
Modal logic for concurrent processes: the
µ-calculus

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

29 April, 2015

Is Hennessy-Milner logic expressive enough?

Is Hennessy-Milner logic expressive enough?

• It cannot detect deadlock in an arbitrary process

• or general safety: all reachable states verify φ

• or general liveness: there is a reachable states which verifies φ

• ...

... essentially because

formulas in cannot see deeper than their modal depth

Is Hennessy-Milner logic expressive enough?

Example

φ = a taxi eventually returns to its Central

φ = 〈reg〉 true∨〈−〉 〈reg〉 true∨〈−〉 〈−〉 〈reg〉 true∨〈−〉 〈−〉 〈−〉 〈reg〉 true∨ ...

Revisiting Hennessy-Milner logic
Adding regular expressions
ie, with regular expressions within modalities

ρ ::= ε | α | ρ.ρ | ρ+ ρ | ρ∗ | ρ+

where

• α is an action formula and ε is the empty word

• concatenation ρ.ρ, choice ρ+ ρ and closures ρ∗ and ρ+

Laws

〈ρ1 + ρ2〉φ = 〈ρ1〉φ ∨ 〈ρ2〉φ
[ρ1 + ρ2]φ = [ρ1]φ ∧ [ρ2]φ

〈ρ1.ρ2〉φ = 〈ρ1〉 〈ρ2〉φ
[ρ1.ρ2]φ = [ρ1] [ρ2]φ

Revisiting Hennessy-Milner logic

Examples of properties

• 〈ε〉φ = [ε]φ = φ

• 〈a.a.b〉φ = 〈a〉 〈a〉 〈b〉φ

• 〈a.b + g .d〉φ

Safety

• [−∗]φ

• it is impossible to do two consecutive enter actions without a leave
action in between:
[−∗.enter .− leave∗.enter] false

• absence of deadlock:
[−∗] 〈−〉 true

Revisiting Hennessy-Milner logic

Examples of properties

Liveness

• 〈−∗〉φ

• after sending a message, it can eventually be received:
[send] 〈−∗.receive〉 true

• after a send a receive is possible as long as an exception does not
happen:
[send .− excp∗] 〈−∗.receive〉 true

The modal µ-calculus

• modalities with regular expressions are not enough in general

• ... but correspond to a subset of the modal µ-calculus [Kozen83]

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

φ ::= X | true | false | ¬φ | φ∧φ | φ∨φ | φ→φ | 〈a〉φ | [a]φ | µX . φ | νX . φ

The modal µ-calculus

The modal µ-calculus (intuition)

• µX . φ is valid for all those states in the smallest set X that satisfies
the equation X = φ (finite paths, liveness)

• νX . φ is valid for the states in the largest set X that satisfies the
equation X = φ (infinite paths, safety)

Warning
In order to be sure that a fixed point exists, X must occur positively in
the formula, ie preceded by an even number of negations.

Temporal properties as limits

Example

A ,
∑
i≥0

Ai with A0 , 0 e Ai+1 , a.Ai

A′ , A + D with D , a.D

• A� A′

• but there is no modal formula in to distinguish A from A′

• notice A′ |= 〈a〉i+1true which Ai fails

• a distinguishing formula would require infinite conjunction

• what we want to express is the possibility of doing a in the long run

Temporal properties as limits

idea: introduce recursion in formulas

X , 〈a〉X

meaning?

• the recursive formula is interpreted as a fixed point of function

||〈a〉||

in PP

• i.e., the solutions, S ⊆ P such that of

S = ||〈a〉||(S)

• how do we solve this equation?

Solving equations ...

over natural numbers

x = 3x one solution (x = 0)

x = 1 + x no solutions

x = 1x many solutions (every natural x)

over sets of integers

x = {22} ∩ x one solution (x = {22})
x = IN \ x no solutions

x = {22} ∪ x many solutions (every x st {22} ⊆ x)

Solving equations ...
In general, for a monotonic function f , i.e.

