ (actions as ports)
- Data parameters: $A_{S}\left(x_{1}, \ldots, x_{n}\right) \triangleq E_{A}$, with $S \in V$ and each $x_{i} \in L$
- Conditional combinator: if b then P, if b then P_{1} else P_{2}

Data parameters

Language \mathbb{P} is extended to \mathbb{P}_{V} over a data universe V, a set V_{e} of expressions over V and a evaluation $V a l: V \longleftarrow V_{e}$

Example

$$
\begin{gathered}
B \triangleq \operatorname{in}(x) \cdot B_{x}^{\prime} \\
B_{v}^{\prime} \triangleq \overline{\text { out }}\langle v\rangle \cdot B
\end{gathered}
$$

- Two prefix forms: $a(x) \cdot E$ and $\bar{a}\langle e\rangle . E$ (actions as ports)
- Data parameters: $A_{S}\left(x_{1}, \ldots, x_{n}\right) \triangleq E_{A}$, with $S \in V$ and each $x_{i} \in L$
- Conditional combinator: if b then P, if b then P_{1} else P_{2}

Clearly

$$
\text { if } \left.b \text { then } P_{1} \text { else } P_{2} \stackrel{\text { abv }}{=} \text { (if } b \text { then } P_{1}\right)+\left(\text { if } \neg b \text { then } P_{2}\right. \text {) }
$$

Data parameters

Additional semantic rules

$$
\begin{array}{cl}
\overline{\{v / x\} E \stackrel{a(v)}{\longleftarrow} a(x) \cdot E}\left(\text { prefix }_{i}\right) & \text { for } v \in V \\
\overline{E(\bar{a}(v)} \bar{a}\langle e\rangle \cdot E & \text { prefix } \left.x_{0}\right)
\end{array} \quad \text { for } \operatorname{Val}(e)=v .
$$

Back to PP

Encoding in the basic language: $\mathcal{T}(): \mathbb{P} \longleftarrow \mathbb{P}_{V}$

$$
\begin{aligned}
\mathcal{T}(a(x) \cdot E) & =\sum_{v \in V} a_{v} \cdot \mathcal{T}(\{v / x\} E) \\
\mathcal{T}(\bar{a}\langle e\rangle \cdot E) & =\bar{a}_{e} \cdot \mathcal{T}(E) \\
\mathcal{T}\left(\sum_{i \in I} E_{i}\right) & =\sum_{i \in I} \mathcal{T}\left(E_{i}\right) \\
\mathcal{T}(E \mid F) & =\mathcal{T}(E) \mid \mathcal{T}(F) \\
\mathcal{T}(\operatorname{new} K E) & =\operatorname{new}\left\{a_{v} \mid a \in K, v \in V\right\} \mathcal{T}(E)
\end{aligned}
$$

and

$$
\mathcal{T}(\text { if } b \text { then } E)= \begin{cases}\mathcal{T}(E) & \text { if } \operatorname{Val}(b)=\text { true } \\ \mathbf{0} & \text { if } \operatorname{Val}(b)=\text { false }\end{cases}
$$

EX1: Canonical concurrent form

$$
P \triangleq \operatorname{new} K\left(E_{1}\left|E_{2}\right| \ldots \mid E_{n}\right)
$$

The chance machine

$$
\begin{aligned}
& I O \triangleq \text { m. } \overline{\text { bank. }} \text {. lost. } \overline{l o s s} . I O+r e l(x) \cdot \overline{w i n}\langle x\rangle . I O) \\
& B_{n} \triangleq \text { bank. } \overline{\max }\langle n+1\rangle . \operatorname{left}(x) . B_{x} \\
& D c \triangleq \max (z) \cdot\left(\overline{\text { lost. }} \cdot \overline{l e f t}\langle z\rangle . D c+\sum_{1 \leq x \leq z} \overline{r e l}\langle x\rangle . \overline{l e f t}\langle z-x\rangle . D c\right) \\
& M_{n} \triangleq \text { new }\{\text { bank, max, left, rel }\}\left(I O\left|B_{n}\right| D c\right)
\end{aligned}
$$

EX2: Sequential patterns

1. List all states (configurations of variable assignments)
2. Define an order to capture systems's evolution
3. Specify an expression in \mathbb{P} to define it

A 3-bit converter

$$
\begin{aligned}
& A \triangleq r q \cdot B \\
& B \triangleq \text { out } 0 . C+\text { out } 1 . \overline{\text { odd }} \cdot A \\
& C \triangleq \text { out } 0 . D+\text { out } 1 . \overline{\text { even }} \cdot A \\
& D \triangleq \text { out } 0 . \overline{z e r o} \cdot A+\text { out } 1 . \overline{\text { even. }} \cdot A
\end{aligned}
$$

EX3: The alternating-bit protocol

- protocol: set of rules orchestrating interaction between two entities to achieve a common goal
- ABP: exchange data over a unreliable medium: message loss and replication

EX3: ABP sender

- accepts message to deliver
- delivers message with bit b and sets a timer
- when a time-out in fired, re-sends b
- whenever a confirmation b is received, goes on with anew message and $1-b$
- ignores any confirmation with $1-b$

