

Exercises 2: Interaction and Concurrency

Luís Soares Barbosa

Exercise I.1

Suppose a labelled transition system is given by the following transition relation:

$$\{\langle 1,a,2\rangle,\langle 1,a,3\rangle,\langle 2,a,3\rangle,\langle 2,b,1\rangle,\langle 3,a,3\rangle,\langle 3,b,1\rangle,\langle 4,a,5\rangle,\langle 5,a,5\rangle,\langle 5,b,6\rangle,\langle 6,a,5\rangle,\langle 7,a,8\rangle,\langle 8,a,8\rangle,\langle 8,b,7\rangle\}$$

Prove or refute $1\sim 4\sim 6\sim 7$.

Exercise I.2

Given two labelled transition systems $\langle S_A, \mathcal{N}, \downarrow_{\mathcal{A}}, \longrightarrow_{\mathcal{A}} \rangle$ and $\langle S_B, \mathcal{N}, \downarrow_{\mathcal{B}}, \longrightarrow_{\mathcal{B}} \rangle$, two states p and q are mutually similar iff

$$p \doteqdot q \; \equiv \; p \lesssim q \, \wedge \, q \lesssim p$$

- 1. Show that *is* an equivalence relation.
- 2. Compare this equivalence with bisimilarity \sim .

Exercise I.3

Show that \sim is an equivalence relation.

Exercise I.4

Discuss whether bisimilarity \sim

- is closed for union
- is closed for intersection

Exercise L5

A relation R over the state space of a labelled transition system is a *word bisimulation* if, whenever $\langle p,q\rangle\in R$ and $s\in\mathcal{N}^*$, we have

$$p \xrightarrow{s} p' \Rightarrow \langle \exists \ q' : \ q' \in S_2 : \ q \xrightarrow{s} q' \land \langle p', q' \rangle \in R \rangle$$
$$q \xrightarrow{s} q' \Rightarrow \langle \exists \ p' : \ p' \in S_1 : \ p \xrightarrow{s} p' \land \langle p', q' \rangle \in R \rangle$$

- 1. Define formally relation $\stackrel{s}{\longrightarrow}$, for $s \in \mathcal{N}^*$
- 2. Two states are *word bisimilar* iff they belong to a word bisimulation. Show that two states p and q are word bisimilar iff $p \sim q$.