Behavioural abstraction

Luís S. Barbosa

HASLab - INESC TEC Universidade do Minho Braga, Portugal

8 March, 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Abstraction

Main idea: Take a set of actions as internal or non-observable

Adding τ to the set of actions has a number of consequences:

- only external actions are observable
- the effects of an internal action can only be observed if it determines a choice

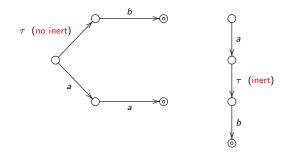
Approaches

- R. Milner's weak bisimulation [Mil80]
- Van Glabbeek and Weijland's branching bisimulation [GW96]

Internal actions

τ abstracts internal activity

inert τ : internal activity is undetectable by observation non inert τ : internal activity is indirectly visible



Branching bisimulation

- Intuition similar to that of strong bisimulation: But now, instead of letting a single action be simulated by a single action, an action can be simulated by a sequence of internal transitions, followed by that single action.
- An internal action τ can be simulated by any number of internal transitions (even by none).

• If a state can terminate, it does not need to be related to a terminating state: it suffices that a terminating state can be reached after a number of internal transitions.

Branching bisimulation

Definition

Given $\langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a branching bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N$,

1. If
$$p \xrightarrow{a}_{1} p'$$
, then

- either $a = \tau$ and p'Rq
- or, there is a sequence $q \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}_{2} q'$ of (zero or more) τ -transitions such that pRq' and $q' \xrightarrow{a}_{2} q''$ with p'Rq''.

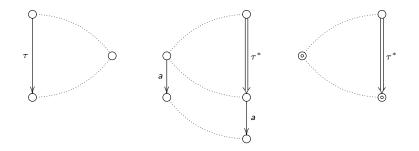
- 2. If $p \downarrow_1$, then there is a sequence $q \xrightarrow{\tau}_2 \cdots \xrightarrow{\tau}_2 q'$ of (zero or more) τ -transitions such that pRq' and $q \downarrow_2$.
- 1'., 2'. symmetrically ...

Definition

 $p \approx q \equiv \langle \exists R :: R \text{ is a branching bisimulation and } \langle p, q \rangle \in R \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

... preserves the branching structure



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─ のへで

... does not preserve τ -loops

satisfying a notion of fairness: if a τ -loop exists, then no infinite execution sequence will remain in it forever if there is a possibility to leave

Problem

If an alternative is added to the initial state then transition systems that were branching bisimilar may cease to be so.

Example: add a *b*-labelled branch to the initial states of

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Rooted branching bisimilarity

Startegy

Impose a rootedness condition [R. Milner, 80]:

Initial τ -transitions can never be inert, *i.e.*, two states are equivalent if they can simulate each other's initial transitions, such that the resulting states are branching bisimilar.

Rooted branching bisimulation

Definition

Given $\langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a rooted branching bisimulation iff

1. it is a branching bisimulation

2. for all
$$\langle p,q\rangle \in R$$
 and $a \in N$,

• If $p \xrightarrow{a}_{1} p'$, then there is a $q' \in S_2$ such that $q \xrightarrow{a}_{2} q'$ and $p' \approx q'$ • If $q \xrightarrow{a}_{2} q'$, then there is a $p' \in S_1$ such that $p \xrightarrow{a}_{1} p'$ and $p' \approx q'$

Rooted branching bisimilarity

Definition

 $p \approx_r q \equiv \langle \exists R :: R \text{ is a rooted branching bisimulation and } \langle p, q \rangle \in R \rangle$

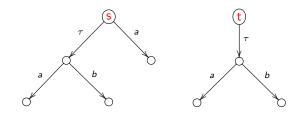
Lemma

$$\sim \subseteq \approx_r \subseteq \approx$$

Of course, in the absence of τ actions, \sim and \approx coincide.

Example

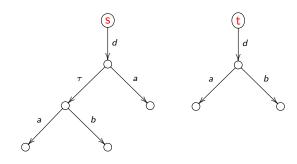
branching bisimilar but not rooted



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Example

rooted branching bisimilar



Weak bisimulation

Definition [Milner,80]

Given $\langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a weak bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N$,

1. If
$$p \stackrel{a}{\longrightarrow}_{1} p'$$
, then

• either
$$a = \tau$$
 and $p'Rq$

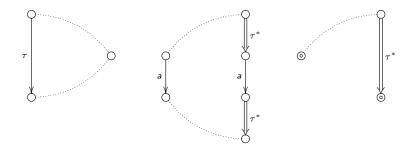
• or, there is a sequence $q \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}_{2} t \xrightarrow{a}_{2} t' \xrightarrow{\tau}_{2} \cdots \xrightarrow{\tau}_{2} q'$ involving zero or more τ -transitions, such that p'Rq'.

2. If $p \downarrow_1$, then there is a sequence $q \xrightarrow{\tau}_2 \cdots \xrightarrow{\tau}_2 q'$ of (zero or more) τ -transitions such that $q' \downarrow_2$.

1'., 2'. symmetrically ...

Weak bisimulation

... does not preserve the branching structure



・ロト ・聞ト ・ヨト ・ヨト

э

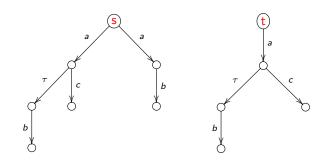
Weak bisimilarity

Definition

 $p \approx_w q \equiv \langle \exists R :: R \text{ is a branching bisimulation and } \langle p, q \rangle \in R \rangle$

Example

weak but not branching



・ロト ・四ト ・ヨト ・ヨト

æ

Rooted weak bisimulation

Definition

Given $\langle S_1, N, \downarrow_1, \longrightarrow_1 \rangle$ and $\langle S_2, N, \downarrow_2, \longrightarrow_2 \rangle$ over N, relation $R \subseteq S_1 \times S_2$ is a rooted weak bisimulation iff for all $\langle p, q \rangle \in R$ and $a \in N$,

• If $p \xrightarrow{\tau}_{1} p'$, then there is a non empty sequence of τ such that $q \xrightarrow{\tau}_{2} \xrightarrow{\tau}_{2} \dots \xrightarrow{\tau}_{2} \xrightarrow{\tau}_{2} q'$ and $p' \approx_{w} q'$

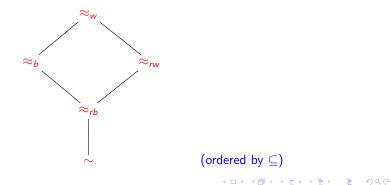
• Symmetrically ...

Rooted weak bisimilarity

Definition

 $p \approx_{rw} q \equiv \langle \exists R :: R \text{ is a rooted weak bisimulation and } \langle p,q \rangle \in R \rangle$

Lemma



The questions to follow ...

- We already have a semantic model for reactive systems. With which language shall we describe them?
- How to compare and transform such systems?
- How to express and prove their proprieties?

→ modal (temporal, hybrid) logics