
Babysteps into mCRL2

(draft)

J.J.A. Keiren, B. Ploeger, and E.P. de Vink?

Dept. of Mathematics & Computer Science, Technische Universiteit Eindhoven
P.O. Box 513, 5600 MB Eindhoven, the Netherlands

Abstract. This tutorial serves as a starting point for getting experience in using mCRL2.
We present the basic use of the major tools in the toolset, guided by a set of examples.
Exercises that can be used to check your understanding are also provided.
This is a draft version. Comments are welcome.

1 Introduction

In this tutorial we give a basic introduction into the basic use of the mCRL2 toolset. In each of
the sections we present a number of new concepts, guided by an example, and some exercises to
gain hands on experience with the tools. Note that in this tutorial we mainly focus at the use of
the tools, and not on the theory that is underlying the tools. For the latter, we refer to [2] as a
brief introduction of the main concepts, and to [3] for an in-depth discussion.

1.1 Getting started

Before starting this tutorial you should first get a copy of mCRL2 for your platform from the mCRL2
website at http://mcrl2.org/mcrl2/wiki/index.php/Download. Installation instructions can
be found at http://mcrl2.org/mcrl2/wiki/index.php/Installation instructions. Note
that, if you are using mCRL2 on Windows, then the compiling rewriter is unavailable, meaning
that the flag -r jittyc to any of the tools will fail.

In this tutorial, we assume that you will be using the tools from the command line. On
Windows this is the command prompt, on other platforms this is a terminal. Commands that
should be enterend at the prompt are displayed as

$ command

2 A Vending Machine

Contribution of this section:

1. specifying processes,
2. linearisation,
3. state space exploration,
4. visualisation of state spaces,
5. comparison/reduction using behavioural equivalences, and
6. verification of modal mu-calculus properties.

? Corresponding author: evink@win.tue.nl

New tools : mcrl22lps, lps2lts, ltsgraph, ltscompare, ltsconvert, lps2pbes, pbes2bool.

Our first little step consists of number of variations on the good old vending machine, a user User
interacting with a machine Mach. By way of this example we will encounter the basic ingredients
of mCRL2. In the first variation of the vending machine, a very primitive machine, and user, are
specified. Some properties are verified. In the second variation non-determinism is considered
and, additionally, some visualization and comparison tools from the toolset are illustrated. The
third variation comes closer to a rudimentary prototype specification.

2.1 First variation

After inserting a coin of 10 cents, the user can push the button for an apple. An apple will then
be put in the drawer of the machine. See Figure 1.

product

10ct

apple

Fig. 1. vending machine 1

Vending machine 1 can be specified by the following mCRL2, also included in the file vm01.mcrl2.

act
ins10, optA, acc10, putA, coin, ready ;

proc
User = ins10 . optA . User ;
Mach = acc10 . putA . Mach ;

init
allow(

{ coin, ready },
comm(
{ ins10 | acc10 -> coin, optA | putA -> ready },
User || Mach

)) ;

The specification is splitted in three sections: (i) act, a declaration of actions of 6 actions,
(ii) proc, the definition of 2 processes, and (iii) init, the initialization of the system.

The process User is recursively defined as doing an ins10 action, followed by an optA action,
followed by the process User again. The process Mach is similar, looping on the action acc10

2

followed by the action putA. Note, only four actions are used in the definition of the processes.
In particular, the action coin and ready are not referred to.

The initialization of the system has a typical form. A number of parallel processes, in the
context of a communication function, with a limited set of actions allowed. So, || is the parallel
operator, in this case putting the processes User and Mach in parallel. The communication
function is the first argument of the comm operator. Here, we have that synchronization of an
ins10 action and an acc10 action yields the action coin, whereas synchronization of optA and
putA yields ready. The actions of the system that are allowed, are mentioned in the first argument
of the allow operator allow. Thus, for our first system only coin and ready are allowed actions.

We compile the specification in the file vm01.mcrl2 to a so-called linear process, saved in the file
vm01.lps. This can be achieved by running

$ mcrl22lps vm01.mcrl2 vm01.lps

at the command line. The linear process in the internal representation format of mCRL2, not meant
for human inspection. However, from vm01.lps a labeled transition system, LTS for short, can
be obtained by running

$ lps2lts vm01.lps vm01.lts

which can be viewed by the ltsgraph facility, by typing

$ ltsgraph vm01.lts

at the prompt. Some manual beautifying yields the picture in Figure 2.

Fig. 2. LTS of vending machine 1

Apparently, starting from state 0 the system shuttles between state 0 and 1 alternating the
actions coin and ready. Enforced by the allow operator, unmatched ins10, acc10, optA and
putA actions are excluded. The actions synchronize pairwise, ins10 with acc10, optA with putA,
to produce coin and ready, respectively.

As a first illustration of model checking in mCRL2, we consider some simple properties to be
checked against the specification vm01.mcrl2. Given the LTS of the system, the properties ob-
viously hold.

(a) always, eventually a ready is possible (true)
[true*] <true*.ready> true

3

(b) a ready is always possible (false)
[true*] <ready> true

(c) after every ready only a coin follows (true)
[true*.ready.!coin] false

(d) any ready is followed by a coin and another ready (true)
[true*.ready.!coin] false &&

[true*.ready.true.!ready] false

Dissecting property (a), [true*] represents all finite sequences of actions starting from the
initial state. <true*.ready> expresses the existence of a sequence of actions ending with the
action ready. The last occurence of true in property (a) is a logical formula to be evaluated in
the current state. Thus, if property (a) is satisfied by the system, then after any finite sequence
of actions, [true*], the system can continue with some finite sequence of actions ending with
ready, <true*.ready>, and reaches a state in which the formula true holds. Since true always
holds, property (a) states that a next ready is always possible.

Property (b) is less liberal than property (a). Here, <ready> true requires a ready action
to be possible for the system, after any finite sequence, [true*]. This property does not hold.
A ready action is not immediately followed by a ready action again. Also, ready is not possible
in the initial state.

Property (c) uses the complement construct. !coin are all actions different from coin. So,
any sequence of actions with ready as its one but final action and ending with an action different
from coin, leads to a state where false holds. Since no such state exists, there are no path of
the form true*.ready.!coin. Thus, after any ready action, any action that follows, if any, will
be coin. Property (d) is a further variation involving conjunction &&.

