Labelled Transition Systems (II)

Luís S. Barbosa
DI-CCTC
Universidade do Minho
Braga, Portugal

26 February, 2010

Simulation

Intuition

> A state q simulates another state p (in the same or in a different LTS) if every transition from q is corresponded by a transition from p and this capacity is kept along the whole life of the system to which state space q belongs to.

Simulation

Definition

Given LTS $\left\langle S_{1}, T_{1}\right\rangle$ and $\left\langle S_{2}, T_{2}\right\rangle$ over \mathcal{N}, relation $R \subseteq S_{1} \times S_{2}$ is a simulation iff, whenever $\langle p, q\rangle \in R$ and $a \in \mathcal{N}$,

$$
p \xrightarrow{a} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
$$

Simulation

Definition

Given LTS $\left\langle S_{1}, T_{1}\right\rangle$ and $\left\langle S_{2}, T_{2}\right\rangle$ over \mathcal{N}, relation $R \subseteq S_{1} \times S_{2}$ is a simulation iff, whenever $\langle p, q\rangle \in R$ and $a \in \mathcal{N}$,

$$
p \xrightarrow{a} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
$$

Example

Similarity

Definition

$$
p \lesssim q \Leftrightarrow\langle\exists R:: R \text { is a simulation and }\langle p, q\rangle \in R\rangle
$$

Lemma
The similarity relation is a preorder (ie, reflexive and transitive)

Bisimulation

Definition
Given LTS $\left\langle S_{1}, T_{1}\right\rangle$ and $\left\langle S_{2}, T_{2}\right\rangle$ over \mathcal{N}, relation $R \subseteq S_{1} \times S_{2}$ is a bisimulation iff both R and its converse R° are simulations.
I.e., whenever $\langle p, q\rangle \in R$ and $a \in \mathcal{N}$,

$$
\begin{aligned}
& p \xrightarrow{a} p^{\prime} \Rightarrow\left\langle\exists q^{\prime}: q^{\prime} \in S_{2}: q \xrightarrow{a} q^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle \\
& q \xrightarrow{a} q^{\prime} \Rightarrow\left\langle\exists p^{\prime}: p^{\prime} \in S_{1}: p \xrightarrow{a} p^{\prime} \wedge\left\langle p^{\prime}, q^{\prime}\right\rangle \in R\right\rangle
\end{aligned}
$$

Bisimulation

The Game characterization
Two players R and I discuss whether the transition structures are mutually corresponding

- R starts by chosing a transition
- I replies trying to match it
- if I succeeds, R plays again
- R wins if I fails to find a corresponding match
- I wins if it replies to all moves from R and the game is in a configuration where all states have been visited or R can't move further. In this case is said that I has a wining strategy

Examples

Examples

$$
q_{1} \stackrel{a}{>} Q_{2} \xrightarrow{a}>Q_{3} \xrightarrow{a}
$$

Bisimilarity

Definition

$$
p \sim q \Leftrightarrow\langle\exists R:: R \text { is a bisimulation and }\langle p, q\rangle \in R\rangle
$$

Lemma

1. The identity relation id is a bisimulation
2. The empty relation \perp is a bisimulation
3. The converse R° of a bisimulation is a bisimulation
4. The composition $S \cdot R$ of two bisimulations S and R is a bisimulation
5. The $\bigcup_{i \in I} R_{i}$ of a family of bisimulations $\left\{R_{i} \mid i \in I\right\}$ is a bisimulation

Bisimilarity

Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim.

Bisimilarity

Lemma

The bisimilarity relation is an equivalence relation (ie, reflexive, symmetric and transitive)

Lemma
The class of all bisimulations between two LTS has the structure of a complete lattice, ordered by set inclusion, whose top is the bisimilarity relation \sim.

Bisimilarity

Warning
The bisimilarity relation \sim is not the symmetric closure of \lesssim

Example

$$
q_{0} \lesssim p_{0}, p_{0} \lesssim q_{0} \text { but } p_{0} \nsim q_{0}
$$

$$
q_{2} \xrightarrow{b} q_{3}
$$

$$
p_{0} \xrightarrow{a} p_{1} \xrightarrow{b} p_{3}
$$

After thoughts

Similarity as the greatest simulation

$$
\lesssim \triangleq \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation $\sim \triangleq \bigcup\{S \mid S$ is a bisimulation $\}$

After thoughts

Similarity as the greatest simulation

$$
\lesssim \triangleq \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation

$$
\sim \triangleq \bigcup\{S \mid S \text { is a bisimulation }\}
$$

After thoughts

Similarity as the greatest simulation

$$
\lesssim \triangleq \bigcup\{S \mid S \text { is a simulation }\}
$$

Bisimilarity as the greatest bisimulation

$$
\sim \triangleq \bigcup\{S \mid S \text { is a bisimulation }\}
$$

cf relational translation of definitions
\lesssim and \sim as greatest fix points (Tarski's theorem)

The questions to follow ...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?

The questions to follow ...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?
\rightsquigarrow process languages and calculi cf. Ccs (Milner, 80), Csp (Hoare, 85),

Acp (Bergstra \& Klop, 82), π-calculus (Milner, 89), among many others