EX3: ABP sender

- accepts message to deliver
- delivers message with bit b and sets a timer
- when a time-out in fired, re-sends b
- whenever a confirmation b is received, goes on with anew message and $1-b$
- ignores any confirmation with $1-b$

$$
\begin{aligned}
\text { Accept }_{b} \triangleq & \text { accept } \cdot \text { Send }_{b} \\
\text { Send }_{b} \triangleq & \overline{\operatorname{send}}_{b} \cdot \overline{\text { time }^{2}} \cdot \text { Sending }_{b} \\
\text { Sending }_{b} \triangleq & {\text { timeout } \cdot \text { Send }_{b}+\text { ack }_{b} \cdot \text { timeout } \cdot \text { Accept }_{1-b}}+\text { ack }_{1-b} \cdot \text { Sending }_{b}
\end{aligned}
$$

EX3: ABP receiver

- receives a message and delivers it its client
- sends confirmation with bit b and sets a timer
- when a time-out in fired, re-sends b
- whenever receives a new message with $1-b$, delivers it its client, and continues with $1-b$
- ignores any message with b

EX3: ABP receiver

- receives a message and delivers it its client
- sends confirmation with bit b and sets a timer
- when a time-out in fired, re-sends b
- whenever receives a new message with $1-b$, delivers it its client, and continues with $1-b$
- ignores any message with b

$$
\begin{aligned}
\text { Deliver }_{b} \triangleq & \text { deliver } \cdot \text { Reply }_{b} \\
\text { Reply }_{b} \triangleq & \overline{\text { reply }}_{b} \cdot \overline{\text { time }^{\prime} \cdot \text { Replying }_{b}} \\
\text { Replying }_{b} \triangleq & \text { timeout }^{2} \cdot \text { Reply }_{b}+\text { trans }_{1-b} \cdot{\text { timeout } \cdot \text { Deliver }_{1-b}} \\
& + \text { trans }_{b} \cdot \text { Replying }_{b}
\end{aligned}
$$

EX3: ABP composing with timers

Timer \triangleq time $\cdot \overline{\text { timeout }} \cdot$ Timer

Sender $_{b} \triangleq$ accept.new $\{$ time, timeout $\}\left(\right.$ Send $_{b} \mid$ Timer $)$

Receiver $_{b} \triangleq$ new $\{$ time, timeout $\}($ Reply $b \mid$ Timer $)$

EX3: ABP communication medium

$$
\begin{aligned}
\operatorname{Trans}_{s b} & \triangleq \overline{\operatorname{trans}}_{b} \cdot \operatorname{Trans}_{s} \\
\operatorname{Trans}_{s} & \triangleq \operatorname{send}_{b} \cdot \operatorname{Trans}_{b s} \\
\operatorname{Trans}_{t b s} & \triangleq \tau \cdot \operatorname{Trans}_{t s} \\
\operatorname{Trans}_{t b s} & \triangleq \tau \cdot \operatorname{Trans}_{t b b s}
\end{aligned}
$$

and

$$
\begin{aligned}
A c k_{b s} & \triangleq \overline{a c k}_{b} \cdot A c k_{s} \\
A c k_{s} & \triangleq r e p l y_{b} \cdot A c k_{s b} \\
A c k_{s b t} & \triangleq \tau \cdot A c k_{s t} \\
A c k_{s b t} & \triangleq \tau \cdot A c k_{s b b t}
\end{aligned}
$$

EX3: ABP - the protocol

$$
A B \triangleq \operatorname{new} K\left(\text { Sender }_{1-b}\left|\operatorname{Trans}_{\epsilon}\right| A c k_{\epsilon} \mid \text { Receiver }_{b}\right)
$$

where $K=\left\{\right.$ send $_{b}, a^{c} k_{b}$, reply $\left._{b}, \operatorname{trans}_{b} \mid b \in\{0,1\}\right\}$.

Processes are 'prototypical' transition systems

... hence all definitions apply:
$E \sim F$

- Processes E, F are bisimilar if there exist a bisimulation S st $\{\langle E, F\rangle\} \in S$.
- A binary relation S in \mathbb{P} is a (strict) bisimulation iff, whenever $(E, F) \in S$ and $a \in A c t$,
i) $E^{\prime} \stackrel{a}{\leftrightarrows} E \Rightarrow F^{\prime} \stackrel{a}{\longleftarrow} F \wedge\left(E^{\prime}, F^{\prime}\right) \in S$
ii) $F^{\prime} \stackrel{a}{\longleftarrow} F \Rightarrow E^{\prime} \stackrel{a}{\longleftarrow} E \wedge\left(E^{\prime}, F^{\prime}\right) \in S$
I.e.,

$$
\sim=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a (strict) bisimulation }\}
$$