Model checking with mCRL2 is done by constructing a so-called parametrized boolean equation
system or PBES from a linear process specification and a modal µ-calculus formula. For example,
to verify property (a) above, we call the lps2pbes tool. Assuming property (a) to be in file
vm01a.mcf, running

$ lps2pbes vm01.lps -f vm01a.mcf vm01a.pbes

creates from the system in linear format and the formula in the file vm01a.mcf right after the -f
switch, a PBES in the file
filevm01a.pbes. On calling the PBES solver on vm01a.pbes,

$ pbes2bool vm01a.pbes

the mCRL2 tool answers

The pbes is valid

So, for vending machine 1 it holds that action ready is always possible in the future. Instead
of making separate steps explicity, the verification can also be captured by a single, pipe-line
command:

$ mcrl22lps vm01.mcrl2 | lps2pbes -f vm01a.mcf | pbes2bool

Running the other properties yields the expected results. Properties (c) and (d) do hold, prop-
erty (b) does not hold.

4

2.2 Second variation

Next, we add a chocolate bar to the assortment of the vending machine. A chocolate bar costs
20 cents, an apple 10 cents. The machine will now accept coins of 10 and 20 cents. The scenarios
allowed are (i) insertion of 10 cent and purchasing an apple, (ii) insertion of 10 cent twice or 20
cent once and purchasing a chocolate bar. Additionally, after insertion of money, the user can
push the ‘change’ button, after which the inserted money is returned. See Figure 3.

product

10ct

apple choco

20ct

change

Fig. 3. vending machine 2

Exercise 2.1. Write an mCRL2 specification in file vm02.mcrl2 for the vending machine sketched
above, involving the actions

ins10, ins20, acc10, acc20, coin10, coin20,
chg10, chg20, ret10, ret20, out10, out20,
optA, optC, putA, putC, readyA, readyC, prod

A possible specification of the Mach process may read

Mach =
acc10.(putA.prod + acc10.(putC.prod + ret20) + ret10).Mach +
acc20.(putA.prod.ret10 + putC.prod + ret20).Mach ;

The machine is required to perform a prod action, for administration purposes. ut

A visualization of the specified system can be obtained by first converting the linear process into
a labeled transition system (in so-called SVC-format) by

$ lps2lts vm02.lps vm02.svc

and next loading the SVC file vm02.svc into the ltsgraph tool by

$ ltsgraph vm02.svc

The LTS can be beautified (a bit) using the ‘start’ button in the optimization panel of the user
interface. Manual manipulation by dragging states is also possible. For small examples, increasing
the natural transition length may provide better results.

Exercise 2.2. Prove that your specification satisfies

5

(a) “no three 10ct coins can be inserted in a row”
(b) “no chocolate after 10ct only”
(c) “an apple only after 10ct, a chocolate after 20ct” ut

The file vm02-taus.mcrl2 contains the specification of a system performing coin10 and coin20
actions as well as so-called τ -steps. Use the ltscompare tool to compare your model under
branching bisimilarity with the LTS of the system vm02-taus, after hiding the actions readyA,
readyC, out10, out20, prod. This can be done as follows.

$ ltscompare -ebranching-bisim --tau=out10,out20,readyA,readyC,prod \
vm02.svc vm02-taus.svc

Minimize the LTS for vm02.mcrl2 using ltsconvert with respect to branching bisimulation
after hiding the readies and returns:

$ ltsconvert -ebranching-bisim --tau=out10,out20,readyA,readyC,prod \
vm02.svc vm02min.svc

Also, compare the LTSs vm02min.svc and vm02-taus.svc visually using ltsgraph.

2.3 Third variation

A skeleton for a vending machine with parametrized actions is available in the file vm03.mcrl2.

Exercise 2.3. Modify this specification such that all coins of denomination 50ct, 20ct, 10ct and
5ct can be inserted. The machine accumulates upto a total of 60 cents. If sufficient credit, an
apple or chocolate bar is supplied after selection. Money is returned after pressing the change
button. Prove that your specification satisfies the properties in file vm03.mcf. ut

3 Water cans

Contribution of this section:

1. use of standard data types, and
2. use of simulator.

New tools: lpsxsim.

Two water cans of known capacity, say of x and of y liters, a tap and a sink are at our disposal.
The cans do not have a graduation to measure their content. The challenge is to pace an exact
volume of water, say of z liter, in one of the cans.

Given the description, there are basically four things one can do with a can:

– to empty the can in the sink, which makes only sense if the can is non-empty;
– to fill the can completely from the tap, a proper thing to do for a can that is not full already
– to pour from the can into the other, provided there is water in the can;
– to fill the can by pouring from the other can, assuming the first is not brimful yet.

6

So, somehow we need to keep track of the actual content of the water cans, to see if an empty-
to-sink action or an pour-to-other action can be done with the can, or that a fill-from-tap action
or a fill-from-other action applies.

Processes in mCRL2 may carry one or more parameters. We can write, for example, BigCan(3)
to express that the bigger of the two watercans contains 3 liter. In the process definition we need
to declare the parameter, e.g. we write BigCan(m:Nat) = ... to have for BigCan the variable m
ranging over the naturals, that include 0.

Similary, actions can have parameters. Here, we have occasion to express that ` liters of
waters have been poured out. If the action lose denotes the pouring out, we do this by writing
lose(`). In the definition of the action lose we need to indicate the parameter, e.g. by writing
lose: Nat in the act part of the mCRL2 specification. Thus, ` ranges over non-negative integer
values.

For the concrete case of cans of 5 and 8 liter to yield 4 liters, a first approximation may be
as follows:

act

empty, fill, done;
lose, gain, pour: Nat;

proc

BigCan(m:Nat) =
(m != 4) -> (
%% some code for the big can

) <> done ;

SmallCan(m:Nat) =
(m != 4) -> (
%% some code for the small code

) <> done ;

init

allow(
{ empty, fill, pour },

comm(
{ lose|gain -> pour },

BigCan(0) || SmallCan(0)
));

In this set-up, a lose action by the one can will synchronize with a gain action by the other
can, together synchronizing as a pour action. The three actions all carry a parameter of type
Nat, that needs to be equal for synchronization to succeed.

