
Introduction to mCRL2: Process modelling

Lúıs S. Barbosa

HASLab - INESC TEC
Universidade do Minho

Braga, Portugal

11 April 2014

Introduction A process algebra Data

mCRL2: A toolset for process algebra

mCRL2 provides:

• a generic process algebra, based on Acp (Bergstra & Klop, 82), in
which other calculi can be embedded

• extended with data and (real) time

• the full µ-calculus as a specification logic

• powerful toolset for simulation and verification of reactive systems

www.mcrl2.org

Introduction A process algebra Data

Actions

Interaction through multisets of actions

• A multiaction is an elementary unit of interaction that can execute
itself atomically in time (no duration), after which it terminates
successfully

α 3 τ | a(d) | (α | α)

• actions may be parametric on data

• the structure 〈N, |, τ〉 forms an Abelian monoid

Introduction A process algebra Data

Sequential processes

Sequential, non deterministic behaviour
The set P of processes is the set of all terms generated by the following
BNF, for a ∈ N,

p 3 α | δ | p + p | p · p | P(d)

• atomic process: a for all a ∈ N

• choice: +

• sequential composition: ·

• inaction or deadlock: δ

• process references introduced through definitions of the form
P(x : D) = p, parametric on data

Introduction A process algebra Data

Example

Buffers

act in, out, t; inn, outt : Bool;

proc Buffer1 = in.out;

Buffer2 = in.out.Buffer2;

Buffer3 = in.(out.Buffer3 + t.Buffer3);

Buffer4 = sum n: Bool.inn(n).outt(n).Buffer4;

Introduction A process algebra Data

Sequential Processes

Exercise

Describe the behaviour of

• a.b.δ.c + a

• (a + b).δ.c

• (a + b).e + δ.c

• a + (δ + a)

• a.(b + c).d .(b + c)

Introduction A process algebra Data

Parallel composition

‖ = interleaving + synchronization

• modelling principle: interaction is the key element in software design

• modelling principle: (distributed, reactive) architectures are
configurations of communicating black boxes

• mCRL2: supports a flexible synchronization discipline

p ::= · · · | p ‖ p | p | p | pTp

Introduction A process algebra Data

Parallel composition

• parallel p ‖ q: interleaves and synchronises the actions of both
processes.

• synchronisation p | q: synchronises the first actions of p and q and
combines the remainder of p with q with ‖, cf axiom:

(a.p) | (b.q) ∼ (a | b) . (p ‖ q)

• left merge pTq: executes a first action of p and thereafter combines
the remainder of p with q with ‖.

Introduction A process algebra Data

Parallel composition

A semantic parentesis
Lemma: There is no sound and complete finite axiomatisation for this
process algebra with ‖ modulo bisimilarity [F. Moller, 1990].

Solution: combine two auxiliar operators:

• left merge: T

• synchronous product: |

such that

p ‖ t ∼ (pTt + tTp) + p | t

Introduction A process algebra Data

Interaction

Communication ΓC (p) (com)

• applies a communication function C forcing action synchronization
and renaming to a new action:

a1 | · · · | an → c

• data parameters are retained in action c , e.g.

Γ{a|b→c}(a(8) | b(8)) = c(8)

Γ{a|b→c}(a(12) | b(8)) = a(12) | b(8)

Γ{a|b→c}(a(8) | a(12) | b(8)) = a(12) | c(8)

• left hand-sides in C must be disjoint: e.g., {a | b → c , a | d → j} is
not allowed

Introduction A process algebra Data

Interface control

Restriction: ∇B(p) (allow)

• specifies which multiactions from a non-empty multiset of action
names are allowed to occur

• disregards the data parameters of the multiactions

∇{d,a|b}(d(12) + a(8) + (b(false, 4) | a)) = d(12) + (b(false, 4) | a)

• τ is always allowed to occur

Introduction A process algebra Data

Interface control

Block: ∂B(p) (block)

• specifies which multiactions from a set of action names are not
allowed to occur

• disregards the data parameters of the multiactions

∂{b}(d(12) + a(8) + (b(false, 4) | a)) = d(12) + a(8)

• τ cannot be blocked

Introduction A process algebra Data

Interface control

Renaming ρM(p) (rename)