Processes are 'prototipycal' transition systems

Example: $S \sim M$

$$
\begin{aligned}
& T \triangleq i \cdot \bar{k} \cdot T \\
& R \triangleq k \cdot j \cdot R \\
& S \triangleq \operatorname{new}\{k\}(T \mid R)
\end{aligned}
$$

$$
\begin{aligned}
& M \triangleq i . \tau . N \\
& N \triangleq \text { j.i. } . N+i . j . \tau . N
\end{aligned}
$$

through bisimulation

$$
\begin{aligned}
R= & \{\langle S, M)\rangle,\langle\text { new }\{k\}(\bar{k} . T \mid R), \tau . N\rangle,\langle\text { new }\{k\}(T \mid j . R), N\rangle, \\
& \langle\text { new }\{k\}(\bar{k} . T \mid j . R), j . \tau . N\rangle\}
\end{aligned}
$$

Example: Semaphores

A semaphore

Sem \triangleq get.put.Sem

n-semaphores

$$
\begin{aligned}
\operatorname{Sem}_{n} \triangleq & \operatorname{Sem}_{n, 0} \\
\text { Sem }_{n, 0} \triangleq & \text { get. } \text { Sem }_{n, 1} \\
\text { Sem }_{n, i} \triangleq & \text { get. } \text { Sem }_{n, i+1}+\text { put. } \text { Sem }_{n, i-1} \\
& \quad(\text { for } 0<i<n) \\
\text { Sem }_{n, n} \triangleq & \text { put. } \text { Sem }_{n, n-1}
\end{aligned}
$$

Sem $_{n}$ can also be implemented by the parallel composition of n Sem
processes:

$$
\text { Sem }^{n} \triangleq \text { Sem } \mid \text { Sem }|\ldots| \text { Sem }
$$

Example: Semaphores

A semaphore

$$
\text { Sem } \triangleq \text { get.put.Sem }
$$

n-semaphores

$$
\begin{aligned}
& \text { Sem }_{n} \triangleq \text { Sem }_{n, 0} \\
& \text { Sem }_{n, 0} \triangleq \text { get. }^{\text {Sem }}{ }_{n, 1} \\
& \text { Sem }_{n, i} \triangleq \triangleq \text { get. } \text { Sem }_{n, i+1}+\text { put. } \text { Sem }_{n, i-1} \\
& \quad(\text { for } 0<i<n) \\
& \text { Sem }_{n, n} \triangleq \triangleq \text { put. } \text { Sem }_{n, n-1}
\end{aligned}
$$

Sem $_{n}$ can also be implemented by the parallel composition of n Sem processes:

$$
\operatorname{Sem}^{n} \triangleq \operatorname{Sem}|\operatorname{Sem}| \ldots \mid \text { Sem }
$$

Example: Semaphores

Is Sem $_{n} \sim$ Sem n ?
For $n=2$:
$\left\{\left\langle\right.\right.$ Sem $_{2,0}$, Sem $|$ Sem $\rangle,\left\langle\right.$ Sem $_{2,1}$, Sem $|$ put.Sem \rangle, $\left\langle\right.$ Sem $_{2,1}$, put.Sem | Sem $\rangle\left\langle\right.$ Sem $_{2,2}$, put.Sem $|$ put.Sem $\left.\rangle\right\}$
is a bisimulation.

- but can we get rid of structurally congruent pairs?

Example: Semaphores

Is Sem $_{n} \sim$ Sem n ?
For $n=2$:

$$
\begin{aligned}
& \left.\left\{\left\langle\text { Sem }_{2,0}, \text { Sem }\right| \text { Sem }\right\rangle,\left\langle\text { Sem }_{2,1}, \text { Sem }\right| \text { put.Sem }\right\rangle, \\
& \\
& \left.\left.\left.\left\langle\text { Sem }_{2,1}, \text { put.Sem }\right| \text { Sem }\right\rangle\left\langle\text { Sem }_{2,2}, \text { put.Sem }\right| \text { put.Sem }\right\rangle\right\}
\end{aligned}
$$

is a bisimulation.

- but can we get rid of structurally congruent pairs?

Bisimulation up to \equiv

Definition
A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E^{\prime} \stackrel{a}{\longleftarrow} E \Rightarrow F^{\prime} \stackrel{a}{\longleftarrow} F \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv S \cdot \equiv \\
& \text { ii) } F^{\prime} \stackrel{a}{\longleftarrow} F \Rightarrow E^{\prime} \longleftarrow E \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv
\end{aligned}
$$

Bisimulation up to \equiv

Definition
A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E^{\prime} \stackrel{a}{\longleftarrow} E \Rightarrow F^{\prime} \stackrel{a}{\longleftarrow} F \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv S \cdot \equiv \\
& \text { ii) } F^{\prime} \stackrel{a}{\longleftarrow} F \Rightarrow E^{\prime} \longleftarrow E \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv
\end{aligned}
$$

Lemma
If S is a (strict) bisimulation up to \equiv, then $S \subseteq \sim$

Bisimulation up to \equiv

Definition

A binary relation S in \mathbb{P} is a (strict) bisimulation up to \equiv iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E^{\prime} \stackrel{a}{\longleftarrow} E \Rightarrow F^{\prime} \stackrel{a}{\longleftarrow} F \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv S \cdot \equiv \\
& \text { ii) } F^{\prime} \longleftarrow F \Rightarrow E^{\prime} \longleftarrow a \wedge\left(E^{\prime}, F^{\prime}\right) \in \equiv \cdot S \cdot \equiv
\end{aligned}
$$

Lemma
If S is a (strict) bisimulation up to \equiv, then $S \subseteq \sim$

- To prove $\operatorname{Sem}_{n} \sim \operatorname{Sem}^{n}$ a bisimulation will contain 2^{n} pairs, while a bisimulation up to \equiv only requires $n+1$ pairs.