Another choice made above is the test whether the current content of the required volume to
pace. If no, we do some activity left unspecified here, if yes we do the action done. The general
form of the if-then-else construction in mCRL2 is c -> p <> q for condition c and processes p
and q.

7

One may wonder in what way the specification for the BigCan process will differ from that
for the SmallCan. It seems more appealling to make the capacity of the can a parameter too.
An incomplete specification of a solution of the watercan problem is displayed in Figure 4. The
term Can(n,m) indicates that a can of capacity n is currently holding a volume of m.

act

empty, fill, done;

lose, gain, pour: Nat ;

proc

Can(n:Nat,m:Nat) =

(m != 4) -> (

%% empty, if non-empty

(m > 0) -> (empty . Can(n,0)) +

%% fill, if not full

(m < n) -> (fill . Can(n,n)) +

%% pour to other if not empty

(m > 0) -> (

sum l:Nat . (

((0 < l) && (l <= m)) -> (

lose(l) . Can(n,Int2Nat(m-l))))) +

%% pour from other if not full

(m < n) -> (

sum l:Nat . (

((0 < l) && (l <= n-m)) -> (

gain(l) . Can(n,m+l))))

) <> done . delta ;

init

allow(

{ empty, fill, done, pour },

comm(

{ lose|gain -> pour },

Can(5,0) || Can(8,0)

)) ;

Fig. 4. Watercan specification 1

An LTS generated by mcrl22lps, lps2lts and ltsconvert via

$ mcrl22lps watercan01.mcrl2 watercan01.lps -D
$ lps2lts watercan01.lps watercan01.lts
$ ltsconvert -e branching-bisim watercan01.lts watercan01min.lts

has 46 states and 265 transitions. The option -D when calling mcrl22lps is necessary to suppress
timing aspects that are not supported by lps2lts. Also note the explict termination as expressed
by the constant delta. In this particular case, if left out the tool mcrl22lps would get start

8

generating an infinite process, rather than a finite one. The property <true*.done> true, asking
whether it is possible to do the done action, is confirmed by model checking.

We can get some more feedback on what is going on by using the simulator lpsxsim with
which we can step through the LTS and follow the the values of parameters. Calling at the com-
mand line the lpsxsim tool with the linear process watercan01.lps, produced by the mcrl22lps
tool from the mCRL2-specification watercan01.mcrl, by typing

$ lpsxsim watercan01.lps

opens an application with two smaller windows, the top one listing possible transitions, the
bottom one listing the values of the parameters in the current state. Parameters have symbolic
names as a result of the linearization process. It looks similar to

Transitions
Action State Change
fill s31 Can1 := 2, m Can11 := 8;
fill s3 Can1 :=2, m Can1 := 5;

Current State
Parameter Value

s3 Can1 1
n Can1 5
m Can1 0

s31 Can1 1
n Can11 8
m Can11 0

By double clicking on a transition, the transition can be taken. For example, clicking on the top
fill transition yields a new list of transitions and an update current state. Now, besides a fill
action also the actions empty, pour(1) to pour(5) are possible. The state now holds, e.g., the
value 8 for the contents m Can11 for the bigger can, as a result of the fill action.

The simulator reveals that we have made a mistake. Given a full can of 8 liter and an empty
can of 5, the only volume we can pour from the bigger can into the smaller can is the volume of
5 liters, as no measure is available on the cans. Our specification, however, allows for all volumes
from 1 upto 5 liters. Measuring 4 liters would then be easy, just pour 4 liters into the smaller
can.

We can restrict the possible volumes that are poured over, by noting that either (i) the
complete content of a can is poured into the other provided the latter can can hold, (ii) an
amount of water is poured from a can into the other such that the other can is brimful. Hence,
the minimum of the content of the from-can and the remaining capacity of the to-can determines
the amount of water that is going from the one can to the other by pouring.

The basic idea then is to distinguish between an action lose all and an action lose some
for pouring into the other can, and between an action gain all and gain some for getting from
the other can. These actions will have a parameter for the amount of water involved. An action
lose all(m) synchronizes with the action gain some(m), with m liters in the first can; the action
lose some(n-m) matches the action gain all(n-m), now with n liters and m liters as capacity
and current content of the second can, respectively. As synchronization function we will then have
lose all | gain some -> pour as well as lose some | gain all -> pour. So, pour actions
can be the result of two pairings of actions, lose all with gain some and lose some with
gain all. See Figure 5.

9

sort

Name = struct A | B ;

act

empty, fill, done: Name ;

lose_all, gain_some, lose_some, gain_all, pour: Name # Name # Nat ;

map

sizeA, sizeB, target: Nat;

eqn

sizeA = 5; sizeB = 8; target = 4;

proc

Can(N:Name,n:Nat,m:Nat) =

(m != target) -> (

%% empty, if non-empty

(m > 0) -> (empty(N) . Can(N,n,0)) +

%% fill, if not full

(m < n) -> (fill(N) . Can(N,n,n)) +

%% pour all to other if not empty

(m > 0) -> (

sum M:Name . (

lose_all(N,M,m) . Can(N,n,0))) +

%% pour some to other if not empty

(m > 0) -> (

sum l:Nat,M:Name . (

((0 < l) && (l <= m)) -> (

lose_some(N,M,l) . Can(N,n,Int2Nat(m-l))))) +

%% pour all from other if not full

(m < n) -> (

sum M:Name . (

gain_all(M,N,Int2Nat(n-m)) . Can(N,n,n))) +

%% pour some from other if not full

(m < n) -> (

sum l:Nat,M:Name . (

((0 < l) && (l <= Int2Nat(n-m))) -> (

gain_some(M,N,l) . Can(N,n,m+l))))

) <> done(N) . delta ;

init

allow(

{ empty, fill, done, pour },

comm(

{ lose_all|gain_some -> pour, lose_some|gain_all -> pour },

Can(A,sizeA,0) || Can(B,sizeB,0)

));

Fig. 5. Watercan specification 2

10

In Figure 5 a further modification has been done, the introduction of names A and B for
the cans. At the start of the specification a new sort is introduced, viz. the sort name. It is an
enumeration sort, following the format <sort name> = struct entity 1 | entity 2 | ...
| entity k ;. Here we have two entities, the name A and the name B, hence k equals 2. The
new actions have been added, but also they can carry the name or names of cans involved. E.g.,
the action empty(A) indicates that can A has been emptied, done(B) indicates that the target
value has been left in can B, whereas lose all(B,A,3) represent that all of the current content of
can B, apparently 3 liters, will be poured into can A. Therefore, the sort of the actions empty and
done is Name, as they take a name as parameter, the sort of the action lose all is Name # Name
Nat as the actions takes two names and a natural number as parameter. The summations in
the mCRL2 specification, now quantify over the name of the other can, called M, and exclude to
pour from the can in itself by demanding M != N.

