Modal logic for concurrent processes: the μ -calculus

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

29 April, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Is Hennessy-Milner logic expressive enough?

Is Hennessy-Milner logic expressive enough?

- It cannot detect deadlock in an arbitrary process
- or general safety: all reachable states verify ϕ
- or general liveness: there is a reachable states which verifies ϕ

• ...

... essentially because

formulas in cannot see deeper than their modal depth

Is Hennessy-Milner logic expressive enough?

Example

 $\phi~=~{\rm a}$ taxi eventually returns to its Central

$$\phi \ = \ \langle \textit{reg} \rangle \, \textsf{true} \lor \langle - \rangle \, \langle \textit{reg} \rangle \, \textsf{true} \lor \langle - \rangle \, \langle - \rangle \, \langle \textit{reg} \rangle \, \textsf{true} \lor \langle - \rangle \, \langle - \rangle \, \langle \textit{reg} \rangle \, \textsf{true} \lor \dots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Revisiting Hennessy-Milner logic

Adding regular expressions

ie, with regular expressions within modalities

$$\rho ::= \epsilon \mid \alpha \mid \rho.\rho \mid \rho + \rho \mid \rho^* \mid \rho^+$$

where

- α is an action formula and ϵ is the empty word
- concatenation $\rho.\rho$, choice $\rho + \rho$ and closures ρ^* and ρ^+

Laws

$$\langle \rho_1 + \rho_2 \rangle \phi = \langle \rho_1 \rangle \phi \lor \langle \rho_2 \rangle \phi$$

$$[\rho_1 + \rho_2] \phi = [\rho_1] \phi \land [\rho_2] \phi$$

$$\langle \rho_1 . \rho_2 \rangle \phi = \langle \rho_1 \rangle \langle \rho_2 \rangle \phi$$

$$[\rho_1 . \rho_2] \phi = [\rho_1] [\rho_2] \phi$$

Revisiting Hennessy-Milner logic

Examples of properties

- $\langle \epsilon \rangle \phi = [\epsilon] \phi = \phi$
- $\langle a.a.b \rangle \phi = \langle a \rangle \langle a \rangle \langle b \rangle \phi$
- $\langle a.b + g.d \rangle \phi$

Safety

- $[-^*]\phi$
- it is impossible to do two consecutive enter actions without a leave action in between:

[-*.enter. - leave*.enter] false

• absence of deadlock: $[-^*]\langle -\rangle$ true

Revisiting Hennessy-Milner logic

Examples of properties

Liveness

- $\bullet \ \left< -^* \right> \phi$
- after sending a message, it can eventually be received: [send] (-*.receive) true
- after a send a receive is possible as long as an exception does not happen:

 $[send. - excp^*] \langle -^*.receive \rangle$ true

The modal μ -calculus

- modalities with regular expressions are not enough in general
- ... but correspond to a subset of the modal μ -calculus [Kozen83]

Add explicit minimal/maximal fixed point operators to Hennessy-Milner logic

 $\phi ::= X \mid \mathsf{true} \mid \mathsf{false} \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \to \phi \mid \langle a \rangle \phi \mid [a] \phi \mid \mu X . \phi \mid \nu X . \phi$

The modal $\mu\text{-calculus}$

The modal μ -calculus (intuition)

- $\mu X \cdot \phi$ is valid for all those states in the smallest set X that satisfies the equation $X = \phi$ (finite paths, liveness)
- $\nu X \cdot \phi$ is valid for the states in the largest set X that satisfies the equation $X = \phi$ (infinite paths, safety)

Warning

In order to be sure that a fixed point exists, X must occur positively in the formula, ie preceded by an even number of negations.

Temporal properties as limits

Example

$$A \triangleq \sum_{i \ge 0} A_i$$
 with $A_0 \triangleq \mathbf{0} \in A_{i+1} \triangleq a.A_i$
 $A' \triangleq A + D$ with $D \triangleq a.D$

• *A* ≁ *A*′

- but there is no modal formula in to distinguish A from A'
- notice $A' \models \langle a \rangle^{i+1}$ true which A_i fails
- a distinguishing formula would require infinite conjunction
- what we want to express is the possibility of doing a in the long run

Temporal properties as limits

idea: introduce recursion in formulas

$$X \triangleq \langle a \rangle X$$

meaning?