A ~-calculus

Lemma

$$
E \equiv F \Rightarrow E \sim F
$$

- proof idea: show that $\{(E+E, E) \mid E \in \mathbb{P}\} \cup I d_{\mathbb{P}}$ is a bisimulation

Lemma

new K^{\prime} (new $\left.K E\right) \sim n e w\left(K \cup K^{\prime}\right) E$

new $K(E \mid F) \sim$ new $K E \mid$ new $K F$

- proof idea: discuss whether S is a bisimulation:

$$
S=\{(\text { new } K E, E) \mid E \in \mathbb{P} \wedge \mathbb{L}(E) \cap(K \cup \bar{K})=\emptyset\}
$$

A \sim-calculus

Lemma

$$
E \equiv F \Rightarrow E \sim F
$$

- proof idea: show that $\{(E+E, E) \mid E \in \mathbb{P}\} \cup I d \mathbb{P}$ is a bisimulation

Lemma

new $K^{\prime}($ new $K E) \sim \operatorname{new}\left(K \cup K^{\prime}\right) E$

$$
\begin{aligned}
& \quad \text { new } K E \sim E \\
& \text { new } K(E \mid F) \sim \text { new } K E \mid \text { new } K F
\end{aligned}
$$

$$
\begin{aligned}
& \text { if } \mathbb{L}(E) \cap(K \cup \bar{K})=\emptyset \\
& \text { if } \mathbb{L}(E) \cap \overline{\mathbb{L}(F)} \cap(K \cup \bar{K})=\emptyset
\end{aligned}
$$

- proof idea: discuss whether S is a bisimulation:

$$
S=\{(\text { new } K E, E) \mid E \in \mathbb{P} \wedge \mathbb{L}(E) \cap(K \cup \bar{K})=\emptyset\}
$$

A \sim-calculus

Lemma

$$
E+E \sim E
$$

\sim is a congruence

congruence is the name of modularity in Mathematics

- process combinators preserve ~

Lemma

$$
\begin{aligned}
a . E & \sim a . F \\
E+P & \sim F+P \\
E \mid P & \sim F \mid P \\
\text { new } K E & \sim \text { new } K F
\end{aligned}
$$

\sim is a congruence

```
congruence is the name of modularity in Mathematics
```

- process combinators preserve \sim

Lemma

$$
\begin{aligned}
a . E & \sim a . F \\
E+P & \sim F+P \\
E \mid P & \sim F \mid P \\
\text { new } K E & \sim \text { new } K F
\end{aligned}
$$

- recursive definition preserves \sim

~ is a congruence

- First \sim is extended to processes with variables:

$$
E \sim F \Leftrightarrow \forall_{\tilde{P}} \cdot\{\tilde{P} / \tilde{X}\} E \sim\{\tilde{P} / \tilde{X}\} F
$$

- Then prove:

Lemma
i) $\tilde{P} \triangleq \tilde{E}_{\tilde{E}} \Rightarrow \tilde{P} \sim \tilde{E}$
where \tilde{E} is a family of process expressions and \tilde{P} a family of process identifiers.
ii) Let $\tilde{E} \sim \tilde{F}$, where \tilde{E} and \tilde{F} are families of recursive process expressions over a family of process variables \tilde{X}, and define:

$$
\tilde{A} \triangleq\{\tilde{A} / \tilde{X}\} \tilde{E} \text { and } \tilde{B} \triangleq\{\tilde{B} / \tilde{X}\} \tilde{F}
$$

Then

$$
\tilde{A} \sim \tilde{B}
$$

The expansion theorem

Every process is equivalent to the sum of its derivatives

$$
E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \stackrel{a}{\longleftarrow} E\right\}
$$

understood?

The expansion theorem

Every process is equivalent to the sum of its derivatives

$$
E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \stackrel{a}{\longleftarrow} E\right\}
$$

understood?

$$
E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \leftarrow^{a} E\right\}
$$

The expansion theorem

Every process is equivalent to the sum of its derivatives

$$
E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \stackrel{a}{\longleftarrow} E\right\}
$$

understood?

$$
E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \stackrel{a}{\longleftarrow} E\right\}
$$

clear?