We also have occasion to introduce constants. The is a specific use of the facilities of mCRL2
in supporting abstract data types. Here, after the keyword map we introduce three constants
over the natural numbers, called sizeA, sizeB and target. Next, following the keyword eqn,
we define them to hold the values 5, 8 and 4, respectively. The corresonding LTS has 35 states
and 94 transitions. The LTS of a smaller example, can sizes 4 and 3 and target volume 2 with
18-states and 46 transitions after reduction modulo strong bisimulation is depicted in Figure 6.

11

fill(A

fill(B

fill(A

pour(B, A, 1)
empty(B) fill(B

empty(A)

pour(A, B, 2)

empty(B) fill(B

pour(A, B, 1)

fill(B
fill(A

empty(A)

empty(B)

done(A)

fill(B done(A)

empty(B)

pour(B, A, 3)

fill(A

empty(A)

pour(A, B, 3)empty(A)

empty(B)

empty(A)

fill(A

empty(A)

fill(B

pour(A, B, 3)

empty(B)

pour(B, A, 3)

fill(A

empty(B)

fill(A

empty(A)

pour(B, A, 1)

done(B)

fill(A

fill(A

empty(A)

done(B)

empty(A)

empty(B)

fill(B

0 1

2

3

4

5

6

7 8

9

10

11

12

1314

15

16

17

Fig. 6. LTS of watercan example with cans of 4 and 3 liters and target volume of 2 liters

12

4 Towers of Hanoi

Contribution of this section:

1. use of lists,
2. use of functions,
3. use of data µ-calculus formulae.

New tools: none.

The Towers of Hanoi is a classic mathematical puzzle that involves three pegs (numbered 1, 2
and 3) and N ≥ 1 discs. Every disc has a unique diameter and has a hole in the center so that
it can slide onto any of the pegs. The discs are numbered 1 to N increasingly with their sizes.
Initially, all discs are stacked onto peg 1 in increasing size from top to bottom (see the figure
below where N = 6). The puzzle is solved when all discs are on peg 3 in the same order. Discs
can be moved from one peg to any other, as long as the following rules are obeyed:

1. Only one disc can be moved at a time.
2. Only the topmost disc on a peg can be moved.
3. A disc cannot be placed on top of a smaller disc.

Over the next exercises we gradually construct an mCRL2 specification of the Towers of Hanoi
puzzle. For this, we shall specify a Peg process to represent a peg and we shall use a list to
represent the contents of a peg.

The list data structure is predefined in mCRL2. All elements in a list must be of the same type.
This type is determined by the list’s type declaration, which consists of the word List followed
by the type of its elements between parentheses. For example, a list l of natural numbers is
declared by l:List(Nat). Lists can be explicitly enumerated, so that [], [1], and [2,3,5]
are all valid list expressions, representing the empty list, the list with single element 1 and the
list with elements 2, 3 and 5, respectively. Furthermore, the following operations on lists are
provided:

– cons |>: insert an element at the front of a list, e.g. 1 |> [2] gives [1,2];
– snoc <|: insert an element at the back of a list, e.g. [2] <| 1 gives [2,1];
– head: return the first element of a list, e.g. head([1,2]) gives 1;
– tail: return a list without its first element, e.g.tail([1,2,3]) gives [2,3].

Note that the head of an empty list is undefined, so that mCRL2 will not further reduce the term
head([]). The tail of an empty list is simply the empty list, as is the tail of a list with one
element only. The mCRL2 language supports more operations on lists, but they are not used in
this section.

We shall use lists to represent stacks of discs, such that the head of the list corresponds with
the top of the stack. A disc is represented by a positive natural number, which is an element of
the predefined data sort Pos. Consider the following, incomplete data specification:

13

sort Stack = List(Pos);
map empty: Stack -> Bool;

push: Pos # Stack -> Stack;
pop: Stack -> Stack;
top: Stack -> Pos;

var s: Stack;
x: Pos;

eqn empty(s) = ...; % return whether s is empty
push(x,s) = ...; % put x on top of s
pop(s) = ...; % remove top element from s
(!empty(s)) -> top(s) = ...; % return top element of s

This defines the Stack data sort as lists of positive numbers and declares the functions (or
maps) empty, push, pop and top as operations on stacks. These functions have to be defined
using equations, in which variables can be used to represent any term of a certain type. For
example, the second equation defines push(x,s) for any positive number x and any stack s,
where variables x and s have been declared above the eqn-block. Equations can also have guards
which limit the set of terms to which that equation applies. For example, the last equation defines
top(s) only for stacks s for which the guard !empty(s) holds, i.e. non-empty stacks s.

Exercise 4.1. Complete the specification for the Stack data sort using the list operations intro-
duced above.

Exercise 4.2. Your specification for the Towers of Hanoi puzzle has to be “parameterized” by
the number of discs N , such that changing the value of N requires a change in one place of your
specification only. For this, introduce the following maps:

– N: Pos, which holds the value of N ;
– build stack: Pos # Pos -> Stack, which creates a stack of discs.

Define equations for the function build stack such that build stack(x,y) returns the stack
[x,x+1,...,y] for any positive numbers x and y. For example, build stack(1,4) should return
[1,2,3,4]. For now, define N to be equal to 3.

Exercise 4.3. Specify the Peg process in mCRL2. It should have two parameters:

– id: Pos, the peg’s number;
– stack: Stack, the peg’s stack of discs.

What actions can a single peg perform? What data parameters must these actions have? Declare
the actions first and then define the Peg process in mCRL2.

Exercise 4.4. Specify the initial process. Use the allow and comm operators to enforce commu-
nication between the Peg processes.

The complete specification is given below, where the following actions are used:

– move(d,p,q): disc d is moved from peg p to peg q;
– receive(d,p,q): peg q receives disc d from peg p;
– send(d,p,q): peg p sends disc d to peg q.