• the recursive formula is interpreted as a fixed point of function

 $\|\langle a \rangle\|$

in $\mathcal{P}\mathbb{P}$

• i.e., the solutions, $S \subseteq \mathbb{P}$ such that of

 $S = ||\langle a \rangle||(S)$

• how do we solve this equation?

Solving equations ...

over natural numbers

- x = 3x one solution (x = 0) x = 1 + x no solutions
 - x = 1x many solutions (every natural x)

over sets of integers

$$\begin{aligned} x &= \{22\} \cap x & \text{one solution} (x = \{22\}) \\ x &= \mathbf{N} \setminus x & \text{no solutions} \\ x &= \{22\} \cup x & \text{many solutions} (\text{every } x \text{ st } \{22\} \subseteq x) \end{aligned}$$

Solving equations ...

In general, for a monotonic function f, i.e.

$$X \subseteq Y \Rightarrow f X \subseteq f Y$$

Knaster-Tarski Theorem [1928]

A monotonic function f in a complete lattice has a

• unique maximal fixed point:

$$\nu_f = \bigcup \{ X \in \mathcal{PP} \mid X \subseteq f X \}$$

• unique minimal fixed point:

$$\mu_f = \bigcap \{ X \in \mathcal{P}\mathbb{P} \mid f X \subseteq X \}$$

moreover the space of its solutions forms a complete lattice

Back to the example ...

```
S \in \mathcal{P}\mathbb{P} is a pre-fixed point of \|\langle a \rangle\| iff
```

 $\|\langle a \rangle\|(S) \subseteq S$

Recalling,

$$\|\langle a \rangle\|(S) = \{E \in \mathbb{P} \mid \exists_{E' \in S} : E \stackrel{a}{\longrightarrow} E'\}$$

the set of sets of processes we are interested in is

$$Pre = \{S \subseteq \mathbb{P} \mid \{E \in \mathbb{P} \mid \exists_{E' \in S} . E \xrightarrow{a} E'\} \subseteq S\} \\ = \{S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} . (Z \in \{E \in \mathbb{P} \mid \exists_{E' \in S} . E \xrightarrow{a} E'\} \Rightarrow Z \in S)\} \\ = \{S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . ((\exists_{E' \in S} . E \xrightarrow{a} E') \Rightarrow E \in S)\}$$

which can be characterized by predicate

$$(\mathsf{PRE}) \qquad (\exists_{E' \in S} \, . \, E \stackrel{a}{\longrightarrow} E') \Rightarrow E \in S \qquad (\text{for all } E \in \mathbb{P})$$

Back to the example ...

The set of pre-fixed points of

 $\|\langle a \rangle\|$

is

$$Pre = \{ S \subseteq \mathbb{P} \mid |\langle a \rangle | (S) \subseteq S \} \\ = \{ S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . ((\exists_{E' \in S} . E \xrightarrow{a} E') \Rightarrow E \in S) \}$$

• Clearly,
$$\{A \triangleq a.A\} \in \mathsf{Pre}$$

• but $\emptyset \in \mathsf{Pre}$ as well

Therefore, its least solution is

$$\bigcap \mathsf{Pre} = \emptyset$$

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the least solution of the equation leads us to equate it to false

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... but there is another possibility ... $\mathcal{S} \in \mathcal{P}\mathbb{P}$ is a post-fixed point of

$$|\langle a \rangle|$$

iff

 $S \subseteq ||\langle a \rangle||(S)$

leading to the following set of post-fixed points

$$Post = \{S \subseteq \mathbb{P} \mid S \subseteq \{E \in \mathbb{P} \mid \exists_{E' \in S} . E \xrightarrow{a} E'\}\}$$
$$= \{S \subseteq \mathbb{P} \mid \forall_{Z \in \mathbb{P}} . (Z \in S \Rightarrow Z \in \{E \in \mathbb{P} \mid \exists_{E' \in S} . E \xrightarrow{a} E'\})\}$$
$$= \{S \subseteq \mathbb{P} \mid \forall_{E \in \mathbb{P}} . (E \in S \Rightarrow \exists_{E' \in S} . E \xrightarrow{a} E')\}$$

(POST) If $E \in S$ then $E \xrightarrow{a} E'$ for some $E' \in S$ (for all $E \in P$)

i.e., if E ∈ S it can perform a and this ability is maintained in its continuation

... but there is another possibility ...