$E \sim \sum\left\{a \cdot E^{\prime} \mid E^{\prime} \stackrel{a}{\leftarrow} E\right\}$

The expansion theorem

The usual definition (based on the concurrent canonical form):

$$
\begin{aligned}
& E \sim \sum\left\{f_{i}(a) \text {.new } K\left(\left\{f_{1}\right\} E_{1}|\ldots|\left\{f_{i}\right\} E_{i}^{\prime}|\ldots|\left\{f_{n}\right\} E_{n}\right) \mid\right. \\
&\left.+E_{i}^{\prime} \stackrel{a}{\longleftarrow} E_{i} \wedge f_{i}(a) \notin K \cup \bar{K}\right\} \\
& \sum\left\{\tau \text {.new } K\left(\left\{f_{1}\right\} E_{1}|\ldots|\left\{f_{i}\right\} E_{i}^{\prime}|\ldots|\left\{f_{j}\right\} E_{j}^{\prime}|\ldots|\left\{f_{n}\right\} E_{n}\right) \mid\right. \\
&\left.E_{i}^{\prime} \stackrel{a}{\longleftarrow} E_{i} \wedge E_{j}^{\prime} \stackrel{b}{\longleftarrow} E_{j} \wedge f_{i}(a)=\overline{f_{j}(b)}\right\}
\end{aligned}
$$

for $E \triangleq$ new $K\left(\left\{f_{1}\right\} E_{1}|\ldots|\left\{f_{n}\right\} E_{n}\right)$, with $n \geq 1$

The expansion theorem

Corollary (for $n=1$ and $f_{1}=\mathrm{id}$)

$$
\begin{aligned}
\text { new } K(E+F) & \sim \text { new } K E+\text { new } K F \\
\text { new } K(a . E) & \sim \begin{cases}0 & \text { if } a \in(K \cup \bar{K}) \\
\text { a.(new } K E) & \text { otherwise }\end{cases}
\end{aligned}
$$

Example

$S \sim M$

$$
\begin{aligned}
S & \sim \text { new }\{k\}(T \mid R) \\
& \sim i . n e w\{k\}(\bar{k} . T \mid R) \\
& \sim i . \tau . \text { new }\{k\}(T \mid j . R) \\
& \sim i . \tau .(i . n e w\{k\}(\bar{k} . T \mid j . R)+j . \text { new }\{k\}(T \mid R)) \\
& \sim i . \tau .(i . j . n e w\{k\}(\bar{k} . T \mid R)+j . i . n e w\{k\}(\bar{k} . T \mid R)) \\
& \sim i . \tau .(i . j . \tau . n e w\{k\}(T \mid j . R)+j . i . \tau . n e w\{k\}(T \mid j . R))
\end{aligned}
$$

Let $N^{\prime}=$ new $\{k\}(T \mid j . R)$.
This expands into $N^{\prime} \sim i . j . \tau$.new $\{k\}(T \mid j . R)+j . i . \tau$.new $\{k\}(T \mid j . R)$,
Therefore $N^{\prime} \sim N$ and $S \sim i . \tau . N \sim M$

- requires result on unique solutions for recursive process equations

Observable transitions

$$
\stackrel{a}{\rightleftharpoons} \subseteq \mathbb{P} \times \mathbb{P}
$$

- $L \cup\{\epsilon\}$
- $A \xlongequal{\epsilon}$-transition corresponds to zero or more non observable transitions
- inference rules for $\stackrel{a}{\rightleftharpoons}$:

$$
\begin{aligned}
& \overline{E \Longleftarrow E}\left(O_{1}\right) \\
& \frac{E E^{\tau} E^{\prime} \stackrel{\epsilon}{\Leftarrow} F}{E \Longleftarrow F}\left(O_{2}\right) \\
& \frac{E \stackrel{\epsilon}{\Longleftarrow} E^{\prime} \quad E^{\prime} \stackrel{a}{\longleftarrow} F^{\prime} \quad F^{\prime} \stackrel{\epsilon}{\Leftarrow} F}{E \stackrel{a}{\Longleftarrow}\left(O_{3}\right) \quad \text { for } a \in L}
\end{aligned}
$$

Example

$$
\begin{aligned}
& T_{0} \triangleq j . T_{1}+i . T_{2} \\
& T_{1} \triangleq i . T_{3} \\
& T_{2} \triangleq j . T_{3} \\
& T_{3} \triangleq \tau . T_{0}
\end{aligned}
$$

and

$$
A \triangleq i . j . A+j . i . A
$$

Example

From their graphs,

and

we conclude that $T_{0} \nsim A$ (why?).

Observational equivalence

$E \approx F$

- Processes E, F are observationally equivalent if there exists a weak bisimulation S st $\{\langle E, F\rangle\} \in S$.
- A binary relation S in \mathbb{P} is a weak bisimulation iff, whenever $(E, F) \in S$ and $a \in A c t$,

$$
\begin{aligned}
& \text { i) } E^{\prime} \stackrel{a}{\rightleftharpoons} E \Rightarrow F^{\prime} \stackrel{a}{\rightleftharpoons} F \wedge\left(E^{\prime}, F^{\prime}\right) \in S \\
& \text { ii) } F^{\prime} \stackrel{a}{\rightleftharpoons} F \Rightarrow E^{\prime} \stackrel{a}{\rightleftharpoons} E \wedge\left(E^{\prime}, F^{\prime}\right) \in S
\end{aligned}
$$

I.e.,

$$
\approx=\bigcup\{S \subseteq \mathbb{P} \times \mathbb{P} \mid S \text { is a weak bisimulation }\}
$$

Observational equivalence

Properties

- as expected: \approx is an equivalence relation
- basic property: for any $E \in \mathbb{P}$,

$$
E \approx \tau . E
$$

(proof idea: $\operatorname{id}_{\mathbb{P}} \cup\{(E, \tau . E) \mid E \in \mathbb{P}\}$ is a weak bisimulation

- weak vs. strict:

$$
\sim \subseteq \approx
$$

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{aligned}
a . E & \approx a . F \\
E \mid P & \approx F \mid P \\
\text { new } K E & \approx \text { new } K F
\end{aligned}
$$

does not hold, in general.