A move action is the result of synchronizing a send and a receive action.

14

map N: Pos;
eqn N = 3;

sort Stack = List(Pos);
map empty: Stack -> Bool;

push: Pos # Stack -> Stack;
pop: Stack -> Stack;
top: Stack -> Pos;

var s: Stack;
x: Pos;

eqn empty(s) = s == [];
push(x,s) = x |> s;
pop(s) = tail(s);
(!empty(s)) -> top(s) = head(s);

map build_stack: Pos # Pos -> Stack;
var x,y: Pos;
eqn (x > y) -> build_stack(x,y) = [];

(x <= y) -> build_stack(x,y) = push(x,build_stack(x+1,y));

act send, receive, move: Pos # Pos # Pos;

proc Peg(id:Pos, stack:Stack) =
sum d,p:Pos . (empty(stack) || top(stack) > d) ->
receive(d,p,id) . Peg(id,push(d,stack))

+
sum p:Pos . (!empty(stack)) ->
send(top(stack),id,p) . Peg(id,pop(stack));

init allow({move},
comm({send|receive -> move},
Peg(1,build_stack(1,N)) || Peg(2,[]) || Peg(3,[])

));

When generating the state spaces for N = 1, . . . , 6, we find that the number of states is
precisely 3N . The state space for N = 3 is depicted in figure 7.

We use the tool lps2lts to see if there are any deadlocks by passing the -D option. No
deadlocks are reported. This implies that this specification allows to continue moving discs when
the solution has already been obtained. We disallow this by strengthening the guard for the send
action in the Peg process to:

!empty(stack) && !(#stack == N && id == 3)

This ensures that the system deadlocks when all discs are on peg 3. When checking for deadlocks
of the new specification we find precisely one, as expected. We save a trace to this deadlock in a
file by adding the -t option. The contents of the file can be printed using tracepp:

move(1, 1, 3)
move(2, 1, 2)
move(1, 3, 2)
move(3, 1, 3)

15

Fig. 7. State space of the Hanoi puzzle for 3 discs

move(1, 2, 1)
move(2, 2, 3)
move(1, 1, 3)

This is a sequence of moves leading towards the solution. It consists of 7 moves, and we now
prove that there is no shorter path to the solution. In fact, we shall prove two properties:

1. There is a sequence of 2N − 1 moves to a deadlock.
2. There is no shorter sequence of moves to a deadlock.

These properties are captured by the following µ-calculus formulae:

1. (µX(n:N) . (n = 2N − 1 ∧ [>]⊥) ∨ (n < 2N − 1 ∧ 〈>〉X(n+ 1)))(0)
2. (νX(n:N) . n ≥ 2N − 1 ∧ ([>]X(n+ 1) ∨ 〈>〉>))(0)

which can be expressed in the ASCII syntax as follows:

1. mu X(n:Nat = 0) . (val(n == exp(2,N)-1) && [true]false) ||
(val(n < exp(2,N)-1) && <true>X(n+1))

2. nu X(n:Nat = 0) . val(n >= exp(2,N)-1) &&
([true]X(n+1) || <true>true)

Supposing that a formula is contained in file hanoi.mcf and the LPS in hanoi.lps, we check
the formula on the specification by generating and solving a PBES as follows:

$ lps2pbes -f hanoi.mcf hanoi.lps | pbes2bool

This yields true for both formulae, so both properties hold. Check these properties for various
values of N .

16

4.1 Optimal strategy

It is known that the shortest sequence of moves for solving the Hanoi puzzle with N discs, is
precisely the sequence that we obtain by repeatedly alternating the following two moves until all
discs are on peg 3:

1. Move the smallest disc one peg to the left if N is odd, and to the right if N is even.
2. Perform the move that does not involve the smallest disc.

For move 1 we consider peg 1 to be right of peg 3 and peg 3 to be left of peg 1. Observe that
move 2 exists and is uniquely defined, except for the initial and final situations of the puzzle.

We now adapt our mCRL2 specification to model this optimal strategy only. In other words,
the state space of our model will only consist of the shortest sequence of moves that leads to
the solution. For this we first introduce a function next that yields the next peg to which the
smallest disc has to move, according to move 1:

map next: Pos -> Pos;
var x:Pos;
eqn (N mod 2 == 0) -> next(x) = x mod 3 + 1;

(N mod 2 == 1) -> next(x) = (x-2) mod 3 + 1;

Our strategy for enforcing that only move 1 and move 2 occur alternatingly is to add a fourth
process to the model that allows precisely those moves only. This process will take part in
the synchronization of the send and receive actions with an allowed action to produce a move
action. We then rely on the fact that all actions that participate in a synchronous communication
have to be present in order for that communication to succeed. This way, a move can only occur
if send, receive and allowed happen at the same time, with the same parameter values.

The process that performs the allowed actions is actually modelled by two processes: AllowSmall
that allows move 1 and AllowOther that allows move 2. After performing an allowed action,
every process then calls the other process to ensure that move 1 and move 2 alternate indeed.
Below are the action declaration of allowed and the process definitions:

act allowed: Pos # Pos # Pos;

proc AllowSmall =
sum p:Pos . allowed(1,p,next(p)) . AllowOther;

AllowOther =
sum d,p,q:Pos . (d > 1) -> allowed(d,p,q) . AllowSmall;

Now, we enforce the aforementioned synchronization in the initial process definition. Because
move 1 comes first, we call AllowSmall in the parallel composition.

init allow({move},
comm({send|receive|allowed -> move},
Peg(1,build_stack(1,N)) || Peg(2,[]) || Peg(3,[]) ||
AllowSmall

));

Generating the state space via mcrl22lps -D and lps2lts yields 8 states and 7 transitions for
N = 3. In general, the state space has 2N states and 2N − 1 transitions, as may be expected after
our model-checking exercises on the complete model in the previous section. The action trace
can be visualized by loading the state space into ltsgraph, or it can be simulated by loading
the LPS into lpsxsim.

17

5 The Rope Bridge

Contribution of this section:

1. exercise with processes,
2. use of state space exploration for checking properties, and
3. use of advanced visualisation techniques.

New tools: ltsview, tracepp.