- i.e., if *E* ∈ *S* it can perform *a* and this ability is maintained in its continuation
- the greatest subset of $\mathbb P$ verifying this condition is the set of processes with at least an infinite computation

Conclusion: taking the meaning of $X = \langle a \rangle X$ as the greatest solution of the equation characterizes the property occurrence of *a* is possible

The general case

- The meaning (i.e., set of processes) of a formula $X \triangleq \phi X$ where X occurs free in ϕ
- is a solution of equation

X = f(X) with $f(S) = ||\{S/X\}\phi||$

in \mathcal{PP} , where $\|.\|$ is extended to formulae with variables by $\|X\| = X$

The general case

The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If $E \in f(S)$ then $E \in S$

to be denoted by

 $\mu X.\phi$

• greatest solution: the union of all S such that

(POST) If $E \in S$ then $E \in f(S)$

to be denoted by

 $u X \, . \, \phi$

In the previous example:

 $\nu X . \langle a \rangle$ true $\mu X . \langle a \rangle$

The general case

The Knaster-Tarski theorem gives precise characterizations of the

• smallest solution: the intersection of all S such that

(PRE) If $E \in f(S)$ then $E \in S$

to be denoted by

 $\mu X.\phi$

• greatest solution: the union of all S such that

(POST) If $E \in S$ then $E \in f(S)$

to be denoted by

 $\nu X.\phi$

In the previous example:

 $\nu X . \langle a \rangle$ true $\mu X . \langle a \rangle$ true

The modal μ -calculus: syntax

... Hennessy-Milner + recursion (i.e. fixed points):

$$\phi ::= X \mid \phi_1 \land \phi_2 \mid \phi_1 \lor \phi_2 \mid \langle K \rangle \phi \mid [K] \phi \mid \mu X . \phi \mid \nu X . \phi$$

where $K \subseteq Act$ and X is a set of propositional variables

Note that

true
$$\stackrel{\text{abv}}{=} \nu X \cdot X$$
 and false $\stackrel{\text{abv}}{=} \mu X \cdot X$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

The modal μ -calculus: denotational semantics

• Presence of variables requires models parametric on valuations:

$$V: X \longrightarrow \mathcal{PP}$$

Then,

$$\|X\|_{V} = V(X)$$

$$\|\phi_{1} \wedge \phi_{2}\|_{V} = \|\phi_{1}\|_{V} \cap \|\phi_{2}\|_{V}$$

$$\|\phi_{1} \vee \phi_{2}\|_{V} = \|\phi_{1}\|_{V} \cup \|\phi_{2}\|_{V}$$

$$\|[K] \phi\|_{V} = \|[K]\|(\|\phi\|_{V})$$

$$\|\langle K \rangle \phi\|_{V} = \|\langle K \rangle\|(\|\phi\|_{V})$$

and add

 $\|\nu X \cdot \phi\|_{V} = \bigcup \{ S \in \mathbb{P} \mid S \subseteq \|\{S/X\}\phi\|_{V} \}$ $\|\mu X \cdot \phi\|_{V} = \bigcap \{ S \in \mathbb{P} \mid \|\{S/X\}\phi\|_{V} \subseteq S \}$

Notes

where

$$\|[K]\| X = \{F \in \mathbb{P} \mid \text{if } F \xrightarrow{a} F' \land a \in K \text{ then } F' \in X\}$$
$$\|\langle K \rangle\| X = \{F \in \mathbb{P} \mid \exists_{F' \in X, a \in K} \cdot F \xrightarrow{a} F'\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Modal μ -calculus

Intuition

- look at modal formulas as set-theoretic combinators
- introduce mechanisms to specify their fixed points
- introduced as a generalisation of Hennessy-Milner logic for processes to capture enduring properties.

