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Simulation

Intuition

A state q simulates another state p (in the same or in a different
LTS) if every transition from q is corresponded by a transition from
p and this capacity is kept along the whole life of the system to
which state space q belongs to.
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Simulation

Definition
Given LTS 〈S1,T1〉 and 〈S2,T2〉 over N , relation R ⊆ S1 × S2 is a
simulation iff, whenever 〈p, q〉 ∈ R and a ∈ N ,

p
a−→ p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→ q′ ∧ 〈p′, q′〉 ∈ R〉

p

a

��

R q ⇒ q

a

��
p′ p′ R q′
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Example
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q0 . p0 cf. {〈q0, p0〉, 〈q1, p1〉, 〈q4, p1〉, 〈q2, p2〉, 〈q3, p3〉}
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Similarity

Definition

p . q ⇔ 〈∃ R :: R is a simulation and 〈p, q〉 ∈ R〉

Lemma
The similarity relation is a preorder
(ie, reflexive and transitive)
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Bisimulation

Definition
Given LTS 〈S1,T1〉 and 〈S2,T2〉 over N , relation R ⊆ S1 × S2 is a
bisimulation iff both R and its converse R◦ are simulations.
I.e., whenever 〈p, q〉 ∈ R and a ∈ N ,

p
a−→ p′ ⇒ 〈∃ q′ : q′ ∈ S2 : q

a−→ q′ ∧ 〈p′, q′〉 ∈ R〉

q
a−→ q′ ⇒ 〈∃ p′ : p′ ∈ S1 : p

a−→ p′ ∧ 〈p′, q′〉 ∈ R〉



Simulation Bisimulation Concluding

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are
mutually corresponding

• R starts by chosing a transition

• I replies trying to match it

• if I succeeds, R plays again

• R wins if I fails to find a corresponding match

• I wins if it replies to all moves from R and the game is in a
configuration where all states have been visited or R can’t move
further. In this case is said that I has a wining strategy
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Examples
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q2

c // q3 cgg n cdd

q1
a // q2

a // q3
a // · · · h add
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Bisimilarity

Definition

p ∼ q ⇔ 〈∃ R :: R is a bisimulation and 〈p, q〉 ∈ R〉

Lemma

1. The identity relation id is a bisimulation

2. The empty relation ⊥ is a bisimulation

3. The converse R◦ of a bisimulation is a bisimulation

4. The composition S · R of two bisimulations S and R is a
bisimulation

5. The
⋃

i∈I Ri of a family of bisimulations {Ri | i ∈ I} is a bisimulation
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Bisimilarity

Lemma
The bisimilarity relation is an equivalence relation
(ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a
complete lattice, ordered by set inclusion, whose top is the bisimilarity
relation ∼.
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Bisimilarity

Warning
The bisimilarity relation ∼ is not the symmetric closure of .

Example

q0 . p0, p0 . q0 but p0 6∼ q0

q1

q0
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A p0
a // p1

b // p3

q2
b // q3
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After thoughts

Similarity as the greatest simulation

. ,
⋃
{S | S is a simulation}

Bisimilarity as the greatest bisimulation

∼ ,
⋃
{S | S is a bisimulation}

cf relational translation of definitions
. and ∼ as greatest fix points (Tarski’s theorem)
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The questions to follow ...

• We already have a semantic model for reactive systems. With which
language shall we describe them?

• How to compare and transform such systems?

• How to express and prove their proprieties?

 process languages and calculi
cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra & Klop, 82),
π-calculus (Milner, 89), among many others
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