Introduction to mCRL2 (modelling)

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

15 April, 2015

mCRL2: A toolset for process algebra

mCRL2 provides:

- a generic process algebra, based on ACP (Bergstra & Klop, 82), in which other calculi can be embedded
- extended with data and (real) time
- with an axiomatic semantics
- the full μ -calculus as a specification logic
- powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Actions

Interaction through multisets of actions

 A multiaction is an elementary unit of interaction that can execute itself atomically in time (no duration), after which it terminates successfully

$$\alpha ::= \tau \mid a \mid a(d) \mid \alpha \mid \alpha$$

- actions may be parametric on data
- the structure $\langle N, |, \tau \rangle$ forms an Abelian monoid

Sequential processes

Sequential, non deterministic behaviour

The set \mathbb{P} of processes is the set of all terms generated by the following BNF, for $a \in N$,

$$p ::= \alpha \mid \delta \mid p+p \mid p \cdot p \mid P(d)$$

- atomic process: a for all $a \in N$
- choice: +
- sequential composition: •
- inaction or deadlock: δ (it cannot even to terminate!)
- process references introduced through definitions of the form P(x : D) = p, parametric on data

Sequential Processes

Exercise

Describe the behaviour of

- $a.b.\delta.c + a$
- $(a+b).\delta.c$
- $(a + b).e + \delta.c$
- $a + (\delta + a)$
- a.(b+c).d.(b+c)

Axioms: $+, \cdot, \delta$

x + y = y + x

A2
$$(x+y)+z = x + (y+z)$$

A3 $x+x = x$
A4 $(x+y).z = x.z + y.z$
A5 $(x.y).z = x.(y.z)$
A6 $x+\delta = x$
A7 $\delta \cdot x = \delta$

A1

- the equality relation is sound: if s=t holds for basic process terms, then $s\sim t$
- and complete: if $s \sim t$ holds for basic process terms, then s = t
- an axiomatic theory enables equational reasoning

Axioms: $+, \cdot, \delta$

A2
$$(x + y) + z = x + (y + z)$$

A3 $x + x = x$
A4 $(x + y).z = x.z + y.z$
A5 $(x.y).z = x.(y.z)$
A6 $x + \delta = x$
A7 $\delta \cdot x = \delta$

A1 x+y = y+x

- the equality relation is sound: if s=t holds for basic process terms, then $s\sim t$
- and complete: if $s \sim t$ holds for basic process terms, then s = t
- an axiomatic theory enables equational reasoning

Axioms: $+, \cdot, \delta$

Exercise

- show that $\delta \cdot (a+b) = \delta \cdot a + \delta \cdot b$
- show that $a + (\delta + a) = a$
- is it true that a.(b+c) = a.b + a.c?

mCRL2: A toolset for process algebra

Example

```
act order, receive, keep, refund, return;
proc Buy = order.OrderedItem
    OrderedItem = receive.ReceivedItem + refund.Buy;
    ReceivedItem = return.OrderedItem + keep;
init Buy;
```

Example

Clock

```
act set, alarm, reset;
proc P = set.R
    R = reset.P + alarm.R
init P
```

Example

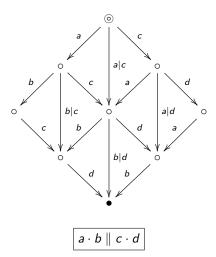
A refined clock

```
act set:N, alarm, reset, tick;
proc P = (sum n:N . set(n).R(n)) + tick.P
    R(n:N) = reset.P + ((n == 0) -> alarm.R(0) <> tick.R(n-1))
init P
```

- = interleaving + synchronization
 - modelling principle: interaction is the key element in software design
 - modelling principle: (distributed, reactive) architectures are configurations of communicating black boxes
 - mCRL2: supports flexible synchronization discipline (\neq CCS)

$$p ::= \cdots \mid p \parallel p \mid p \mid p \mid p \parallel p$$

An example



- parallel p | q: interleaves and synchronises the actions of both processes.
- synchronisation p | q: synchronises the first actions of p and q and combines the remainder of p with q with ||, cf axiom:

$$(a.p) | (b.q) \sim (a | b) \cdot (p || q)$$

• left merge $p \parallel q$: executes a first action of p and thereafter combines the remainder of p with q with \parallel .

A semantic parenthesis

Lemma: There is no sound and complete finite axiomatisation for this process algebra with \parallel modulo bisimilarity [F. Moller, 1990].