X ⊆ Y ⇒ f X ⊆ f Y

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

• unique maximal fixed point:

νf =
⋃
{X ∈ PP | X ⊆ f X}

• unique minimal fixed point:

µf =
⋂
{X ∈ PP | f X ⊆ X}

• moreover the space of its solutions forms a complete lattice

Back to the example ...

S ∈ PP is a pre-fixed point of ||〈a〉||
iff

||〈a〉||(S) ⊆ S

Recalling,
||〈a〉||(S) = {E ∈ P | ∃E ′∈S . E

a−→ E ′}

the set of sets of processes we are interested in is

Pre = {S ⊆ P | {E ∈ P | ∃E ′∈S . E
a−→ E ′} ⊆ S}

= {S ⊆ P | ∀Z∈P . (Z ∈ {E ∈ P | ∃E ′∈S . E
a−→ E ′}⇒ Z ∈ S)}

= {S ⊆ P | ∀E∈P . ((∃E ′∈S . E
a−→ E ′)⇒ E ∈ S)}

which can be characterized by predicate

(PRE) (∃E ′∈S . E
a−→ E ′)⇒ E ∈ S (for all E ∈ P)

Back to the example ...
The set of pre-fixed points of

||〈a〉||

is

Pre = {S ⊆ P | ||〈a〉||(S) ⊆ S}

= {S ⊆ P | ∀E∈P . ((∃E ′∈S . E
a−→ E ′)⇒ E ∈ S)}

• Clearly, {A , a.A} ∈ Pre

• but ∅ ∈ Pre as well

Therefore, its least solution is ⋂
Pre = ∅

Conclusion: taking the meaning of X = 〈a〉X as the least solution of the
equation leads us to equate it to false

... but there is another possibility ...
S ∈ PP is a post-fixed point of

||〈a〉||

iff

S ⊆ ||〈a〉||(S)

leading to the following set of post-fixed points

Post = {S ⊆ P | S ⊆ {E ∈ P | ∃E ′∈S . E
a−→ E ′}}

= {S ⊆ P | ∀Z∈P . (Z ∈ S ⇒ Z ∈ {E ∈ P | ∃E ′∈S . E
a−→ E ′})}

= {S ⊆ P | ∀E∈P . (E ∈ S ⇒∃E ′∈S . E
a−→ E ′)}

(POST) If E ∈ S then E
a−→ E ′ for some E ′ ∈ S (for all E ∈ P)

• i.e., if E ∈ S it can perform a and this ability is maintained in its
continuation

... but there is another possibility ...

• i.e., if E ∈ S it can perform a and this ability is maintained in its
continuation

• the greatest subset of P verifying this condition is the set of
processes with at least an infinite computation

Conclusion: taking the meaning of X = 〈a〉X as the greatest solution of
the equation characterizes the property occurrence of a is possible

The general case

• The meaning (i.e., set of processes) of a formula X , φX where
X occurs free in φ

• is a solution of equation

X = f (X) with f (S) = ||{S/X}φ||

in PP, where ||.|| is extended to formulae with variables by ||X || = X

The general case
The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If E ∈ f (S) then E ∈ S

to be denoted by
µX . φ

• greatest solution: the union of all S such that

(POST) If E ∈ S then E ∈ f (S)

to be denoted by
νX . φ

In the previous example:

νX . 〈a〉 true µX . 〈a〉 true

The general case
The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If E ∈ f (S) then E ∈ S

to be denoted by
µX . φ

• greatest solution: the union of all S such that

(POST) If E ∈ S then E ∈ f (S)

to be denoted by
νX . φ

In the previous example:

νX . 〈a〉 true µX . 〈a〉 true

The modal µ-calculus: syntax

... Hennessy-Milner + recursion (i.e. fixed points):

φ ::= X | φ1 ∧ φ2 | φ1 ∨ φ2 | 〈K 〉φ | [K]φ | µX . φ | νX . φ

where K ⊆ Act and X is a set of propositional variables

• Note that

true
abv
= νX .X and false

abv
= µX .X

The modal µ-calculus: denotational semantics

• Presence of variables requires models parametric on valuations:

V : X −→ PP

• Then,

||X ||V =V (X)

||φ1 ∧ φ2||V =||φ1||V ∩ ||φ2||V
||φ1 ∨ φ2||V =||φ1||V ∪ ||φ2||V
||[K]φ||V =||[K]||(||φ||V)

||〈K 〉φ||V =||〈K 〉||(||φ||V)

• and add

||νX . φ||V =
⋃
{S ∈ P | S ⊆ ||{S/X}φ||V }

||µX . φ||V =
⋂
{S ∈ P | ||{S/X}φ||V ⊆ S}

Notes

where

||[K]||X = {F ∈ P | if F a−→ F ′ ∧ a ∈ K then F ′ ∈ X}

||〈K 〉||X = {F ∈ P | ∃F ′∈X ,a∈K . F
a−→ F ′}

Modal µ-calculus

Intuition

• look at modal formulas as set-theoretic combinators

• introduce mechanisms to specify their fixed points

• introduced as a generalisation of Hennessy-Milner logic for processes
to capture enduring properties.

References

• Original reference: Results on the propositional µ-calculus,
D. Kozen, 1983.

• Introductory text: Modal and temporal logics for processes,
C. Stirling, 1996

Notes

The modal µ-calculus [Kozen, 1983] is

• decidable

• strictly more expressive than Pdl and Ctl*

Moreover

• The correspondence theorem of the induced temporal logic with
bisimilarity is kept

Example 1: X , φ ∨ 〈a〉X

Look for fixed points of

f (X) , ||φ|| ∪ ||〈a〉||(X)

Example 1: X , φ ∨ 〈a〉X

(PRE) If E ∈ f (X) then E ∈ X

⇔ If E ∈ (||φ|| ∪ ||〈a〉||(X)) then E ∈ X

⇔ If E ∈ {F | F |= φ} ∪ {F ∈ P | ∃F ′∈X . F
a−→ F ′}

then E ∈ X

⇔ if E |= φ ∨ ∃E ′∈X . E
a−→ E ′ then E ∈ X

The smallest set of processes verifying this condition is composed of
processes with at least a computation along which a can occur until φ
holds. Taking its intersection, we end up with processes in which φ holds
in a finite number of steps.

Example 1: X , φ ∨ 〈a〉X

(POST) If E ∈ X then E ∈ f (X)

⇔ If E ∈ X then E ∈ (||φ|| ∪ ||〈a〉||(X))

⇔ If E ∈ X then E ∈ {F | F |= φ} ∪ {F ∈ X | ∃F ′∈X . F
a−→ F ′}

⇔ If E ∈ X then E |= φ ∨ ∃E ′∈X . E
a−→ E ′

The greatest fixed point also includes processes which keep the possibility
of doing a without ever reaching a state where φ holds.

Example 1: X , φ ∨ 〈a〉X

• strong until:
µX . φ ∨ 〈a〉X

• weak until
νX . φ ∨ 〈a〉X

Relevant particular cases:

• φ holds after internal activity:

µX . φ ∨ 〈τ〉X

• φ holds in a finite number of steps

µX . φ ∨ 〈−〉X

Example 2: X , φ ∧ 〈a〉X

(PRE) If E |= φ ∧ ∃E ′∈X . E
a−→ E ′ then E ∈ X

implies that
µX . φ ∧ 〈a〉X ⇔ false

(POST) If E ∈ X then E |= φ ∧ ∃E ′∈X . E
a−→ E ′

implies that
νX . φ ∧ 〈a〉X

denote all processes which verify φ and have an infinite computation

Example 2: X , φ ∧ 〈a〉X

Variant:

• φ holds along a finite or infinite a-computation:

νX . φ ∧ (〈a〉X ∨ [a] false)

In general:

• weak safety:
νX . φ ∧ (〈K 〉X ∨ [K] false)

• weak safety, for K = Act :

νX . φ ∧ (〈−〉X ∨ [−] false)

Example 3: X , [−]X

(POST) If E ∈ X then E ∈ ||[−]||(X)

⇔ If E ∈ X then (if E
x−→ E ′ and x ∈ Act then E ′ ∈ X)

implies νX . [−]X ⇔ true

(PRE) If (if E
x−→ E ′ and x ∈ Act then E ′ ∈ X) then E ∈ X

implies µX . [−]X represent finite processes (why?)