In the middle of the night, four adventurers encounter a shabby rope bridge spanning a deep
ravine. For safety reasons, they decide that no more than two persons should cross the bridge at
the same time and that a flashlight needs to be carried by one of them on every crossing. They
have only one flashlight. The four adventurers are not all equally skilled: crossing the bridge takes
them 1, 2, 5 and 10 minutes, respectively. A pair of adventurers cross the bridge in an amount
of time equal to that of the slowest of the two adventurers.

One of the adventurers quickly proclaims that they cannot get all four of them across in less
than 19 minutes. However, one of her companions disagrees and claims that it can be done in
17 minutes. We shall verify this claim and show that there is no faster strategy using mCRL2.

The folder RopeBridge contains the files for these exercises:

– bridge.mcrl2 which contains an incomplete mCRL2 specification of the rope bridge problem;
– formula A.mcf and formula B.mcf to which µ-calculus formulas will be added.

Exercise 5.1. Open bridge.mcrl2 in a text editor and study its contents. Then add the process
definition for an adventurer. For this, answer the following questions:

– What data parameters will the process have?
– What actions will the process be able to perform?

You will have to add action declarations and a process definition at the designated places in the
mCRL2 specification. ut

Exercise 5.2. Add the four adventurers to the initial process definition. Apart from adding par-
allel processes to the definition, you have to take care of the synchronisation between actions of
these processes:

18

– Declare actions for the following events:
• Two adventurers and a flashlight move forward over the bridge.
• One adventurer and a flashlight move back over the bridge.

– For each of these actions to occur, certain actions of the separate processes have to be syn-
chronised. Specify the synchronisation between the actions using the communication operator,
comm.

– Ensure that only the synchronised actions can occur, using the allow operator, allow.
ut

Exercise 5.3. Simulate the model using the mCRL2 toolset by executing the following commands:

– Linearise the specification to obtain an LPS:

$ mcrl22lps -D bridge.mcrl2 bridge.lps

Here, the -D option is passed because the specification does not contain time operators.
– If linearisation fails, try to fix the reported errors. Otherwise, start the GUI simulation tool:

$ lpsxsim bridge.lps

The bottom part of the window shows the state parameters along with their values in the
current state. (The simulator starts in the initial state of the system.) The top part shows
the actions that can be performed from the current state, along with their effects on the
parameter values.

– Simulate the system by executing a sequence of actions. You can execute an action by double-
clicking it in the list. Notice how the state parameter values get updated in the bottom part.

After playing around with the simulator for a while, did you notice any weird or incorrect
behaviour? If so, try to improve your model of the rope bridge and simulate it again. ut

Exercise 5.4. Generate the state space of your model by executing the following command:

$ lps2lts bridge.lps bridge.svc

The state space can be viewed using the LTSGraph tool:

$ ltsgraph bridge.svc

An alternative, 3D view of the state space can be given by LTSView, for which the state space
first has to be converted to the FSM file format:

$ ltsconvert --lps=bridge.lps bridge.svc bridge.fsm

$ ltsview bridge.fsm ut

Exercise 5.5. The total amount of time that the adventurers consumed so far, is not yet being
measured within the model. For this purpose, add a new process to the specification, called
Referee, which:

– counts the number of minutes passed and updates this counter every time the bridge is
crossed by some adventurer(s);

– reports this number when all adventurers have reached the ‘finish’ side. (This implies that it
also needs to be able to determine when this happens!)

You will have to add action declarations, add a Referee process definition and extend the initial
process definition, including the communication and allow operators. ut

19

We shall now verify the following properties using the toolset:

A. It is possible for all adventurers to reach the ‘finish’ side in 17 minutes.
B. It is not possible for all adventurers to reach the ‘finish’ side in less than 17 minutes.

Exercise 5.6. Express each of these properties in the modal µ-calculus. Add the formulas to the
files formula A.mcf and formula B.mcf using a text editor. ut

Exercise 5.7. Verify the formulas using the toolset by executing the following commands:

– Generate a PBES from your LPS and one of the formulas:

$ lps2pbes --formula=formula X.mcf bridge.lps bridge X.pbes
– Solve the PBES:

$ pbes2bool bridge X.pbes

Alternatively, this can be done with a single command:

$ lps2pbes --formula=formula X.mcf bridge.lps | pbes2bool ut

A disadvantage of using PBESs for model checking is that insightful diagnostic information is
hard to obtain. We shall now verify both properties again using the LTS tools.

Exercise 5.8. Verify the properties by generating traces as follows. Assuming that the action
that reports the time is called report, execute:

$ lps2lts --action=report -t20 bridge.lps

This outputs a message every time a report action is encountered during state space generation.
Also, a trace is written to file for the first 20 occurrences of this action. Properties A and B can
now be checked by observing the output messages. Moreover, the trace for property A can be
printed by passing the corresponding trace file name as an argument to the tracepp command,
e.g.:

$ tracepp file.trc

This gives an optimal strategy for crossing the bridge in 17 minutes as claimed by the computer
scientist adventurer. ut

6 A Telephone Book

Contribution of this section:

1. use of functions with updates,
2. modelling considerations,
3. realistic verification process and its problems.

New tools: none.

In this section we describe the model of a telephone book in mCRL2.1 We base our model on
the following requirements:
1 This example is based on the Phone Book example in [1].

20

– A phone book shall store phone numbers.
– It shall be possible to add and delete entries from a phone book.
– It shall be possible to retrieve a phone number given a name.

By looking at these requirements, we identify the following entities:

– phone book
– phone number
– name

We start by giving abstract types for phone numbers and names; their concrete form will be
given later. For the phone book we decide that it is a mapping of names to numbers. This gives
us the following specification of sorts.

sort Name;
PhoneNumber;
PhoneBook = Name -> PhoneNumber;

As a user, you need to be aware that the types as given here, are predetermined. This means
that they cannot be extended on the fly. As a consequence, all names and phone numbers that
can ever be added to the phone book must be known upfront.

If we again look at the requirements, our phone book must support the following operations:

addPhone Adds a phone number for a name.
delPhone Deletes a phone number corresponding to a name.
findPhone Finds the phone number corresponding to a name.