Is \approx a congruence?

Lemma
Let $E \approx F$. Then, for any $P \in \mathbb{P}$ and $K \subseteq L$,

$$
\begin{aligned}
a . E & \approx a . F \\
E \mid P & \approx F \mid P \\
\text { new } K E & \approx \text { new } K F
\end{aligned}
$$

but

$$
E+P \approx F+P
$$

does not hold, in general.

Is \approx a congruence?

Example (initial τ restricts options 'menu')

$$
i .0 \approx \tau . i .0
$$

However

Actually,

Is \approx a congruence?

Example (initial τ restricts options 'menu')

$$
i .0 \approx \tau . i .0
$$

However

$$
j . \mathbf{0}+i . \mathbf{0} \not \approx j . \mathbf{0}+\tau . i . \mathbf{0}
$$

Actually,

Forcing a congruence: $E=F$

 Solution: force any initial τ to be matched by another τ
Process equality

Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E^{\prime} \stackrel{\tau}{\Longleftarrow} E \Rightarrow F^{\prime} \stackrel{\epsilon}{\Longleftarrow} F^{\prime \prime} \stackrel{\tau}{\longleftarrow}_{\longleftarrow}$ and $E^{\prime} \approx F^{\prime}$
iii) $F^{\prime} \stackrel{\tau}{\Longleftarrow} \Rightarrow E^{\prime} \stackrel{\epsilon}{\Leftarrow} E^{\prime \prime}{ }^{\tau} E$ and $E^{\prime} \approx F^{\prime}$

Forcing a congruence: $E=F$

Solution: force any initial τ to be matched by another τ

Process equality

Two processes E and F are equal (or observationally congruent) iff
i) $E \approx F$
ii) $E^{\prime} \stackrel{\tau}{\Longleftarrow} E \Rightarrow F^{\prime} \stackrel{\epsilon}{\Longleftarrow} F^{\prime \prime} \stackrel{\tau}{\longleftarrow}_{\longleftarrow}$ and $E^{\prime} \approx F^{\prime}$
iii) $F^{\prime} \stackrel{\tau}{\Longleftarrow} \Rightarrow E^{\prime} \stackrel{\epsilon}{\Leftarrow} E^{\prime \prime}{ }^{\tau} E$ and $E^{\prime} \approx F^{\prime}$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Forcing a congruence: $E=F$

$=$ can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma

Let E and F be processes such that the union of their sorts is distinct of L.

$$
E=F \Leftrightarrow \forall_{G \in \mathbb{P}} \cdot(E+G \approx F+G)
$$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Forcing a congruence: $E=F$

$=$ can be regarded as a restriction of \approx to all pairs of processes which preserve it in additive contexts

Lemma

Let E and F be processes such that the union of their sorts is distinct of L.

$$
E=F \Leftrightarrow \forall_{G \in \mathbb{P}} \cdot(E+G \approx F+G)
$$

- note that $E \neq \tau . E$, but $\tau . E=\tau . \tau . E$

Properties of $=$

Lemma

$$
E=F \Rightarrow \forall_{G \in \mathbb{P}} \cdot(E+G \approx F+G)
$$

Lemma

$$
E=F \Leftrightarrow(E=F) \vee(E=\tau . F) \vee(\tau . E=F)
$$

Properties of $=$

Lemma

$$
\sim \subseteq=\subseteq \approx
$$

So, the whole \sim theory remains valid

Additionally,
Lemma (additional laws)

$$
\begin{aligned}
a \cdot \tau \cdot E & =a \cdot E \\
E+\tau \cdot E & =\tau \cdot E \\
a \cdot(E+\tau \cdot F) & =a \cdot(E+\tau \cdot F)+a \cdot F
\end{aligned}
$$

Properties of $=$

Lemma

$$
\sim \subseteq=\subseteq \approx
$$

So,

$$
\text { the whole } \sim \text { theory remains valid }
$$

Additionally,
Lemma (additional laws)

$$
\begin{aligned}
a \cdot \tau \cdot E & =a \cdot E \\
E+\tau \cdot E & =\tau \cdot E \\
a \cdot(E+\tau \cdot F) & =a \cdot(E+\tau \cdot F)+a \cdot F
\end{aligned}
$$

Solving equations

Have equations over (\mathbb{P}, \sim) or $(\mathbb{P},=)$ (unique) solutions?

Lemma
Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in /\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

ii) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables $\left(\left\{X_{i} \mid i \in I\right\}\right)$ such that any variable free in E_{i} is guarded and sequential. Then

$$
\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P}=\tilde{Q}
$$

Solving equations

Have equations over (\mathbb{P}, \sim) or $(\mathbb{P},=)$ (unique) solutions?