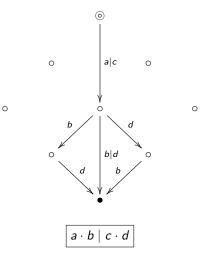
Solution: combine two auxiliar operators:

- left merge:
- synchronous product: |

such that

$$|p||t \sim (p||t+t||p)+p|t|$$

An example



Interaction

Communication $\Gamma_{C}(p)$ (com)

• applies a communication function *C* forcing action synchronization and renaming to a new action:

$$a_1 \mid \cdots \mid a_n \rightarrow c$$

• data parameters are retained in action c, e.g.

$$\Gamma_{\{a|b\to c\}}(a(8) \mid b(8)) = c(8)
\Gamma_{\{a|b\to c\}}(a(12) \mid b(8)) = a(12) \mid b(8)
\Gamma_{\{a|b\to c\}}(a(8) \mid a(12) \mid b(8)) = a(12) \mid c(8)$$

• left hand-sides in C must be disjoint: e.g., $\{a \mid b \to c, a \mid d \to j\}$ is not allowed

Restriction: $\nabla_B(p)$ (allow)

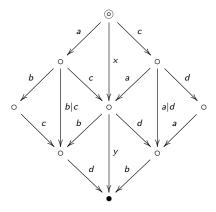
- specifies which actions are allowed to occur
- disregards the data parameters of actions

$$\nabla_{\{d,b|c\}}(d(12) + a(8) + (b(false, 4) \mid c)) = d(12) + (b(false, 4) \mid c)$$

ullet au is always allowed to occur

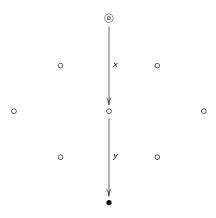
Discuss:
$$\nabla_{\{x,y\}}(\Gamma_{\{a|c->x,b|d->y\}}(a.b \parallel c.d))$$

An example



$$\Gamma_{\{a|c->x,b|d->y\}}(a.b \parallel c.d)$$

An example



$$\nabla_{\{x,y\}}(\Gamma_{\{a|c->x,b|d->y\}}(a.b\parallel c.d))$$

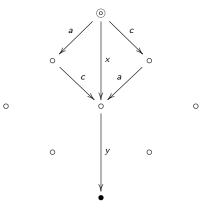
Block: $\partial_B(p)$ (block)

- specifies which actions are not allowed to occur
- disregards the data parameters of actions

$$\partial_{\{b\}}(d(12) + a(8) + (b(false, 4) \mid c)) = d(12) + a(8)$$

- the effect is that of renaming to δ
- τ cannot be blocked

An example



$$\partial_{\{b,d\}}(\Gamma_{\{b\mid d->y\}}(a.b\parallel c.d))$$

Enforce communication

- $\nabla_{\{c\}}(\Gamma_{\{a|b\to c\}}(p))$
- $\bullet \ \partial_{\{a,b\}}(\Gamma_{\{a|b\rightarrow c\}}(p))$

Renaming $\rho_M(p)$ (rename)

- renames actions in p according to a mapping M
- also disregards the data parameters, but when a renaming is applied the values of data parameters are retained:

$$\rho_{\{d \to h\}}(d(12) + s(8) \mid d(false) + d.a.d(7))$$

= $h(12) + s(8) \mid h(false) + h.a.h(7)$

• au cannot be renamed

Hiding $\tau_H(p)$ (hide)

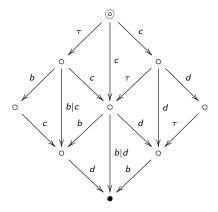
- hides (or renames to τ) all actions in H in all multiactions of p.
- disregards the data parameters

$$\tau_{\{d\}}(d(12) + s(8) \mid d(false) + h.a.d(7))$$

= $\tau + s(8) \mid \tau + h.a.\tau = \tau + s(8) + h.a.\tau$

ullet au and δ cannot be renamed

An example



$$\boxed{\tau_{\{a\}}(\Gamma_{\{b|d->y\}}(a.b\parallel c.d))}$$

Example

New buffers from old

```
act inn,outt,ia,ib,oa,ob,c : Bool;
proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;
BufferA = rename({inn -> ia, outt -> oa}, BufferS);
BufferB = rename({inn -> ib, outt -> ob}, BufferS);
S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));
init hide({c}, S);
```

Data types

- Equalities: equality, inequality, conditional (if(-,-,-))
- Basic types: booleans, naturals, reals, integers, ... with the usual operators
- Sets, multisets, sequences ... with the usual operators
- Function definition, including the λ -notation
- Inductive types: as in

```
sort BTree = struct leaf(Pos) | node(BTree, BTree)
```

Signatures and definitions

Sorts, functions, constants, variables ...

Signatures and definitions

A full functional language ...

```
sort BTree = struct leaf(Pos) | node(BTree, BTree);
map flatten: BTree -> List(Pos);
var n:Pos, t,r:BTree;
eqn flatten(leaf(n)) = [n];
    flatten(node(t,r)) = flatten(t) ++ flatten(r);
```

Data

Processes with data

Why?

- Precise modeling of real-life systems
- Data allows for finite specifications of infinite systems

How?

- data and processes parametrized
- summation over data types: $\sum_{n:N} s(n)$
- processes conditional on data: b → p ◊ q

Examples

A counter

Examples

A dynamic binary tree

```
act left,right;
map N:Pos;
eqn N = 512;
proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;
init X(1);
```