These operations will be the actions of our process. We need to decide on the parameters that
the actions are going to take. We assume that our process will support a single phone book, i.e.
the process itself model a phone book. It is then natural to model addPhone with parameters
Name and PhoneNumber, delPhone with a Name, and findPhone with a Name. This gives rise to
the following action specification.

act addPhone: Name # Number;
delPhone: Name;
findPhone: Name;

We now need to take care that not every number is in every phone book. In order to describe
a phone book as a total function, we introduce a special phone number, p0, to indicate that a
name has no associated phone number.

map p0: PhoneNumber;

Given this decision, we can specify the empty phone book as the phone book that maps every
name to n0.

lambda n: Name . p0;

In modelling the empty phone book we use lambda abstraction. In this expression lambda n:
Name says that we are defining a function that takes arguments of type Name, and for each
name produces p0 as a result. As p0 is of type PhoneNumber, lambda n: Name . p0 describes a
function of type Name ->PhoneNumber, which is by definition equal to PhoneBook.

Given a function b of type PhoneBook, a name n and a phone number p, we can set the value
of n in b to p using the expression b[n -> p]. This has as property that, for all names m != n,
b[n -> p](m) = b(m), and b[n -> p](n) = p.

Using the above ingredients, we can model a simple phone book using the following specifi-
cation.

21

sort Name;
PhoneNumber;
PhoneBook = Name -> PhoneNumber;

%% Phone number representing the non-existant or undefined phone number,
%% must be different from any "real" phone number.
map p0: PhoneNumber;

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name;

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber . addPhone(n, p) . PhoneDir(b[n->p])
+ sum n: Name . findPhone(n) . PhoneDir()
+ sum n: Name . delPhone(n) . PhoneDir(b[n->p0])
;

%% Initially the phone book is empty.
init PhoneDir(lambda n: Name . p0);

Exercise 6.1. There are some obvious flaws in the phone book that we have specified. Can you
find and explain them? ut

In the previous specification, the ”special” phone number p0 can be assigned to a name
freely. Furthermore, a findPhone action can be performed, but the actual phone number is
never reported.

Exercise 6.2. Fix these issues in the above specification. ut

Preventing the assignment on p0 to a name can easily prevented by guarding the addPhone
action with p != p0. Fixing the second issue requires some more thought. There are two possible
ways around fixing the problem. We can either assume that reporting of the result is immediate,
and add the resulting phone number as a parameter to the findPhone action, or we can assume
that querying for a phone number is asynchronous, and my take time, and split the query into
the action initiating the query (findPhone) and an action reporting the result, e.g. reportPhone.

The first approach is suitable when, e.g., modelling a phone book that is a library in a
synchronous program in, say, C or Java. In that case indeed the program pointer of the calling
program will not change before the result has been returned, making a model in which reporting
the result a faithful representation of reality.

If we are, e.g., modelling a phone book that is a web service, where a client performs a request,
and in the meantime may do other kinds of actions like sending requests to other web services, the
previous approach provides too coarse an abstraction. In this case it is more accurate to use the
second approach, in which performing the query and obtaining the result are truely decoupled.

The following specification gives the first variation, in which the result is obtained instanta-
neously. Watch the extra parameter to addPhone.

%% Telephone directory, modified to actually report the phone number as an
%% answer to a query instantaneously.

22

sort Name;
PhoneNumber;
PhoneBook = Name -> PhoneNumber;

%% Phone number representing the non-existant or undefined phone number,
%% must be different from any "real" phone number.
map p0: PhoneNumber;

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name # PhoneNumber; % Added phone number as argument

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber .
(p != p0) -> addPhone(n, p) . PhoneDir(b[n->p])

+ sum n: Name . findPhone(n,b(n)) . PhoneDir()
+ sum n: Name . delPhone(n) . PhoneDir(b[n->p0])
;

%% Initially the phone book is empty.
init PhoneDir(lambda n: Name . p0);

The second variation is given by the following specification.

%% Telephone directory, modified to asynchronously report the phone number
%% corresponding to the queried name.

sort Name;
PhoneNumber;
PhoneBook = Name -> PhoneNumber;

%% Phone number representing the non-existant or undefined phone number,
%% must be different from any "real" phone number.
map p0: PhoneNumber;

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name;
reportPhone: Name # PhoneNumber; % Added action

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber .
(p != p0) -> addPhone(n, p) . PhoneDir(b[n->p])

+ sum n: Name . findPhone(n) . reportPhone(n, b(n)) . PhoneDir()
+ sum n: Name . delPhone(n) . PhoneDir(b[n->p0])

23

;

%% Initially the phone book is empty.
init PhoneDir(lambda n: Name . p0);

In the rest of this tutorial we will stick to the specification with asynchronous reporting.
In complex specifications, it can be convenient to introduce additional functions, with de-

scriptive names, that take care of the modifications of parameters that is done in the process.
As a bonus this usually makes it easier to change the data structures used in a specification.

Exercise 6.3. Modify the specification in phonebook2b.mcrl2 by adding functions emptybook,
add phone, del phone and find phone with the following signatures.

map emptybook: PhoneBook;
add_phone: PhoneBook # Name # PhoneNumber -> PhoneBook;
del_phone: PhoneBook # Name -> PhoneBook;
find_phone: PhoneBook # Name -> PhoneNumber;

ut

A solution to the above exercise is given by the following specification.

%% Telephone directory, modified to asynchronously report the phone number
%% corresponding to the queried name. Functions have been added to increase
%% readability and flexibility.

sort Name;
PhoneNumber;
PhoneBook = Name -> PhoneNumber;

%% Phone number representing the non-existant or undefined phone number,
%% must be different from any "real" phone number.
map p0: PhoneNumber;

emptybook: PhoneBook;
add_phone: PhoneBook # Name # PhoneNumber -> PhoneBook;
del_phone: PhoneBook # Name -> PhoneBook;
find_phone: PhoneBook # Name -> PhoneNumber;

eqn emptybook = lambda n: Name . p0;

var b: PhoneBook;
n: Name;
p: PhoneNumber;

eqn add_phone(b, n, p) = b[n->p];
del_phone(b, n) = b[n->p0];
find_phone(b, n) = b(n);

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name;
reportPhone: Name # PhoneNumber; % Added action

24

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber .
(p != p0) -> addPhone(n, p) . PhoneDir(add_phone(b,n,p))

+ sum n: Name . findPhone(n) . reportPhone(n, find_phone(b,n)) . PhoneDir()
+ sum n: Name . delPhone(n) . PhoneDir(del_phone(b,n))
;

%% Initially the phone book is empty.
init PhoneDir(emptybook);

It should be noted that, instead of using a function of names to phone numbers, we could
also have modelled the phone book using a set of pairs of names and phone numbers. A model
using sets is likely to become complicated in this case.

