

Exercises 6: Interaction and Concurrency

Luís Soares Barbosa

Exercise 1

Formalise each of the following properties in modal \mathcal{M} . Note they are formulated in a somehow ambiguous way, and can therefore be formalised in different ways.

- 1. The occurrence of a and b is impossible.
- 2. The occurrence of a followed by b is impossible.
- 3. Only the occurrence of a is possible.
- 4. Once a occurred, b or c may occur.
- 5. After a occurred followed by b, c may occur.
- 6. Once a occurred, b or c may occur but not both.
- 7. a cannot occur before b.
- 8. There is only an initial transition labelled by a.

Exercise 2

Consider the following processes and enumerate for each of them the properties they verify:

- 1. $E_1 \triangleq a.b.\mathbf{0}$
- 2. $E_2 \triangleq a.c.\mathbf{0}$
- 3. $E \triangleq E_1 + E_2$
- 4. $F \triangleq a.(b.0 + c.0)$
- 5. $G \triangleq E + F$

Exercise 3

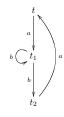
Consider the following specification of a CNC program:

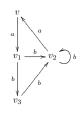
$$Start \triangleq fw.Go + stop.\mathbf{0}$$
$$Go \triangleq fw.bk.bk.Start + right.left.bk.Start$$

Formalise in $\ensuremath{\mathcal{M}}$ the following properties:

- 1. After fw another fw is immediately possible
- 2. After fw followed by right, left is possible but bk is not.
- 3. Action fw is the only one initially possible
- 4. The third action of process Start is not fw.

Exercise 4


Specify a LTS such that the following modal properties hold simultaneously in its initial state:


- $\langle a \rangle \, \langle b \rangle \, \langle c \rangle \, {\rm true} \, \wedge \, \langle c \rangle \, {\rm true}$
- $\bullet \ \ \, \langle a \rangle \, \langle b \rangle \, ([a] \, \mathsf{false} \wedge [c] \, \mathsf{false} \wedge [b] \, \mathsf{false})$
- $\langle a \rangle \langle b \rangle (\langle a \rangle \text{ true} \wedge [c] \text{ false})$

Exercise 5

Consider the following Act -labelled transition systems.

Show that states s, t and v are not bisimilar and determine the modal properties which distinguish between them.

Exercise 6

Let E be a process. A formula ϕ is said to be $\mathit{characteristic}$ of E iff

$$\forall_{F \in \mathbb{P}} \;.\; F \models \phi \;\; sse \;\; F \sim E$$

Note that a process verifies the characteristic formula of E off it is strongly bisimilar to E.

Determine the $\it characteristic$ formula of process $\it x.0$.

Exercise 7

Consider processes $E \triangleq a.(b.\mathbf{0} + c.\mathbf{0})$ e $F \triangleq a.b.\mathbf{0} + a.c.\mathbf{0}$. Propose a formula ϕ in $\mathcal M$ valid in E but false in F.

Exercise 8

Consider processes below and write down a formula in $\mathcal M$ valid in R but not in S.

$$E \triangleq b.c.\mathbf{0} + b.d.\mathbf{0} \tag{1}$$

$$F \triangleq E + b.(c.\mathbf{0} + d.\mathbf{0}) \tag{2}$$

$$R \triangleq a.E + a.F \tag{3}$$

$$S \triangleq a.F \tag{4}$$

Exercise 9

Define in \mathcal{M} , by abbreviation, a connective (K), with $K \subseteq Act$, such that $E \models (K)\phi$ iff actions in K are the initial actions of E, all of then leading to states which validates ϕ .

Exercise 10

In general, parallel composite in process algebra fails to be idempotent.

- 1. Making $E \triangleq a.b.E$, formalise a property in \mathcal{M} to distinguish between E and $E \mid E$.
- 2. In some cases idempotency holds. Build a bissimulation to witness equivalence $E \sim E \mid E$ when E is $E \triangleq \sum_{x \in K} x.E$, for any $K \subseteq Act \{\tau\}$. Would this remain true for Act?

Exercise 11

Compute

- $1. \hspace{0.2cm} \|[a] \hspace{0.1cm} [b] \hspace{0.1cm} \langle c, d \rangle \hspace{0.1cm} \text{true} \|$
- 2. $\|\langle a \rangle \langle \rangle$ true $\|$
- 3. $\|[a]\langle -\rangle \text{ true} \wedge [b][-] \text{ false}\|$
- $4. \hspace{0.2cm} \|[a] \left< \right> \mathsf{true} \vee [b] \left[\right] \mathsf{false} \|$