References

- Original reference: Results on the propositional μ-calculus, D. Kozen, 1983.
- Introductory text: Modal and temporal logics for processes, C. Stirling, 1996

Notes

The modal μ -calculus [Kozen, 1983] is

- decidable
- strictly more expressive than PDL and CTL^*

Moreover

• The correspondence theorem of the induced temporal logic with bisimilarity is kept

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

Look for fixed points of

 $f(X) \triangleq \|\phi\| \cup \|\langle a \rangle\|(X)$

(PRE) If
$$E \in f(X)$$
 then $E \in X$
 \Leftrightarrow If $E \in (\|\phi\| \cup \|\langle a \rangle\|(X))$ then $E \in X$
 \Leftrightarrow If $E \in \{F \mid F \models \phi\} \cup \{F \in \mathbb{P} \mid \exists_{F' \in X} . F \xrightarrow{a} F'\}$
then $E \in X$
 \Leftrightarrow if $E \models \phi \lor \exists_{E' \in X} . E \xrightarrow{a} E'$ then $E \in X$

The smallest set of processes verifying this condition is composed of processes with at least a computation along which *a* can occur until ϕ holds. Taking its intersection, we end up with processes in which ϕ holds in a finite number of steps.

(POST) If
$$E \in X$$
 then $E \in f(X)$
 \Leftrightarrow If $E \in X$ then $E \in (\|\phi\| \cup \|\langle a \rangle\|(X))$
 \Leftrightarrow If $E \in X$ then $E \in \{F \mid F \models \phi\} \cup \{F \in X \mid \exists_{F' \in X} . F \xrightarrow{a} F'\}$
 \Leftrightarrow If $E \in X$ then $E \models \phi \lor \exists_{E' \in X} . E \xrightarrow{a} E'$

The greatest fixed point also includes processes which keep the possibility of doing *a* without ever reaching a state where ϕ holds.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• strong until:

$$\mu X . \phi \lor \langle a \rangle X$$

weak until

$$\nu X . \phi \lor \langle a \rangle X$$

Relevant particular cases:

• ϕ holds after internal activity:

$$\mu X . \phi \lor \langle \tau \rangle X$$

• ϕ holds in a finite number of steps

$$\mu X . \phi \lor \langle - \rangle X$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

(PRE) If
$$E \models \phi \land \exists_{E' \in X} . E \xrightarrow{a} E'$$
 then $E \in X$

implies that

 $\mu X . \phi \land \langle a \rangle X \Leftrightarrow \mathsf{false}$

(POST) If $E \in X$ then $E \models \phi \land \exists_{E' \in X} . E \xrightarrow{a} E'$

implies that

 $\nu X . \phi \land \langle a \rangle X$

denote all processes which verify ϕ and have an infinite computation

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Variant:

• ϕ holds along a finite or infinite *a*-computation:

 $\nu X . \phi \land (\langle a \rangle X \lor [a] \text{ false})$

In general:

• weak safety:

$$u X \,.\, \phi \,\wedge\, (\langle {\sf K}
angle \,X \lor [{\sf K}]$$
 false)

• weak safety, for K = Act :

 $u X \cdot \phi \land (\langle - \rangle X \lor [-] \text{ false})$

Example 3: $X \triangleq [-]X$

(POST) If $E \in X$ then $E \in \|[-]\|(X)$ \Leftrightarrow If $E \in X$ then (if $E \xrightarrow{x} E'$ and $x \in Act$ then $E' \in X$) implies $\nu X \cdot [-] X \Leftrightarrow$ true

(PRE) If (if $E \xrightarrow{x} E'$ and $x \in Act$ then $E' \in X$) then $E \in X$ implies $\mu X \cdot [-] X$ represent finite processes (why?)

Safety and liveness

weak liveness:

$$\mu X . \phi \lor \langle - \rangle X$$

• strong safety

 $\nu X \cdot \psi \wedge [-] X$

making $\psi = \neg \phi$ both properties are dual:

- there is at least a computation reaching a state s such that $s \models \phi$
- all states *s* reached along all computations maintain ϕ , ie, $s \models \neg \phi$

Safety and liveness

Qualifiers weak and strong refer to a quatification over computations

• weak liveness:

$$\mu X \, . \, \phi \ \lor \ \langle -
angle X$$

(corresponds to Ctl formula E F ϕ)

• strong safety

$$\nu X \cdot \psi \wedge [-] X$$

(corresponds to Ctl formula A G ψ)

cf, liner time vs branching time

Duality

$$\neg(\mu X . \phi) = \nu X . \neg \phi$$
$$\neg(\nu X . \phi) = \mu X . \neg \phi$$

Example:

• divergence:

 $u X \, . \, \langle \tau \rangle \, X$

• convergence (= all non observable behaviour is finite)

$$\neg (\nu X . \langle \tau \rangle X) = \mu X . \neg (\langle \tau \rangle X) = \mu X . [\tau] X$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Safety and liveness

weak safety:

$$u X$$
 . $\phi \wedge (\langle -
angle X \lor [-]$ false)