Lemma
Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

Solving equations

$$
\text { Have equations over }(\mathbb{P}, \sim) \text { or }(\mathbb{P},=) \text { (unique) solutions? }
$$

Lemma

Recursive equations $\tilde{X}=\tilde{E}(\tilde{X})$ or $\tilde{X} \sim \tilde{E}(\tilde{X})$, over \mathbb{P}, have unique solutions (up to $=$ or \sim, respectively). Formally,
i) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is weakly guarded. Then

$$
\tilde{P} \sim\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q} \sim\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P} \sim \tilde{Q}
$$

ii) Let $\tilde{E}=\left\{E_{i} \mid i \in I\right\}$ be a family of expressions with a maximum of I free variables ($\left\{X_{i} \mid i \in I\right\}$) such that any variable free in E_{i} is guarded and sequential. Then

$$
\tilde{P}=\{\tilde{P} / \tilde{X}\} \tilde{E} \wedge \tilde{Q}=\{\tilde{Q} / \tilde{X}\} \tilde{E} \Rightarrow \tilde{P}=\tilde{Q}
$$

Conditions on variables

guarded :
X occurs in a sub-expression of type a. E^{\prime} for $a \in A c t-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable

Conditions on variables

guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t-\{\tau\}$
weakly guarded :
X occurs in a sub-expression of type $a . E^{\prime}$ for $a \in A c t$
in both cases assures that, until a guard is reached, behaviour does not depends on the process that instantiates the variable
example: X is weakly guarded in both $\tau . X$ and $\tau . \mathbf{0}+a . X+b . a . X$ but guarded only in the second

Conditions on variables

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either a. E^{\prime}, for $a \in A c t$, or $\sum \tilde{E}$.
avoids X to become guarded by a τ as a result of an interaction
in both cases assures that, until a guard is reached, behaviour does not depends on the process that

Conditions on variables

sequential :

X is sequential in E if every strict sub-expression in which X occurs is either a. E^{\prime}, for $a \in A c t$, or $\sum \tilde{E}$.
avoids X to become guarded by a τ as a result of an interaction
in both cases assures that, until a guard is reached, behaviour does not depends on the process that
example: X is not sequential in $X=\operatorname{new}\{a\}(\bar{a} . X \mid a .0)$

Example (1)

Consider

$$
\begin{aligned}
\mathrm{Sem} & \triangleq \text { get.put.Sem } \\
P_{1} & \triangleq \overline{\mathrm{get} \cdot \mathrm{c}_{1} \cdot \overline{\mathrm{put}} \cdot P_{1}} \\
P_{2} & \triangleq \overline{\mathrm{get}} \cdot \mathrm{c}_{2} \cdot \overline{\mathrm{put}} \cdot P_{2} \\
S & \triangleq \text { new }\{\text { get, put }\}\left(\operatorname{Sem}\left|P_{1}\right| P_{2}\right)
\end{aligned}
$$

and

$$
S^{\prime} \triangleq \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

to prove $S \sim S^{\prime}$, show both are solutions of

Example (1)

Consider

$$
\begin{aligned}
\mathrm{Sem} & \triangleq \text { get.put.Sem } \\
P_{1} & \triangleq \overline{\mathrm{get}} \cdot \mathrm{c}_{1} \cdot \overline{\mathrm{put}} \cdot P_{1} \\
P_{2} & \triangleq \overline{\mathrm{get}} \cdot \mathrm{c}_{2} \cdot \overline{\mathrm{put}} \cdot P_{2} \\
S & \triangleq \text { new }\{\text { get, put }\}\left(\mathrm{Sem}\left|P_{1}\right| P_{2}\right)
\end{aligned}
$$

and

$$
S^{\prime} \triangleq \tau \cdot c_{1} \cdot S^{\prime}+\tau \cdot c_{2} \cdot S^{\prime}
$$

to prove $S \sim S^{\prime}$, show both are solutions of

$$
X=\tau \cdot c_{1} \cdot X+\tau \cdot c_{2} \cdot X
$$

Example (1)

proof

$$
\begin{aligned}
S & =\tau . \text { new } K\left(c_{1} \cdot \overline{p u t} . P_{1}\left|P_{2}\right| \text { put.Sem }\right)+\tau . \text { new } K\left(P_{1}\left|c_{2} \cdot \overline{p u t} . P_{2}\right| \text { put.Sem }\right) \\
& =\tau \cdot c_{1} \cdot \text { new } K\left(\overline{\text { put. }} P_{1}\left|P_{2}\right| \text { put.Sem }\right)+\tau \cdot c_{2} \text {.new } K\left(P_{1}\left|\overline{p u t} . P_{2}\right| \text { put.Sem }\right) \\
& =\tau \cdot c_{1} \cdot \tau . \text { new } K\left(P_{1}\left|P_{2}\right| \text { Sem }\right)+\tau . c_{2} \cdot \tau . \text { new } K\left(P_{1}\left|P_{2}\right| \text { Sem }\right) \\
& =\tau \cdot c_{1} \cdot \tau . S+\tau . c_{2} \cdot \tau . S \\
& =\tau \cdot c_{1} \cdot S+\tau \cdot c_{2} \cdot S \\
& =\{S / X\} E
\end{aligned}
$$

for S^{\prime} is immediate

Example (2)