Safety and liveness

• weak liveness:
µX . φ ∨ 〈−〉X

• strong safety
νX . ψ ∧ [−]X

making ψ = ¬φ both properties are dual:

• there is at least a computation reaching a state s such that s |= φ

• all states s reached along all computations maintain φ, ie, s |= ¬φ

Safety and liveness

Qualifiers weak and strong refer to a quatification over computations

• weak liveness:
µX . φ ∨ 〈−〉X

(corresponds to Ctl formula E F φ)

• strong safety
νX . ψ ∧ [−]X

(corresponds to Ctl formula A G ψ)

cf, liner time vs branching time

Duality

¬(µX . φ) =νX .¬φ
¬(νX . φ) =µX .¬φ

Example:

• divergence:
νX . 〈τ〉X

• convergence (= all non observable behaviour is finite)

¬(νX . 〈τ〉X) = µX .¬(〈τ〉X) = µX . [τ]X

Safety and liveness

• weak safety:
νX . φ ∧ (〈−〉X ∨ [−] false)

(there is a computation along which φ holds)

• strong liveness
µX .¬φ ∨ ([−]X ∧ 〈−〉 true)

(a state where the complement of φ holds can be finitely reached)

Conditional properties

φ1 =
After collecting a passenger (icr), the taxi drops him at destination (fcr)
Second part of φ1 is strong liveness:

µX . [−fcr]X ∧ 〈−〉 true

holding only after icr .
Is it enough to write:

[icr] (µX . [−fcr]X ∧ 〈−〉 true)

?
what we want does not depend on the initial state: it is liveness
embedded into strong safety:

νY . [icr] (µX . [−fcr]X ∧ 〈−〉 true) ∧ [−]Y

Conditional properties

φ1 =
After collecting a passenger (icr), the taxi drops him at destination (fcr)
Second part of φ1 is strong liveness:

µX . [−fcr]X ∧ 〈−〉 true

holding only after icr .
Is it enough to write:

[icr] (µX . [−fcr]X ∧ 〈−〉 true)

?
what we want does not depend on the initial state: it is liveness
embedded into strong safety:

νY . [icr] (µX . [−fcr]X ∧ 〈−〉 true) ∧ [−]Y

Conditional properties

The previous example is conditional liveness but one can also have

• conditional safety:

νY . (¬φ ∨ (φ ∧ νX . ψ ∧ [−]X)) ∧ [−]Y

(whenever φ holds, ψ cannot cease to hold)

Cyclic properties

φ = every second action is out
is expressed by

νX . [−] ([−out] false ∧ [−]X)

φ = out follows in, but other actions can occur in between

νX . [out] false ∧ [in] (µY . [in] false ∧ [out]X ∧ [−out]Y) ∧ [−in]X

Note that the use of least fixed points imposes that the amount of
computation between in and out is finite

Cyclic properties

φ = a state in which in can occur, can be reached an infinite number of
times

νX . µY . (〈in〉 true ∨ 〈−〉Y) ∧ ([−]X ∧ 〈−〉 true)

φ = in occurs an infinite number of times

νX . µY . [−in]Y ∧ [−]X ∧ 〈−〉 true

φ = in occurs an finite number of times

µX . νY . [−in]Y ∧ [in]X

µ-calculus in mCRL2

The verification problem

• Given a specification of the system’s behaviour is in mCRL2

• and the system’s requirements are specified as properties in a
temporal logic,

• a model checking algorithm decides whether the property holds for
the model: the property can be verified or refuted;

• sometimes, witnesses or counter examples can be provided

Which logic?

µ-calculus with data, time and regular expressions

Example: The dining philosophers problem

Formulas to verify Demo

• No deadlock (every philosopher holds a left fork and waits for a right fork
(or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

• there is no starvation: for all reachable states it should be possible to
eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))

Pragmatics

Strategies to deal with infinite models and specifications

• A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

• The specification is converted to a stricter format called Linear
Process Specification (x.lps)

• In this format the specification can be transformed and simulated

• In particular a Labelled Transition System (x.lts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)