(there is a computation along which ϕ holds)

strong liveness

$$\mu X \, . \,
eg \phi \lor ([-] \, X \land \langle -
angle \, \mathsf{true})$$

(a state where the complement of ϕ holds can be finitely reached)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conditional properties

 ϕ_1 = After collecting a passenger (*icr*), the taxi drops him at destination (*fcr*) Second part of ϕ_1 is strong liveness:

$$\mu X$$
 . [-fcr] $X \wedge \langle -
angle$ true

holding only after *icr*. Is it enough to write:

$$[\mathit{icr}](\mu X \, . \, [-\mathit{fcr}] X \land \langle - \rangle \, \mathsf{true})$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

$$\nu Y . [icr] (\mu X . [-fcr] X \land \langle - \rangle true) \land [-] Y$$

Conditional properties

 ϕ_1 = After collecting a passenger (*icr*), the taxi drops him at destination (*fcr*) Second part of ϕ_1 is strong liveness:

$$\mu X$$
 . $[-fcr] X \wedge \langle -
angle$ true

holding only after *icr*. Is it enough to write:

$$[\mathit{icr}](\mu X \, . \, [-\mathit{fcr}] \, X \wedge \langle -
angle \, \mathsf{true})$$

?

what we want does not depend on the initial state: it is liveness embedded into strong safety:

$$\nu Y . [icr] (\mu X . [-fcr] X \land \langle - \rangle true) \land [-] Y$$

Conditional properties

The previous example is conditional liveness but one can also have

• conditional safety:

$$\nu Y . (\neg \phi \lor (\phi \land \nu X . \psi \land [-] X)) \land [-] Y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

(whenever ϕ holds, ψ cannot cease to hold)

Cyclic properties

 ϕ = every second action is *out* is expressed by $\nu X \cdot [-]([-out] \text{ false } \wedge [-] X)$

 $\phi = out$ follows *in*, but other actions can occur in between

 νX . [out] false \wedge [in] (μY . [in] false \wedge [out] $X \wedge$ [-out] Y) \wedge [-in] X

Note that the use of least fixed points imposes that the amount of computation between *in* and *out* is finite

Cyclic properties

 $\phi = {\rm a}$ state in which in can occur, can be reached an infinite number of times

$$u X \cdot \mu Y \cdot (\langle in \rangle \operatorname{true} \lor \langle - \rangle Y) \land ([-] X \land \langle - \rangle \operatorname{true})$$

 $\phi = in$ occurs an infinite number of times

$$u X \cdot \mu Y \cdot [-in] Y \wedge [-] X \wedge \langle -
angle$$
 true

 $\phi = in$ occurs an finite number of times

$$\mu X \cdot \nu Y \cdot [-in] Y \wedge [in] X$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\mu\text{-calculus}$ in mCRL2

The verification problem

- Given a specification of the system's behaviour is in mCRL2
- and the system's requirements are specified as properties in a temporal logic,
- a model checking algorithm decides whether the property holds for the model: the property can be verified or refuted;
- sometimes, witnesses or counter examples can be provided

Which logic?

μ -calculus with data, time and regular expressions

Example: The dining philosophers problem

Formulas to verify Demo

 No deadlock (every philosopher holds a left fork and waits for a right fork (or vice versa):

[true*]<true>true

• No starvation (a philosopher cannot acquire 2 forks):

forall p:Phil. [true*.!eat(p)*] <!eat(p)*.eat(p)>true

• A philosopher can only eat for a finite consecutive amount of time:

forall p:Phil. nu X. mu Y. [eat(p)]Y && [!eat(p)]X

 there is no starvation: for all reachable states it should be possible to eventually perform an eat(p) for each possible value of p:Phil.

[true*](forall p:Phil. mu Y. ([!eat(p)]Y && <true>true))

Pragmatics

Strategies to deal with infinite models and specifications

- A specification of the system's behaviour is written in mCRL2 (x.mcrl2)
- The specification is converted to a stricter format called Linear Process Specification (x.lps)
- In this format the specification can be transformed and simulated
- In particular a Labelled Transition System (x.lts) can be generated, simulated and analysed through symbolic model checking (boolean equation solvers)