Exercise 6.4. Modify the previous specification such that it uses a set of pairs of names and
phone numbers instead of function from names to phone numbers to store the phone numbers
internally. ut

The following is a possible solution to the above exercise. Note that the function find phone
cannot be implemented using sets, because no concrete elements can be taken from the set.
Therefore, the functionality of find phone is modelled using the sum operator on a process level.

%% file phonebook4.mcrl2
%% Telephone directory, modified to asynchronously report the phone number
%% corresponding to the queried name. Functions have been added to increase
%% readability and flexibility, and instead of functions, sets are used.

sort Name;
PhoneNumber;
Pair = struct pair(name: Name, phone: PhoneNumber);
PhoneBook = Set(Pair);

%% Phone number representing the non-existant or undefined phone number,
%% must be different from any "real" phone number.
map p0: PhoneNumber;

emptybook: PhoneBook;
add_phone: PhoneBook # Name # PhoneNumber -> PhoneBook;
del_phone: PhoneBook # Name -> PhoneBook;

eqn emptybook = {};

var b: PhoneBook;
n: Name;
p: PhoneNumber;

eqn add_phone(b, n, p) = b + {pair(n, p)};
del_phone(b, n) = { x: Pair | x in b && name(x) != n };

% alternative definition for del_phone:
% del_phone(b, n) = b - { x: Pair | name(x) == n };

25

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name;
reportPhone: Name # PhoneNumber; % Added action

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber .
(p != p0) -> addPhone(n, p) . PhoneDir(add_phone(b,n,p))

+ sum n: Name . findPhone(n) . sum p: PhoneNumber .
(pair(n, p) in b) -> reportPhone(n, p) . PhoneDir()

+ sum n: Name . delPhone(n) . PhoneDir(del_phone(b,n))
;

%% Initially the phone book is empty.
init PhoneDir(emptybook);

In the rest of this chapter we stick to the model in which functions occur directly in the
specification. We are going to check whether our model makes sense. A suitable property for our
specification is: “if a name n with phone number p is added to the phone book, and a lookup of
name n is performed, then phone number p should be reported, provided that in the meantime
no other phone number has been added for name n, and the phone number for name n has not
been deleted”. We can write this as follows:

forall n: Name, p,r: PhoneNumber .
[true* . addPhone(n,p) .

!(delPhone(n) || exists q: PhoneNumber . addPhone(n, q))* .
findPhone(n) .
!(delPhone(n) || exists q: PhoneNumber . addPhone(n, q))* .
reportPhone(n, r)] val(p == r)

We can try checking this property using the following command.

$ mcrl22lps -D phonebook2b.mcrl2 | lps2pbes -f phonebook1.mcf | pbes2bool

The tools fail to verify this requirement, and give throw the following error:

error: Cannot find a term of sort Name

The tool is telling you that it wants to find some representative term of sort Name, but is not
able to do so. This indeed makes sense as we have not given a specification of names and phone
numbers yet. We can try to verify this requirement for a specification in which we have some
fixed set of names and numbers, as is given in phonebook5.mcrl2.

%% Telephone directory, modified to asynchronously report the phone number
%% corresponding to the queried name. The sorts Name and PhoneNumber are
%% constrained to have a small, constant number of elements.

sort Name = struct n0 | n1 | n2;
%% Phone number p0 is assumed to represent the non-existant or undefined

26

%% phone number. This must be different from any "real" phone number.
%% This is already guaranteed by definition of a structured sort, in which all
%% elements are different.

PhoneNumber = struct p0 | p1 | p2 | p3 ;
PhoneBook = Name -> PhoneNumber;

%% Operations supported by the phone book.
act addPhone: Name # PhoneNumber;

delPhone: Name;
findPhone: Name;
reportPhone: Name # PhoneNumber; % Added action

%% Process representing the phone book.
proc PhoneDir(b: PhoneBook) =

sum n: Name, p: PhoneNumber . (p != p0) -> addPhone(n, p) . PhoneDir(b[n->p])
+ sum n: Name . findPhone(n) . reportPhone(n, b(n)) . PhoneDir()
+ sum n: Name . delPhone(n) . PhoneDir(b[n->p0])
;

%% Initially the phone book is empty.
init PhoneDir(lambda n: Name . p0);

The specification is now easily checked using the following sequence of commands.

mcrl22lps -D phonebook5.mcrl2 | lps2pbes -f phonebook.mcf | pbes2bool

Exercise 6.5. Verify whether the following property holds for phonebook5.mcrl2. “if a name n
with phone number p is added to the phone book, and a lookup of name n is performed, then
phone number p should be reported, provided that in the meantime the phone number for name
n has not been deleted”. You first need to formalise this property as a µ-calculus formula, and
then verify whether it holds. Explain the outcome of the verification. ut

We see that this verification fails, because addPhone allows you to add a phone number for
a person that already has a phone number. If a new phone number is added for such a person,
the original phone number is overwritten.

Exercise 6.6. Modify the specification in phonebook5.mcrl2 such that addPhone(n,p) can only
be executed if no phone number for name n is known. Furthermore, extend the specification with
and action changePhone with signature

changePhone: Name # PhoneNumber

such that changePhone(n,p) can only be executed if n already has a phone number, and that
afterwards the phone number of n has been updated to p. ut

Exercise 6.7. Verify whether your new specification satisfies the property you formulated before.
Explain the outcome. ut

Exercise 6.8. If the verification in the previous exercise failed, think about the influence of the
changePhone action on the validity of the property you are trying to check. Describe the changed
property in natural language, give the modal µ-calculus formula, and do the verification. ut

27

References

1. J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to PVS. Workshop
on Industrial-Strength Formal Specification Techniques, 1995.

2. J.F. Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and van M.J. Weerdenburg. Analysis
of distributed systems with mCRL2. In M. Alexander and W. Gardner, editors, Process Algebra for
Parallel and Distributed Processing, pages 99–128. Chapman & Hall, 2009.

3. J.F. Groote and M.A. Reniers. Modelling and Analysis of Communicating Systems. 2011.

28