• renames actions in p according to a mapping M

• also disregards the data parameters, but when a renaming is applied
the data parameters are retained:

∂{d→h}(d(12) + s(8) | d(false) + d .a.d(7))

= h(12) + s(8) | h(false) + h.a.h(7)

• τ cannot be renamed

Introduction A process algebra Data

Interface control

Hiding τH(p) (hide)

• hides (or renames to τ) all actions with an action name in H in all
multiactions of p. renames actions in p according to a mapping M

• disregards the data parameters

τ{d}(d(12) + s(8) | d(false) + h.a.d(7))

= τ + s(8) | τ + h.a.τ = τ + s(8) + h.a.τ

• τ cannot be renamed

Introduction A process algebra Data

Example

New buffers from old

act inn,outt,ia,ib,oa,ob,c : Bool;

proc BufferS = sum n: Bool.inn(n).outt(n).BufferS;

BufferA = rename({inn -> ia, outt -> oa}, BufferS);

BufferB = rename({inn -> ib, outt -> ob}, BufferS);

S = allow({ia,ob,c}, comm({oa|ib -> c}, BufferA || BufferB));

init hide({c}, S);

Introduction A process algebra Data

Exercise

Composing buffers with acknowledges

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;

proc BufferS = inn.outt.r.t.BufferS;

BufferA =

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);

BufferB =

rename({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oa|ib -> c, ra|tb -> a}, BufferA || BufferB));

init hide({c,a}, S);

Introduction A process algebra Data

Exercise

Composing buffers with acknowledges (corrected)

act inn, outt, r, t, ia, ib, oa, ob, ta, tb, ra, rb, c, a;

proc BufferS = inn.t.outt.r.BufferS;

BufferA =

rename({inn -> ia, outt -> oa, r -> ra, t -> ta}, BufferS);

BufferB =

rename({inn -> ib, outt -> ob, r -> rb, t -> tb}, BufferS);

S = allow({ia,ob,rb,ta,c,a},
comm({oa|ib -> c, ra|tb -> a}, BufferA || BufferB));

init hide({c,a}, S);

Introduction A process algebra Data

Data types

• Equalities: equality, inequality, conditional (if(-,-,-))

• Basic types: booleans, naturals, reals, integers, ... with the usual
operators

• Sets, multisets, sequences ... with the usual operators

• Function definition, including the λ-notation

• Inductive types: as in

sort BTree = struct leaf(Pos) | node(BTree, BTree)

Introduction A process algebra Data

Signatures and definitions

Sorts, functions, constants, variables ...

sort S, A;

cons s,t:S, b:set(A);

map f: S x S -> A;

c: A;

var x:S;

eqn f(x,s) = s;

Introduction A process algebra Data

Signatures and definitions

A full functional language ...

sort BTree = struct leaf(Pos) | node(BTree, BTree);

map flatten: BTree -> List(Pos);

var n:Pos, t,r:BTree;

eqn flatten(leaf(n)) = [n];

flatten(node(t,r)) = t++r;

Introduction A process algebra Data

Processes with data

Why?

• Precise modeling of real-life systems

• Data allows for finite specifications of infinite systems

How?

• data and processes parametrized

• summation over data types:
∑

n:N s(n)

• processes conditional on data: b → p � q

Introduction A process algebra Data

Examples

A counter

act up, down;

setcounter:Pos;

proc Ctr(x:Pos) = up.Ctr(x+1)

+ (x>0) -> down.Ctr(x-1)

+ sum m:Pos.(setcounter(m).Ctr(m))

init Ctr(345);

Introduction A process algebra Data

Examples

A dynamic binary tree

act left,right;

map N:Pos;

eqn N = 512;

proc X(n:Pos)=(n<=N)->(left.X(2*n)+right.X(2*n+1))<>delta;

init X(1);

Introduction A process algebra Data

Overview

Strategies to deal with infinite models and specifications

• A specification of the system’s behaviour is written in mCRL2
(x.mcrl2)

• The specification is converted to a stricter format called Linear
Process Specification (x.lps)

• In this format the specification can be transformed and simulated

• In particular a Labelled Transition System (x.lts) can be
generated, simulated and analysed through symbolic model checking
(boolean equation solvers)

Introduction A process algebra Data

Architecture

	Introduction
	A process algebra
	Data