Consider,

$$
\begin{array}{ll}
B \triangleq \text { in. } B_{1} & B^{\prime} \triangleq \text { new } m\left(C_{1} \mid C_{2}\right) \\
B_{1} \triangleq \text { in. } B_{2}+\overline{\text { out. }} \cdot B & C_{1} \triangleq \text { in. } \bar{m} \cdot C_{1} \\
& C_{2} \triangleq m \cdot \overline{\text { out }} \cdot C_{2}
\end{array}
$$

B^{\prime} is a solution of

$$
\begin{aligned}
& X=E(X, Y, Z)=\text { in. } Y \\
& Y=E_{1}(X, Y, Z)=\text { in. } Z+\overline{o u t} . X \\
& Z=E_{3}(X, Y, Z)=\overline{o u t} . Y
\end{aligned}
$$

through $\sigma=\left\{B / X, B_{1} / Y, B_{2} / Z\right\}$

Example (2)

To prove $B=B^{\prime}$

$$
\begin{aligned}
B^{\prime} & =\text { new } m\left(C_{1} \mid C_{2}\right) \\
& =\text { in.new } m\left(\bar{m} \cdot C_{1} \mid C_{2}\right) \\
& =\text { in. } \tau \text {.new } m\left(C_{1} \mid \overline{\text { out. }} C_{2}\right) \\
& =\text { in.new } m\left(C_{1} \mid \overline{\text { out. } C_{2}}\right)
\end{aligned}
$$

Let $S_{1}=$ new $m\left(C_{1} \mid \overline{\text { out }} . C_{2}\right)$ to proceed:

$$
\begin{aligned}
S_{1} & =\text { new } m\left(C_{1} \mid \overline{\text { out }} . C_{2}\right) \\
& =\text { in.new } m\left(\bar{m} . C_{1} \mid \overline{\text { out }} . C_{2}\right)+\overline{\text { out }} . \text { new } m\left(C_{1} \mid C_{2}\right) \\
& =\text { in.new } m\left(\bar{m} . C_{1} \mid \overline{\text { out }} C_{2}\right)+\overline{\text { out. }} B^{\prime}
\end{aligned}
$$

Example (2)

Finally, let, $S_{2}=$ new $m\left(\bar{m} . C_{1} \mid \overline{o u t} . C_{2}\right)$. Then,

$$
\begin{aligned}
S_{2} & =\text { new } m\left(\bar{m} \cdot C_{1} \mid \overline{\text { out }} . C_{2}\right) \\
& =\overline{\text { out. new } m\left(\bar{m} \cdot C_{1} \mid C_{2}\right)} \\
& =\overline{\text { out. }} \cdot \underline{\text { new }} m\left(C_{1} \mid \overline{\text { out. }} C_{2}\right) \\
& =\overline{\text { out. }} \text {. } S_{1} \\
& =\overline{\text { out. }} S_{1}
\end{aligned}
$$

Example (2)

Note the same problem can be solved with a system of 2 equations:

$$
\begin{aligned}
& X=E(X, Y)=\text { in. } Y \\
& Y=E^{\prime}(X, Y)=\text { in. } \overline{o u t} . Y+\overline{\text { out } . i n . ~} Y
\end{aligned}
$$

Clearly, by substitution,

$$
\begin{aligned}
B & =\text { in. } B_{1} \\
B_{1} & =\text { in. } \overline{o u t} \cdot B_{1}+\overline{o u t} \cdot i n . B_{1}
\end{aligned}
$$

Example (2)

On the other hand, it's already proved that $B^{\prime}=\ldots=$ in. S_{1}. so,

$$
\begin{aligned}
& S_{1}=\text { new } m\left(C_{1} \mid \overline{\text { out. }} . C_{2}\right) \\
& =\text { in.new } m\left(\bar{m} . C_{1} \mid \overline{o u t} . C_{2}\right)+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{\text { out }} \text {.new } m\left(\bar{m} . C_{1} \mid C_{2}\right)+\overline{\text { out. }} \cdot B^{\prime} \\
& =\text { in. } \overline{\text { out. }} \tau \text {.new } m\left(C_{1} \mid \overline{\text { out }} . C_{2}\right)+\overline{\text { out. }} B^{\prime} \\
& =\text { in. } \overline{o u t} \cdot \tau \cdot S_{1}+\overline{\text { out. }} \cdot B^{\prime} \\
& =\mathrm{in} . \overline{o u t} . S_{1}+\overline{o u t} . B^{\prime} \\
& =\text { in. } \overline{o u t} . S_{1}+\overline{o u t} . i n . S_{1}
\end{aligned}
$$

Hence, $B^{\prime}=\left\{B^{\prime} / X, S_{1} / Y\right\} E$ and $S_{1}=\left\{B^{\prime} / X, S_{1} / Y\right\} E^{\prime}$

