## Exercises 3 : Interaction and Concurrency

Luis Soares Barbosa

## Exercise I. 1

Let $A(a) \triangleq a . A$ and $B(b) \triangleq \bar{b} . B$. Compute the first derivatives of the following processes:

1. $A+B$
2. $A+B\langle a\rangle$
3. $A \mid B$
4. $A \mid B\langle a\rangle$
5. $\{a / b\}(A \mid B)$
6. new $\{a\}(A \mid B\langle a\rangle)$

## Exercise I. 2

Let $A(a, b, c, d) \triangleq \bar{a} . b . A+\bar{c} . d . A$. Draw the transition graphs of the following processes

1. $A$
2. new $\{a\} A$

## Exercise I. 3

Consider the following description of a two-position buffer with acknowledgements. Note the process is built from copies of a 1-position buffer also with acknowledgements: it acknowledges in $\bar{r}$ the reception of a message and waits in $t$ the confirmation that a message sent was arrived to its destination.

$$
\begin{aligned}
B s & \triangleq=\text { new }\{m o, m i\}(B(i n, m o, m i, r) \mid B(m o, o u t, t, m i)) \\
B(i n, \text { out }, t, r) & \triangleq i n . \overline{o u t} . t \cdot \bar{r} . B
\end{aligned}
$$

1. Draw the synchronisation graph of $B s$.
2. Check whether the behaviour of $B s$ is the intended one (drawing, for this purpose, the corresponding transition graph)
3. Find a solution to the problem detected (if any) and draw the corresponding transition graph.
4. Explain how the specification given (or your new solution) can be adapted to describe buffers with an arbitrary, but fixed number of positions.

## Exercise I. 4

Consider the following description of a 1-position bidirectional buffer, i.e., able to transmit and receive messages in any direction.

$$
B T\left(\text { in }_{1}, \text { in }_{2}, \text { out }_{1}, \text { out }_{2}\right) \triangleq i n_{1}(x) \cdot \overline{\text { out }_{1}}\langle x\rangle \cdot B T+\text { in }_{2}(x) \cdot \overline{\text { out }_{2}}\langle x\rangle . B T
$$

1. Specify a 2-position bidirectional buffer by parallel composition of two instances of process $B T$.
2. Draw its synchronisation diagram and the transition graph.

## Exercise I. 5

Consider the following specification of a control system for a crossing between a road and a railway. Events car and train modelled, respectively, a car or a train approaching the cross. Actions $u p$ e $d w$ stand for the opening and closing of the protection bar to prevent cars to cross. Similarly, green and red model the semaphore for trains. Finally, events $\overline{c c r o s s}$ and $\overline{\text { tcross }}$ come from sensors which register the actual cross of a car or a train, respectivelyy.

$$
\begin{aligned}
\text { Road } & \triangleq \text { car.up. } \overline{c c r o s s} \cdot \overline{d w} \cdot \text { Road } \\
\text { Rail } & \triangleq \text { train.green. } \overline{\text { tcross }} \cdot \overline{\text { red }} . \text { Rail } \\
\text { Signal } & \triangleq \overline{\text { green } . r e d . S i g n a l ~}+\overline{u p} \cdot d w . \text { Signal } \\
C & \triangleq \text { new }\{\text { green, red, up,dw }\}(\text { Road } \mid \text { Rail } \mid \text { Signal })
\end{aligned}
$$

1. Explain the behaviour of this process and sketch its synchronisation diagram.
2. Compute the transition graph corresponding to process $C$

## Exercise I. 6

An $n$-trigger, for $n>1$, is used in electronic voting to detect that a fixed number of votes have been received along its $n$ input ports, numbered from $a_{1}$ to $a_{n}$. As soon votes have been received in half of the input ports a signal is sent through its output port $\bar{s}$ and the process terminates. Each port $a_{i}$ receives only a single input. Inputs, however, may arrive in any order to the different ports.

1. Specify a 3-trigger.
2. Specify a $n$-trigger, for $n$ arbitrary.

## Exercise I. 7

Draw the transition graph of $T \triangleq a \cdot(b .0 \mid T) ?$

